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Supercurrent-carrying density of states in diffusive mesoscopic Josephson weak links
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Recent experiments have demonstrated the nonequilibrium control of the supercurrent through diffusive
phase-coherent normal-metal weak links. The experimental results have been accurately described by the
quasiclassical Green’s-function technique in the Keldysh formalism. Taking into account the geometry of the
structure, different energy scales, and the nonidealities at the interfaces allows us to obtain a quantitative
agreement between the theory and the experimental results in both the amplitude and the phase dependence of
the supercurrent, with no or very few fitting parameters. Here we discuss the most important factors involved
with such comparisons: the ratio between the superconducting order parameter and the Thouless energy of the
junction, the effect of additional wires on the weak link, and the effects due to imperfections, most notably due
to the nonideal interfaces.
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I. INTRODUCTION

Many quantum phenomena in many-body systems
based on probing the spectrum of states corresponding to
desired observable, the states being filled according to
appropriate distribution function. A similar viewpoint can b
taken also on the Josephson effect: supercurrent is carrie
states in the weak link and their occupation is determined
a distribution function antisymmetric between the electr
and hole spaces. This aspect is directly reflected in the m
ematical structure of the supercurrent formula derived fr
the Keldysh Green’s-functions method.1–3 Such an approach
has been taken in some recent experiments4–9 controlling the
Josephson effect in phase-coherent normal-metal w
through the control of the distribution function by an inje
tion of normal quasiparticle current. One of the most rema
able results of these experiments is the inversion of the
of the supercurrent for a given phase difference across
weak link when the junctions turn into ap state.

Quantitative fit to the experimentally obtained results h
been very successful for the equilibrium supercurrent10 using
the equilibrium quasiclassical theory. In the nonequilibriu
case, detailed knowledge of the relaxation mechanisms
trolling the shape of the interactions, but also the prec
spectrum of supercurrent-carrying states, is required6,8

Previously,1 for the calculation of this spectrum, one has a
sumed a two-probe setup with some idealized conditions
the length scales and on the nature of the interfaces. In
paper, we systematically investigate the spectrum of
current-carrying density of states, or spectral supercurr
show how it is calculated, and how it depends on the len
of the weak link, presence of additional terminals, or on
nonidealities in the interfaces between the normal-m
weak link and the superconductors. We also discuss
current-phase relation of such a system: at low temperatu
it can be far from sinusoidal, and at certain conditions,
period can even be halved.11 We focus on the diffusive limit
where the dimensionsd of the weak link are much greate
than the elastic mean free pathl. This is the typical limit for
0163-1829/2002/66~18!/184513~10!/$20.00 66 1845
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most normal-metal weak links. The corresponding ballis
limit d! l has been extensively described in t
literature12–18 in terms of Andreev bound states~ABS!. We
show qualitatively a connection between the discrete A
and the continuous diffusive-limit spectral supercurrent.

This paper is organized as follows. After this introductio
Sec. II introduces to the theoretical formalism which is bas
on the real-time Usadel equation for the quasiclass
Green’s function in the diffusive limit.19,20 In the case of
nonideal interfaces or in multiterminal geometries, t
boundary conditions to these functions are also essential.
derstanding the results of the following sections does
require a detailed reading of this part but it is enough
grasp the idea of the relation of the spectral supercurrent
the observable one. In Sec. III we look how the spec
supercurrent depends on the length of the weak link co
pared to the superconducting coherence length and sep
two extreme cases. In the limit of a short junction where
coherence length is much longer than the weak link, o
obtains an analytical solution for the spectral supercurr
without further approximations. The current-phase relation
diffusive normal-metal weak links is considered in Sec.
We show how, especially at low temperatures, higher h
monics appear in addition to the usual sinusoidal phase
pendence and indicate how the period can be halved
nonequilibrium situation. Section V considers the effect
additional normal-metal terminals on the current-carryi
density of states, and in Sec. VI, we discuss how nonide
ties in the normal metal – superconductor~NS! interface
change its shape. Finally, in Sec. VII, we summarize
main results.

To be specific, we consider the structure shown in Fig
The main wire with lengthL and cross sectionAw between
the superconductors forms the weak link whereas the a
tional wires with lengthLc and integrated cross sectionAc
are used for the control of the distribution functions a
therefore referred to as the control wires. We assume tha
superconducting and normal reservoirs are much larger
©2002 The American Physical Society13-1
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the weak link and the control wire, such that the Gree
functions describing them take their bulk values very close
the interfaces. Furthermore, we assume that the width of
control wires is much smaller than the lengthL of the weak
links. This allows us to consider the wires as quasi-o
dimensional~1D! structures by assuming translational inva
ance in the transverse directions.

