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Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings
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NEC Research Institute, Inc., 4 Independence Way, Princeton, New Jersey 08540-6685

~Received 25 February 2002; revised manuscript received 13 June 2002; published 13 November 2002!

In this paper, it is pointed out that the light transmission anomalies observed for thin-film metallic gratings
can be explained entirely in terms of dynamical diffraction theory. Surface plasmons are an intrinsic component
of the diffracted wave field and, as such, play no independent causal role in the anomalies, as has been implied
by others. The dynamical scattering matrix for the Bloch-wave modes of the diffracted photon wave field
~E, H! is derived for a three-dimensionally periodic medium with arbitrary dielectric constant. A new theoret-
ical treatment and numerical results are presented for a one-dimensional array of slits. In model metallic slit
arrays, with negative dielectric constant, 100% and 0% transmission is possible at different wavelengths in the
zero-order beam. In slit arrays, both propagating and evanescent modes~traditional surface plasmons! are
strongly excited at both the peak and the minimum transmission conditions.
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I. INTRODUCTION

Ebbesen and colleagues1,2 have reported that a periodi
thin-film metallic grating, formed from a two-dimension
array of holes, can transmit more light at certain waveleng
than the projected area of the holes in the grating wo
suggest. At other wavelengths, transmission is almost f
blocked. The enhancement in the transmitted zero-o
beam is reported to be several orders of magnitude la
than that from an isolated subwavelength aperture, after
malizing for the relative hole area.1,3 This discovery has
sparked much interest in the possibility of fabricating e
cient transmissive photonic structures, such as subw
length scanning probes.

The strong ‘‘anomalous’’ transmissions and extinctio
that occur when x rays are diffracted by crystals are n
well understood in terms of Ewald’s 90-year-old dynamic
diffraction theory.4,5 The physics governing the scattering
light ~both propagating and evanescent modes! by periodic
metallic gratings at optical wavelengths isformally identical
to that governing the coherent dynamical diffraction of
rays by crystals. The different scattering properties of
periodic dielectric media are entirely encapsulated in the s
tial variation of the complex dielectric permittivity, whos
real part can be large and negative in metals and clos
unity for x rays in crystals. It would seem reasonable
claim that the anomalous transmission of light observed
thin metallic hole arrays shares a common physical ori
with the transmission anomalies observed in x-ray diffr
tion.

To date, three physical models have been proposed to
plain transmission anomalies in hole arrays. The first arg
that it is simply a dynamical diffraction resonance in a pe
odic material with a substantially negative (e,21) dielec-
tric constant.6 This is the viewpoint of this paper. The secon
proposes that transmission is caused by surface plasm
whose resonances are enhanced by the metallic
array.1,2,7–16 A third interpretation, specific to one
dimensional gratings, treats the slits as open Fabry-P´rot
resonant cavities,8,17–19 which act as efficient waveguides
Judging from the published literature to date, most resea
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ers in this area favor a causal surface plasmon explana
while acknowledging that diffraction plays an importa
negative role in the transmission dips—the so-called Wo
Rayleigh anomalies.20,21 Recently, Cao and Lalanne19 have
argued that in fact it is the surface plasmons that are m
strongly excited near the Wood-Rayleigh anomalies and
most weakly excited at the transmission maxima, a point t
had been previously admitted by some proponents of
surface plasmon explanation.8 Cao and Lalanne19 went fur-
ther and argued that it is the surface plasmons that pla
negative role in the transmission anomalies in slit arrays
that it is a combination of strongly excited waveguide a
diffraction modes that lead to transmission enhancemen
slit arrays. Although it is clear that all the proposed mod
are implicitly incorporating elements of each other in t
physics, they all produce essentially identical predictions
arrays of slits, the emphasis in each model resting on dif
ent photon scattering modes and on the language descr
the scattering. Consequently, there is not yet a consensu
the physical mechanism causing the transmission anoma

Supporters of a coherent dynamical diffraction explan
tion argue that since the experiment involves the diffract
of light from a thin metallic diffraction grating and then me
suring the intensity in the zero-order transmitted diffract
beam, diffraction is obviously playing an important role6

The evanescent diffraction modes are related to the sur
plasmons, which are therefore implicitly included but, alo
with any propagating ‘‘Bragg-reflected’’ beams, are not a
signed any causal properties. In addition, initial reports
peared to overlook the inherent coherence of the light em
ing from each aperture. If we treat each aperture at the
surface as a point source, then the light emerging from e
is a spherical wave with equal amplitude transmitted in
directions. ForN-point sources, periodic or otherwise, th
enhancement of the energy density in the zero-order m
~measured by a point detector in the far-field! is expected to
scale asN2, notN, because of constructive interference. Th
does not violate energy conservation because the far
energy density for most othergÞ0 directions is diminished
by destructive interference. Ifl,d, where d is the array
spacing, additional beams of high-energy density will appe
©2002 The American Physical Society05-1
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corresponding to diffraction orders, or Bragg beams. O
for a collection solid angle of 2p is the linear dependence o
N strictly applicable. Compensating for this coherent, non
namical, diffraction effect, the residual enhancement due
the grating alone appears to be around 3 or 4.

