PHYSICAL REVIEW B 66, 195105 (2002

Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings
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In this paper, it is pointed out that the light transmission anomalies observed for thin-film metallic gratings
can be explained entirely in terms of dynamical diffraction theory. Surface plasmons are an intrinsic component
of the diffracted wave field and, as such, play no independent causal role in the anomalies, as has been implied
by others. The dynamical scattering matrix for the Bloch-wave modes of the diffracted photon wave field
(E, H) is derived for a three-dimensionally periodic medium with arbitrary dielectric constant. A new theoret-
ical treatment and numerical results are presented for a one-dimensional array of slits. In model metallic slit
arrays, with negative dielectric constant, 100% and 0% transmission is possible at different wavelengths in the
zero-order beam. In slit arrays, both propagating and evanescent rttoatisonal surface plasmohsre
strongly excited at both the peak and the minimum transmission conditions.
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[. INTRODUCTION ers in this area favor a causal surface plasmon explanation,
while acknowledging that diffraction plays an important
Ebbesen and colleagdéshave reported that a periodic negative role in the transmission dips—the so-called Wood-
thin-film metallic grating, formed from a two-dimensional Rayleigh anomalie®>?! Recently, Cao and Lalantehave
array of holes, can transmit more light at certain wavelengthargued that in fact it is the surface plasmons that are most
than the projected area of the holes in the grating wouldstrongly excited near the Wood-Rayleigh anomalies and are
suggest. At other wavelengths, transmission is almost fullymost weakly excited at the transmission maxima, a point that
blocked. The enhancement in the transmitted zero-orddnad been previously admitted by some proponents of the
beam is reported to be several orders of magnitude largesurface plasmon explanatirCao and Lalanrié went fur-
than that from an isolated subwavelength aperture, after nother and argued that it is the surface plasmons that play a
malizing for the relative hole aréa This discovery has negative role in the transmission anomalies in slit arrays and
sparked much interest in the possibility of fabricating effi- that it is a combination of strongly excited waveguide and
cient transmissive photonic structures, such as subwavaeliffraction modes that lead to transmission enhancement in
length scanning probes. slit arrays. Although it is clear that all the proposed models
The strong “anomalous” transmissions and extinctionsare implicitly incorporating elements of each other in the
that occur when x rays are diffracted by crystals are nowphysics, they all produce essentially identical predictions for
well understood in terms of Ewald’s 90-year-old dynamicalarrays of slits, the emphasis in each model resting on differ-
diffraction theory*® The physics governing the scattering of ent photon scattering modes and on the language describing
light (both propagating and evanescent modms periodic  the scattering. Consequently, there is not yet a consensus on
metallic gratings at optical wavelengthsf@mally identical  the physical mechanism causing the transmission anomalies.
to that governing the coherent dynamical diffraction of x  Supporters of a coherent dynamical diffraction explana-
rays by crystals. The different scattering properties of theion argue that since the experiment involves the diffraction
periodic dielectric media are entirely encapsulated in the spasf light from a thin metallic diffraction grating and then mea-
tial variation of the complex dielectric permittivity, whose suring the intensity in the zero-order transmitted diffracted
real part can be large and negative in metals and close toeam, diffraction is obviously playing an important réle.
unity for x rays in crystals. It would seem reasonable toThe evanescent diffraction modes are related to the surface
claim that the anomalous transmission of light observed irplasmons, which are therefore implicitly included but, along
thin metallic hole arrays shares a common physical origirwith any propagating “Bragg-reflected” beams, are not as-
with the transmission anomalies observed in x-ray diffrac-signed any causal properties. In addition, initial reports ap-
tion. peared to overlook the inherent coherence of the light emerg-
To date, three physical models have been proposed to eiag from each aperture. If we treat each aperture at the exit
plain transmission anomalies in hole arrays. The first arguesurface as a point source, then the light emerging from each
that it is simply a dynamical diffraction resonance in a peri-is a spherical wave with equal amplitude transmitted in all
odic material with a substantially negative< —1) dielec- directions. ForN-point sources, periodic or otherwise, the
tric constanf This is the viewpoint of this paper. The second enhancement of the energy density in the zero-order mode
proposes that transmission is caused by surface plasmofmeasured by a point detector in the far-flelsl expected to
whose resonances are enhanced by the metallic hokcale asN?, notN, because of constructive interference. This
arrayl>’716 A third interpretation, specific to one- does not violate energy conservation because the far field
dimensional gratings, treats the slits as open FabrgiPe energy density for most othg=0 directions is diminished
resonant cavitie$!’~° which act as efficient waveguides. by destructive interference. K<d, whered is the array
Judging from the published literature to date, most researctspacing, additional beams of high-energy density will appear,

0163-1829/2002/68.9)/19510%11)/$20.00 66 195105-1 ©2002 The American Physical Society



M. M. J. TREACY PHYSICAL REVIEW B66, 195105 (2002

corresponding to diffraction orders, or Bragg beams. Onlyperiodic media, some interpretations seem to suggest that the
for a collection solid angle of 2 is the linear dependence on surface plasmons pre-exist on the gratings independently of
N strictly applicable. Compensating for this coherent, nondythe scattering. Proponents of surface plasmons have so far
namical, diffraction effect, the residual enhancement due tdailed to clearly identify the resonance mechanism respon-
the grating alone appears to be around 3 or 4. sible for generating these modes—that is, coherent diffrac-