II. THEORETICAL BACKGROUND

Circuits composed of normal and superconducting me
in the diffusive limit~dimensions larger than the elastic me
free pathl ) are effectively described in terms of the qua
classical Green’s functionsĞ satisfying the Usade
equations19,20

D¹~Ğ¹Ğ!5@2 i ~E1 iG!t̆31D̆,Ğ#, ~1!

whereD5 1
3 vFl is the diffusion constant,E is energy relative

to the chemical potential of the superconductors~which is
assumed to be the same for allS terminals!, G describes
a small inelastic scattering rate, andD̆ the superconducting
pair potential~we set\51 throughout!. Since we aim to
describe nonequilibrium effects, we adopt the Keldysh re
time formalism21 and hence

Ğ5S ĜR ĜK

0 ĜAD , D̆5S D̂ 0

0 D̂
D , t̆35S t̂3 0

0 t̂3
D .

~2!

All of the submatrices denoted by a hat (ĜR, etc.! are 2
32 matrices in Nambu particle-hole space, in particular,t̂3

is the third Pauli matrix andD̂ has the form

D̂5S 0 D~x!

D* ~x! 0 D . ~3!

The pair potentialD(x) can in principle be obtained from
self-consistency relation.20,22 However, since we conside

FIG. 1. Multiterminal SNS Josephson junction. The weak li
consists of a phase coherent normal-metal wire of lengthL, cross
sectionAw , and normal-state conductivitysw , yielding a normal-
state resistanceRN5L/swAw . Additional normal-metal wires of
length Lc , total cross sectionAc , and normal-state conductivity
sc , i.e., with resistanceRc5Lc /swAw , called the control wires,
are connected to the center of the weak link, and from their o
end, to normal reservoirs.
18451
s
o
e

-

ls

l-

only superconducting reservoirs much wider than the w
link, we adopt the usual step-function form forD(x) ~finite
constant in the superconductors, zero in the normal-m
wires!.

In addition to Eq.~1!, Usadel Green’s function satisfies
normalization conditionĞ251̌. Therefore it can be param
etrized with four scalar parameters as follows.20 The Keldysh
Green’s functionĜK describing the occupation numbers
different quantum states, i.e., the~non!equilibrium state of
the system can be expressed with two real distribution fu
tions f L and f T as ĜK5ĜR( f L1 f Tt̂3)2( f L1 f Tt̂3)ĜA

whereas the retarded and advanced Green’s functions,ĜR

and ĜA, describing the spectral properties which do not
rectly depend on the distribution functions are

ĜR5S cosh~u! sinh~u!exp~ ix!

2sinh~u!exp~2 ix! 2cosh~u!
D ~4!

andĜA52 t̂3(ĜR)†t̂3. Hereu(x;E) andx(x;E) are in gen-
eral complex scalar functions.

In what follows, we describe a quasi-one-dimension
situation, where the functions are assumed to vary only
one dimensionx. Expressing the coordinatex in terms of the
separationL of the superconductors between which the s
percurrent flows,x[x8L, the spectral equations forĜR(A)

read in a normal metal (D50)

]x8
2 u522i ~E81 iG8!sinh~u!1

1

2
~]x8x!2sinh~2u!, ~5!

j E[2sinh2~u!]x8x, ]x8 j E50. ~6!

Here, the prime over the~dimensionless! quantities denotes
the fact that the energies are expressed in the units of
Thouless energyET5D/L2 corresponding to the lengthL.
Below, we tacitly assume all lengths and energies expres
in these natural units even if not marked by a prime. T
kinetic equations satisfied by the distribution functionsf L
and f T are described, e.g., in Ref. 20, where the part of
distribution function which is symmetric about the chemic
potential of the superconductors corresponds tof T and the
antisymmetric part tof L . These two components acquire di
ferent space and energy dependent diffusion coefficients
to the superconducting proximity effect.

If the interfaces to the reservoirs are ideal metallic, t
parameters are continuous at the boundaries to the reser
and can be identified with the bulk values,uS
5artanh(D/E) and uN50 in the superconducting an
normal-metal reservoirs, respectively. In general, e.g., i
supercurrent is driven through the system, there can b
phase difference, which we choose to be applied symme
cally between the superconductors, such that in the left
perconductorx5f/2 and in the rightx52f/2. Below, if
not mentioned otherwise, we choosef5p/2, which typi-
cally yields a supercurrent close to the critical current of
junction.

