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Supercurrent-carrying density of states in diffusive mesoscopic Josephson weak links
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Recent experiments have demonstrated the nonequilibrium control of the supercurrent through diffusive
phase-coherent normal-metal weak links. The experimental results have been accurately described by the
quasiclassical Green’s-function technique in the Keldysh formalism. Taking into account the geometry of the
structure, different energy scales, and the nonidealities at the interfaces allows us to obtain a quantitative
agreement between the theory and the experimental results in both the amplitude and the phase dependence of
the supercurrent, with no or very few fitting parameters. Here we discuss the most important factors involved
with such comparisons: the ratio between the superconducting order parameter and the Thouless energy of the
junction, the effect of additional wires on the weak link, and the effects due to imperfections, most notably due
to the nonideal interfaces.
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I. INTRODUCTION most normal-metal weak links. The corresponding ballistic
limit d<I| has been extensively described in the
Many quantum phenomena in many-body systems aréiteraturé®8in terms of Andreev bound staté8BS). We

based on probing the spectrum of states corresponding to tl#ow qualitatively a connection between the discrete ABS
desired observable, the states being filled according to aand the continuous diffusive-limit spectral supercurrent.
appropriate distribution function. A similar viewpoint can be  This paper is organized as follows. After this introduction,
taken also on the Josephson effect: supercurrent is carried I8ec. Il introduces to the theoretical formalism which is based
states in the weak link and their occupation is determined byn the real-time Usadel equation for the quasiclassical
a distribution function antisymmetric between the electronGreen’s function in the diffusive limit??° In the case of
and hole spaces. This aspect is directly reflected in the mathronideal interfaces or in multiterminal geometries, the
ematical structure of the supercurrent formula derived fromhoundary conditions to these functions are also essential. Un-
the Keldysh Green's-functions method:. Such an approach derstanding the results of the following sections does not

has been taken in some recent experinfefiisontrolling the require a detailed reading of this part but it is enough to

Josephson _effect in phas_e-qohe_rent nor mal-metal_ _W'reérasp the idea of the relation of the spectral supercurrent and
through the control of the distribution function by an injec-

. L the observable one. In Sec. Ill we look how the spectral
tion of normal quasiparticle current. One of the most remark- .

. . ) . ._supercurrent depends on the length of the weak link com-
able results of these experiments is the inversion of the sigh

of the supercurrent for a given phase difference across th%ared to the superconducting coherence length and separate
weak link when the junctions turn into a state two extreme cases. In the limit of a short junction where the

Quantitative fit to the experimentally obtained results hagonerence length is much longer than the weak link, one
been very successful for the equilibrium supercur%uﬂ;ing ot_)talns an analytical _solu_tlon for the spectral supercgrre_nt
the equilibrium quasiclassical theory. In the nonequilibriumWithout further approximations. The current-phase relation in
case, detailed knowledge of the relaxation mechanisms cofliffusive normal-metal weak links is considered in Sec. IV.
trolling the shape of the interactions, but also the precis&Ve show how, especially at low temperatures, higher har-
spectrum of supercurrent-carrying states, is requifed. monics appear in addition to the usual sinusoidal phase de-
Previously! for the calculation of this spectrum, one has as-pendence and indicate how the period can be halved in a
sumed a two-probe setup with some idealized conditions ononequilibrium situation. Section V considers the effect of
the length scales and on the nature of the interfaces. In thizdditional normal-metal terminals on the current-carrying
paper, we systematically investigate the spectrum of thislensity of states, and in Sec. VI, we discuss how nonideali-
current-carrying density of states, or spectral supercurrenties in the normal metal — superconducidS) interface
show how it is calculated, and how it depends on the lengtlthange its shape. Finally, in Sec. VII, we summarize the
of the weak link, presence of additional terminals, or on themain results.
nonidealities in the interfaces between the normal-metal To be specific, we consider the structure shown in Fig. 1.
weak link and the superconductors. We also discuss th&he main wire with length. and cross sectioA,, between
current-phase relation of such a system: at low temperaturethe superconductors forms the weak link whereas the addi-
it can be far from sinusoidal, and at certain conditions, itstional wires with lengthL. and integrated cross sectidq
period can even be halvédWe focus on the diffusive limit are used for the control of the distribution functions and
where the dimensiond of the weak link are much greater therefore referred to as the control wires. We assume that the
than the elastic mean free pdthrhis is the typical limit for ~ superconducting and normal reservoirs are much larger than
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. L . only superconducting reservoirs much wider than the weak
Aw,Gw  Ac,Gc link, we a_dopt the usual step-function fo'rm fa(x) (finite
S J / S constant in the superconductors, zero in the normal-metal

o2

—
X

L

—0/2 wires).
In addition to Eq.(1), Usadel Green’s function satisfies a

normalization conditiorG?=1. Therefore it can be param-
etrized with four scalar parameters as follc®dhe Keldysh

