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Comparison between aspd® tight-binding and an effective-mass description
of silicon quantum dots

) Johann Se, Philippe Dollfus, and Sylvie Galdin
Institut d’Electronique Fondamentale (CNRS UMR 8622), UniverBigis XI, 91405 Orsay, France
(Received 20 May 2002; published 14 November 2002

This paper presents a tight-binding approach to the calculation of the electronic structure of small silicon
nanocrystals. It is based on a nearest-neightywid® Hamiltonian. This Hamiltonian is designed to give
accurate results in the limit of a bulk Si crystal and more exactly to reproduce as much as possible the Si band
structure. This method is then compared with an effective-mass calculation in order to apprehend the limit of
this simplified technique widely used to study the electrical properties of devices based on silicon quantum
dots.
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[. INTRODUCTION verse masses taken from this band structure will be em-
ployed as parameters for the effective-mass method.
The current fields of research in semiconductor nanostruc- * When applied to the nanocrystal structure, it must be as
ture fabrication allow the emergence of innovative devicesSimple as possible to be able to treat large size quantum dots,
concepts based on quantum mechanics as alternative to cdrf-» 0f more than 5000 atoms.

ventional transistors or memories. Among other thingS, the The semiempirica' t|ght-b|nd|ng approach, and especia”y
Coulomb blockade devices such as single-electron transistofe sp3d® tight-binding Hamiltonian given by Ren, Chen,

offer one of the most promising prospects. To operate aind Don in Ref. 11, seems to be a good compromise. Thus,
room temperature these devices must be composed of quaiith nine basis orbitals(s, py, Py, P,, dyy, dyz, oy,

tum dots of a few nanometers, which ensures the charging,._,2, d,2_,2;3) and considering only the nearest-neighbor

energy to be much greater than the thermal energy. Receiriteractions, this Hamiltonian gives a convenient description
works have demonstrated the feasibility of such devices andf the first conduction band as shown in Fig. 1. The use of a
proved that, for instance, silicon- or germanium-nanocrystalmore completesp®d®s* basi¢? would make drastically

based memories are no longer a dréafiThe study of sili-  heavier the calculation without significant improvement of
con quantum dots is thus of first importance and the numbethis description. Table | presents some of the main character-
of papers concerning the subject keeps growiirg. istics deduced from this band structure. The density of states

The determination of the electronic structure of silicon(DOS) of bulk Siis also calculated and plotted in Fig. 1 with
quantum dots is mainly grounded today on the effectivethe aim of comparing with the density of states of a Si nano-
mass approximation due to its effectiveness in the treatmerffystal.
of a many-electron systefn/ However for quantum dots
reaching the size of a few nanometers it becomes crucial to
evaluate the limits of this method. From this point of view, it A. Nanocrystal structure
may be interesting to compare an effective-mass simulation | order to calculate the electronic properties of quantum

with a more accurate chemical description of nanocrystal§iois whose radii range from 5 to 35 A, we set up the Si
using semiempirical methods such as pseudopot&wtiin-

IIl. APPLICATION TO Si NANOSTRUCTURES

ear combination of atomic orbitat® (LCAO) calculations. 15 7 N
The purpose of this paper lies then in the comparison N L N
between an effective-mass and a LCAO treatment of Si 4} D L \‘»‘.j

nanocrystals. In order to link both approaches, the effective
masses employed in the first method are deduced from the
bulk Si band-structure calculation using sp’d® tight-
binding Hamiltonian, and the sansg’d® basis is then used
for the LCAO calculation. Moreover the parameters deduced
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from the tight-binding method when fitting the band struc- N /e
ture at some critical points are used as interaction parameters 5| AN V\” P
in the LCAO method. - AN P
N
d .
IIl. TIGHT-BINDING sp®d® BAND STRUCTURE 0P // h
The choice of the model used for describing bulk Si must m | [100] [110] DOS
take into account two important features. A T A X SUK = r

* It must describe with sufficient accuracy the first con-  FIG. 1. Band structure and density of states of bulk silicon using
duction band of silicon. Indeed the longitudinal and trans-the sp*d® model and the interaction parameters given in Ref. 11.
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TABLE I. Main results derived from thep®d® tight-binding K2 . .
calculation of Si band structure. - 7V[M_1V‘Pn(F)]+V(F)\Pn(F)= E, V. (). (1)
Position of conduction-band minima 85.6P6X In this equationV/(r) is the confining potential anil is the
Band-gap energy Egap~1.14 eV electron effective-mass tensor. In our case, we consider a
Longitudinal mass m,~0.74 square-well potential of deptl, whose shape is given in
Transverse mass m;~0.15 Fig. 2. We takeV(r)=0 at the bottom of the conduction