Nonideal interfaces with reduced transmissivities are
directly described by the Usadel equation, because they

r
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SUPERCURRENT-CARRYING DENSITY OF STATES IN . . . PHYSICAL REVIEW B66, 184513 ~2002!
of microscopic, atomic-scale thickness. They can, howe
be taken into account using boundary conditions derived
Zaitsev23 for Eilenberger Green’s functions~valid indepen-
dent of the mean free path! and later simplified in the diffu-
sive limit by Kuprianov and Lukichev for a tunnelling case24

and Nazarov for a general interface,25 described by a scatter
ing matrix. For an interface characterized by the transmiss
eigenvaluesTn , the Green’s functionsĞ1 on the right-hand
side andĞ2 on the left-hand side of the interface satisfy25,26

sN
1 A1Ğ1]xĞ15sN

2 A2Ğ2]xĞ2

5
2e2

p (
n

Tn@Ğ1 ,Ğ2#

41Tn~$Ğ1 ,Ğ2%22!
, ~7!

evaluated at the position of the interface. In most cases,
individual transmission eigenvalues are not known, but si
typical interfaces contain a huge number of channels, i
enough to integrate over the probability distribution of t
eigenvalues to obtain the desired boundary condition.

In the case of a tunneling interface~where all the trans-
mission eigenvalues of the interface are small! the boundary
conditions between the parametrized functions in wires 1
2 reduce to20,24

]xu15@sinh~u1!cosh~u2!2sinh~u2!cosh~u1!cos~Dx!#/r b,
~8!

sinh2~u1!]xx15sinh~u1!sinh~u2!sin~Dx!/r b . ~9!

Here, Dx[x12x2 and u1(2)[u(xb
1(2)) and x1(2)

[x(xb
1(2)) are the parametersu and x at the interface,x

5xb , but on the side of the wire 1~2!. The nonideality of the
interface is characterized by the ratio of its resistanceRI and
of the weak-link resistanceRN , r b[RI /RN and the deriva-
tives point towards the wire 1. In the case of a dirty interfa
where the boundary condition is evaluated using the dis
bution function of the transmission eigenvalues correspo
ing to an interface with a random array of scatterers in a
layer,27 we get

]xu15
A2@sinh~u1!cosh~u2!2sinh~u2!cosh~u1!cos~Dx!#

r bD ,

~10!

sinh2~u1!]xx15
A2sinh~u2!sinh~u1!sin~Dx!

r bD . ~11!

Here we denoted the denominator D
[A11cosh(u2)cosh(u1)2sinh(u2)sinh(u1)cos(Dx). This de-
nominator reflects the contribution of open conduction ch
nels which are not present in Eq.~9!.

Note that both types of boundary conditions indicate
form of a conservation of a spectral current over the int
face, the second equation being the conservation of the s
tral supercurrentj E .

In geometries with more than two terminals, we assu
that narrow quasi-one-dimensional wires connect to e
other at some point of the structure. Therefore we need
impose appropriate matching conditions.20,25,28,29 In this
18451
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case, they are the continuity of the functionsu andx and the
conservation of the spectral currents. Assuming that the
rivatives in theN wires i 51, . . .N with cross sectionsAi

and normal-state conductivitiessN
i point towards the cross

ing point atxc , we get

u i~xc!5u j~xc! ; i , j 51, . . .N, ~12!

x i~xc!5x j~xc! ; i , j 51, . . .N, ~13!

(
i 51

N

AisN
i ]xu i~xc!50, ~14!

(
i 51

N

AisN
i ]xx i~xc!50. ~15!

In the last condition we used the continuity of the paramet
u across the crossing point.

Below, we assume the system depicted in Fig. 1: t
superconductors connected by ‘‘horizontal’’ mesoscopic n
mal wires to which we connect normal reservoirs by t
‘‘vertical’’ mesoscopic normal wires~labeling of the wires as
in Fig. 1!. When considering the supercurrent between
two superconductors, for the spectral equations it is eno
to treat any number of ‘‘vertical’’ wires by a single wire fo
which the product ofsNA is simply the sum of these prod
ucts in the individual wires. In the case that the depende
on the lengthLc of these wires becomes important, th
smallest of them characterizes the situation the best. In
case, since there can be no supercurrent flowing to the
mal reservoirs, Eq.~15! reduces toj E

152 j E
2 . Furthermore,

for simplicity, we assume the system left-right symmetr
such that the part of the weak link in the left-hand side of
cross is similar to that in the right-hand side.