A further compelling argument in favor of a dynamic
diffraction explanation comes from the well-known fact th
similar strong transmission anomalies are observed in tr
mission electron microscopy22 and x-ray topographic23 stud-
ies of crystals. Pendello¨sung~or thickness! fringes, as well as
bend contours, are due to strong fluctuations in the trans
ted intensity caused by dynamical diffraction effects. Simi
fluctuations would be expected when the wavelength of
electrons and x-ray photons are varied, although the wa
length is not usually a variable in those experiments. Furt
the wave equations governing the scattering of light in h
arrays are formally identical to those governing the diffra
tion of x rays in crystals. The principal differences are in t
material details; the metal in hole arrays has a dielectric c
stant that is large and negative~as opposed to being slightl
larger than unity for x-ray scattering in crystals!, and the
periodicities and wavelengths are 3–4 orders of magnit
larger ~microns, compared with angstroms in typical cry
tals!. Because of the weak scattering of x rays in crystals
significant simplification can be made for thin crystals whi
leads to the kinematical~single-scattering event! diffraction
theory. An equivalent simplification cannot be made for t
strong dynamical scattering occurring in metallic hole arra
or optical band-gap materials.

Proponents of the resonant cavity model point out t
there is a propagating TM waveguide mode in on
dimensional~1D! slit arrays and that the cavity has an effe
tive index of refraction that is greater than unity, even thou
the cavity may be empty. An elegantly simple model, ba
on resonant cavities,17–19 matches remarkably well the re
sults of a full electromagnetic simulation using a rigoro
coupled-wave analysis~RCWA!.24–26 However, it is known
that 2D arrays of subwavelength open cylinders do not s
port propagating waveguide modes.27

Advocates of the surface plasmon model note that ligh
known to couple to surface plasmon modes on metals.28 In
favor of a causal role for surface plasmons, so
researchers29 point out that the most pronounced transm
sion anomalies occur in metals, such as silver, which
known to support strong surface plasmon resonances. H
arrays in materials such as germanium, which do not sup
strong surface plasmon resonances, do not exhibit str
transmission anomalies. In addition, when a grating m
from a metal that supports relatively weak transmiss
anomalies, such as nickel, is coated with a relatively t
layer of silver on the top and bottom surfaces, the transm
sion anomalies increase significantly.12 Since only the sur-
faces were modified, it is reasoned that surface plasm
must be responsible. It has been proposed that surface
mons can squeeze light into subwavelength holes bec
the photon can hop and tunnel resonantly between ‘‘plasm
molecules.’’14 Although coherent diffraction is inherentl
present in the physical models that underpin these cla
since the models are based on Maxwell’s wave equation
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periodic media, some interpretations seem to suggest tha
surface plasmons pre-exist on the gratings independentl
the scattering. Proponents of surface plasmons have so
failed to clearly identify the resonance mechanism resp
sible for generating these modes—that is, coherent diffr
tion. There has been a tendency to reify surface plasmon
implying that they somehowcausethe transmission anoma
lies, having the power to transmit and focus light,14 even
though they are an integral part of the coherently diffrac
wave field.

It has been argued1,2,29that diffraction cannot be playing a
role in the transmission enhancements for a number of
sons, which include the following.~1! The wavelengthsl at
which the most pronounced transmission anomalies oc
are larger than the hole spacingsd. No diffracted beams can
be excited at the conditionl.d, and indeed no first-orde
diffracted beams emerge from the gratings.~2! Light cannot
possibly be ‘‘squeezed’’ by any diffraction mechanism in
such small holes, whose width is significantly less than
photon wavelength.~3! Diffraction requires propagating
modes to occur in the grating. Since the skin depth in me
is significantly shorter than the grating thicknesst and the
hole spacingd, no significant electric fields are permitted
the grating metal. It is reasoned that all diffraction mod
must therefore be strongly attenuated in the grating. Diffr
tion, it is claimed, is responsible only for the dips in tran
mission at the Wood-Rayleigh anomalies, which correspo
to conditions where higher-order Bragg beams emerge
angles close to 90° to the grating normal.

These arguments highlight the fact that the kinemati
~single-scattering! diffraction view, where a simple set o
propagating plane waves~Bragg beams! are excited, is insuf-
ficient to explain these anomalies. As is shown here, th
objections are overcome in the dynamical diffraction view,
which diffracted modes are generated by, and continuou
coupled through, the periodicities in the grating. In this vie
the transmitted beam is the zero-order diffracted beam—
not an unscattered beam. Thus a propagating diffracted b
doesemerge from the sample, and in fact this is the mo
that was measured in the early experiments reporting
transmission anomalies. Evanescent diffraction modes
exist in the vicinity of the surfaces. These nonpropagat
diffraction modes are associated with traditional surfa
plasmons and tend to decay away from the grating surfa
Further, and most importantly, the absence of higher-or
propagating diffraction modes emerging in air does not m
the absence of higher order propagating modes inside
grating. The coupling of diffraction orders can be viewed
terms of Bloch waves, where each Bloch-wave modej has an
effective refractive indexn( j ) associated with it. The real par
of n( j ) can be large and positive for some modes, yielding
effective wavelengthl/n( j ) in the grating that is less than th
hole spacing. Thus, at normal incidence, propagating mo
can occur in the grating that satisfyl,n( j )d. TM-polarized
propagating Bloch waves in arrays of slits have their elect
field amplitude concentrated over the holes. The existenc
such modes does not necessarily imply strong electric fie
in the metal. Such propagating Bloch waves can be view
as guided waves in a medium with an effective dielect
5-2
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constant that is larger than unity, consistent with the view
Lalanne and others.17–19

The view that the Wood-Rayleigh anomalies are cau
by the creation and annihilation of higher-order Bragg bea
at 90° ~i.e., diffraction causes transmission extinctions1,2!
seems to overlook the logically complementary~and equally
simplistic! view that the Wood-Rayleigh anomalies a
caused by the annihilation and creation of resonant sur
plasmon modes with long attenuation lengths; i.e., surf
plasmons are the cause of the extinctions. A better wa
view the Wood-Rayleigh anomalies is that they arise wh
the real part of a Bloch-wave propagation wave vector v
ishes, defining a transition between being a propagating~pos-
sibly attenuated! Bloch-wave mode to a purely evanesce
Bloch-wave mode.

