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Doping dependence of the spin gap in a two-leg ladder
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A spin-fermion model relevant for the description of cuprates ladders is studied in a path integral formalism,
where, after integrating out the fermions, an effective action for the spins in term of a Fermi-determinant
results. The determinant can be evaluated in the long-wavelength, low-frequency limit to all orders in the
coupling constant, leading to a non-linears model with doping dependent coupling constants. An explicit
evaluation shows that the magnon gap diminishes upon doping, as opposed to previous mean-field treatments.
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I. INTRODUCTION

Doped quantum antiferromagnets constitute a major u
solved problem in condensed matter physics, which is at
center of current research since the discovery of highTc
superconductivity.1 In particular, the case of a doped sp
liquid—where no symmetry is spontaneously broken—
very challenging, since the starting point, the spin liqu
state, cannot be described by a classical Ne´el state.

This problem is not only of theoretical relevance. Cu2O3
ladders are present in Sr142xCaxCu24O41, and many experi-
ments support the presence of a spin gap and a finite co
lation length,2–7 two crucial ingredients signaling a spin liq
uid state. With isovalent Ca21 substitution of Sr21 holes are
transferred from the CuO3 chains to the ladders,8 increasing
the conductivity of the latter. The spin gap, as measured
Knight shift or NMR experiments3–5 is seen to diminish.
With increasing doping, superconductivity is ultimately s
bilized under pressure,9,10 a phenomenon that suffices to ju
tify the interest for the subject.

The simplest model which is believed to grasp the phys
of the problem is thet-J model on a two leg ladder. It is
believed in general that this system evolves continuou
from the isotropic case to the limit of strong rung interactio
In this limit some simplifying pictures are at hand: witho
doping the gap is the energy of promoting a singlet rung t
triplet (;J'). Interaction among the rungs leads eventua
to the usual magnon band. Upon doping the systems sh
two different kinds of spin excitations.11,12 One is still the
singlet-triplet transition as before, and the other correspo
to the splitting of a hole pair into a couple of quasipartic
~formed by a spinon and an holon!, each carrying charge
1ueu and spin 1/2. The number of possible excitations
proportional to (12d) ~for the magnons! andd ~for the qua-
siparticles!, respectively, whered is the number of holes pe
copper site. For this reason, at a low doping concentrat
the magnon gap will be the most important in influencing
form of the static susceptibility or dynamical structure fact

Sigrist et al.13 and more recently Leeet al.14 attacked the
problem ultimately with some sort of mean-field decouplin
Their results agreed in predicting an increase of the mag
gap (DM , originated from the singlet-triplet transition!,
while Leeet al. were also able to calculate a decrease of
quasiparticle gap (DQP originating from the splitting of a
hole pair! for small doping concentrations.
0163-1829/2002/66~18!/184510~8!/$20.00 66 1845
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In contrast to the mean-field results above, Amm
et al.15 obtained a decrease of the magnon gap and an alm
doping independentDQP using a temperature density matr
renormalization group~TDMRG! calculation. The behavior
of the magnon gap observed numerically is consistent w
the one observed in several experiments, and hence it is n
ral to ascribe those experimental observations toDM .

In this paper we concentrate on the behavior of the m
non gap upon doping. Due to the contradiction above i
imperative to go beyond mean field and include the role
fluctuations in a controlled manner. A mapping from an a
tiferromagnetic Heisenberg model to an effective fie
theory, the non linears model (NLsM), proved very effi-
cient in describing the magnetic properties of two dime
sional spin lattices,16 chains,17 and ladders.18 This mapping
was extended in Ref. 19 to the case of a doped two dim
sional anitferromagnet using a procedure that we will clos
follow.

II. MAPPING TO AN EFFECTIVE SPIN ACTION

Since no satisfactory analytical treatment of thet-J model
away from half filling is possible at present, we focus on t
so called spin-fermion model. This Hamiltonian can be d
rived in fourth order degenerate perturbation theory20,21 from
the p-d, three band, Emery model,22 that gives a detailed
description of the cuprate materials. There the role of per
bation is played by the hybridization term between thep
orbital ~oxygen! and thed orbital ~copper!. A further simpli-
fication of the model was proposed by Zhang and Rice,23 that
leads to thet-J model.