Green’s functionGX describing the occupation numbers of
different quantum states, i.e., tironequilibrium state of
the system can be expressed with two real distribution func-

o o ~ tions f_ and fr as GN=GR(f +f75)—(f +fr73)GA
FI_G. 1. Multiterminal SNS Josephson Junc_tlon. The weak link whereas the retarded and advanced Green's funct'@ﬁs,
consists of a phase coherent normal-metal wire of lehgtbross

sectionA,,, and normal-state conductivity,,, yielding a normal- and G*, describing the spectral properties which do not di-
state resistanc®y=L/o,A,, . Additional normal-metal wires of rectly depend on the distribution functions are
length L., total cross sectiol\;, and normal-state conductivity . .
o, i.e., with resistanc&®.=L./o,A,,, called the control wires, &R costi6) sinh( 6)exp(i x)
are connected to the center of the weak link, and from their other | —sink( f)exp(—ix) —cosh 6)
end, to normal reservoirs.

c

(4)

andG*= — 73(GR) T7;. Here6(x;E) andx(x;E) are in gen-
the weak link and the control wire, such that the Green’seral complex scalar functions.
functions describing them take their bulk values very close to In what follows, we describe a quasi-one-dimensional
the interfaces. Furthermore, we assume that the width of thsituation, where the functions are assumed to vary only in
control wires is much smaller than the lendttof the weak one dimensiorx. Expressing the coordinatein terms of the
links. This allows us to consider the wires as quasi-oneseparatiorL of the superconductors between which the su-
dimensional1D) structures by assuming translational invari- hercurrent flowsx=x’L, the spectral equations fdsR®
ance in the transverse directions. read in a normal metalX=0)

Il. THEORETICAL BACKGROUND 2 . . . 1 2
d5,0=—2i(E"+iI'")sinh ) + E(ax,x) sinh(26), (5

. . . X
Circuits composed of normal and superconducting metals

in the diffusive limit(dimensions larger than the elastic mean

free pathl) are effectively described in terms of the quasi- je=—sintf(0)dxx, dxje=0. (6)
classical %reen’s functionsG  satisfying the Usadel Here, the prime over th&limensionlessquantities denotes
equations” the fact that the energies are expressed in the units of the
. _ . Thouless energfr=D/L? corresponding to the length.
DV(GVG)=[—-i(E+il)73+A,G], (1) Below, we tacitly assume all lengths and energies expressed

in these natural units even if not marked by a prime. The
kinetic equations satisfied by the distribution functioins
andf; are described, e.g., in Ref. 20, where the part of the
distribution function which is symmetric about the chemical
potential of the superconductors correspondgt@and the
antisymmetric part td, . These two components acquire dif-
ferent space and energy dependent diffusion coefficients due
to the superconducting proximity effect.

whereD = vl is the diffusion constang is energy relative
to the chemical potential of the superconductosich is
assumed to be the same for &lterminalg, I" describes

a small inelastic scattering rate, andthe superconducting
pair potential(we setz=1 throughout Since we aim to
describe nonequilibrium effects, we adopt the Keldysh real
time formalisnt' and hence

BR BK A 0 0 If the interfaces to the reservoirs are ideal metallic, the
G= . A :( ~ ) 1 4= 3 . parameters are continuous at the boundaries to the reservoirs
0 GA 0 A 0 = and can be identified with the bulk valuesgs

(2 =artanh@A/E) and 6y=0 in the superconducting and
) R normal-metal reservoirs, respectively. In general, e.g., if a
All of the submatrices denoted by a has?, etc) are 2 sypercurrent is driven through the system, there can be a
X2 matrices in Nambu particle-hole space, in particutar, phase difference, which we choose to be applied symmetri-

is the third Pauli matrix anad has the form cally between the superconductors, such that in the left su-
perconductory= ¢/2 and in the righty=— ¢/2. Below, if
. 0 A(X) not mentioned otherwise, we chooge= 7/2, which typi-
= A*(x) 0 ) pally _yields a supercurrent close to the critical current of the
junction.