It has been shown that, while slit arrays can support e
cient TM waveguide modes, two-dimensional hole arrays
a different matter.27 Attenuated TE polarization states inev
tably occur in this geometry. Consequently two-dimensio
hole arrays cannot be viewed as an array of efficient cy
drical waveguides. However, this result does not mitig
against the role of coherent dynamical diffraction, whi
handles both propagating and evanescent modes seaml

In this paper, a more detailed explanation is presente
to how the transmission enhancements in metallic hole
rays can be explainedentirely as a coherent dynamical dif
fraction phenomenon in a modulated metallic medium, w
no reified role for surface plasmons necessary. Surface p
mons are indeed excited and are an intrinsic part of the
fracted wave field. Numerical results are presented for o
dimensional slit arrays, a geometry that allows the dynam
equations to be solved in a novel manner, as a straigh
ward eigenvalue problem.6 This geometry has also bee
solved by proponents of the surface plasmon8 and
waveguide19 viewpoints, with similar results, confirming th
validity of the dynamical diffraction approach. It is show
that propagating Bloch-wave modes, equivalent to wa
guide modes with electric field confined to the cavities, c
be strongly excited in slit arrays. It is shown how the surfa
plasmon charge density can be obtained directly from
coherently diffracted wave fieldE(r ). It is concluded that
elements of the surface plasmon and waveguide viewpo
are inherently present in the dynamical diffraction interp
tation.

II. THEORY

A. Coherent diffraction in periodic media

When a plane wave of light impinges on a small partic
some of the incident light is scattered sideways and ba
wards. This is true whether the object be transparent, opa
or reflecting, although these properties influence the ph
and amplitude of the scattering. When the particle is mu
smaller than the wavelength of light, becoming essential
point, the scattered wave resembles a spherical wave. In
Huyghens-Fresnel view of light propagation,30 a continuous
medium can be considered to be a compact, aperiodic,
sembly of such small scatterers. A wave front impinging a
layer of these scatterers is transformed into a myriad of
19510
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herent spherical waves, which mutually interfere to gener
the scattered wave front, which subsequently impinges
the next layer, and so on. This approach works well for m
eling the scattering of light from objects of arbitrary sha
and scattering properties, and reveals the underlying diffr
tive nature of light scattering.

In a homogeneous medium, each point scatters light id
tically, with the result that, statistically, the scattered lig
experiences destructive interference in all directions exc
forwards, backwards, and in the specular reflection direct
The wavelength of the light in the medium is modified by
refractive indexn to l/n. Heren may be complex, indicating
absorption or reflection. When the medium possesses a m
roscopic periodicity, constructive interferences can occu
additional directions. A plane wave front becomes deform
by the evolution of a set of spatial modeswhose Fourier
components are those of the structure. Not all modes are
propagating, and many can be evanescent along the nom
propagation direction of the wave front. These diffracti
modes are strongly resonant in a periodic structure beca
they have a phaseg•r52np relative to the forward scattere
~integern50) beam.g is the diffraction wave vector, which
is related to the structure’s periodicities of wavelengthlx,y,z
via g52p(nx /lx ,ny /ly ,nz /lz), where thenx,y,z are inte-
gers. Constructive interference between beams scattere
similar points in the grating is assured by the spatial coh
ence of the incident wave front, and no superluminal co
munication between scatterers is required to provide this
herence. This resonance phenomenon lies at the hea
diffraction in periodic media. Diffraction occurs whether th
periodic material be transparent, absorbing, reflecting,
magnetic. These physical properties are embodied in the
electric constante and the magnetic permittivitym of the
material and strongly influence the amplitude, phase,
effective wave vector of the diffracted modes. Thus, differe
materials scatter differently into these spatial modes. In p
ciple, a complete description of the scattering from the obj
can be obtained using Maxwell’s equations ife, m, and the
shape of the object are known.

B. Bloch-wave dynamical scattering model for the diffracted
wave field in hole arrays

It is well known that Maxwell’s wave equations can b
solved in periodic media by expressing the solutions a
linear sum of plane-wave states, with Fourier compone
matching those of the medium. Ewald demonstrated this w
his dynamical diffraction theory of x-ray scattering
crystals.4 Much later, other models, such as the rigoro
coupled-wave analysis for metallic surface-relief gratin
have been introduced24 and improved for the case of trans
mission gratings.25,26,31,32 Meade and co-workers33,34 have
formulated a variant of the dynamical diffraction theory f
optical band-gap materials.

Here the dynamical diffraction problem is solved in term
of Bloch-wave modes, analogously to the method of Ewa
but valid for a periodic medium with arbitrary dielectric con
stant. In the case of x-ray diffraction in crystals, the scatt
ing is sufficiently weak that the effective value ofe(r ) devi-
5-3
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ates only slightly from unity. This allows a significan
simplification of the wave equations for x-ray scatterin
Further, the three-dimensional periodicity of crystals simp
fies matters so that only those propagating Fourier com
nents that lie close to the Ewald sphere need to be con
ered. Since the Fourier components of the dielectric cons
for x rays in crystals tend to be much less than unity,
deformations and branchings that open up on the Ew
sphere tend to be small perturbations, allowing easy dete
nation, in advance of any computation, of the likely strong
excited Fourier components. In metallic hole arrays and
tical band-gap materials,e can be large~the real parts ofe
tend to be large and negative in the former and large
positive in the latter!, and the simpler eigenvalue equatio
derived for the weaker x-ray scattering are not appropri
The streaky nature of the Fourier coefficients perpendic
to the grating normal means that many modes can inter
the Ewald sphere that are not near a true Bragg condit
Additionally, the strongly dynamical~multiple-scattering!
nature of the diffraction ensures that many modes can
simultaneously excited, including those that do not direc
intersect the Ewald sphere; thus the important strongly
cited modes are not easily guessed in advance.