A further compelling argument in favor of a dynamical tion. There has been a tendency to reify surface plasmons by
diffraction explanation comes from the well-known fact thatimplying that they somehowausethe transmission anoma-
similar strong transmission anomalies are observed in trandies, having the power to transmit and focus lighteven
mission electron microscof¥and x-ray topographfé stud- ~ though they are an integral part of the coherently diffracted
ies of crystals. Pendekboing(or thicknessfringes, as well as  wave field.
bend contours, are due to strong fluctuations in the transmit- It has been arguéd?°that diffraction cannot be playing a
ted intensity caused by dynamical diffraction effects. Similarrole in the transmission enhancements for a number of rea-
fluctuations would be expected when the wavelength of th&ons, which include the following1) The wavelengtha at
electrons and x-ray photons are varied, although the wavewhich the most pronounced transmission anomalies occur
length is not usually a variable in those experiments. Furthe@gre larger than the hole spacingisNo diffracted beams can
the wave equations governing the scattering of light in holdoe excited at the condition>d, and indeed no first-order
arrays are formally identical to those governing the diffrac-diffracted beams emerge from the grating®. Light cannot
tion of x rays in crystals. The principal differences are in thepossibly be “squeezed” by any diffraction mechanism into
material details; the metal in hole arrays has a dielectric consuch small holes, whose width is significantly less than the
stant that is large and negativas opposed to being slightly photon wavelength.(3) Diffraction requires propagating
larger than unity for x-ray scattering in crystaland the modes to occur in the grating. Since the skin depth in metals
periodicities and wavelengths are 3—4 orders of magnitudés significantly shorter than the grating thickndsand the
larger (microns, compared with angstroms in typical crys-hole spacingd, no significant electric fields are permitted in
tals). Because of the weak scattering of x rays in crystals, dhe grating metal. It is reasoned that all diffraction modes
significant simplification can be made for thin crystals whichmust therefore be strongly attenuated in the grating. Diffrac-
leads to the kinematicdkingle-scattering eventliffraction  tion, it is claimed, is responsible only for the dips in trans-
theory. An equivalent simplification cannot be made for themission at the Wood-Rayleigh anomalies, which correspond
strong dynamical scattering occurring in metallic hole arraygo conditions where higher-order Bragg beams emerge at
or optical band-gap materials. angles close to 90° to the grating normal.

Proponents of the resonant cavity model point out that These arguments highlight the fact that the kinematical
there is a propagating TM waveguide mode in one-(single-scattering diffraction view, where a simple set of
dimensional1D) slit arrays and that the cavity has an effec- propagating plane wavéBragg beamysare excited, is insuf-
tive index of refraction that is greater than unity, even thouglficient to explain these anomalies. As is shown here, these
the cavity may be empty. An elegantly simple model, basedbjections are overcome in the dynamical diffraction view, in
on resonant cavitie¥,'° matches remarkably well the re- which diffracted modes are generated by, and continuously
sults of a full electromagnetic simulation using a rigorouscoupled through, the periodicities in the grating. In this view,
coupled-wave analysi€(RCWA).24=26 However, it is known the transmitted beam is the zero-order diffracted beam—it is
that 2D arrays of subwavelength open cylinders do not suprot an unscattered beam. Thus a propagating diffracted beam
port propagating waveguide mod&s. doesemerge from the sample, and in fact this is the mode