Finally, the observable supercurrent is obtained from
solutions to the spectral and kinetic equations by

I S5
ET

2eRN
E

2`

`

dE8Im@ j E~E8!# f L~E8!. ~16!

In the reservoirs with voltageV with respect to the potentia
of the superconductors~which are assumed equal for bo
superconductors in order to avoid the ac Josephson eff!,
f L obtains the form

f L~E;V,T!5
1

2 F tanhS E1eV

2kBT D1tanhS E2eV

2kBT D G . ~17!

It can be shown1,6 that, in the absence of inelastic intera
tions and for energiesE,D, f L remains constant throughou
the control wires, and hence the reservoir value can dire
be used for the calculation of the supercurrent.

In this paper, we will consider two limits forf L . These
are the equilibrium finite-temperature limit, wheref L
5tanh(E/2kBT), and the zero-temperature nonequilibriu
case whenf L is driven in a normal-metal wire,1 f L5q(E
2eV)2q(2eV2E), where q(E) is the Heaviside step
function.
3-3
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The spectrum of supercurrent-carrying states typica
consists of both the states carrying the supercurrent par
to the phase gradient and those carrying it in the oppo
direction,1,12 depending on their energy. Hence, by contr
ling the occupation of these states by the above steplike
tribution function, one is able to vary the sign of the obse
able supercurrent and, e.g., obtain thep state.

The form of the spectrum can be qualitatively understo
by considering a ballistic~scattering-free! weak link. There,
the quasiparticles form bound states12–18 which contain an
Andreev reflection30 at both NS interfaces. Since the fir
reflection at the left is from hole- to particle~particle- to
hole! -like states and the second at the right interface fr
particle- to hole~from a hole- to particle! -like states, the ne
result is a transfer of a Cooper pair from the left superc
ductor to the right~from right to left!. Bound-state energie
are found by requiring that the total phase the quasiparti
acquire within a single cycle is a multiple of 2p. This leads
to ~for Em!D)

Em
65

1

2t F2pS m1
1

2D6fG , ~18!

the sign in front of the phase depending on the direction
the supercurrent flow. Heret5vF /L is the time of flight
between two successive Andreev reflections andL is the cor-
responding length of the trajectory. The supercurre
carrying density of states is then found from

j S~E;f!}(
m

]Em
6

]f
d~E2Em!, ~19!

resulting into a peaklike spectrum that contains states ca
ing both positive (E5Em

1) and negative (E5Em
2) supercur-

rent. In the presence of disorder, the distribution of the tim
of flight t depends on the impurity potential and the spec
supercurrent is conveniently characterized by its impur
averaged smooth density of states. However, the resu
spectrum still contains many properties similar to the cle
limit, such as the varying sign of the supercurrent carried
different energies. This analogy holds, even though on a
mal level, the calculation within our quasiclassical techniq
does not directly invoke these concepts.

III. SHORT- AND LONG-JUNCTION LIMITS

The spectrum of current-carrying states in the weak l
depends very much on the ratio of the lengthL of the weak
link and the superconducting coherence lengthj05AD/2D,
or in other words, on the ratio between the superconduc
order parameterD and the Thouless energyET5D/L2 of the
weak link. In the case of a long weak link,1 L@j0 ~or,
equivalently,ET!D), the spectrum is wide and many ener
states contribute to the supercurrent with only a small pha
dependent gap of the order of a fewET at low energies. In
the opposite limit, only the states with energyE
P@Ducos(f/2)u,D# carry supercurrent and between the
limits, D serves as a cutoff for the spectral supercurre
there may exist some current-carrying states withE.D, but
18451
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their contribution vanishes quickly withE2D.
The energy ranges can be understood as follows: In

center of the junction, which is the bottleneck for the sup
current, both superconductors provide sufficient correlati
that a gap in the energy spectrum of a sizeEg is induced at
f50, where the size ofEg interpolates betweenET ~long
junction! and D ~short junction!.31,32 If now a finite phase
difference is applied, the correlations from either side star
interfere more and more destructively leading to a closing
the gap atf5p.33 Hence the lower energy bound, belo
which no bound states exist, is set by this phase-depen
gap. AboveD, the states depend less and less on the su
conducting properties, hence their phase dependence is
idly lost and they also do not contribute to the supercurre