For an inhomogeneous nonferroelectric medium,
wave equations governing the electric,E, and magnetic,H,
fields are obtained directly from Maxwell’s equations:

“3F 1

m~r !
“3E~r !G2x2e~r !E~r !50, ~1!

“3F 1

e~r !
“3H~r !G2x2m~r !H~r !50. ~2!

As usual,« is the dielectric constant, andm is the magnetic
permeability, which, in general, may be large and complexx
is the vacuum wave vector of the plane wave incident on
grating and, for wavelengthl, has amplitude 2p/l.

For a nonmagnetic gratingm(r )51 everywhere, Eq.~1!
reduces to

“3“3E~r !2x2e~r !E~r !50. ~3!

Since we wish to solve these equations for a general po
ization, Eq.~2! is considerably more congenial to the ta
than is Eq.~3!. This is becausem(r ) being constant ensure
that the magnetic fieldH(r ) is orthogonal to the propagatio
direction.

The grating is illuminated by an incident plane wa

@H1
incn̂11H2

incn̂2#exp(ix•r ). Here H1
inc is the amplitude of

the incident magnetic field polarization parallel to the u
vector n̂1, and similarly,H2

inc is the polarization componen

of the incident magnetic field parallel to the unit vectorn̂2.
Here n̂1 and n̂2 are chosen such thatn̂1 , n̂2, andx are mu-
tually perpendicular.

The grating is periodic, so we can represent the recipro
of the complex dielectric constant,e(r )21, the dielectric re-
striction, as
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where theg are the Fourier harmonics of the grating perio
icity. The coefficientsFg are generally complex.

We look for Bloch-wave solutions for the scattered wa
field inside the periodic grating. Such solutions can be r
resented by the sum of polarized plane-wave states:

H( j )~r !5(
g

(
p

n̂p,g
( j ) Hp,g

( j ) exp@ i ~k( j )1g!•r #. ~5!

For thej th Bloch wave, theHp,g
( j ) have nor dependence. The

n̂p,g
( j ) (p51,2) are two unit vectors associated with each pla

wave k( j )1g. The direction of each unit vector is fixed b
the choice of Cartesian axes and from Maxwel
equations—that is,

“•H( j )~r !5“•(
g

(
p

n̂p,g
( j ) Hp,g exp@ i ~k( j )1g!•r #

5 i(
g

(
p

~k( j )1g!•n̂p,g
( j ) Hp,g

( j ) exp@ i ~k( j )1g!•r #

50; ~6!

thus, in general, we assert

~k( j )1g!•n̂p,g
( j ) 50. ~7!

This ensures that the magnetic field of each plane-wave s
is transverse to the direction of propagation. Furthermore
ensure that the two field components are mutually indep
dent, we assert the orthogonality requirement

n̂1,g
( j )
•n̂2,g

( j )50. ~8!

The total magnetic field is given by the sum of each Bloc
wave excitation for both polarizations:

H~r !5(
j

cp
( j )(

g
(

p
n̂p,g

( j ) Hp,g
( j ) exp@ i ~k( j )1g!•r #, ~9!

wherecp
( j ) is the excitation of thep-polarized Bloch wavej.

The total electric fieldE(r ) is then found from Maxwell’s
equations:

E~r !52
1

ive0

1

e~r !
“3H~r !

52
1

ve0
(

h
Fh(

j
cp

( j )(
g

(
p

~k( j )1g2h!

3n̂p,g2h
( j ) Hp,g2h

( j ) exp@ i ~k( j )1g!•r #. ~10!

In the absence of free charges, the polarization charge
sity is r5“•P52e0“•E. Thus, for thep51 polarization
~TM polarization,H parallel to slits!
5-4
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r~r !52
i

v (
j

c1
( j )kz

( j )(
g

(
h

hFhH1,g2h
( j ) exp@ i ~k( j )1g!•r #

~11!

and forp52 ~TE polarization,E parallel to the slits!

r~r !50. ~12!

kz
( j ) is thez component of the wave vectork( j ).

Each Bloch wave is independently a solution to Ma
well’s equations. We take the Fourier transform of Eq.~2!:

E e2 ik8•rH“3F 1

e~r !
“3G2x2J H( j )~r !dr50. ~13!

Substituting fore(r )21 from Eq. ~4! and for H( j )(r ) from
Eq. ~5!, after some manipulation we get for each polarizat
statep51,2 the equation

(
h

Fg2h@~k( j )1g!3n̂p,g
( j ) #•@~k( j )1h!3n̂p,h

( j ) #Hp,h
( j ) 2x2Hp,g

( j )

50. ~14!

This eigenvalue equation is a generalized form of the
namical scattering matrix originally derived by Ewald4,5 to
describe diffraction of x rays by crystals. This equation a
closely resembles that presented by Meade
co-workers33,34 for their treatment of optical band-gap mat
rials. The principal difference is that in their treatment, t
Bloch-wave frequenciesv ( j ) ~i.e., energies! are the eigenval-
ues whenk is given. Here,v is fixed and thek( j ) are the
eigenvalues.

The eigenvaluesk( j ) of Eq. ~14! are generally complex
being equal to (kx

( j ) ,ky
( j ) ,kz

( j )1 ik8z
( j )). Typically, kx

( j ) andky
( j )

are given by the experimental geometry and are the sam
all eigenvectors. We thus drop the superscript and refer o
to kx andky . We wish to solve forkz

( j ) to obtain the disper-
sion surface, which is a plot ofkz

( j ) versuskx over the Bril-
louin zone.k8z

( j ) gives the attenuation of each Bloch wa
alongz.