Advocates of the surface plasmon model note that light ishat was measured in the early experiments reporting the
known to couple to surface plasmon modes on méfals.  transmission anomalies. Evanescent diffraction modes also
favor of a causal role for surface plasmons, someexist in the vicinity of the surfaces. These nonpropagating
researchefS point out that the most pronounced transmis-diffraction modes are associated with traditional surface
sion anomalies occur in metals, such as silver, which ar@lasmons and tend to decay away from the grating surfaces.
known to support strong surface plasmon resonances. Holeurther, and most importantly, the absence of higher-order
arrays in materials such as germanium, which do not suppofropagating diffraction modes emerging in air does not mean
strong surface plasmon resonances, do not exhibit stronidpe absence of higher order propagating modes inside the
transmission anomalies. In addition, when a grating madgrating. The coupling of diffraction orders can be viewed in
from a metal that supports relatively weak transmissiorterms of Bloch waves, where each Bloch-wave mplas an
anomalies, such as nickel, is coated with a relatively thireffective refractive index)) associated with it. The real part
layer of silver on the top and bottom surfaces, the transmisef n) can be large and positive for some modes, yielding an
sion anomalies increase significanitfySince only the sur- effective wavelengtih/n{) in the grating that is less than the
faces were modified, it is reasoned that surface plasmonsole spacing. Thus, at normal incidence, propagating modes
must be responsible. It has been proposed that surface plasan occur in the grating that satisky<n)d. TM-polarized
mons can squeeze light into subwavelength holes becaugeopagating Bloch waves in arrays of slits have their electric-
the photon can hop and tunnel resonantly between “plasmofield amplitude concentrated over the holes. The existence of
molecules.®* Although coherent diffraction is inherently such modes does not necessarily imply strong electric fields
present in the physical models that underpin these claimsn the metal. Such propagating Bloch waves can be viewed
since the models are based on Maxwell's wave equations ias guided waves in a medium with an effective dielectric
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constant that is larger than unity, consistent with the view otherent spherical waves, which mutually interfere to generate
Lalanne and others1° the scattered wave front, which subsequently impinges on
The view that the Wood-Rayleigh anomalies are causethe next layer, and so on. This approach works well for mod-
by the creation and annihilation of higher-order Bragg beameling the scattering of light from objects of arbitrary shape
at 90° (i.e., diffraction causes transmission extinctibfis and scattering properties, and reveals the underlying diffrac-
seems to overlook the logically complementéaynd equally tive nature of light scattering.
simplistic view that the Wood-Rayleigh anomalies are In a homogeneous medium, each point scatters light iden-
caused by the annihilation and creation of resonant surfacécally, with the result that, statistically, the scattered light
plasmon modes with long attenuation lengths; i.e., surfacexperiences destructive interference in all directions except
plasmons are the cause of the extinctions. A better way tforwards, backwards, and in the specular reflection direction.
view the Wood-Rayleigh anomalies is that they arise wherThe wavelength of the light in the medium is modified by a
the real part of a Bloch-wave propagation wave vector vanfefractive indexh to A/n. Heren may be complex, indicating
ishes, defining a transition between being a propagdting-  absorption or reflection. When the medium possesses a mac-
sibly attenuatedBloch-wave mode to a purely evanescentroscopic periodicity, constructive interferences can occur in
Bloch-wave mode. additional directions. A plane wave front becomes deformed
It has been shown that, while slit arrays can support effiby the evolution of a set of spatial modesose Fourier
cient TM waveguide modes, two-dimensional hole arrays areomponents are those of the structuMot all modes are
a different mattef’ Attenuated TE polarization states inevi- propagating, and many can be evanescent along the nominal
tably occur in this geometry. Consequently two-dimensionapropagation direction of the wave front. These diffraction
hole arrays cannot be viewed as an array of efficient cylinimodes are strongly resonant in a periodic structure because
drical waveguides. However, this result does not mitigatehey have a phasg r =2n relative to the forward scattered
against the role of coherent dynamical diffraction, which(integern=0) beamg is the diffraction wave vector, which
handles both propagating and evanescent modes seamlessdyrelated to the structure’s periodicities of wavelenggh ,
In this paper, a more detailed explanation is presented afa g=2m(n,/\,,ny/\,,n,/\;), where then, , , are inte-
to how the transmission enhancements in metallic hole argers. Constructive interference between beams scattered by
rays can be explaineéntirely as a coherent dynamical dif- similar points in the grating is assured by the spatial coher-
fraction phenomenon in a modulated metallic medium, withence of the incident wave front, and no superluminal com-
no reified role for surface plasmons necessary. Surface plasunication between scatterers is required to provide this co-
mons are indeed excited and are an intrinsic part of the difherence. This resonance phenomenon lies at the heart of
fracted wave field. Numerical results are presented for onediffraction in periodic media. Diffraction occurs whether the
dimensional slit arrays, a geometry that allows the dynamicaperiodic material be transparent, absorbing, reflecting, or
equations to be solved in a novel manner, as a straightfoimagnetic. These physical properties are embodied in the di-
ward eigenvalue problefh.This geometry has also been electric constant and the magnetic permittivity. of the
solved by proponents of the surface plasfhoand material and strongly influence the amplitude, phase, and
waveguidé® viewpoints, with similar results, confirming the effective wave vector of the diffracted modes. Thus, different
validity of the dynamical diffraction approach. It is shown materials scatter differently into these spatial modes. In prin-
that propagating Bloch-wave modes, equivalent to waveeiple, a complete description of the scattering from the object
guide modes with electric field confined to the cavities, carcan be obtained using Maxwell's equationsjfu, and the
be strongly excited in slit arrays. It is shown how the surfaceshape of the object are known.
plasmon charge density can be obtained directly from the
coherently diffracted wave fiel&(r). It is concluded that
elements of the surface plasmon and waveguide viewpointsB. Bloch-wave dynamical scattering model for the diffracted

are inherently present in the dynamical diffraction interpre- wave field in hole arrays
tation. It is well known that Maxwell's wave equations can be
solved in periodic media by expressing the solutions as a
Il. THEORY linear sum of plane-wave states, with Fourier components

matching those of the medium. Ewald demonstrated this with
his dynamical diffraction theory of x-ray scattering in
When a plane wave of light impinges on a small particle crystals' Much later, other models, such as the rigorous
some of the incident light is scattered sideways and backeoupled-wave analysis for metallic surface-relief gratings,
wards. This is true whether the object be transparent, opaqubkave been introducétiand improved for the case of trans-
or reflecting, although these properties influence the phasmission grating€>26*132Meade and co-worket$** have
and amplitude of the scattering. When the particle is mucHormulated a variant of the dynamical diffraction theory for
smaller than the wavelength of light, becoming essentially aptical band-gap materials.
point, the scattered wave resembles a spherical wave. In the Here the dynamical diffraction problem is solved in terms
Huyghens-Fresnel view of light propagatitha continuous of Bloch-wave modes, analogously to the method of Ewald,
medium can be considered to be a compact, aperiodic, abut valid for a periodic medium with arbitrary dielectric con-
sembly of such small scatterers. A wave front impinging an sstant. In the case of x-ray diffraction in crystals, the scatter-
layer of these scatterers is transformed into a myriad of coing is sufficiently weak that the effective value &fr) devi-

A. Coherent diffraction in periodic media
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ates only slightly from unity. This allows a significant

simplification of the wave equations for x-ray scattering. €(r) =2 Fyexpligr). (4)
Further, the three-dimensional periodicity of crystals simpli- g

fies matters so that only those propagating Fourier compayhere theg are the Fourier harmonics of the grating period-
nents that lie close to the Ewald sphere need to be consideity. The coefficientsF , are generally complex.

ered. Since the Fourier components of the dielectric constant \ye |00k for Bloch-wave solutions for the scattered wave

for x rays in crystals tend to be much less than unity, th&je|q inside the periodic grating. Such solutions can be rep-
deformations and branchings that open up on the Ewaldesented by the sum of polarized plane-wave states:
sphere tend to be small perturbations, allowing easy determi-

nation, in advance of any computation, of the likely strongly o

excited Fourier components. In metallic hole arrays and op- HOM =2 X nPHD exdikP+g)-r]. (5
tical band-gap materialg, can be largdgthe real parts ok g P

tend to be large and negative in the former and large an . -

positive in the latter, and the simpler eigenvalue equations%((.))r thejth Bloch wave, t.her){)g have nor. depen'dence. The
derived for the weaker x-ray scattering are not appropriatelpg (P=1,2) are two unit vectors associated with each plane
The streaky nature of the Fourier coefficients perpendiculawave k) +g. The direction of each unit vector is fixed by
to the grating normal means that many modes can intersefie choice of Cartesian axes and from Maxwell's
the Ewald sphere that are not near a true Bragg conditiorfquations—that is,
Additionally, the strongly dynamicalmultiple-scattering

nature of the dlffra_ctlon_ensu_res that many modes can beV-H“)(r)zV-E 2
simultaneously excited, including those that do not directly 5 5
intersect the Ewald sphere; thus the important strongly ex-