A typical copper-oxide two leg ladder, like those prese
in Sr142xCaxCu24O41 is depicted in Fig. 1. It is generally

FIG. 1. Schematic picture of a two-leg ladder copper oxide.
©2002 The American Physical Society10-1
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accepted that the dopant holes reside onp-orbitals on the
oxygens sites, whereas on the Cu21 ions a localized hole
resides, represented by spin 1/2 operator which interact v
nearest neighbor exchange.

The spin-fermion Hamiltonian is defined as follows:

HSF5t (
^ j , j 8; i &,i ,s

~21!a i , j 1a i , j 8cj ,s
† cj 8,s1JK(

i
Ri•Si

1JH (
^ i ,i 8&

Si•Si 8 . ~1!

The indexi ~j! runs over the Cu~O! sites,cj ,s
† creates a

hole in an oxygenp band andSj are spin operators for th
copper ions. The coefficientsa i , j take care of the sign of the
p-d overlap anda i , j51 if j 5 i 1 1

2 x̂ or i 1 1
2 ŷ anda i , j52 if

j 5 i 2 1
2 x̂ or i 2 1

2 ŷ. Finally the operatorRi is defined as

Ri5 (
^ j ,k; i &,i ,a,b

~21!a i , j 1a i ,kcj ,a
† sa,bck,b . ~2!

Following Ref. 23 we can define the following operat
centered on the copper sitePi ,s5(1/2)(^ j ; i &(21)a i , jcj ,s
which represents nonorthogonal orbitals with a high wei
on thei site. Their anticommutation relations are

$Pi ,s ,Pi 8,s8
† %5ds,s8S d i ,i 82

1

4
d^ i ,i 8&D , ~3!

and we can rewrite the Hamiltonian in terms of these ope
tors as follows:

HSF54t (
l 51 . . .L
l51,2,s

Pl ,l,s
† Pl ,l,s

14JK (
l 51 . . .L
l51,2,a,b

Pl ,l,a
† sa,bPl ,l,b•Sl ,l

1J' (
l 51 . . .L

Sl ,1•Sl ,21Juu (
l 51 . . .L

l51,2

Sl ,l•Sl 11,l . ~4!

L is the number of the rungs along the ladder, andl51,2
distinguishes the two legs. For the sake of generality,
anisotropy in the Heisenberg term is allowed.

The different steps of our procedure are the followin
first find orthogonal~Wannier states! for the holes, then go to
a ~coherent states! path integral formulation for spins an
fermions and perform the Gaussian integration of the fer
onic degrees of freedom. The remaining part of the calcu
tion is devoted to the evaluation of the resulting Fermi d
terminant in the long-wavelength low-frequency limit. Th
expansion includes the coupling constantJK to all order.

Wannier states are easily find viaPk,s5Ae(k) f k,s ,
where

e~k!5S 12
cos~kxa!1cos~kya!/2

2 D .
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Herea is the lattice constant and we used a two-dimensio
Fourier transform whereky takes only values 0 andp/a
distinguishing between symmetric~bonding! and antisym-
metric ~antibonding! states. The partition function can be e
pressed as a path integral,

Z5E D@ f * #D@ f #D@V̂#e2SSF, ~5!

whereSSF5Sh1Ss . The actionSs contains all terms with
spins degree of freedoms only,24

Ss5E
0

b

dtF2 iS(
l ,l

A~V̂ l ,l!•
]V̂ l ,l

]t
1HHeis@SV̂~t!#G ,

~6!

whereV̂ is a unimodular field,S is the spin per site (1/2 in
our case!, andA is the vector potential for a~Dirac! mono-
pole: eabc(]Aa /]V̂b)5V̂c .