Equation~14! is a general eigenvalue problem, and t
elegant energy-minimizing numerical methods used
Meade and co-workers33,34 for finding the real frequency ei
genvaluesv do not apply directly to the complex wave ve
tor kz

( j )1 ik8z
( j ) eigenvalue problem. However, for the case

a one-dimensional array of slits, periodic alongx, a useful
simplification can be made for thep51 TM polarization
state, where theH polarization is parallel to the slits. Th
vector term simplifies to

@~k( j )1g!3n̂p,g
( j ) #•@~k( j )1h!3n̂p,h

( j ) #

5~k( j )1g!•~k( j )1h!

5~kx1g,0,kz
( j )!•~kx1h,0,kz

( j )!

5~kx1g!~kx1h!1kz
( j ) 2. ~15!

Thus, for the TM polarization statep51, we have
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Fg2h~kx1g!~kx1h!H1,h
( j )1kz

( j ) 2(
h

Fg2hH1,h
( j )2x2H1,g

( j )

50. ~16!

This matrix equation takes the form

A•H5~kz
( j )!2C•H ~17!

or

~C21A!•H5~kz
( j )!2H, ~18!

where the matrix elements are

Agh5Fg2h~kx1g!~kx1h!2x2dgh ~19!

and

Cgh52Fg2h . ~20!

These matrices are not Hermitian since, in general,Fg2h

ÞFh2g* unlesse(r ) is real everywhere. Consequently, th
eigenvalues (kz

( j ))2 are expected to be complex. Equatio
~18! represents a new and straightforward mathemat
model for solving the one-dimensional grating proble
However, the harder-to-solve general form, Eq.~14!, is a
fully three-dimensional treatment, valid provided the m
dium is of large width and the thickness of the medium is
integral number of unit cells. This latter proviso arises b
cause of the underlying assumption of periodic continuati

The perpendicular TE polarization modep52 can be
solved similarly by solving the equivalent equation for theE
form of the Bloch waves, obtained in a similar manner sta
ing from Eq.~3!.

We can determine the excitation of each Bloch wave
satisfying boundary conditions for both the electric and m
netic fields at the upper and lower surfaces of the grati
Since we have setm51 everywhere, then bothH i and H'

are continuous across each interface. The electric field m
be such that there is continuity ofEi and eE' across each
interface. Finally, since we are not including any energy lo
mechanisms, energy is conserved. Thus, the total scatt
energy, both reflected and transmitted through the other s
must equal the incident energy.

There are two boundaries and four distinct wave fields
consider. Wave field 1 includes the incident wave, the
flected wave, and back-diffracted waves. Wave field 2
cludes the~nominally! forward-propagating waves in th
grating.35 Wave field 3 is the set of back-propagating wav
inside the grating, and wave field 4 contains the transmit
beams in the medium on the other side of the grating. T
four sets of boundary condition equations that are obtai
are similar in form to those presented by Maharam a
Gaylord24 and so are not repeated here.

Generalized eigenvalue problems of the type presente
Eq. ~18! are readily solved numerically by standard eige
value packages, such as theLAPACK subroutineZGEEVX.36

The number of Fourier components required to reac
stable solution can be quite large. For the most part, mo
out to 625G ~51 Fourier modes in total! are sufficient for
most wavelengths and grating thicknesses. However, at
5-5
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tain combinations of wavelength and thickness, strong s
rious resonances appear. At these conditions, modes o
6100G ~201 Fourier modes in total! are then required for
thicknesses up to 1mm in silver. It has been found that, fo
the RCWA formulation of the problem, substituting the d
electric restriction matrixF[i1/ei with iei21 can produce a
dramatic speedup in convergence rate in electromagn
problems of the type considered here.25,26,32,37This result is
all the more remarkable when it is realized that the sub
tuted Fourier coefficients themselves converge much m
slowly to the target dielectric function. It appears that t
improved convergence rate arises because the substit
improves the stability of the boundary value matrix—the
stability coming from the fact that the equations conta
products of discontinuous Fourier series.37 This substitution
was not implemented in this work, but will clearly provid
improved numerical convergence rates when addressing
two-dimensional hole array problem.

III. NUMERICAL SIMULATIONS

Figure 1 shows a simulation of the intensity in the tran
mitted beamI 0 as a function of the TM-polarized inciden
photon wavelength for an ideal one-dimensional meta
grating. The grating has a periodicity of 2.0mm, a slit width
of 0.25mm, and a thickness of 0.2mm. The dielectric con-
stant is set toe525 at all wavelengths, andkx50 for nor-
mal incidence. The simulation was performed for6100g,
Fourier components, for a total of 201 Fourier compone
The plot for 161 Fourier components was not substanti
different, suggesting that reasonable numerical converge
has been reached.

A striking feature of this plot is that the transmitted inte
sity in this idealized metal is 100% at a wavelength ofl
52.117mm. This peak occurs at a wavelength that is larg

FIG. 1. Transmitted intensity vs photon wavelength for a fre
standing one-dimensional grating with period 2.0mm, slit width
0.25 mm, and thickness 0.2mm. The grating material is modele
with e525 andm51 for all wavelengths.6100G Fourier com-
ponents were included. TheH-field polarization is off the page~TM
polarization!. There is almost 100% transmission atl
52.117mm. The identical transmission spectrum is obtained fo
grating material withe51 andm525 for all wavelengths. In this
latter case theE-field polarization vector is off the page.
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than the periodicity,l.d, where no high-order propagatin
modes are supported in air~where we assumee51).