The pair potential (x) can in principle be obtained from a Nonideal interfaces with reduced transmissivities are not
self-consistency relatioff:?> However, since we consider directly described by the Usadel equation, because they are
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of microscopic, atomic-scale thickness. They can, howevegase, they are the continuity of the functiahand y and the

be taken into account using boundary conditions derived bgonservation of the spectral currents. Assuming that the de-
ZaitseV? for Eilenberger Green's functionwalid indepen-  rivatives in theN wiresi=1,...N with cross sectiong\;

dent of the mean free patland later simplified in the diffu- and normal-state conductivities, point towards the cross-
sive limit by Kuprianov and Lukichev for a tunnelling cdde ing point atx., we get

and Nazarov for a general interfatedescribed by a scatter-

ing matrix. For an interface characterized by the transmission 0i(Xc)=0j(xc) Vi, j=1,...N, (12
eigenvaluedl,, the Green’s function&, on the right-hand
side andG, on the left-hand side of the interface satfSff Xi(Xo)=xj(X)  Vi,j=1,...N, (13
oNA1G19,G1 = 073AGL0,G) N .
, & 6 2, AioNdxfi(xe) =0, (14
2e TG1,Gs -
=2 e )
T n 4+ T,({G1,Go)—2) N
evaluated at the position of the interface. In most cases, the izl Aiondxxi(Xe) = 0. (19

individual transmission eigenvalues are not known, but since
typical interfaces contain a huge number of channels, it i$n the last condition we used the continuity of the parameters
enough to integrate over the probability distribution of the ¢ across the crossing point.
eigenvalues to obtain the desired boundary condition. Below, we assume the system depicted in Fig. 1: two
In the case of a tunneling interfacehere all the trans-  superconductors connected by “horizontal” mesoscopic nor-
mission eigenvalues of the interface are sinhlé boundary mal wires to which we connect normal reservoirs by the
conditions between the parametrized functions in wires 1 anévertical” mesoscopic normal wireglabeling of the wires as
2 reduce 8> in Fig. 1). When considering the supercurrent between the
) , two superconductors, for the spectral equations it is enough
dx01=[sinh(6,)cosi 0,) — sinf(#) cost 6;)cog A x) J/r, to treat any number of “vertical” wires by a single wire for
8 which the product ofryA is simply the sum of these prod-
. . . , ucts in the individual wires. In the case that the dependence
SINkP(6:)dxx1 = sinh( 9y)sinh( 6)sin(Ax) /Ty (9) on the lengthL, of these wires becomes important, the
Here, Ax=x1—x> and 6,)= o(x; 7)) and Xx12y  Smallest of them characterizes the situation the best. In this
EX(xg(—)) are the parameter and y at the interfacex  case, since there can be no supercurrent flowing to the nor-

—X,, but on the side of the wire @®). The nonideality of the ~mal reservoirs, Eq(15) reduces tojg=—j&. Furthermore,
interface is characterized by the ratio of its resistaRcand ~ for simplicity, we assume the system left-right symmetric,
of the weak-link resistancBy, r,=R, /Ry and the deriva- such that the part of the weak link in the left-hand side of the
tives point towards the wire 1. In the case of a dirty interface Cross is similar to that in the right-hand side.

where the boundary condition is evaluated using the distri- Finally, the observable supercurrent is obtained from the
bution function of the transmission eigenvalues correspondsolutions to the spectral and kinetic equations by

ing to an interface with a random array of scatterers in a 2D
layer?” we get

\/E[sin}"( 01)cosh #,) — sinh( 65)cosh{ 61)cog A x)]
xV1= roD ' In the reservoirs with voltag¥ with respect to the potential
(100  of the superconductorévhich are assumed equal for both
superconductors in order to avoid the ac Josephson gffect

I =iJm dE'Im[je(E")]f (E") (16)
ST 2eRy) Ie L .

2sinh( 6,)sinh( 6;)sin(A f, obtains the form
sianwl)axxl:f i z)rg LLEY I
° _ 1 E+eV E-eV
Here we denoted the denominator D fLE}V,T)=5tan T +tan 2T | | 17