It is by now well accepted that the effective low ener
field theory of thed-dimensional Heisenberg antiferroma
netic model is given by the (d11) NLsM.17,25,26In the case
of a ladder one obtains the (111) NLsM.18,27 For this rea-
son, here we will deal mainly with the part of the actio
which contains fermionic degrees of freedomSh :

Sh5 (
kqab

f k,a* @~ ivn14te~k!2m!dk,qda,b

1gAe~k!e~q!sa,b•V̂k2q# f q,b ; ~7!

herek5(kx ,ky ,vn), wherevn5p(2n11)/b are the fermi-
onic Matsubara frequency andg54JKS. It is natural to de-
compose the inverse propagator intoG215G0

212S, where
the free part is

G0
215~ ivn14te~k!2m!dk,qda,b ~8!

and the fluctuating external potential is

S52gAe~k!e~q!sa,b•V̂k2q . ~9!

Since, according to Eq.~7! the actionSSF is bilinear in the
fermionic variables, we can integrate them out. This leads
SSF5Ss2tr ln G21. Defining the matrix

A5Ae~k!dk,qda,b ~10!

and a rescaled propagatorĜ21 through

Ĝ215A†21G21A21, ~11!

we can write

tr ln~G21!5tr ln ~AA†!1tr ln~Ĝ21!, ~12!

the first term gives just a constant and we can ignore
Again we decompose the rescaled inverse propagato
Ĝ215Ĝ0

212Ŝ which brings us to
0-2
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Ĝ0
215S ivn14te~k!2m

e~k! D dkqdab

[g0
21~kx ,ky ,vn!dk,qda,b , ~13!

Ŝ52gVk2q,v2n•sab . ~14!

The remaining part of the calculation is devoted to the eva
ation of Sh eff52tr ln(Ĝ21) in the continuum limit.

Parametrizations

As we already mentioned, in the undoped regime wh
no holes are present, it has proven very effective a mapp
from a antiferromagnetic Heisenberg spin ladder to a 111
NLsM. This mapping rely on the idea that although lon
range order~here antiferromagnetic! is prohibited in one di-
mension, the most important contribution to the action
given by paths in which antiferromagnetic order survives
short distance. Accordingly the dynamical unimodular fie
is decomposed in a Ne´el modulated fieldn plus a ferromag-
netic fluctuating contribution. A gradient expansion in t
dynamical field brings then to the 111 NLsM. The gradient
expansion is justified when the correlation length of the s
is much larger than the lattice constanta. However the pre-
diction of the NLsM, i.e., a finite correlation length and
triplet of massive modes above the ground state17,28–30 re-
main valid until j'2.5a, as numerical calculations on th
isotropic Heisenberg ladder have shown.31

The basic assumption of this work is then that such
parametrization is still meaningful as long as the spin liq
state is not destroyed by doping, as seems to be the ca
experiments, where a finite spin gap is also seen in the do
case.2–7 Then, as, e.g., in Ref. 24, we parametrize the s
field in the following way:

V i ,l~t!5~21! i 1lni ,lA12Ual i ,l
S U2

1
al i ,l

S
. ~15!

ni ,l and l i ,l are two slowly varying, orthogonal, vecto
fields describing locally antiferromagnetic and ferromagne
configurations, respectively.ni ,l is normalized such tha
uni ,lu251. The lattice constanta in front of l i ,l in Eq. ~15!
makes explicit the fact thatl i ,l is proportional to a generato
of rotations of ni ,l , namely, to a first-order derivative o
ni ,l .

In the particular geometry of a ladder, this decomposit
give rise to two local order parametersni ,1 and ni ,2 . How-
ever, we assume that spins across the chain are ra
strongly correlated such that they will sum up to give rise
an antiferromagnetic configuration, or subtract and giv
ferromagnetic fluctuation. A further parametrization is the

ni ,l5NiA12a2uM i u21~21!laM i , ~16!

with Ni•M i50 anduNi u251. This parametrization, with two
ferromagnetic fluctuating fieldsl andM , is the most correct
one since it preserves the correct number of degrees of
dom. In the case of a two leg ladder, one sees,a posteriori,
18451
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that the fieldM decouples completely and does not play a
role, both in the undoped and in the doped case.