Dynamical diffraction simulations ofI 0 versusl for slits
in a real metal, such as silver, reproduce well the essen
features of the data6 and concur with simulations made b
surface plasmon advocates.8

Not all of the modes inside the grating at thisl.d con-
dition are evanescent. Figure 2 shows Bloch-wave disper
surfaces, computed for625G Fourier components, for a to
tal of 51 Fourier components, at four photon waveleng
l50.8, 1.9, 2.117, and 10.0mm, respectively. Again, the
dielectric constant is set toe525 at all wavelengths. Thes
dispersion surfaces are plots ofkz versuskx for each Bloch-
wave branch and are plotted out to the Brillouin zone bou
ary, beyond which they are periodically continued. For ea
wavelength, the real parts ofkz associated with the propaga
ing ~pure real! and attenuated~mixed real and imaginary!
modes are plotted on the left. The complex components okz
associated with the attenuated and evanescent~pure com-
plex! modes are plotted on the right. In a real metal, such
silver, the propagating Bloch wave vectors generally ha
both real and imaginary components and are thus attenu
over large thicknesses. Increasing the number of Fou
components to6100G increases the number of Bloch wave
to 201 and modifies some of the details of the Bloch-wa
branches somewhat. However, propagating modes per
This observation is consistent with previous reports t
waveguide modes can be efficiently excited in subwa
length slit arrays.8,17–19,27

The equivalent plots~not shown! for a dielectric grating
made from a material withe slightly larger than unity revea
dispersion surfaces that approximate circles with gaps op
ing up at the intersections of the propagating modes. Thi
entirely consistent with dispersion plots that are obtained
x rays in crystals. In this limit, transmission anomalies in t
zero-order mode can also be strong, and such anomalie
well known in x-ray diffraction from crystals. Evanesce
modes also occur, but are usually of little consequence
x-ray diffraction and are ignored.

It is interesting that many Bloch-wave branches in t
plots of Fig. 2 intersect other branches, mainly atkx50 ~nor-
mal incidence! and kx5g/2 ~the Bragg angle!. This is par-
ticularly true of the evanescent modes. The density of s
crossings is highest for the evanescent modes. These c
ings are reminiscent of decoupled plane-wave modes
uniform medium. Further, for thekx50 normal-incidence
conditions studied in depth here, none of these intersec
branches are significantly excited. This suggests that th
branches are dynamically decoupled. In dynamical diffr
tion terms, this means that many of the evanescently
fracted modes have a near-infinite extinction distance at
condition and so do not contribute directly to the scatteri

Figure 2 shows that propagating modes persist out
wavelengths that are significantly longer than the periodic
Each Bloch wave has its own effective refractive indexn( j ),
given by n( j )5lkz

( j )/2p. The relative excitation of these
Bloch waves is governed entirely by the boundary conditio
at the top and bottom surfaces—both surfaces being equ
important. It is not just the evanescent Bloch-wave mod

-

a
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FIG. 2. Plots showing the Bloch-wave dispersion surfaces for four photon wavelengthsl50.8, 1.9, 2.117, and 10.0mm, respectively.
The grating details are the same as for Fig. 1. Each plot shows branches for the propagating Bloch-wave modes~eigenvaluekz

( j ) pure real!
on the left and for the evanescent modes~eigenvaluekz

( j ) pure imaginary! on the right. Note that propagating modes persist at wavelen
much larger than the slit spacing.
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~which are most closely associated with the traditional s
face plasmons! that are sensitive to the surfaces.All modes,
including the propagating ones~which are most closely as
sociated with traditional Bragg beams!, are dependent on th
surfaces. Thus, the observation that the addition of thin si
layers on nickel gratings enhance the transmission12 does not
constitute proof that evanescent modes alone are respon

Examination of the Bloch-wave excitations at maximu
and minimum transmission reveal that no one mode do
nates over all others. It turns out that for maximum transm
sion in slit arrays~except in the case of negligibly thin films!
at least one propagating mode must be strongly excited
19510
r-

r

le.

i-
-

In

addition, minima corresponding to the Wood-Raylei
anomalies occur at those conditions where the wave ve
kz

( j ) of a propagating mode goes to zero. This is a spe
condition where a mode makes the transition from bein
propagating~perhaps attenuated! mode to a purely evanes
cent mode. Suchkz

( j )50 conditions tend to be strongly reso
nant.

Figure 3~a! shows the intensityH2(r ) of the total dif-
fracted wave field in the vicinity of the two slits of the gra
ing atl52.117mm ~100% transmission!. Figure 4~a! shows
the total intensity atl52.0 mm ~minimum transmission!.
Figures 3~b!–3~j! and 4~b!–4~j! show the nine dominan
5-7
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M. M. J. TREACY PHYSICAL REVIEW B66, 195105 ~2002!
Bloch waves excited in the grating at each condition. O
the modes that decay from~or grow towards35! the top sur-
face are shown~wave field 2!. A similar set of Bloch waves
that decay from the bottom surface~wave field 3! are also
excited, but are not shown. Interestingly, at these two
tremes, it is essentially the same subset of Bloch waves
dominate. It is primarily the excitation amplitude of ea
Bloch wave ~which is complex! that varies significantly.
Note that although the photon intensity near the exit surf
at maximum transmission is not ripple free, in the far fie
the transmitted wave is a plane wave.

Each Bloch-wave mode has a polarization cha
density ~surface plasmon! associated with it, given byrSP

( j )

52e0“•E( j ). This is readily obtained from theH form of
the Bloch waves via Eq.~11!. Not surprisingly, the evanes
cent Bloch-wave modes correspond to polarization wa
that are essentially confined to the upper and lower surfa
of the grating. The propagating mode@Figs. 3~d! and 4~e!# is
associated with polarization charge density strongly locali
to the walls of the channels, opposite walls being opposi
charged.