= /14 cosh@,)cosh@,)—sinh(#,)sinh(@,)cos@y). This de-
nominator reflects the contribution of open conduction chanit can be showh® that, in the absence of inelastic interac-
nels which are not present in E@). tions and for energieE<A, f, remains constant throughout
Note that both types of boundary conditions indicate athe control wires, and hence the reservoir value can directly
form of a conservation of a spectral current over the interbe used for the calculation of the supercurrent.
face, the second equation being the conservation of the spec- In this paper, we will consider two limits fof, . These
tral supercurrenjg . are the equilibrium finite-temperature limit, wherg
In geometries with more than two terminals, we assume=tanhE/2kgT), and the zero-temperature nonequilibrium
that narrow quasi-one-dimensional wires connect to eachase whenf, is driven in a normal-metal wirk,f, = 9(E
other at some point of the structure. Therefore we need te-eV)— 9(—eV—E), where 3(E) is the Heaviside step
impose appropriate matching conditici€>?%2° |n this  function.
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The spectrum of supercurrent-carrying states typicallytheir contribution vanishes quickly witE—A.
consists of both the states carrying the supercurrent parallel The energy ranges can be understood as follows: In the
to the phase gradient and those carrying it in the oppositeenter of the junction, which is the bottleneck for the super-
direction!*? depending on their energy. Hence, by control-current, both superconductors provide sufficient correlations
ling the occupation of these states by the above steplike dighat a gap in the energy spectrum of a digis induced at
tribution function, one is able to vary the sign of the observ-¢=0, where the size oE, interpolates betweek+ (long
able supercurrent and, e.g., obtain thestate. junction) and A (short junction.>32 If now a finite phase
The form of the spectrum can be qualitatively understoodifference is applied, the correlations from either side start to
by considering a ballisti¢scattering-frepweak link. There, interfere more and more destructively leading to a closing of
the quasiparticles form bound stafeg® which contain an  the gap at¢= .3 Hence the lower energy bound, below
Andreev reflectio?f at both NS interfaces. Since the first which no bound states exist, is set by this phase-dependent
reflection at the left is from hole- to particlgarticle- to  gap. AboveA, the states depend less and less on the super-
hole) -like states and the second at the right interface fronconducting properties, hence their phase dependence is rap-
particle- to hole(from a hole- to particle-like states, the net idly lost and they also do not contribute to the supercurrent.
result is a transfer of a Cooper pair from the left supercon-
ductor to the rightfrom right to lef). Bound-state energies A. Short-junction limit L<&,

are found by requiring that the total phase the quasiparticles . )
acquire within a single cycle is a multiple of2 This leads . !N the limit when the superconducting order parameter
to (for E,,<A) is much smaller than the Thouless energy, the supercurrent is

carried by states with energies much belbyand we may
thus neglect the first term on the right side of E5). In this

1 1
E§=2—[2w m-+ > *+ |, (18 case, we get an analytical solution to the differential equa-
T tions without further approximations,
the sign in front of the phase depending on the direction of s
the supercurrent flow. Here=vg/L is the time of flight g(x):arcos% coshjea(x—%o)]|,  (20)
between two successive Andreev reflections lamglthe cor-

responding length of the trajectory. The supercurrent- )
carrying density of states is then found from x(X)= xo—arctafa tanh jga(x—xo) I}, (21)

where« andx, are constants which along with the spectral
supercurrentjz are determined from the boundary condi-
tions. In the two-probe case we can choose the origin in the
center of the weak link, and assume the functi@fs) and
resulting into a peaklike spectrum that contains states carryy(x) take the bulk values at the NS boundar=(*+L/2).

ing both positive E=E,) and negative E=E_) supercur- Thus we getx,=0 and

rent. In the presence of disorder, the distribution of the times

IE
IS(E)* 2 " o(E~En), (19

of flight = depends on the impurity potential and the spectral VE?—A%cos(/2)

supercurrent is conveniently characterized by its impurity- - Acog ¢/2) ' (22

averaged smooth density of states. However, the resulting

gpgctrum still containg many properties similar to the plean . 2A cog B/12) VE \/EZ—A2c052(¢/2))

limit, such as the varying sign of the supercurrent carried at j.= rcos

different energies. This analogy holds, even though on a for- VE?—A%cos(4/2) E*-A?

mal level, the calculation within our quasiclassical technique (23

does not directly invoke these concepts. In the real-time calculation of the supercurrent, we are
mostly interested in the imaginary part of the spectral super-

IIl. SHORT- AND LONG-JUNCTION LIMITS currentjg. This is
The spectrum of current-carrying states in the weak link 0, E>A

depends very much on the ratio of the lengtlof the weak

link and the superconducting coherence lenggh \D/2A, Im(jg)= mA cod $/2) Ec[A|cod ¢/2)],A]

or in other words, on the ratio between the supezrconducting JVEZ—AZcoL(¢/2)’ ’

order parameteh and the Thouless enerds;y=D/L“ of the

weak link. In the case of a long weak lifkL>¢&, (or, 0, [El<Alcod¢/2)] (24)

equivalentlyE;<A), the spectrum is wide and many energy ] ]

states contribute to the supercurrent with only a small phasénd 1M je(—E)]=—Im[je(E)]. At T=0, we get the ob-

dependent gap of the order of a fdy at low energies. In  Servable supercurrent by simply integrating Jg)(over the

the opposite limit, only the states with energg  €nergy to obtain

e[A|cos(@/2)|,A] carry supercurrent and between these Acog /2)

limits, A serves as a cutoff for the spectral supercurrent: :M in( &b/
/ ! S artantisin( ¢/2)]. (25

there may exist some current-carrying states \EthA, but Ry
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For a finite temperature, we have to multiply this by the 4
distribution function tanti/2kgT) and integrate over the en-
ergy, which is conveniently done using the Matsubara tech-
niqueli.e., substitutingc=iw,, wherew,=7T(2n+1) are

the poles of tant/2kgT) and summing Rég) over n
=0,1,..., seRefs. 10 and 20 for detailsyielding

