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Comparison between asp3d5 tight-binding and an effective-mass description
of silicon quantum dots
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This paper presents a tight-binding approach to the calculation of the electronic structure of small silicon
nanocrystals. It is based on a nearest-neighborsp3d5 Hamiltonian. This Hamiltonian is designed to give
accurate results in the limit of a bulk Si crystal and more exactly to reproduce as much as possible the Si band
structure. This method is then compared with an effective-mass calculation in order to apprehend the limit of
this simplified technique widely used to study the electrical properties of devices based on silicon quantum
dots.
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I. INTRODUCTION

The current fields of research in semiconductor nanost
ture fabrication allow the emergence of innovative dev
concepts based on quantum mechanics as alternative to
ventional transistors or memories. Among other things,
Coulomb blockade devices such as single-electron transis
offer one of the most promising prospects. To operate
room temperature these devices must be composed of q
tum dots of a few nanometers, which ensures the charg
energy to be much greater than the thermal energy. Re
works have demonstrated the feasibility of such devices
proved that, for instance, silicon- or germanium-nanocrys
based memories are no longer a dream.1–3 The study of sili-
con quantum dots is thus of first importance and the num
of papers concerning the subject keeps growing.4–7

The determination of the electronic structure of silic
quantum dots is mainly grounded today on the effecti
mass approximation due to its effectiveness in the treatm
of a many-electron system.4–7 However for quantum dots
reaching the size of a few nanometers it becomes crucia
evaluate the limits of this method. From this point of view,
may be interesting to compare an effective-mass simula
with a more accurate chemical description of nanocrys
using semiempirical methods such as pseudopotential8 or lin-
ear combination of atomic orbital9,10 ~LCAO! calculations.

The purpose of this paper lies then in the comparis
between an effective-mass and a LCAO treatment of
nanocrystals. In order to link both approaches, the effec
masses employed in the first method are deduced from
bulk Si band-structure calculation using asp3d5 tight-
binding Hamiltonian, and the samesp3d5 basis is then used
for the LCAO calculation. Moreover the parameters dedu
from the tight-binding method when fitting the band stru
ture at some critical points are used as interaction parame
in the LCAO method.

II. TIGHT-BINDING sp3d5 BAND STRUCTURE

The choice of the model used for describing bulk Si m
take into account two important features.

• It must describe with sufficient accuracy the first co
duction band of silicon. Indeed the longitudinal and tran
0163-1829/2002/66~19!/193307~4!/$20.00 66 1933
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verse masses taken from this band structure will be e
ployed as parameters for the effective-mass method.

• When applied to the nanocrystal structure, it must be
simple as possible to be able to treat large size quantum d
i.e., of more than 5000 atoms.

The semiempirical tight-binding approach, and especia
the sp3d5 tight-binding Hamiltonian given by Ren, Chen
and Don in Ref. 11, seems to be a good compromise. T
with nine basis orbitals~s, px , py , pz , dxy , dyz , dzx ,
dx22y2, dz22r 2/3) and considering only the nearest-neighb
interactions, this Hamiltonian gives a convenient descript
of the first conduction band as shown in Fig. 1. The use o
more completesp3d5s* basis12 would make drastically
heavier the calculation without significant improvement
this description. Table I presents some of the main charac
istics deduced from this band structure. The density of sta
~DOS! of bulk Si is also calculated and plotted in Fig. 1 wi
the aim of comparing with the density of states of a Si na
crystal.

III. APPLICATION TO Si NANOSTRUCTURES

A. Nanocrystal structure

In order to calculate the electronic properties of quant
dots whose radii range from 5 to 35 Å, we set up the

FIG. 1. Band structure and density of states of bulk silicon us
the sp3d5 model and the interaction parameters given in Ref. 1
©2002 The American Physical Society07-1
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atoms at diamond lattice sites as in bulk Si. Of course i
well known that small Si clusters neither crystallize in a d
mond lattice13 nor keep the same Si—Si bond length. Ho
ever, to avoid the complication of studying real Si cluste
whose structure determination is a problem in itself, and
make relevant the comparison with bulk effective-mass c
culation, we assume that the Si atoms occupy diamond
tice sites with a crystal Si—Si bond length and that the s
face dangling bonds are saturated with H atoms. The Si—
bond length is taken equal to the Si—H bond length o
SiH4 molecule, i.e., 1.480 Å.14 In practice, the clusters ar
artificially created by starting from a SiH4 molecule and re-
placing all Si—H bonds by Si—Si bonds, the surface da
gling bonds being then saturated with H atoms. By iterat
this procedure step by step, clusters of various sizes are b
The silicon nanocrystals studied have then the general s
presented in Fig. 2.