A. Short-junction limit L™j0

In the limit when the superconducting order parameterD
is much smaller than the Thouless energy, the supercurre
carried by states with energies much belowET and we may
thus neglect the first term on the right side of Eq.~5!. In this
case, we get an analytical solution to the differential eq
tions without further approximations,

u~x!5arcoshSAa211

a
cosh@ j Ea~x2x0!# D , ~20!

x~x!5x02arctan$a tanh@ j Ea~x2x0!#%, ~21!

wherea andx0 are constants which along with the spect
supercurrentj E are determined from the boundary cond
tions. In the two-probe case we can choose the origin in
center of the weak link, and assume the functionsu(x) and
x(x) take the bulk values at the NS boundary (x56L/2).
Thus we getx050 and

a5
AE22D2cos2~f/2!

Dcos~f/2!
, ~22!

j E5
2D cos~f/2!

AE22D2cos2~f/2!
arcoshSAE22D2cos2~f/2!

E22D2 D .

~23!

In the real-time calculation of the supercurrent, we a
mostly interested in the imaginary part of the spectral sup
current j E . This is

Im~ j E!55
0, E.D

pD cos~f/2!

AE22D2cos2~f/2!
, EP@Ducos~f/2!u,D#

0, uEu,Ducos~f/2!u,
~24!

and Im@ j E(2E)#52Im@ j E(E)#. At T50, we get the ob-
servable supercurrent by simply integrating Im(j E) over the
energy to obtain

I S5
pDcos~f/2!

eRN
artanh@sin~f/2!#. ~25!
3-4
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For a finite temperature, we have to multiply this by t
distribution function tanh(E/2kBT) and integrate over the en
ergy, which is conveniently done using the Matsubara te
nique@i.e., substitutingE5 ivn , wherevn5pT(2n11) are
the poles of tanh(E/2kBT) and summing Re(j E) over n
50,1, . . . , seeRefs. 10 and 20 for details#, yielding

I S5
2pDT

eRN
cos~f/2! (

n50

`
1

AD2cos2~f/2!1vn
2

3arctanS Dsin~f/2!

AD2cos2~f/2!1vn
2D . ~26!

As expected, Eqs.~25! and~26! are the same as obtained b
Kulik and Omel’yanchuk34 and in numerical studies10 for the
same limit.

In a setup where the distribution function can be co
trolled by an additional probe coupled to the system via
narrow normal wire~such that the current-carrying states a
not essentially deformed!, the resulting supercurrent as
function of control voltageV at T50 reads

I S~V!5
pD cos~f/2!

2eRN
lnF D@11sin~f/2!#

V1AV22D2cos2~f/2!
G ~27!

for VP@Ducos(f/2)u,D#. Above D, I S vanishes, and forV
<Ducos(f)u, the supercurrent has the form of Eq.~25!, inde-
pendent ofV.

The spectral supercurrent of Eq.~24! can also be obtained
from the diffusive limit of the corresponding quantity d
rived in Ref. 35. There, the supercurrent is written as a s
of the contributions from different bound states,

I S5
eD

2
sin~f! (

p51

N
tp

Ep
tanhS Ep

2kBTD , ~28!

where the bound-state energiesEp depend on the transmis
sion eigenvaluestp by Ep5D@12tpsin2(f/2)#1/2. Writing
Eq. ~28! in the form of an energy integral,

I S5
eD

2
sin~f!E dE(

p51

N
tp

E
tanhS E

2kBTD d~E2Ep!,

~29!

and averaging the transmission eigenvalues over t
diffusive-limit distribution,36 r(t)5(p/2e2RN)
3(tA12t)21, yields a spectral supercurrent given by E
~24! multiplying the distribution function tanh(E/2kBT).

B. Long and intermediate-length junctions

If the lengthL of the weak link is much longer thanj0,
the supercurrent is carried by a wide spectrum
energies.1,2,37 At low E, however, the current-carrying den
sity of states has a phase-dependent minigap reminisce
the gap in the usual density of states of a SNS samp29

Above the gap, Im(j E) rises sharply, then starts to oscilla
with an exponentially decaying envelope. This oscillato
18451
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behavior is responsible for the occurrence of thep state in
nonequilibrium-controlled Josephson junctions5,6 and in fer-
romagnetic weak links.38,39

The spectral supercurrent as a function of energy is p
ted for a few values ofD/ET in Fig. 2, the upper figure
showing the limitET!D and the lower the limitET&D.