27AT

LU L
S eRy cos ¢ )n=o VAZCoZ(/2) + w?

X arctal Asin#/12)
VA2coZ(¢12) + w?

. (26)

. @0 10 20 30 40 50
As expected, Eqg25) and(26) are the same as obtained by T
Kulik and Omel’'yanchuf* and in numerical studié$for the
same limit. 14°

In a setup where the distribution function can be con-
trolled by an additional probe coupled to the system via a
narrow normal wirg'such that the current-carrying states are 10¢
not essentially deformedthe resulting supercurrent as a gl T 0 o
function of control voltage/ at T=0 reads 3

T
o N & o ®

A cog ¢/2) A[1+sin(¢/2)] E 4
Is(V)= 26R, In Vi N 3%0l( 0D (27

for Ve[A|cos@/2)|,A]. Above A, | vanishes, and foW

<A|cos(p)|, the supercurrent has the form of Eg5), inde- 2t 0

pendent ofV. 0 0.5 1 1.5
The spectral supercurrent of H@4) can also be obtained (b) Eia

ffom Fhe diffusive limit of the corresponding .quantity de-  FiG. 2. Spectral supercurrent for a few values MfE . (a)
rived in Ref. 35. There, the supercurrent is written as a sumynctions longer than the superconducting coherence lggth
of the contributions from different bound states, finite A/E; shows up as a peak &=A. (b) Short junctionsL
~ ¢, the peak atE=A persists, but another develops arouad
eA N Tp Ep =A cos(@/2). In (b), the spectral supercurrent is normalized by
ls=—sin(¢) Z E—tam‘( 5K ) (28)  E;/A to allow for the analytical solution & /A—. The inset
P=1%p B shows how the zero-temperature, zero-voltage critical current be-
haves as a function af/E+, in accordance with Ref. 10.

where the bound-state energiés depend on the transmis-
sion eigenvalues, by E,=A[1— 7,si?(¢/2)]"2 Writing
Eq. (28) in the form of an energy integral, behavior is responsible for the occurrence of thetate in
nonequilibrium-controlled Josephson junctidfsnd in fer-
romagnetic weak link383°
The spectral supercurrent as a function of energy is plot-
(29  ted for a few values ofA/E; in Fig. 2, the upper figure
) o ] showing the limitE+<<A and the lower the ImiE;<A.
and averaging the _tra_msr_nlsgéon eigenvalues over their or 4 finite ratioA/Ey, the divergence of the density of
d|ﬁu5|ve-l|rr1|'i ~ distribution; p(7)=(7/26°Ry)  giates at the superconducting gap edge is reflected as a peak
X(ry1l—7) " yields a spectral supercurrent given by EQ. i, the spectral supercurrent Bt=A. The direction of the
(24) multiplying the distribution function tanE(2kgT). peak, positive or negative, is determined by geometric con-
siderations and hence depends on the precise valNéEf.
B. Long and intermediate-length junctions For E;~A, the spectral supercurrent lig) tends towards

If the lengthL of the weak link is much longer tha,,  the short-junction result, E424), replacing the Thouless gap
the supercurrent is carried by a wide spectrum ofby the gap of widthA cos(@/2). Moreover, forA/E;+—0, the
energies:>%" At low E, however, the current-carrying den- width of the peak aE=A tends to zero.
sity of states has a phase-dependent minigap reminiscent of In the limit T>E; for a long junction E;<<A), the tem-
the gap in the usual density of states of a SNS safiple. perature dependence of the obtained observable supercurrent
Above the gap, Imji) rises sharply, then starts to oscillate tends to the limits considered by Likhaf&or A<T and by
with an exponentially decaying envelope. This oscillatoryZaikin and Zharko¢! for a generalA/T.