Figure 5 shows computed plots for the rocking curv
from a Ag grating. In this simulation, the one-dimension
grating has a periodicity of 0.6mm, slit width of 0.16mm,

FIG. 3. ~a! Side view showing the total photon intensityH2(r )
in the vicinity of the same grating as in Fig. 1 at maximum tran
mission l52.117mm. The simulation was for6100G Fourier
components~201 modes total!. At maximum~100%! transmission,
the intensity distribution is identical at the entrance and exit s
faces. ~b!–~j! show the intensitiesH2(r ) of the nine dominant
Bloch-wave modes. Excitationsc decrease from top to bottom
~b! ucu512.557,kz501 i8.656; ~c! ucu50.744,kz501 i11.317;
~d! ucu50.666,kz55.0411 i0; ~e! ucu50.478,kz501 i7.006;
~f! ucu50.193,kz501 i14.466; ~g! ucu50.091,kz501 i17.880;
~h! ucu50.086,kz521.8581 i24.917; ~i! ucu50.086,kz51.858
1 i24.917; ~j! ucu50.085,kz501 i21.589.
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and a thickness of 0.2mm. These plots were computed t
match, as far as possible, the experimental conditions of
data published by Ghaemiet al. ~1998!.2 The plot shows a
gray scale representation of the zero-order transmitted in
sity as a function of beam tilt (kx ,x axis! and photon energy
in eV (z axis!. The left-hand side of the plot shows the com
putation for the unsupported Ag grating. The right-hand s
of the plot shows a similar computation for the same grat
supported on a quartz plate. Both plots are mirror symme
aboutkx50, so only half of each plot is shown. The valu
of e for silver were obtained by a numerical fit to the data
Johnson and Christy,38

eAg54.0254.0l21 il~0.3810.71l2!, ~21!

which is valid for the experimental range 0.3mm<l
<1.94mm, but probably can be extrapolated to long
wavelengths without significant loss of precision.

Despite the fact that this is a one-dimensional simulat
and the data collected by Ghaemi and co-workers2 is for a
two-dimensional grating, this plot reproduces the essen
features of their data remarkably well.

IV. DISCUSSION

In this paper it is demonstrated that the resonance p
nomenon that is responsible for the transmission anoma

-

r-

FIG. 4. ~a! Side view showing the total photon intensityH2(r )
in the vicinity of the same grating as in Fig. 1 at minimum tran
missionl52.0 mm. The simulation was for6100G Fourier com-
ponents~201 modes total!. ~b!–~j! show the intensitiesH2(r ) of the
nine dominant Bloch wave modes. Excitationsc decrease from top
to bottom. ~b! ucu51.999,kz501 i8.855; ~c! ucu51.460,kz50
1 i7.247; ~d! ucu50.134,kz501 i11.471; ~e! ucu50.121,kz

525.1721 i0; ~f! ucu50.034,kz501 i14.587; ~g! ucu50.015,kz

501 i17.981; ~h! ucu50.014,kz501 i21.684; ~i! ucu50.013,kz

51.8631 i24.914; ~j! ucu50.013,kz521.8631 i24.914.
5-8
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DYNAMICAL DIFFRACTION EXPLANATION OF THE . . . PHYSICAL REVIEW B 66, 195105 ~2002!
in metallic slit arrays is coherent diffraction. Maxwell
equations for the problem can be formulated in terms o
dynamical diffraction Bloch-wave eigensystem, exac
analogous to that presented by Ewald for x-ray diffraction
crystals. Further, this treatment is closely similar to that p
sented by Meade and co-workers33,34 for the related study of
optical band-gap materials~systems wheree is large and
positive!. It is also shown that surface plasmons are an in
gral part of the diffracted wave field.

The underlying physics for the metal holes arrays a
optical band-gap materials is formally identical. It is only t
choice of eigenvalue that differs: wave vectork for this treat-
ment, frequencyv for the band-gap treatment.

The resonance originates in the physical structure of
grating, whose periodicity allows the scattered wave to ad
spatial modes containing the same periodicity. Explanati
based on surface plasmons alone appear to miss this p
For example, Martı´n-Morenoet al.14 ~2001! state that ‘‘the
effect of extraordinary transmission has a resonant natu
they then admit that ‘‘it is not obvious what mechanism
involved.’’ The resonance mechanism is coherent dynam
diffraction. Viewing diffraction modes as Bloch waves, it

FIG. 5. Computed rocking curves for a one-dimensional
grating of periodicity 0.6mm, slit width 0.16mm, and thickness of
0.2 mm. The plot shows a gray scale representation of the z
order transmitted intensity as a function of beam tilt (kx ,x axis! and
photon energy in eV (z axis!. The left-hand side of the plot show
the computation for the unsupported Ag grating. The right-ha
side of the plot shows a similar computation for the same gra
supported on a quartz plate (e52). This plot reproduces many o
the features observed in data taken from a two-dimensional Ag
array ~Ref. 2!.
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found for arrays of slits that while many modes are evan
cent ~the eigenvalue wave vectorkz

( j ) is pure imaginary!, an
important few are propagating or attenuated~the eigenvalue
wave vectorkz

( j ) has a nonzero real part!. Propagating modes
can persist even when the wavelength is larger than the
damental array spacing. Surface plasmons arise in all p
odic media, and the polarization charge density is given
2e0“•E in a dielectric medium. Metals, such as silver, a
special in that the dielectric permittivity is large and neg
tive, which acts to expel the electric field from the met
This means that, in metals, the propagating diffraction mo
tend to have strong electric fields in the holes.