For a finite ratioD/ET , the divergence of the density o
states at the superconducting gap edge is reflected as a
in the spectral supercurrent atE5D. The direction of the
peak, positive or negative, is determined by geometric c
siderations and hence depends on the precise value ofD/ET .
For ET'D, the spectral supercurrent Im(j E) tends towards
the short-junction result, Eq.~24!, replacing the Thouless ga
by the gap of widthD cos(f/2). Moreover, forD/ET→0, the
width of the peak atE5D tends to zero.

In the limit T@ET for a long junction (ET!D), the tem-
perature dependence of the obtained observable supercu
tends to the limits considered by Likharev40 for D!T and by
Zaikin and Zharkov41 for a generalD/T.

FIG. 2. Spectral supercurrent for a few values ofD/ET . ~a!
Junctions longer than the superconducting coherence lengthj0. A
finite D/ET shows up as a peak atE5D. ~b! Short junctionsL
;j0: the peak atE5D persists, but another develops aroundE
5D cos(f/2). In ~b!, the spectral supercurrent is normalized
ET /D to allow for the analytical solution atET /D→`. The inset
shows how the zero-temperature, zero-voltage critical current
haves as a function ofD/ET , in accordance with Ref. 10.
3-5
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IV. PHASE DEPENDENCE

Originally, the Josephson effect was discovered for in
lating weak links in the tunneling regime, i.e., in the limit
a very low tunneling probability. There, the supercurrent
due to an uncorrelated transfer of Cooper pairs through
weak link.42 As a result, one obtains the familiar dc Josep
son relationI S5I csin(f). However, it has been shown~see,
e.g., Refs. 13 and 34! that other kinds of weak links, throug
which the transmission probability is much above zero, m
have a different current-phase relation. Thus we may writ
general

I C~f!5 (
n51

`

I C
n sin~nf!, ~30!

where the amplitudesI C
n are the coefficients of the Fourie

sine series ofI C(f). For example, in a ballistic weak link
where the transmission probability for Cooper pairs is 1,I C

n

}2(21)n/n, yielding a sawtooth form forI C(f).13,16 The
odd parity with respect tof ~appearance of only sine term!
of this representation reflects the fact that the supercurre
driven by the spatial asymmetry introduced by the appli
tion of the phase: changing the phase to a negative v
corresponds to mirroring the structure about the center
hence to a reversal of the current.

The occurrence of higher harmonics in Eq.~30! may be
interpreted as a correlated transfer ofn Cooper pairs through
the weak link as a result of the pairing correlations extend
through quasiparticle paths containing multiple Andreev
flections. For example, the flux quantum for thenth har-
monic ish/2ne, i.e., corresponding to a charge 2ne.

In a diffusive weak link considered in this paper, th
transmission probabilities for the Cooper pairs are wid
distributed between zero and 1.36 As a result, one may ge
contributions from the higher harmonics to the phase dep
dence. This is shown in Fig. 3 where the amplitudes Im(j E

n)
of the first four harmonics of the Fourier sine transform
spectral supercurrent through a long weak link (L@j0) are
plotted as a function of energy. Both the amplitude of Im(j E

n)

FIG. 3. Energy dependence of the Fourier sine transform
spectral supercurrent: four lowest harmonicsn51,2,3,4 corre-
sponding to the phase dependencies sin(nf). The energy scales an
magnitudes of the different harmonic constituents decay as 1/n.
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and the effective energy scales decay with a power on
suggesting that the observation of the higher harmonic
easiest at low temperatures. The corresponding tempera
and voltage dependencies of the critical currentsI C

n plotted in
Fig. 4 behave analogously. A numerical fit to the obtain
critical currents at eV5kBT50 yields roughly I C

n }2

(21)n/n2 and to the voltageVn* whereI C
n (V) first changes

sign suggests that the effective energy scales behave aEn*
5ET(c11c2 /n), with some constantsc1,2.

This behavior can be understood by identifying the high
harmonics with the correlated transfer of a cluster ofn Coo-
per pairs. Now instead of the phasef, the cluster has the
phasenf and since the cycle contains 2n Andreev reflec-
tions, the effective trajectory length is increased fromL to
nL. In Eq. ~18!, making these replacements yields the o
served result,En* }(c11c2 /n). In the diffusive limit, the ef-
fective trajectory length increases in the second power of
length of the weak link,l eff}L2, but since the phase is res
after each traversal through the weak link, we simply g
l eff,n}nL2. Hence, similarly to the alternating sign, the sca
ing of the effective energies with indexn follows the behav-
ior of the ballistic-limit spectral supercurrent.