S(E-Ep),

eA Nor E
= gj > P
Is= 5 Sin( ¢) dEp=l Etanl‘( KT
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2T — n=1
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FIG. 3. Energy dependence of the Fourier sine transformed eviE,

spectral supercurrent: four lowest harmonics-1,2,3,4 corre-
sponding to the phase dependenciesnghp(The energy scales and
magnitudes of the different harmonic constituents decay ras 1/

FIG. 4. Voltage dependence of the amplitudes of the first four
harmonics of the observable supercurrent. Inset: Corresponding
temperature dependendeven harmonics yield negative ampli-
IV PHASE DEPENDENCE tudes, but here we plot the absolute values of the supercurrent
| t.O”g'nalll(yi.ﬂlle :Jotshep?son ?ffect was dl_scoyertid ';.Or.'tnsfuénd the effective energy scales decay with a powen of
ating weak links In the tunneling regime, 1.e., in the imit o suggesting that the observation of the higher harmonics is

a very low tunneling probability. There, the supercurrent Seasiest at low temperatures. The corresponding temperature
due to an uncorrelated transfer of Cooper pairs through thé

weak link?? As a result, one obtains the familiar dc Joseph-a,nd voltage dependencies of the critic.al curre@tplotted in_
son relationl s= .sin(¢). However, it has been showsee, F|_g.. 4 behave analogously. A num_erlcal fit to the obtained
e.g., Refs. 13 and 34hat other kinds of weak links, through Critical currents ateV=kgT=0 yields roughly Ig—
which the transmission probability is much above zero, may —1)"/n® and to the voltag&/;; wherel(V) first changes
have a different current-phase relation. Thus we may write irsign suggests that the effective energy scales beha# as
general =E+1(cy+c,/n), with some constants, ,.
This behavior can be understood by identifying the higher
°” harmonics with the correlated transfer of a clusten@oo-
lc(¢)= 21 Iesin(ng), (300 per pairs. Now instead of the phage the cluster has the
"~ phasen¢ and since the cycle containgn2Andreev reflec-

where the amplitudesl are the coefficients of the Fourier tions, the effective trajectory length is increased fromo
sine series of o(¢). For example, in a ballistic weak link NL- In EQ. (18)*’ making these replacements yields the ob-
where the transmission probability for Cooper pairs i${1, Served resultey «(c,+c,/n). In the diffusive limit, the ef-
«—(—1)"n, yielding a sawtooth form fot(¢).131® The fective trajectory Ien_gth mcrezases in the second power of the
odd parity with respect t@ (appearance of only sine terins length of the weak link|.4<L<, but since t.he phase. is reset
of this representation reflects the fact that the supercurrent R&t€" eagh traversal through the weak link, we simply get
driven by the spatial asymmetry introduced by the applicalefinnNL". Hence, similarly to the alternating sign, the scal-
tion of the phase: changing the phase to a negative valug9 of the effective energies with indexfollows the behav-
corresponds to mirroring the structure about the center ant®" Of the ballistic-limit spectral supercurrent.

hence to a reversal of the current. Since the crossover voltag®% , wherel¢(V})=0, de-

The occurrence of higher harmonics in E§0) may be  Pend onn, Fhe actual critical current never vanishes at the
interpreted as a correlated transfemaEooper pairs through ~Crossover: it is rather that the current-phase relation changes
the weak link as a result of the pairing correlations extendingts form near the crossover voltages. Such a change was ob-
through quasiparticle paths containing multiple Andreev reServed in Ref. 11, where the current-phase relation of a con-
flections. For example, the flux quantum for thén har- trolla}ble Josephspn junction was measured in a supercon-
monic ish/2ne, i.e., corresponding to a charge@ ducting quantum interference devi€8QUID) geometry.

In a diffusive weak link considered in this paper, the In the short-junction regimé <&, the contributions of
transmission probabilities for the Cooper pairs are widelythe different harmonics can be derived analytically. A general
distributed between zero and®1As a result, one may get form for Im(jg) would be complicated, but as an example,
contributions from the higher harmonics to the phase deperthe first two amplitudes are
dence. This is shown in Fig. 3 where the amplitudesj ij(
of the first four harmonics of the Fourier sine transformed
spectral supercurrent through a long weak litke(¢,) are

2
: . . , (31
plotted as a function of energy. Both the amplitude of jii(

| m

Im(jé>=(
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> E2(2A2—3E2) 3 i
Im(jE)=~——F—— (32 el "
Clearly all the harmonics share the same energy saalbut 2f "‘\‘ ga
as for the case of a long weak link, the amplitude decays also ~ ) ﬁ_:iﬁ
here roughly as ©2. Namely, integrating Im(E) over the g 13 ‘\\ .
energy, we get for a short weak link B B 2 T
|n— _ (—1)"eA 33 0.5?_;: 44""\“.‘\.:'\43 % (VA 3 4]
¢ Ry(2n+1)(2n-1)°
ReplacingA by E; and scaling by a numerical factor close to
33, this form fits the amplitudes of the long-junction harmon- 05 5 10 20 30 10 50
ics as well but a rigorous proof does not exist. E/E;