This statement is consistent with the interpretation of L
lanne and co-workers,17–19who point out that the slit cavities
can support resonant propagating modes. Essentially,
propagating Bloch-wave modes shown in Figs. 3~d! and 4~e!
are the forward-traveling components of such reson
modes. These modes can propagate because there is a
fective refractive indexn that assuresd,l,nd. Cao and
Lalanne19 show that a simple model, based on these reson
modes alone, reproduces all the essential features of the
electromagnetic computation. This result illustrates
dominant role played by the propagating Bloch-wave mo
~waveguide modes! in slit arrays.

For maximum transmission into the emerging zero-or
diffracted beam, the propagating part of the emerging w
field must be a pure plane wave of maximum amplitud
Thus, it is perhaps not so surprising that the transmiss
maxima tend to occur whenl.d, the condition where no
higher-order propagating diffraction orders can emer
However, it is not sufficient to excite a single propagati
Bloch-wave inside the grating either, since one Bloch wa
mode is unlikely to single-handedly match the boundary c
ditions at the upper and lower surfaces. At maximum a
minimum transmission, many modes are excited. For ma
mum transmission, exact cancellations of the higher-or
propagating orders occur, leaving just theg50 order, which
carries all the energy out of the grating. Evanescent mo
~traditionally associated with surface plasmons! are also ex-
cited. For minimum transmission, exact cancellation of
g50 transmitted order occurs and much of the energy
reflected. Surface plasmons are intimately associated with
of the Bloch-wave states, not just the evanescent modes

It should be pointed out that since all surface plasm
models that have been published to date start by compu
the diffracted wave field~E,H!, they too are technically dif-
fraction models. None of these surface plasmon models
plicitly contain the plasmon charge densityrSP(r ). In those
models, surface plasmons are inferred from the diffrac
electric-field distributions. The grating surfaces impo
boundary conditions onall of the electromagnetic modes th
are excited in the grating, including the propagating mod
The surfaces arenot the exclusive domain of surface pla
mons. Since the surface plasmon charge density is given
rectly by rSP(r )52e0“•E, it is clear that the surface plas
mons are in fact an intimate part of the diffracted wave fie
componentE. In addition, the physical origin of the reso
nance, coherent diffraction, is inherently present in th
plasmon models. For example, in one study,15 surface polar-
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M. M. J. TREACY PHYSICAL REVIEW B66, 195105 ~2002!
iton Bloch waves are identified. It is also noted by the
authors that intensity enhancements can result from the
terference of surface plasmon Bloch waves that have b
Bragg scattered by the holes in an array. Technically, be
eigenmodes of the photon in the crystal, Bloch waves can
be further Bragg scattered, since the Bragg scattering
plane-wave states is already folded into the Bloch wa
Nevertheless, theirs is a clear description of dynamical
fraction ~multiple scattering!.

Several papers2,9,15present an expression due to Raethe28

for the wave vector of a surface plasmon on a smooth
face, which is of the type

F0~k1g!25x2. ~22!

As before,k is the photon wave vector, andg are the Fourier
components of the grating periodicity.F0 is related to the
dielectric permittivities of the metal,em , and the holes,eh ,
through F05(em1eh)/emeh . From this equation for the
Ewald sphere, the wave vector of the surface plasmon,kSP is
related to the evanescent solutions forkz ,kSP52 ikz . Equa-
tion ~22! is one of the diagonal terms of the dynamical sc
tering matrix, Eq.~14! for the TM polarization. In that case
F05@(d2a)em1aeh#/demeh , the mean value of 1/e in the
grating. Equation~22! is correct for a smooth metal surfac
with no structural periodicity. However, it ignores the impo
tant off-diagonal terms of the dynamical scattering matr
which describe the coupling between the various scatte
modes. As such, Raether’s equation is inappropriate fo
grating.

Given that the dynamical diffraction model inherently i
cludes surface plasmons, it might reasonably be argued
the issue over whether the transmission anomalies are a
fraction phenomenon or a surface plasmon-enhanced e
is merely a matter of semantics. However, there has be
tendency by proponents of the surface plasmon mode
reify surface plasmons by treating them as if they poss
independent causal scattering powers. For example, it
been asserted that the metal plays ‘‘an active role’’ in enha
A
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ing transmission, as opposed to the ‘‘passive’’ role of or
nary dielectrics,1 and it has been declared that surface pl
mons actively ‘‘enhance’’ transmission2,9 through metallic
hole arrays. It has also been claimed that surface plasm
have the ‘‘found ability’’ to ‘‘transmit and focus light very
efficiently.’’14 Since the surface plasmons are an integral p
of the diffracted wave field, the physical implication, n
doubt inadvertent, is that the photon scatters itself or that
surface plasmons pre-exist on the grating.

Polarization waves also occur in ordinary dielectrics,
well as in crystals that are diffracting x rays. The key is th
in metallic gratings, the dielectricresponsee tends to be
large and negative which influences the phase, amplitu
spatial distribution, and propagation of the polarizati
waves. Metals are just as passive as ordinary dielectrics

Although the numerical results presented here are for
simplest case of a one-dimensional grating, which is kno
to support waveguide modes in the TM polarization mo
the dynamical diffraction equations presented apply fully
gratings that are periodic in three dimensions. For thin g
ings, this holds provided the thickness is an integer multi
of repeat units. The dynamical diffraction equation is read
extended to materials in which bothe(r ) and m(r ) vary,
although the polarization vectors of each diffracted wave
no longer necessarily perpendicular to the propagation w
vector. No significant departures from the underlying phy
cal interpretation are anticipated by going to higher dime
sions. It is clear that the careful study of three-dimensio
diffracting geometries, not necessarily periodic or plan
may lead to exciting and useful photonic devices.
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