Since the crossover voltagesVn* , whereI C
n (Vn* )50, de-

pend onn, the actual critical current never vanishes at t
crossover: it is rather that the current-phase relation chan
its form near the crossover voltages. Such a change was
served in Ref. 11, where the current-phase relation of a c
trollable Josephson junction was measured in a super
ducting quantum interference device~SQUID! geometry.

In the short-junction regimeL!j0 the contributions of
the different harmonics can be derived analytically. A gene
form for Im( j E

n) would be complicated, but as an examp
the first two amplitudes are

Im~ j E
1 !5S E

D D 2

, ~31!

d

FIG. 4. Voltage dependence of the amplitudes of the first f
harmonics of the observable supercurrent. Inset: Correspon
temperature dependence~even harmonics yield negative ampl
tudes, but here we plot the absolute values of the supercurren!.
3-6
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Im~ j E
2 !52

E2~2D223E2!

D4
. ~32!

Clearly all the harmonics share the same energy scale,D, but
as for the case of a long weak link, the amplitude decays
here roughly as 1/n2. Namely, integrating Im(j E

n) over the
energy, we get for a short weak link

I C
n 52

~21!neD

RN~2n11!~2n21!
. ~33!

ReplacingD by ET and scaling by a numerical factor close
33, this form fits the amplitudes of the long-junction harmo
ics as well but a rigorous proof does not exist.

V. EXTRA TERMINALS

In order to relate our results to physical observables,
have to evaluate statistical expectation values. In two-pr
SNS weak links in equilibrium, most of the experimen
observations have been accurately described with the e
librium Matsubara technique.10 However, one of the recen
advances in the research of the Josephson effect has
done in nonequilibrium situations where the distributi
function in the weak link has been controlled by coupli
one or more normal-metal reservoirs to the weak link
phase-coherent wires.5,6 While making it possible to contro
the occupation of the current-carrying states, these e
wires also affect the form of Im(j E).2 In the discussion of
these effects, we concentrate on the regime of a long ju
tion, L@j0. There, most notably, the control probes allo
for the existence of states with low energies, and there
the Thouless gap is lifted. Moreover, the existence of
normal reservoirs brings some extra depairing by imposin
vanishing boundary condition for the pairing amplitudef
5sinh(u) inside the reservoirs. As a result, the amplitude
the spectral supercurrent decreases due to the extra prob
what follows, we consider the effects of the integrated cro
sectional areaAc of the control wires attached to the cent
of the weak link with cross sectionAw ~note: a similar effect
would be present if the control wires and the weak link we
made of different materials with normal-state conductivit
sN,c andsN,w—however, here we simply talk aboutAc and
Aw) and of the lengthLc of the phase coherent control wire
compared to the lengthL of the weak link. For simplicity, we
assume that the widths of the control wires are much sma
thanL, allowing one to treat these wires as quasi-1D str
tures, connected by the rules of Nazarov’s circuit theory.36,25

In the language of this circuit theory, the extra normal wir
divert some of the spectral current to the normal reservo
thus decreasing the pairing correlations between the su
conductors.

The spectral supercurrent as a function of energy for
ferent cross sectionsAc of the control wire is plotted in Fig.
5. Here we have taken the lengthLc55L@L. Already a
smallAc!Aw yields a finite Im(j E) at low energies, but doe
not much reduce the total magnitude of the supercurrent.
resulting temperature and voltage dependencies of the
supercurrentI s is plotted in Fig. 6. Except at the very lowe
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voltages/temperatures of the order of the Thouless gap,
extra probes do not change the voltage/temperature de
dence ofI s from the two-probe case, but only the overa
magnitude is decreased. From the resultingI S(Ac) we obtain

I S~Aw ,Ac!5
Aw

Aw1Ac/2
I S~Aw ,Ac50!, ~34!

which holds very well for max(eV,kBT)@ET .
If the length Lc of the phase-coherent control wire

larger thanL, the effect of the control wires is independent
the precise value ofLc . ForLc,L, the spectral supercurren
is altered forE&\D/Lc

2 such that the overall magnitude
decreased, the observable supercurrent tending towards
as Lc→0. The spectral supercurrent and the result

FIG. 5. Spectral supercurrent for different cross sectionsAc of
the control probe. From top to bottom, the cross section isAc

50,0.2,1,2,4 times the cross section of the weak link. Inset: obs
able supercurrent as a function ofAc for T5V50 ~upper set of
circles! and for kBT53ET ~lower set of circles!. The zero-
temperature result is fitted toI S(Ac50)Aw /(Aw1Ac/3) ~solid line!
and the finite-temperature result toI S(Ac50)Aw /(Aw1Ac/2)
~dashed line!.