band of silicon and/y=4 eV outside the cluster, which cor-
atoms at diamond lattice sites as in bulk Si. Of course it ig€sponds to the Si vacuum energy level. As to the effective-
well known that small Si clusters neither crystallize in a dia-mass tensomM, the parabolic band approximation is as-
mond latticé® nor keep the same Si—Si bond length. How- sumed, which gives

ever, to avoid the complication of studying real Si clusters,

whose structure determination is a problem in itself, and to limy O 0

make relevant the comparison with bulk effective-mass cal- M-i=| 0 1m, O )
culation, we assume that the Si atoms occupy diamond lat- '

tice sites with a crystal Si—Si bond length and that the sur- 0 0 1

face dangling bonds are saturated with H atoms. The Si—| . -
bond length is taken equal to the Si—H bond length of ;‘"he numerical values of the longitudinal and transverse

SiH, molecule, i.e., 1.480 A* In practice, the clusters are Masses of Eq2) are chosen equal to the values of Table I'in

artificially created by starting from a SiHnolecule and re- Order to make relevant the comparison with a LCAO treat-

placing all Si—H bonds by Si—Si bonds, the surface daniment. Moreover, we must keep in mind that each electron

gling bonds being then saturated with H atoms. By iteratingState is 12-fold degenerate due to the spin and silicon six-

this procedure step by step, clusters of various sizes are buikalleys degeneracies. _ _ o

The silicon nanocrystals studied have then the general shape T0 perform the calculations, the differential E@) is dis-

presented in Fig. 2. cretized using a finite differences technique. Solving the
We are thus able to study systematically the influence ofSchralinger equation turns then into a linear algebra eigen-

the cluster size on the electronic properties expecting that fofalue problem. To achieve this computation, an implicitly

quite large clusters these properties are similar to those destarted Arnoldi methdd®is used because of its effective-

real structures. Although the quantum dot shape cannot baess for large-scale eigenvalue problems.

approximated by a sphere, we will talk in this paper of the

“quantum dot radius”: this value refers to the radius of the C. Tight-binding method

sphere whose volume is equivalent to the quantum dot

In view of the very small size of quantum dots studiag
volume.

to 10 A), it is legitimate to wonder up to what extent the
effective mass remains valid. In this way, the interaction pa-
rameters calculated for the bulk Si band structure are now
A first common way to calculate the electronic propertiesysed to construct the Hamiltonian of the Si cluster. Each Si
of such_ Si cI_usters consists of sol\_/lng.for one electron th&ytom is then described by nine orbitds p,, py, P, dyy,
three—dmensmnal Schdinger equation in the envelope ap- dyz, dux, dyxz—y2, d2r2i5) and only the self-interaction and
proximation: the nearest-neighbor matrices are nonzero. For H atoms, we
consider only a singls orbital. The self-interaction matrix
parameter for H atomd(;) is taken identical to that used in
a Si self-interaction matrix, since the energy level of the
siliconsorbital[ —13.55 eV(Ref. 17] is very close to that of
a hydrogen atom(—13.6 e\j. To estimate the interaction
matrix between H and Si, the same matrix as the nearest-
neighbor Si/Si interaction is used but with Harrison’s rule to
adjust the parametet$?®

B. Effective-mass method

()

dsa-sa) 2
sieH/

Vsin= VSi/Si( ae .

wheredg;_g; and dg;_ represent Si—Si and Si—H bond
lengths, respectively. Moreover, the interaction between the
H s orbital and Sid orbitals is neglected.

The construction of this cluster Hamiltonian leads us to
the calculation of some eigenvalues around 1.14 eV, i.e., near

FIG. 2. Structure of a nanocrystal containing 3127 Si atoms andhe first conduction band of bulk Si. To perform such a cal-
1188 H atoms. The global shafe cuboctahedrgrand some crys- ~ culation we still use the Arnoldi method taking into account
tallographic directions are indicated. the large size of the matricg$or instance, a cluster with
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FIG. 3. Energy versus quantum dot radius calculated via an ;
LCAO and an effective-mass method. Solid line, first and second __ I i 1
energy levels of Si cluster calculated via effective mass; each level g, 0.8 I o j
is 12-fold degeneratéspin and Si six-valleys degeneracgrosses, o 1
12 first energy levelgsome of them are superimposed the clus- 206 I 1
ter via LCAO treatment; each level is twofold degenerétpin s 3
degeneracy 2 [
204
6209 Si atoms and 1884 H atoms requires determination of a % I
few eigenvalues of a 57 76857 765 matriy. & -
The tight-binding method offers the additional advantage Q02
of making possible the calculation of the cluster density of
states. This feature allows us to study the evolution of the 0
DOS with the cluster size and to compare with the bulk Si -15
DOS. To calculate the density of states, let us tlthe
tight-binding Hamiltonian of the cluster, an@ ) the wave 33—
function associated with eigenvalug,, so thatH|V¥,)
=&,|¥,). We can decompose the tight-binding wave func- 25 [

tion |¥,) as
Ngi 9 Ny 2] ]
Wo)=2 2 (S T|$=)+ 2 (61 W)]g"), '