N Hp g exdi(kV+g)-r]

cited modes are not easily guessed in advance. . M () w (i) G
For an inhomogeneous nonferroelectric medium, the _'% % (kK7 +9)-nygHp gexdi(k’+g)-r]
wave equations governing the electri, and magneticH,
fields are obtained directly from Maxwell’s equations: =0; (6)
1 thus, in general, we assert
VX —M(r)VXE(r)}—XZe(r)E(r)=O, (1) 0
() n() =
(k¥ +g)-ny%=0. (7)
1 5 This ensures that the magnetic field of each plane-wave state
VX EVX H(r) | —x“u(r)H(r)=0. (2)  is transverse to the direction of propagation. Furthermore, to

ensure that the two field components are mutually indepen-

As usual,e is the dielectric constant, and is the magnetic d€nt. we assert the orthogonality requirement

permeability, which, in general, may be large and compjiex. o
is the vacuum wave vector of the plane wave incident on the n(’,é~ n(',é,= 0. (8
grating and, for wavelength, has amplitude Z/X\.

For a nonmagnetic grating(r)=1 everywhere, Eq(1) The total magnetic field is given by the sum of each Bloch-
reduces to wave excitation for both polarizations:

VXV XE(r)— x2e(r)E(r)=0. 3 H(r)zz lﬁéi)E 2 ﬁg,{;Hg,{,eXl{i(k(‘“g)‘r], (9)
J g p

Since we wish to solve these equations for a general polar- o o . )
ization, Eq.(2) is considerably more congenial to the task Wherey{)) is the excitation of the-polarized Bloch wave.
than is Eq.(3). This is becausg.(r) being constant ensures The total electric fieldE(r) is then found from Maxwell's
that the magnetic fieléh(r) is orthogonal to the propagation €quations:

direction.

The grating is illuminated by an incident plane wave 1

inch inca inc : . E(I’)= - —V><H(r)
[Hni+HZny]explx-r). Here HT® is the amplitude of lweg €(r)
the incident magnetic field polarization parallel to the unit 1
vectorn,, and similarly,H5® is the polarization component = D R Y > (kD+g—h)

~ w i

of the incident magnetic field parallel to the unit vecinr on ' e r
Hereﬁ1 and ﬁ2 are chosen such thé’g, ﬁz, and y are mu- ><ﬁg,gthfj,g,hexr[i(k“Hg)-r]. (10

tually perpendicular.

The grating is periodic, so we can represent the reciprocdh the absence of free charges, the polarization charge den-
of the complex dielectric constarg(r) %, the dielectric re- sity is p=V-P=—¢,V-E. Thus, for thep=1 polarization
striction, as (TM polarization,H parallel to slits
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i o . .
p(N=——2 kP X hFHE) pexikV+g)-r]
] g h

19-h
(11
and forp=2 (TE polarization,E parallel to the slits
p(r)=0. (12

k{) is thez component of the wave vectéf).
Each Bloch wave is independently a solution to Max-
well's equations. We take the Fourier transform of E2):
1
—VX

—ik’-r
J © e(r)

Substituting fore(r) ~* from Eq. (4) and for HO)(r) from

V X

—Xz}H(j)(r)dr=0. (13

PHYSICAL REVIEW B 66, 195105 (2002

Eq. (5), after some manipulation we get for each polarization

statep=1,2 the equation

2 Fonl (KD +g)xngy I [(KW+h) X nglIHEL— x*HY,

0.

(14)

This eigenvalue equation is a generalized form of the dy
namical scattering matrix originally derived by Ewafdto

describe diffraction of x rays by crystals. This equation als
closely resembles that presented by Meade an
co-workers®3*for their treatment of optical band-gap mate-

rials. The principal difference is that in their treatment, the

Bloch-wave frequencies!) (i.e., energiesare the eigenval-
ues whenk is given. Here,w is fixed and thek!)) are the
eigenvalues.

The eigenvalue&!) of Eq. (14) are generally complex,
being equal tok{ k¥ kI +ik’ D). Typically, k{ andk
are given by the experimental geometry and are the same f

e
all eigenvectors. We thus drop the superscript and refer ong

to k. andk, . We wish to solve fok{ to obtain the disper-
sion surface, which is a plot &’ versusk, over the Bril-

2 Foon(ket @) (ke t MR 23 o pHE -~ x*HEy
=0. (16)
This matrix equation takes the form
A-H=(k{)2C-H (17)
or
(C*A)-H=(k)2H, (18)
where the matrix elements are
Agn=F g n(Kke+9)(ke+h) = x*8gn (19
and
Cghz_Fg—h' (20)

These matrices are not Hermitian since, in genefgl,

¢F§,g unlesse(r) is real everywhere. Consequently, the
eigenvalues I(Q))2 are expected to be complex. Equation
(18) represents a new and straightforward mathematical
model for solving the one-dimensional grating problem.
However, the harder-to-solve general form, E@4), is a

fully three-dimensional treatment, valid provided the me-

gdium is of large width and the thickness of the medium is an

{ntegral number of unit cells. This latter proviso arises be-
cause of the underlying assumption of periodic continuation.
The perpendicular TE polarization moge=2 can be

solved similarly by solving the equivalent equation for the
form of the Bloch waves, obtained in a similar manner start-
ing from Eq.(3).