FIG. 6. Voltage dependence of supercurrent forf5p/2 in the
presence of the control probe with different cross sectionsAc . In-
set: The corresponding temperature dependence of the supercu
The cross sections have been chosen as in Fig. 5.
3-7
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temperature/voltage dependencies forAc5Aw and for three
different Lc /L are plotted in Figs. 7 and 8, respectively.

VI. NONIDEAL INTERFACES

Normal-metal—superconductor interfaces with reduc
transmissivity can be taken into account by specifying
transmission eigenvalues through the interface and ta
them into account as in Eq.~7!. Here we consider a typica
case described by the distribution of eigenvalues fo
‘‘dirty’’ interface.

Figure 9 shows the spectral supercurrent for a long ju
tion connected to superconductors through a dirty interf
with resistanceRI ~yielding a total resistanceRN12RI be-
tween the superconductors!. Due to the additional resistanc

FIG. 7. Spectral supercurrent for different lengthsLc of the
control probe. From top to bottom, the length isLc55,0.25,0.15
times the length of the weak link. The cross section of the con
probe is chosen equal to that of the weak link. Inset: Supercurre
T50 ~solid line! and T53ET /kB ~dashed! as a function of the
lengthLc of the control probe with respect to the length of the we
link.

FIG. 8. Voltage dependence of supercurrent forf5p/2 in the
presence of a control probe with lengthLc and cross section equa
to that of the weak link. Inset: The corresponding temperature
pendence of the supercurrent. The lengthsLc have been chosen a
in Fig. 7.
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d
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e

the amplitude of the supercurrent decays withr b , but also
the energy scales decrease since the interface barrier c
certain extent be thought as adding a barrier-equiva
length43 to the path length of the quasiparticles. Observi
the temperature and voltage dependencies of the resu
supercurrent, plotted in Fig. 10, shows that the amplitude
the supercurrent behaves atT50, V50 as

I C~RI ,RN!'
I C~RI50!RN

RN11.6RI
, ~35!

i.e., the resistances should not simply be added up but
dirty interface decreases the supercurrent less efficiently
the normal-metal resistance. Furthermore, the effective
ergy scaleE* found, e.g., from the voltage dependence
dicates that it follows the approximate lawE* 5ET(1

l
at

e-

FIG. 9. Spectral supercurrent in a weak link with dirty interfac
to the superconductors, characterized by the ratior b5RI /RN of the
resistances. The interface resistanceRI is assumed the same fo
both interfaces. From top to bottom:r b50, 0.2, 0.4, 0.6, 0.8, 1.0
Enhanced scattering at the interface reduces mostly the ampl
of the supercurrent, but also slightly the effective energy scale.
set: zero-temperature, zero-voltage supercurrent as a function or b .
Circles: calculated supercurrent; solid line: fit toI S(r b)5I S(r b

50)/(111.6r b).

FIG. 10. Voltage dependence of the supercurrent with dirty
interfaces atf5p/2. Inset: Corresponding temperature depe
dence. The values ofRI are the same as in Fig. 9.
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10.7RI /RN). This kind of a behavior of the critical curren
and the spectral supercurrent is similar to those found in R
24 @especially, see Eqs.~55! and~56!# and Ref. 2 in the case
of a tunneling interface.

VII. CONCLUSIONS

In this paper, we have systematically investigated
spectrum of current-carrying states in a phase cohe
normal-metal weak link. Taking into account the effect
extra terminals, the characteristic energy scales—the Th
less energyET and the BCS superconducting gapD—and a
finite NS interface resistance makes it easier to find a qu
titative agreement with the obtained experimental results
the nonequilibrium-controlled supercurrent. We have a
been able to derive analytical results in a number of lim
Moreover, we have discussed the underlying microsco
phenomena leading to thep state and have explained i
properties, such as its dependence on energy, and highe
monics in the phase dependence, by invoking Andreev bo
states smeared over a broad distribution of times of flig
and by multiple Andreev cycles tranferring more than o
Cooper pair in a single coherent process.

To obtain an optimal voltage control of the supercurre
the interface resistances should be much smaller than
weak-link wire resistance, the control wire should be sligh
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