We are thus able to study systematically the influence
the cluster size on the electronic properties expecting tha
quite large clusters these properties are similar to thos
real structures. Although the quantum dot shape canno
approximated by a sphere, we will talk in this paper of t
‘‘quantum dot radius’’: this value refers to the radius of t
sphere whose volume is equivalent to the quantum
volume.

B. Effective-mass method

A first common way to calculate the electronic propert
of such Si clusters consists of solving for one electron
three-dimensional Schro¨dinger equation in the envelope a
proximation:

FIG. 2. Structure of a nanocrystal containing 3127 Si atoms
1188 H atoms. The global shape~a cuboctahedron! and some crys-
tallographic directions are indicated.

TABLE I. Main results derived from thesp3d5 tight-binding
calculation of Si band structure.

Position of conduction-band minima 85.6%G-X
Band-gap energy Egap'1.14 eV
Longitudinal mass m1'0.74
Transverse mass mt'0.15
19330
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¹W @M 21¹W Cn~rW !#1V~rW !Cn~rW !5EnCn~rW !. ~1!

In this equation,V(rW) is the confining potential andM is the
electron effective-mass tensor. In our case, we conside
square-well potential of depthV0 whose shape is given in
Fig. 2. We takeV(rW)50 at the bottom of the conductio
band of silicon andV054 eV outside the cluster, which cor
responds to the Si vacuum energy level. As to the effecti
mass tensorM, the parabolic band approximation is a
sumed, which gives

M 215F 1/m1 0 0

0 1/mt 0

0 0 1/mt

G . ~2!

The numerical values of the longitudinal and transve
masses of Eq.~2! are chosen equal to the values of Table I
order to make relevant the comparison with a LCAO tre
ment. Moreover, we must keep in mind that each elect
state is 12-fold degenerate due to the spin and silicon
valleys degeneracies.

To perform the calculations, the differential Eq.~1! is dis-
cretized using a finite differences technique. Solving
Schrödinger equation turns then into a linear algebra eig
value problem. To achieve this computation, an implici
restarted Arnoldi method15,16 is used because of its effective
ness for large-scale eigenvalue problems.

C. Tight-binding method

In view of the very small size of quantum dots studied~up
to 10 Å!, it is legitimate to wonder up to what extent th
effective mass remains valid. In this way, the interaction
rameters calculated for the bulk Si band structure are n
used to construct the Hamiltonian of the Si cluster. Each
atom is then described by nine orbitals~s, px , py , pz , dxy ,
dyz , dzx , dx22y2, dz22r 2/3) and only the self-interaction an
the nearest-neighbor matrices are nonzero. For H atoms
consider only a singles orbital. The self-interaction matrix
parameter for H atoms (Es) is taken identical to that used i
a Si self-interaction matrix, since the energy level of t
silicon s orbital @213.55 eV~Ref. 17!# is very close to that of
a hydrogen atom~213.6 eV!. To estimate the interaction
matrix between H and Si, the same matrix as the near
neighbor Si/Si interaction is used but with Harrison’s rule
adjust the parameters,17,18

VSi/H5VSi/SiS dSi—Si

dSi—H
D 2

, ~3!

where dSi—Si and dSi—H represent Si—Si and Si—H bon
lengths, respectively. Moreover, the interaction between
H s orbital and Sid orbitals is neglected.

The construction of this cluster Hamiltonian leads us
the calculation of some eigenvalues around 1.14 eV, i.e., n
the first conduction band of bulk Si. To perform such a c
culation we still use the Arnoldi method taking into accou
the large size of the matrices~for instance, a cluster with

d
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6209 Si atoms and 1884 H atoms requires determination
few eigenvalues of a 57 765357 765 matrix!.

The tight-binding method offers the additional advanta
of making possible the calculation of the cluster density
states. This feature allows us to study the evolution of
DOS with the cluster size and to compare with the bulk
DOS. To calculate the density of states, let us callH the
tight-binding Hamiltonian of the cluster, anduCn& the wave
function associated with eigenvalueEn , so that HuCn&
5EnuCn&. We can decompose the tight-binding wave fun
tion uCn& as

uCn&5(
i 51

NSi

(
k51

9

^fSii ,kuCn&ufSii ,k&1(
j 51

NH

^fHj uCn&ufHj&,

~4!

wherei and j run over all Si and H atoms, respectively, a
k refers to the nine Si basis orbitals. For any atomi of orbital
k the local DOS may be written as

di ,k~E!5 (
n50

9NSi1NH

u^f i ,kuCn&u2d~E2En!. ~5!