FIG. 5. Spectral supercurrent for different cross sectibp®f
V. EXTRA TERMINALS the control probe. From top to bottom, the cross sectioi\ds

In order to relate our results to physical observables, We=0,0.2,1,2,4 times the cross gectlon of the weak link. Inset: observ-
ble supercurrent as a function Af for T=V=0 (upper set of

have to evaluate statistical expectation values. In two-probg. B .
SNS weak links in equilibrium, most of the experimental circles and for kB.T_.3ET (IowEr set of circlek The. zero-
observations have been accurately described with the e ut,gmperature resultis fitted 1g(Ac=0)Ay, /(Ay+ Ad/3) (solid line
L iquld y Ahd the finite-temperature result tby(A.=0)A,/(A,+AJ/2)
librium Matsubara technique. However, one of the recent (dashed ling

advances in the research of the Josephson effect has been

;jone{_ n _notr;]eqwhbﬂulmks;]tuatg)ns whetre ”thde bd'smbu}!onvoltages/temperatures of the order of the Thouless gap, the
unction in the weak fink has been controfied by coupling g, probes do not change the voltage/temperature depen-

one or more normal—metgl reser.voir_s to the weak link bydence ofl¢ from the two-probe case, but only the overall
phase-coher'ent wiré$ While making .I'[ possible to control magnitude is decreased. From the resultigg.) we obtain
the occupation of the current-carrying states, these extra ¢

wires also affect the form of Inj¢).? In the discussion of A
these effects, we concentrate on the regime of a long junc- Is(Ay,Ac) = —WIS(AW’A(::O)a (34)
tion, L>§&,. There, most notably, the control probes allow AwtAcl2

for the existence of states with low energies, and therefor(\?vhiCh holds very well for maxVksT)>E; .

the Thouless gap is lifted. Moreover, the existence of the If the length L, of the phase-coherent control wire is

normal reservoirs brings some extra depairing by imposing "flarger tharL, the effect of the control wires is independent of

\iamshmg_ bpundary condm_on for the pairing amp|_|tuﬂe the precise value df.. ForL.<L, the spectral supercurrent
=sinh(p) inside the reservoirs. As a result, the amplitude of. altered forE<%D/L2 such that the overall maanitude is
the spectral supercurrent decreases due to the extra probes.'%n - c SU M gnitude 1

what follows, we consider the effects of the integrated crossdecreased, the observable supercurrent tending towards. zero
sectional ared\ . of the control wires attached to the center as Lc—0. The spectral supercurrent and the resulting
of the weak link with cross sectioh,, (note: a similar effect
would be present if the control wires and the weak link were
made of different materials with normal-state conductivities
on ¢ andoy w—however, here we simply talk aboAt and
A,) and of the length. . of the phase coherent control wires,
compared to the length of the weak link. For simplicity, we
assume that the widths of the control wires are much smaller
thanL, allowing one to treat these wires as quasi-1D struc-
tures, connected by the rules of Nazarov’s circuit thédf.
In the language of this circuit theory, the extra normal wires
divert some of the spectral current to the normal reservoirs,
thus decreasing the pairing correlations between the super-
conductors.

The spectral supercurrent as a function of energy for dif- 4 s ‘ '

. C g 0 5 10 15 20

ferent cross section&; of the control wire is plotted in Fig. eVIE
5. Here we have taken the length=5L>L. Already a T
smallA <A, yields a finite Im{¢) at low energies, butdoes  FIG. 6. Voltage dependence of supercurrent dot /2 in the
not much reduce the total magnitude of the supercurrent. Th@‘esence of the control probe with different cross secti@psln-
resulting temperature and voltage dependencies of the totgét: The corresponding temperature dependence of the supercurrent.
supercurrenty is plotted in Fig. 6. Except at the very lowest The cross sections have been chosen as in Fig. 5.
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FIG. 7. Spectral supercurrent for different lengths of the FIG. 9. Spectral supercurrent in a weak link with dirty interfaces
control probe. From top to bottom, the lengthlis=5,0.25,0.15 to the superconductors, characterized by the matioR, /Ry of the
times the length of the weak link. The cross section of the controkesistances. The interface resistariReis assumed the same for
probe is chosen equal to that of the weak link. Inset: Supercurrent aoth interfaces. From top to bottom;=0, 0.2, 0.4, 0.6, 0.8, 1.0.
T=0 (solid line and T=3E;/kg (dashed as a function of the Enhanced scattering at the interface reduces mostly the amplitude