We can determine the excitation of each Bloch wave by
satisfying boundary conditions for both the electric and mag-
tic fields at the upper and lower surfaces of the grating.
ince we have set=1 everywhere, then botH andH
re continuous across each interface. The electric field must
be such that there is continuity &) and €E, across each
interface. Finally, since we are not including any energy loss

louin zone.k' gives the attenuation of each Bloch wave yechanisms, energy is conserved. Thus, the total scattered
alongz. _ ) energy, both reflected and transmitted through the other side,
Equation(14) is a general eigenvalue problem, and theq, st equal the incident energy.

elegant energy-minimizing numerical methods used by There are two boundaries and four distinct wave fields to
Meade and co-workef$**for finding the real frequency ei- ¢onsider. Wave field 1 includes the incident wave, the re-
genvalues» do not apply directly to the complex wave vec- fiected wave, and back-diffracted waves. Wave field 2 in-
tor k{+ik’$ eigenvalue problem. However, for the case ofcludes the(nominally) forward-propagating waves in the

a one-dimensional array of slits, periodic alonga useful  grating®® Wave field 3 is the set of back-propagating waves
simplification can be made for the=1 TM polarization  inside the grating, and wave field 4 contains the transmitted
state, where théd polarization is parallel to the slits. The beams in the medium on the other side of the grating_ The
vector term simplifies to four sets of boundary condition equations that are obtained
are similar in form to those presented by Maharam and
Gaylord* and so are not repeated here.

Generalized eigenvalue problems of the type presented by
Eq. (18) are readily solved numerically by standard eigen-
value packages, such as th&PAck subroutinezGeevx.®

The number of Fourier components required to reach a
stable solution can be quite large. For the most part, modes
out to +25G (51 Fourier modes in totplare sufficient for
most wavelengths and grating thicknesses. However, at cer-

[(KD+g)xny]- [k +h)xng}]

=(kW+g)- (kD +h)
(ket9,0k) - (ky+h,0kD)
= (ke 9) (ke +h) + kD2,

(19

Thus, for the TM polarization state=1, we have
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100 than the periodicity >d, where no high-order propagating
90+ S 2.0um modes are supported in diwhere we assume=1).
804 T ! [ Dynamical diffraction simulations df, versush for slits
S 704 (oru=-9) 0.25!;, in a real metal, such as silver, reproduce well the essential
< 604 features of the dafeand concur with simulations made by
2. surface plasmon advocates.
é 40 Not all of the modes inside the grating at this>d con-
= gl dition are evanescent. Figure 2 shows Bloch-wave dispersion
20 surfaces, computed fat 25G Fourier components, for a to-
| tal of 51 Fourier components, at four photon wavelengths
10'M/VJ\/\ A=0.8, 1.9, 2.117, and 10.2m, respectively. Again, the
0 a5 18 18 923 88 &5 dielectric constant is set to= —5 at all wavelengths. These
' ' ) ) ' dispersion surfaces are plots lof versusk, for each Bloch-

wave branch and are plotted out to the Brillouin zone bound-
FIG. 1. Transmitted intensity vs photon wavelength for a fl’ee-ary, beyond which they are periodica”y continued. For each
standing one-dimensional grating with period Z@n, slit width wavelength, the real parts kf associated with the propagat-
O._25 pm, and thickness 0.2zm. The grating material is_ modeled ing (pure real and attenuatedmixed real and imaginayy
with e=—5 andu=1 for all wavelengths= 100G Fourier com-  ,q4ag are plotted on the left. The complex componenks of
ponents were included. The-field polarization is off the pagélM associated with the attenuated and evanesteue com-

polarization. There is almost 100% transmission at .
=2.117 um. The identical transmission spectrum is obtained for aplex) modes are plotted on the right. In a real metal, such as

grating material withe=1 andu= —5 for all wavelengths. In this silver, the pro_paga_ting Bloch wave vectors generally have
latter case thé&-field polarization vector is off the page. both real and .|mag|nary compon(_ants and are thus attenua_ted
over large thicknesses. Increasing the number of Fourier

components ta- 100G increases the number of Bloch waves

tain combinations of wavelength and thickness, strong Spug, 201 and modifies some of the details of the Bloch-wave
rious resonances appear. At these conditions, modes out {0.ches somewhat. However, propagating modes persist,
+100G (201 Fourier modes in totare then required for rhis gpservation is consistent with previous reports that

thicknesses up to &m in silver. It has been found that, for waveguide modes can be efficiently excited in subwave-
the RCWA formulation of the problem, substituting the di- length slit array€:17-1927

electric restriction m_atri)FE||1/e|| with ||e||*1. canproducea  The equivalent plotgnot shown for a dielectric grating
dramatic speedup in convergence rate in electromagnetig,ade from a material witk slightly larger than unity reveal
problems of the type considered héré®***'This result is dispersion surfaces that approximate circles with gaps open-
all the more remarka_\ble when it is realized that the substling| up at the intersections of the propagating modes. This is
tuted Fourier coefficients themselves converge much morgpiirely consistent with dispersion plots that are obtained for
slowly to the target dielectric function. It appears that they y4ys'in crystals. In this limit, transmission anomalies in the
improved convergence rate arises because the substitutioR,q_order mode can also be strong, and such anomalies are
improves the stability of the boundary value matrix—the in-\e|| known in x-ray diffraction from crystals. Evanescent
stability coming from the fact that the equations containggges also occur, but are usually of little consequence in
products of discontinuous Fourier serfésThis substitution x-ray diffraction and are ignored.