We can then calculate different types of densities of stat

• the total DOS@D tot(E)# by summing the local DOS ove
all atoms and orbitals,

• the silicon DOS@DSi(E)# by summing the local DOS
over all Si atoms and orbitals only, and

• the hydrogen DOS@DH(E)# by summing the local DOS
over all H atoms only.

In this case the knowledge of all eigenvalues and eigenv
tors is required. A classical Householder and QL~Ref. 19!
algorithm are then used to perform the computation.

FIG. 3. Energy versus quantum dot radius calculated via
LCAO and an effective-mass method. Solid line, first and sec
energy levels of Si cluster calculated via effective mass; each l
is 12-fold degenerate~spin and Si six-valleys degeneracy!. Crosses,
12 first energy levels~some of them are superimposed! of the clus-
ter via LCAO treatment; each level is twofold degenerate~spin
degeneracy!.
19330
a

e
f
e
i

-

:

c-

IV. RESULTS

Figure 3 presents, as functions of the cluster radius, on
one hand the first two energy levels of the Si quantum
calculated with the effective-mass method and, on the o

n
d
el

FIG. 4. For a cluster of radius 18.3 Å containing 1285 Si ato
and 652 H atoms:~a! Normalized total DOS,~b! normalized DOS
associated to Si atoms only, and~c! normalized DOS associated t
H atoms only. The dashed curves represent the normalized DO
bulk Si calculated in Sec. II and plotted in Fig. 1.
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hand, the first 12 unoccupied energy levels of the clus
treated as a molecule via the LCAO method. The refere
of energy is taken at the bottom of the Si conduction ba
We must not forget that the energy levels computed using
effective-mass method are 12-fold degenerate due to th
six valleys and spin degeneracies and that LCAO ene
levels are only twofold degenerate due to spin degenera

First, this graph shows that the two methods are in go
agreement regarding the determination of the first ene
level, even for a cluster radius as small as 12 Å. This ag
ment is all the more striking since the methods of calculat
are completely different and almost independent. Of cou
for large cluster sizes the first energy level tends towards
position of the first conduction band of bulk silicon. Anoth
interesting conclusion lies in the fact that for both metho
the same degree of degeneracy is approximately found
cluster radii greater than 15 Å. Thus, the 12 LCAO levels
large clusters are clearly separated into two groups of
levels ~each one twofold degenerate!. For a radius greate
than 15 Å the sublevels inside a given group are partially
weakly split. They are very well approximated by the cor
sponding effective-mass energy level. As an example, fo
radius of 20 Å the maximum energy shift between sublev
in each group is 23 and 12 meV, respectively. It becomes
than 5 meV for a dot radius of 30 Å. In consideration of t
uncertainty about the exact shape and the physical pa
eters of a real cluster, such results lead us to think tha
most cases, the ‘‘classical’’ effective-mass computation
energy states is sufficiently accurate to be used in the cas
dot radii greater than 15 Å. However, this fast computat
method does not allow us to describe the fine structure
sublevels and cannot be applied for quantum dots of sma
radii in which the energy splitting between sublevels beco
be

-

.

tt.
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strong, as shown in Fig. 3. We even observe a mixing of
two groups of sublevels for very small nanocrystals.

Typical total densities of states, Si DOS, and H DOS o
18.3 Å radius quantum dot are plotted in Fig. 4. All the
densities of states are normalized, i.e., they are multiplied
a factor so that the sum of the density of states over
occupied states is equal to 1, i.e.,

E
2`

0

D~E!dE51. ~6!

In each graph, the bulk Si DOS is also represented as da
lines. In this relatively large cluster the cluster DOS tends
have the same shape as the bulk Si DOS. This feature alr
observed in Ref. 9 with asp3s* Hamiltonian is still present
here as well as effects of H surface atoms near29 and 6 eV.

V. CONCLUSION

We have used an approach based on the linear comb
tion of atomic orbitals to calculate the electronic propert
of small Si clusters. This model is compared to an effecti
mass calculation of the quantum dot energy levels. The g
is to determine the limitation of this simple and fa
effective-mass method when decreasing the cluster siz
first appears that even for clusters as small as 15 Å b
methods give the same results. Moreover, they are in ag
ment not only on the value of first energy levels but also
the degree of degeneracy of these levels. Of course,
effective-mass method is unable to give access to the
level fine structure of the cluster, but the gap between th
sublevels is so small that this simple method is sufficien
accurate to correctly describe Si quantum dots of ra
greater than 15 Å.
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