The next step is the gradient expansion, or equivalently
Fourier space, an expansion in powers ofk. In 111 dimen-
sions the fieldN will have no scaling dimension, whereas th
fields l andM have a scaling dimension21. Accordingly, in
the subsequent expansion we will need to keep terms with
to two derivative and any power of the fieldN. Terms con-
taining l andM are marginal whenever two fields or one fie
and one derivative are present. Higher order terms are ir
evant and will be discarded. This correspond to expand
our quantities up toO(a2).

The self energy then has the expansion

Ŝ5S001S011S021S11S21O~a3!, ~17!

where the various quantity are

S0052gdky2qy ,pNkx2qx1p,v2n•sab , ~18!

S0152agdky2qy,0M kx2qx1p,v2n•sab , ~19!

S025
a2g

2
dky2qy ,p~NuM u2!kx2qx1p,v2n•sab , ~20!

S152
ag

S
lk2q,v2n•sab , ~21!

S25
a2g

2S2
~Nu lu2!k2q1Q,v2n•sab , ~22!

where Q5(p/a,p/a) is the antiferromagnetic modulatio
vector suitable for a ladder geometry. We also regroup
zeroth order term inF21[Ĝ0

212S00.
The evaluation of the various contribution in the co

tinuum limit, proceeds very similarly as in Ref. 19, and w
refer to that paper for a more detailed explanation. The qu
tity to be evaluated is

Sheff52tr ln~F21!2tr ln@12F~S011S021S11S2!#.
~23!

We then need to find the inverse ofF21 up toO(a). It turns
out that

F5F̄D212aF̄D21RD211O~a2!, ~24!

where the various matrices are

F̄5ḡ0
21~k,v!dkqdab2gdky2qy ,pNkx2qx1p•sab , ~25!

D5D~k,v!dkqdab , ~26!

R52gdky2qy ,p

3 (
r 5x,t

~kr2qr1d r ,xp/a!] rg0
21~k,v!Nk2q1Q•sab ,

~27!

and we used the shorthand notation
0-3
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ḡ0
21~k,vn!5g0

21~k1Q,vn!, ~28!

D~k,vn!5g0
21~k,vn!ḡ0

21~k,vn!2g2. ~29!

We first consider the term

tr ln~F21!5tr ln~Ĝ0
21!1tr ln~12Ĝ0S00!. ~30!

The second term of this equation is reduced to the calc
tion of

(
m51

`
1

n
tr~Ĝ0S00!

m, ~31!

where each term has the following expansion:

tr~Ĝ0S00!
m5~g!m (

k,q2 . . . qm

g0~k!ḡ0~k1q2!g0~k1q3!

3ḡ0~k1q4!•••g0~k1qm21!ḡ0~k1qm!

3N
2q2

a1 Nq12q2

a2
•••Nqm

a2 tr~s1
as2

a
•••sm

a !, ~32!

with m an even integer. The trace over the Pauli matrices
be carried out using a trace reduction formula.32 The gradient
expansion in Eq.~32! is then obtained by performing a
expansion of the product of propagatorsg0(k)•••ḡ0(k
1qm) in powers of the variablesq2 ,q3 , . . .qm that appear
as argument of the vector fieldN. The result obtained is19

tr ln~12Ĝ0S00!5E dxdtF x̄xx

2
U]xNU21

x̄tt

2
U]tNU2G ,

~33!

with the definition

x̄ab5
]2

]qa]qb
(

k
ln@12g2g0~k!g0~k1q1Q!#dqy0uq50 .

~34!

We can now pass to the evaluation of the second term
Eq. ~23!. This does not present particular problems, sin
after expanding all the quantities, it reduces to the evalua
of a finite number of traces. The result is

tr ln@12F~S011S021S11S2!#

5 i
g3

SE dxdtx̂t~N3]tN!•~ l11 l2!