was not implemented in this work, but will clearly provide | is interesting that many Bloch-wave branches in the

impro_ved nl_JmericaI convergence rates when addressing thpﬁots of Fig. 2 intersect other branches, mainlkat 0 (nor-
two-dimensional hole array problem. mal incidencg and k,=g/2 (the Bragg angle This is par-
ticularly true of the evanescent modes. The density of such
Ill. NUMERICAL SIMULATIONS g:rossings is highest for the evanescent modes. These cross-
ings are reminiscent of decoupled plane-wave modes in a
Figure 1 shows a simulation of the intensity in the trans-uniform medium. Further, for thé&,=0 normal-incidence
mitted beaml, as a function of the TM-polarized incident conditions studied in depth here, none of these intersecting
photon wavelength for an ideal one-dimensional metallicbranches are significantly excited. This suggests that these
grating. The grating has a periodicity of 20n, a slit width  branches are dynamically decoupled. In dynamical diffrac-
of 0.25 um, and a thickness of 0.2m. The dielectric con- tion terms, this means that many of the evanescently dif-
stant is set tee= —5 at all wavelengths, ankl,=0 for nor-  fracted modes have a near-infinite extinction distance at this
mal incidence. The simulation was performed forl00y,  condition and so do not contribute directly to the scattering.
Fourier components, for a total of 201 Fourier components. Figure 2 shows that propagating modes persist out to
The plot for 161 Fourier components was not substantiallywavelengths that are significantly longer than the periodicity.
different, suggesting that reasonable numerical convergendgach Bloch wave has its own effective refractive indeR,
has been reached. given by n0=\k{)/27r. The relative excitation of these
A striking feature of this plot is that the transmitted inten- Bloch waves is governed entirely by the boundary conditions
sity in this idealized metal is 100% at a wavelengthhof at the top and bottom surfaces—both surfaces being equally
=2.117 um. This peak occurs at a wavelength that is largeimportant. It is not just the evanescent Bloch-wave modes

195105-6



DYNAMICAL DIFFRACTION EXPLANATION OF THE . .. PHYSICAL REVIEW B 66, 195105 (2002

A=0.8 um A=19um

83 F 1107 3 5 o103 3
é\/? 100—5 E— E 100—5 E—
3 3 3 3 :
3 E 904 E 903 E
6] L. R F T '
T_ 67 2 - [ : 3 3
g ] B = —— g F BV T——
55— :-v7°'>—<' 5 P 0 ——————
~ e o ———— —~3 F e L ——————
o ] I e o I
\% \E R ———— % F \660—_——’—\-
3 3 e E [

e * == 50—.§.— = Eo= 50
F 3 _— —— 2 - —
34 F Wl ——————F w1
] - TN ==
13 2
10 r 103 E

e —

O ZprrrrrTrrI T S L L L L 0 - Oﬁ

ke (Ul e (umY) ke (um ) Joe (um1)

5— — 110 - - 59 C

|

1

T

v

=)
fmmmmi
T T

1

T

n

o

ky (pm-1) ky (um1) ky (umT) ky (um1)

FIG. 2. Plots showing the Bloch-wave dispersion surfaces for four photon wavelengt®s8, 1.9, 2.117, and 10,Qm, respectively.
The grating details are the same as for Fig. 1. Each plot shows branches for the propagating Bloch-wa\(eigmdmag) pure rea)
on the left and for the evanescent modeigenvaluek!”) pure imaginary on the right. Note that propagating modes persist at wavelengths
much larger than the slit spacing.

(which are most closely associated with the traditional suraddition, minima corresponding to the Wood-Rayleigh
face plasmonsthat are sensitive to the surfac#dl modes, anomalies occur at those conditions where the wave vector
including the propagating ondghich are most closely as- kg” of a propagating mode goes to zero. This is a special
sociated with traditional Bragg beamare dependent on the condition where a mode makes the transition from being a
surfaces. Thus, the observation that the addition of thin silvepropagating(perhaps attenuatganode to a purely evanes-
layers on nickel gratings enhance the transmisgidoes not  cent mode. SuchQ):O conditions tend to be strongly reso-
constitute proof that evanescent modes alone are responsibtent.

Examination of the Bloch-wave excitations at maximum  Figure 3a) shows the intensityH?(r) of the total dif-
and minimum transmission reveal that no one mode domifracted wave field in the vicinity of the two slits of the grat-
nates over all others. It turns out that for maximum transmising atA =2.117 um (100% transmission Figure 4a) shows
sion in slit arraygexcept in the case of negligibly thin fillhs  the total intensity at\=2.0 um (minimum transmission
at least one propagating mode must be strongly excited. Ifigures 3b)-3(j)) and 4b)—4(j) show the nine dominant
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FIG. 3. (a) Side view showing the total photon intenskf(r)
in the vicinity of the same grating as in Fig. 1 at maximum trans-
mission A =2.117 um. The simulation was for=100G Fourier
component$201 modes total At maximum (10099 transmission, ponents201 modes total (b)—(j) show the intensitiesi?(r) of the

FIG. 4. (a) Side view showing the total photon intenski?(r)
in the vicinity of the same grating as in Fig. 1 at minimum trans-
missionA =2.0 um. The simulation was for- 100G Fourier com-

the intensity distribution is identical at the entrance and exit sUryine dominant Bloch wave modes. Excitationslecrease from top

faces. (b)—(j) show the intensitiesH%(r) of the nine dominant 5 potiom. (b) |#]=1.999k,=0+i8.855; (c) |¢|=1.460k,=0

Bloch-wave modes. Excitationg decrease from top to bottom. 7 247 (d) |¢|=0.134k,=0+i11.471; (e) |¢|=0.121k
247, . 2 AT1; . 2

(b) |¢]=12.557k,=0+i8.656; (¢) [§]=0.744k,=0+I11317,  _ _51721{0; (f) |§|=0.034k,=0+i14.587; () |y|=0.015k,
(d) [¢]=0.666k,=5.04L+i0; (e) |¢|=0478k,=0+i7.006;  _(1j17.981; (h) |4|=0.014k,=0+i21.684; (i) |#|=0.013K,
(f) [¢1=0.193k,=0+114.466; (g |¢=0.091k,=~0+i17.880;  _1 gg3;i24.914;(j) |y|=0.013k,= — 1.863+i24.914.