4

wherei andj run over all Si and H atoms, respectively, and
k refers to the nine Si basis orbitals. For any afowf orbital

Density of states (eV'1)
- o
i i

k the local DOS may be written as 0.5k :’::
INgi+ Ny E ﬂ J r‘ L' 1
. 0 S -l e el cd e/ T O R
di k(€)= go (T [28(E-Ep). (5) 45 10 5 0 5 10 15

Energy (eV)
We can then calculate different types of densities of states:
FIG. 4. For a cluster of radius 18.3 A containing 1285 Si atoms

« the total DO D(€) ] by summing the local DOS over and 652 H atomsfa) Normalized total DOS(b) normalized DOS
all atoms and orbitals, associated to Si atoms only, atg) normalized DOS associated to

e the silicon DOS[Dg(£)] by summing the local DOS H atoms only. The dashed curves represent the normalized DOS of
over all Si atoms and orbitals only, and bulk Si calculated in Sec. Il and plotted in Fig. 1.

« the hydrogen DO$D,(€)] by summing the local DOS
over all H atoms only. IV. RESULTS

In this case the knowledge of all eigenvalues and eigenvec- Figure 3 presents, as functions of the cluster radius, on the
tors is required. A classical Householder and (Ref. 19 one hand the first two energy levels of the Si quantum dot
algorithm are then used to perform the computation. calculated with the effective-mass method and, on the other

193307-3



BRIEF REPORTS PHYSICAL REVIEW B56, 193307 (2002

hand, the first 12 unoccupied energy levels of the clustestrong, as shown in Fig. 3. We even observe a mixing of the
treated as a molecule via the LCAO method. The referencéwo groups of sublevels for very small nanocrystals.
of energy is taken at the bottom of the Si conduction band. Typical total densities of states, Si DOS, and H DOS of a
We must not forget that the energy levels computed using th&8.3 A radius quantum dot are plotted in Fig. 4. All these
effective-mass method are 12-fold degenerate due to the Siensities of states are normalized, i.e., they are multiplied by
six valleys and spin degeneracies and that LCAO energg factor so that the sum of the density of states over all
levels are only twofold degenerate due to spin degeneracy.occupied states is equal to 1, i.e.,

First, this graph shows that the two methods are in good
agreement regarding the determination of the first energy f
level, even for a cluster radius as small as 12 A. This agree-

ment is all the more striking since the methods of calculatior]n each graph, the bulk Si DOS s also represented as dashed
are completely different and almost independent. Of CoUrS8ines. In this relatively large cluster the cluster DOS tends to

for large cluster sizes the first energy level tends towards thﬁave the same shape as the bulk Si DOS. This feature already
position of the first conduction band of bulk silicon. Another observed in Ref. 9 with ap’s* Hamiltoniaﬁ is still present

interesting conclusion lies in the fz_:lct that fqr both methodshere as well as effects of H surface atoms nefrand 6 eV.
the same degree of degeneracy is approximately found for
cluster radii greater than 15 A. Thus, the 12 LCAO levels of
large clusters are clearly separated into two groups of six
levels (each one twofold degeneratd=or a radius greater We have used an approach based on the linear combina-
than 15 A the sublevels inside a given group are partially bution of atomic orbitals to calculate the electronic properties
weakly split. They are very well approximated by the corre-of small Si clusters. This model is compared to an effective-
sponding effective-mass energy level. As an example, for aass calculation of the quantum dot energy levels. The goal
radius of 20 A the maximum energy shift between sublevelds to determine the limitation of this simple and fast
in each group is 23 and 12 meV, respectively. It becomes lessffective-mass method when decreasing the cluster size. It
than 5 meV for a dot radius of 30 A. In consideration of thefirst appears that even for clusters as small as 15 A both
uncertainty about the exact shape and the physical paranmethods give the same results. Moreover, they are in agree-
eters of a real cluster, such results lead us to think that, iment not only on the value of first energy levels but also on
most cases, the “classical” effective-mass computation othe degree of degeneracy of these levels. Of course, the
energy states is sufficiently accurate to be used in the case effective-mass method is unable to give access to the sub-
dot radii greater than 15 A. However, this fast computationlevel fine structure of the cluster, but the gap between these
method does not allow us to describe the fine structure o$ublevels is so small that this simple method is sufficiently
sublevels and cannot be applied for quantum dots of smallesiccurate to correctly describe Si quantum dots of radii
radii in which the energy splitting between sublevels becomeayreater than 15 A.

’ D(&)dé=1. (6)

V. CONCLUSION
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