2
g2

8S2E dxdtx̃~ l11 l2!2. ~35!

Here we omitted to write a Gaussian term}M2, completely
decoupled, which can be integrated out without further c
sequences. The quantitiesx̂t and x̃ are given by

x̂t52 i(
k

D21~k!]vn
g0

21~k!D21~k1Q!, ~36!
18451
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x̃5(
k

$D21~k!@g0
21~k1Q!2g0

21~k!#%2. ~37!

They are generalized susceptibilities of the holes in pr
ence of long-wavelength spin fields. In particular the zeros
D(k) determine the dispersion of such holes. Through
dependence of the chemical potential we extract the dop
concentration. The bands originating in such a way cor
spond to free holes moving in a staggered magnetic fi
Such a staggered field would break translation invariance
one site and we would obtain four bands in the reduced B
louin zone. Instead, in our procedure we never explic
broke translation invariance, so that we obtain genuinely t
bands in the Brillouin zone. The lowest of these two band
symmetric in character~bonding!. In Fig. 2 we show this for
values of the constants relevant for the copper-oxide lad
i.e., a bandwidth of'0.5 eV~Ref. 33! andJK'1.34–36This
band is in good agreement with accurate calculations on
one hole spectrum of thet-J model. In particular, in the
isotropict-J model, fort/J'2 ~which is a value relevant for
the cuprates ladders! the same qualitative feature are o
served: a global maximum at (ka)50, global minima at
(ka)'62p/3, and local maxima at (ka)56p.37,38

Now that we calculated the long wavelength contributi
coming from the holes, we still have to consider the co
tinuum limit ~in the low energy sector! of the pure spin ac-
tion Ss given by Eq.~6!. The result is

Sseff52 i E dxdt~N3]tN!•~ l11 l2!

1aS Ji1
J'

2 D E dxdt~ l11 l2!2

1aJi E dxdt~ l12 l2!21aS2Ji E dxdtu]xNu2.

~38!

FIG. 2. Effective lowest-band holes emerging from our theo
The parameters aret50.24 andJK51 eV. The minimum falls ex-
actly at (ak)52p/3.
0-4
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The very last step is the Gaussian integration of thel'
field, leaving us with the effective long-wavelength acti
for the antiferromagnetic order parameter, a~111! NLsM:

Seff5Sheff1Sseff5
1

2 f E dxdtFvU]xNU21
1

v U]tNU2G ,
~39!

where the NLsM parameters are given by

f 5
1

2FS S2Ji2
x̄xx

2
D S S 11

g3

S
x̂tD 2

F4Juu12J'1
g2

S2
x̃G 2

x̄tt

2 D G21/2

,

~40!

v5a3
S S2Ji2

x̄xx

2
D

S S 11
g3

S
x̂tD 2

F4Juu12J'1
g2

S2
x̃G 2

x̄tt

2 D 4
1/2

. ~41!

Hence the spin-fermion model with mobile holes interact
with an antiferromagnetic background is mapped into an
fective NLsM whose coupling constant depend on dopi
through the generalized susceptibilities in Eqs.~34!, ~36!,
and ~37!.

Now we can immediately transpose to our model o
doped spin liquid, some known result for the NLsM, e.g.,
mainly the presence of a gap which separates the sin
ground state from a triplet of magnetic excitations. This g
should persist as long as the continuum approximation
valid.

The fact that the NLsM in ~111! dimension has a gap
above the ground state can be established in a variet
ways. Using the two loop beta function39 one obtains

D5vLe22p/ f S 2p

f
11D , ~42!

whereL is a cutoff of the order of the inverse lattice co
stant. Now we have an explicit analytic form for the dopi
dependence of the spin gap in the spin-liquid state of a
leg ladder.