(h) |4]=0.086k,= —1.858+i24.917; (i) |#|=0.086k,=1.858

+i24.917;()) |y =0.085k,=0+1i21.589. and a thickness of 0.2m. These plots were computed to

match, as far as possible, the experimental conditions of the
Bloch waves excited in the grating at each condition. Onlygata published by Ghaeret al. (1999.2 The plot shows a
the modes that decay frofor grow towards’) the top sur-  gray scale representation of the zero-order transmitted inten-
face are showirtwave field 2. A similar set _of Bloch waves sity as a function of beam tiltk(,,x axis) and photon energy
that decay from the bottom surfa¢eave field 3 are also i, gv (z axig). The left-hand side of the plot shows the com-
excited, but are not shown. Interestingly, at these two expytation for the unsupported Ag grating. The right-hand side
tremes, it is essentially the same subset of Bloch waves thg the plot shows a similar computation for the same grating
dominate. It is primarily the excitation amplitude of each sypported on a quartz plate. Both plots are mirror symmetric
Bloch wave (which is complex that varies significantly. aboutk,=0, so only half of each plot is shown. The values

Note that although the photon intensity near the exit surfacgy ¢ for sjlver were obtained by a numerical fit to the data of
at maximum transmission is not ripple free, in the far field 3onhnson and Chrisf

the transmitted wave is a plane wave.
Each Bloch-wave mode has a polarization charge €ag=4.0-54.002+iX(0.38+0.71\?), (21)
density (surface plasmonassociated with it, given by$)

= —¢V-EU). This is readily obtained from thil form of ~ _ 7,
. - =<1.94um, but probably can be extrapolated to longer
the Bloch waves via Eq(11). Not surprisingly, the evanes- wavelengths without significant loss of precision.

cent Bloch-waye mode§ correspond to polarization waves Despite the fact that this is a one-dimensional simulation
that are essentially confined to the upper and lower surfacea§nd the data collected by Ghaemi and co-workéssor a

of the_grating_. The pr_opa_gating moﬁéigs._iid) and 4e)] is .__two-dimensional grating, this plot reproduces the essential
associated with polarization charge density strongly local'zeéeatures of their data remarkably well

to the walls of the channels, opposite walls being oppositely
charged.

Figure 5 shows computed plots for the rocking curves
from a Ag grating. In this simulation, the one-dimensional In this paper it is demonstrated that the resonance phe-
grating has a periodicity of 0.am, slit width of 0.16um,  nomenon that is responsible for the transmission anomalies

which is valid for the experimental range 0.@m=A\

IV. DISCUSSION
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Unsupported Ag Ag supported on quartz found for arrays of slits that while many modes are evanes-
DOOooOOD  Oooooooo cent(the eigenvalue wave vectéf) is pure imaginary, an
important few are propagating or attenuatéte eigenvalue
wave vectorkg” has a nonzero real parPropagating modes
can persist even when the wavelength is larger than the fun-
damental array spacing. Surface plasmons arise in all peri-
odic media, and the polarization charge density is given by
— ¢V -E in a dielectric medium. Metals, such as silver, are
special in that the dielectric permittivity is large and nega-
tive, which acts to expel the electric field from the metal.
This means that, in metals, the propagating diffraction modes
tend to have strong electric fields in the holes.

This statement is consistent with the interpretation of La-
lanne and co-workers*®who point out that the slit cavities
can support resonant propagating modes. Essentially, the
propagating Bloch-wave modes shown in Fig&l)&and 4e)
are the forward-traveling components of such resonant
modes. These modes can propagate because there is an ef-
fective refractive indexh that assuresl<a<nd. Cao and
Lalanné® show that a simple model, based on these resonant
modes alone, reproduces all the essential features of the full
electromagnetic computation. This result illustrates the
dominant role played by the propagating Bloch-wave modes

60 -40 20 00 20 40 60x103 (waveguide modesin slit arrays.
k; (am-1) For maximum transmission into the emerging zero-order
diffracted beam, the propagating part of the emerging wave

FIG. 5. Computed rocking curves for a one-dimensional Agfield must be a pure plane wave of maximum amplitude.
grating of periodicity 0.6um, slit width 0.16,m, and thickness of Thus, it is perhaps not so surprising that the transmission
0.2 um. The plot shows a gray scale representation of the zeromaxima tend to occur when>d, the condition where no
order transmitted intensity as a function of beam #lt (x axis) and higher-order propagating diffraction orders can emerge.
photon energy in eVZ axis). The left-hand side of the plot shows However, it is not sufficient to excite a single propagating
the computation for the unsupported Ag grating. The right-handg|och-wave inside the grating either, since one Bloch wave
side of the plot shows a similar computation for the same gratingygde is unlikely to single-handedly match the boundary con-
supported on a quartz plate<£2). This plot reprqduceS_» many of gitions at the upper and lower surfaces. At maximum and
the features observed in data taken from a two-dimensional Ag ho'?ninimum transmission, many modes are excited. For maxi-
array (Ref. 2. mum transmission, exact cancellations of the higher-order

propagating orders occur, leaving just e O order, which
in metallic slit arrays is coherent diffraction. Maxwell's carries all the energy out of the grating. Evanescent modes
equations for the problem can be formulated in terms of dtraditionally associated with surface plasmpage also ex-
dynamical diffraction Bloch-wave eigensystem, exactlycited. For minimum transmission, exact cancellation of the
analogous to that presented by Ewald for x-ray diffraction ing=0 transmitted order occurs and much of the energy is
crystals. Further, this treatment is closely similar to that prereflected. Surface plasmons are intimately associated with alll
sented by Meade and co-work&&*for the related study of of the Bloch-wave states, not just the evanescent modes.