lengthL . of the control probe with respect to the length of the weakof the supercurrent, but also slightly the effective energy scale. In-
set: zero-temperature, zero-voltage supercurrent as a functign of

link.
Circles: calculated supercurrent; solid line: fit tg(rp)=15(rp
temperature/voltage dependencies AQe=A,, and for three  =0)/(1+1.6ry).
differentL./L are plotted in Figs. 7 and 8, respectively. _ )
the amplitude of the supercurrent decays wigh but also
the energy scales decrease since the interface barrier can to
certain extent be thought as adding a barrier-equivalent
Normal-metal—superconductor interfaces with reduce engt® to the path length of the qua5|pa_rt|cles. Observmg
o . o he temperature and voltage dependencies of the resulting
transmissivity can be taken into account by specifying the upercurrent, plotted in Fig. 10, shows that the amplitude of
transmission eigenvalues through the interface and takin epsu ercur’repnt behavesglé.rtsoy V=0 as P
them into account as in E@7). Here we consider a typical P S
case described by the distribution of eigenvalues for a (R =0)R
“dirty” interface Ic(R/,R )%M
Y ' RN = TR T L6R,

Figure 9 shows the spectral supercurrent for a long junc-
tion connected to superconductors through a dirty interfacée., the resistances should not simply be added up but the

with resistanceR, (yielding a total resistanc®y+ 2R, be-  dirty interface decreases the supercurrent less efficiently than

tween the superconductgr®ue to the additional resistance, the normal-metal resistance. Furthermore, the effective en-
ergy scaleE* found, e.g., from the voltage dependence in-

dicates that it follows the approximate lak*=E{(1

VI. NONIDEAL INTERFACES

(39

12 . -

0 5 10 15 20

10
eV/ET

FIG. 8. Woltage dependence of supercurrent gor 7/2 in the

presence of a control probe with lendth and cross section equal
FIG. 10. VWoltage dependence of the supercurrent with dirty NS

to that of the weak link. Inset: The corresponding temperature de-
pendence of the supercurrent. The lendthhave been chosen as interfaces at¢=m/2. Inset: Corresponding temperature depen-
dence. The values d®, are the same as in Fig. 9.

in Fig. 7.
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+0.7R,/Ry). This kind of a behavior of the critical current longer than the weak linkbut not much longer to reduce the
and the spectral supercurrent is similar to those found in Refnelastic effects on the nonequilibrium distribution funcion
24 [especially, see Eq$55) and(56)] and Ref. 2 in the case and as thin as possible compared to the weak link. For the

of a tunneling interface. observation of ther state, the ideal limit is the long-junction
limit L>¢&, where the spectrum of the current-carrying
VIl. CONCLUSIONS states is not cut off by the superconducting gap.

_ ) _ ) In typical experiments, also inelastic scattering neglected

In this paper, we have systematically investigated théere may become important. However, since equilibrium
spectrum of current-carrying states in a phase coherefghenomena induced by the superconducting proximity effect
normal-metal weak link. Taking into account the effect of haye peen quantitatively described by the quasiclassical
extra terminals, the characteristic energy scales—the Tho‘iheory without incorporating such effedtsee, e.g., Refs. 10
less energyer and the BCS superconducting gap-and a  gnd 44, we expect these inelastic effects to be mostly im-
finite NS interface resistance makes it easier to find & quansortant in the kinetic equations describing the nonequilib-
titative agreement with the obtained experimental results opym distribution functions. In recent experimefisinclud-
the nonequilibrium-controlled supercurrent. We have alsqng these inelastic terms into the kinetic equations has lead to
been able to derive analytical results in a number of “m'tsgood agreement between the theory and the experiments.
Moreover, we have discussed the underlying microscopiqherefore our results provide an accurate and independent

phenomena leading to the state and have explained its ay of also characterizing such inelastic effects by observing
properties, such as its dependence on energy, and higher hagy they affect the supercurrent.

monics in the phase dependence, by invoking Andreev bound
states smeared over a broad distribution of times of flight,
and by multiple Andreev cycles tranferring more than one
Cooper pair in a single coherent process. We thank Norman Birge, Fderic Pierre and Jochem

To obtain an optimal voltage control of the supercurrent,Baselmans for discussions. This work was supported by the
the interface resistances should be much smaller than theraduate School in Technical Physics at the Helsinki Univer-
weak-link wire resistance, the control wire should be slightlysity of Technology.
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