To study the behavior of the gap with doping we have
distinguish two regimes where the lowest effective band
minimum either at zero or at 2/3p. For JK.2t the minima
fall in 62/3p. Here all the generalized susceptibilities
Eqs.~34!, ~36!, and~37! contribute to lowerf and since, from
Eq. ~42!, D is an increasing function off, they make the gap
smaller for any value of the constants~see Fig. 3!. This is
comforting, since, as we mentioned, forJK very large the
physics of the spin-fermion model should be similar to th
of the t-J model,23 and for that one, TDMRG simulation
show that the gap decreases at least in a strong anisot
case (J'510Ji). WhenJK,2t the band minimum falls in
18451
f-

let
p
is

of

o

s

t

pic

zero and there is one susceptibility,x̃, which instead makesf
grow. In this regime there is then a~small! region of param-
eters where the gap grows with doping~see Fig. 4!.

Before passing to a comparison with experiments,
want to comment on a possible simplifying understanding
simple picture to explain the observed diminishing of t
spin gap with doping in Sr142xCaxCu24O41, is that ~at least
for low doping concentration where speaking of a spin liqu
is still feasible! the effect of the holes is that of renormaliz
ing the anisotropy parameterl5J' /Ji for the spin part to-
ward larger values. In many studies on the 2 leg lad
Heisenberg antiferromagnet,40–42 the spin gap is seen to in
crease withl. In fact, the same occurs in the NLsM without
doping in the rangel'1 –2.

According to Eqs.~40! and ~41! effective coupling con-
stantsJ̃i , and J̃' can be defined for the doped system su
that the form of the NLsM parameters is that for a pure sp
system18 i.e.,

FIG. 3. JK.2t. ~a! Generalized susceptibilities of Eqs.~34!,
~36!, and ~37! for JK52,t50.76 eV. ForJK.2t all the suscepti-
bilities contribute to lowerf hence the gap decreases for small do
ing for any value of the constants.~b! Normalized gap from Eq.
~42!. Here we fixedJ'50.108 eV. The solid line refers to isotropi
couplings Juu /J'51. For comparison, an isotropic case wi
Juu /J'52 is also shown~dashed curve!. It can be seen that anisot
ropy does not greatly influence the gap-vs-doping curve.
0-5
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f 5
1

S
A11

J̃'

2J̃i
, ~43!

v52aSJ̃iA11
J̃'

2J̃i
. ~44!

A small doping expansion in the regimeJK.2t leads to

J̃uu5Juu1
3

4

~JK
2 24t2!

JK
d1O~d2!, ~45!

J̃'5J'2S 3

2

~JK
2 24t2!

JK
12~4Juu12J'!1

~4Juu12J'!2

8JK
D

3d1O~d2!, ~46!

FIG. 4. JK,2t. ~a! Generalized susceptibilities of Eqs.~34!,
~36!, and ~37! for JK53t51.8 eV. ForJK,2t, one susceptibility

x̃ grows with doping and contributes to increasef and hence the
gap. For (JK ,t)@(Ji ,J') we can have an increasing gap for sm
doping.~b! Normalized gap of Eq.~42!. Fixing the exchange con
stants toJi5J'50.108 eV is enough to have an increasing gap
small doping.
18451
so indeedJ̃i and J̃' are seen respectively to increase, d
crease, such thatl decreases. However, such an interpre
tion breaks down beyondd'0.04 whereasf ,v are still well
defined positive constants. This means that beyond such
ing, this simplified picture cannot be naı¨vely applied and
holes have a more effective way of lowering the gap.

III. COMPARISON WITH EXPERIMENTS

We come now to the comparison with experiments. O
theory depends on four parameterst,JK ,Ji ,J' which we
now want to fix to physical values. Angle-resolved phot
emission spectroscopy experiment on Sr14Cu24O41 were per-
formed by Takahashiet al.,33 who found a band matching th
periodicity of the ladder with a bandwidth of;0.5–0.4 eV.
Adjusting our lowest band to have such a bandwidth
obtain a relation betweent and JK . On the other hand, ex
periments on the CuO2 cell materials and band theor
calculation34–36 agreed in assuming a value ofJK of the or-
der of JK'1 –2 eV. This in turn gives us a value oft
'0.24–0.76 eV, which is also consistent with the same c
culation.