Energy (eV)

optical band-gap materialssystems wherees is large and It should be pointed out that since all surface plasmon
positive. It is also shown that surface plasmons are an intemodels that have been published to date start by computing
gral part of the diffracted wave field. the diffracted wave fieldE,H), they too are technically dif-

The underlying physics for the metal holes arrays andraction models. None of these surface plasmon models ex-
optical band-gap materials is formally identical. It is only the plicitly contain the plasmon charge denspyd(r). In those
choice of eigenvalue that differs: wave veckdor this treat- models, surface plasmons are inferred from the diffracted
ment, frequency for the band-gap treatment. electric-field distributions. The grating surfaces impose

The resonance originates in the physical structure of théoundary conditions oall of the electromagnetic modes that
grating, whose periodicity allows the scattered wave to adopare excited in the grating, including the propagating modes.
spatial modes containing the same periodicity. Explanation§he surfaces areot the exclusive domain of surface plas-
based on surface plasmons alone appear to miss this poimhions. Since the surface plasmon charge density is given di-
For example, Marh-Morenoet all* (2001 state that “the  rectly by pse(r) = — €,V -E, it is clear that the surface plas-
effect of extraordinary transmission has a resonant naturejhons are in fact an intimate part of the diffracted wave field
they then admit that “it is not obvious what mechanism iscomponentE. In addition, the physical origin of the reso-
involved.” The resonance mechanism is coherent dynamicatance, coherent diffraction, is inherently present in these
diffraction. Viewing diffraction modes as Bloch waves, it is plasmon models. For example, in one stirigurface polar-
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iton Bloch waves are identified. It is also noted by theseing transmission, as opposed to the “passive” role of ordi-
authors that intensity enhancements can result from the imary dielectrics, and it has been declared that surface plas-
terference of surface plasmon Bloch waves that have beemons actively “enhance” transmissidh through metallic
Bragg scattered by the holes in an array. Technically, beingole arrays. It has also been claimed that surface plasmons
eigenmodes of the photon in the crystal, Bloch waves canndiave the “found ability” to “transmit and focus light very
be further Bragg scattered, since the Bragg scattering cffficiently.”'* Since the surface plasmons are an integral part
plane-wave states is already folded into the Bloch waveof the diffracted wave field, the physical implication, no
Nevertheless, theirs is a clear description of dynamical difdoubt inadvertent, is that the photon scatters itself or that the
fraction (multiple scattering surface plasmons pre-exist on the grating.

Several papefs''®present an expression due to Raether  Polarization waves also occur in ordinary dielectrics, as
for the wave vector of a surface plasmon on a smooth sumwell as in crystals that are diffracting x rays. The key is that

face, which is of the type in metallic gratings, the dielectricesponsee tends to be
. large and negative which influences the phase, amplitude,
Fo(k+0)“=x". (22)  spatial distribution, and propagation of the polarization

waves. Metals are just as passive as ordinary dielectrics.
Although the numerical results presented here are for the
simplest case of a one-dimensional grating, which is known
to support waveguide modes in the TM polarization mode,
the dynamical diffraction equations presented apply fully to
gratings that are periodic in three dimensions. For thin grat-
ings, this holds provided the thickness is an integer multiple
of repeat units. The dynamical diffraction equation is readily
extended to materials in which bo#(r) and w(r) vary,
although the polarization vectors of each diffracted wave are
no longer necessarily perpendicular to the propagation wave
vector. No significant departures from the underlying physi-
gal interpretation are anticipated by going to higher dimen-

As before k is the photon wave vector, ampare the Fourier
components of the grating periodicitlf, is related to the
dielectric permittivities of the metak,,, and the holesgy,,
through Fo=(en+ €n)/ emen. From this equation for the
Ewald sphere, the wave vector of the surface plasrkggsis
related to the evanescent solutions kgrkgp= —ik,. Equa-
tion (22) is one of the diagonal terms of the dynamical scat-
tering matrix, Eq(14) for the TM polarization. In that case,
Fo=[(d—a)e,+ae,]/dene,, the mean value of &/in the
grating. Equation(22) is correct for a smooth metal surface,
with no structural periodicity. However, it ignores the impor-
tant off-diagonal terms of the dynamical scattering matrix,
which describe the coupling between the various scatterin
modes. As such, Raether’s equation is inappropriate for
grating.

Given that the dynamical diffraction model inherently in-
cludes surface plasmons, it might reasonably be argued that
the issue over whether the transmission anomalies are a dif-
fraction phenomenon or a surface plasmon-enhanced effect | am grateful for numerous discussions with my col-
is merely a matter of semantics. However, there has beenlaagues, J. Chadi, T. W. Ebbesen, H. F. Ghaemi, R. A. Linke,
tendency by proponents of the surface plasmon model té. Nahata, T. Thio, L. Wang, and P. A. Wolff, at the NEC
reify surface plasmons by treating them as if they possesResearch Institute, Inc., where Ebbesen first reported the
independent causal scattering powers. For example, it hamomalous transmission phenomenon. | am also grateful to
been asserted that the metal plays “an active role” in enhancK. Vepuri for programming assistance.

ions. It is clear that the careful study of three-dimensional
iffracting geometries, not necessarily periodic or planar,
may lead to exciting and useful photonic devices.
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