The debate around an anisotropy of the spin excha
constants in Sr142xCaxCu24O41 is not completely settled
yet.6,7 Recent Raman data2 gave J' /Juu'0.8. We adjusted
the value of the momentum cutoffL by fixing the theoretical
gap with the experimental one for the undoped compou
Sr14Cu24O41. Finally, to compare with the measured valu
of the gap for different doping concentrationx in
Sr142xAxCu24O41 ~whereA can be either divalent Ca21,Ba21

or trivalent Y31,La31), we still need a relation between th
A substitutionx and the number of holes per copper s
present in the ladderd. This is another unsettled issue of th
telephone number compound. In particular Osafuneet al.,8

studying the optical conductivity spectrum, inferred that w
increasing Ca substitutionx holes are transferred from th
chain to the ladder. On the other hand Nu¨ckeret al.43 argued
that in the series compound Sr142xCaxCu24O41 the number of
holes in the ladder is almost insensitive to Ca substitutiox
~although a small increase is observed!. Here we will assume
that Sr142xAxCu24O41 is an example of doped spin liquid an
will use the data from Ref. 8. The result of our theory can
seen in Fig. 5. There we used isotropic exchange cons
but the theoretical curve did not change in a visible way
we used a valueJ' /Juu'0.8 and in general is not very sen
sitive to the anisotropy of the ladder as can also be see
Fig. 3~b!. We see from the figure that the spin gap becom
zero ford'0.37; beyond this value the coupling constantf
andv would become imaginary, signaling that our effecti
model cease to make sense. This means that for such do
ratios our parametrization~15! is no longer valid, in the
sense that it does not incorporate the most important s
configurations. However, our theory could cease to m
sense much before. If one takes the point of view of thet-J
model ~as we said, the spin-fermion model should map to
for largeJK) the holes introduced in the system couple r
idly to the spins forming singlet with thePi states. In the
worst case this would limit the correlation length of the sp

r
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to the mean hole-hole distance 1/d. In our case this happen
at a doping ratio ofd'0.15.

A word of caution should be mentioned with respect
comparison with experimental results. A still unresolved co
troversy is present between NMR~Refs. 3–5! and neutron
scattering6,7 experiments, where the latter see essentially
doping dependence of the spin gap. Without being able
resolve this issue, we would like to stress, however, t
beyond the uncertainties in experiments, the doping beha
obtained for the spin-gap agrees with the numerical result

FIG. 5. Result of our theory and comparison with experimen
The values of the constants used in Eq.~42! are t50.76,JK

52 eV, andJi /J'51. The momentum cutoffL was fixed by fix-
ing the the value of the gap with the one measured in Sr14Cu24O41.
For the anisotropic caseJ' /Ji50.8, the curve does not chang
appreciably.
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TDMRG and is opposite to the one obtained in mean-fi
treatments, making clear the relevance of fluctuations.

IV. CONCLUSION

In this paper we studied the behavior of the spin gap o
two leg Heisenberg antiferromagnetic ladder as microsco
cally many holes are introduced in the system. Such a si
tion can be physically realized in the series compou
Sr142xAxCu24O41 with A5Ca, Y, La, and numerous resu
are now available from experiments. On the theoretical s
however, there is a contradiction between previous analyt
treatments on the one hand, and TDMRG simulations
NMR experiments on the other hand. Whereas in the fi
case, a magnon gap increasing with doping is predicte
decrease is observed in accurate numerical simulation
experiments.

Starting from the spin-fermion model we were able
solve the contradiction using a controlled analytical tre
ment that properly takes into account fluctuations in the c
tinuum limit. Integrating out the fermions we were left wit
a Fermi determinant which we can evaluate exactly in t
limit. The result is a nonlinears model with doping depen-
dent parameters. The spontaneously generated mass g
this theory is seen to decrease as holes are introduced. O
physical value for the parameters are given, we obtained v
good agreement with NMR experiments performed
Sr142xAxCu24O41.
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