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Fine structure of chiral symmetry breaking in the QED3 theory
of underdoped high-Tc superconductors

Babak H. Seradjeh and Igor F. Herbut
Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

~Received 8 July 2002; published 18 November 2002!

We study the effects of the leading irrelevant perturbations on chiral symmetry breaking in the effective
QED3 theory ofd-wave superconductor-insulator transition in underdoped cuprates. For weak symmetry break-
ing, the effect of a perturbation on energies of various insulating states can be classified according to its
engineering dimension in the maximally symmetric theory. Considering the velocity anisotropy, repulsive
interactions, and higher-order derivatives we show that the insulating state with the lowest energy is the spin
density wave.
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I. INTRODUCTION

The d-wave superconducting state, besides the fami
rotational invariance, at low energies possesses an addit
‘‘chiral’’ symmetry for its quasiparticle excitations.1 It was
recently shown1 that the quantum phase transition from t
antiferromagnetic insulator to thed-wave superconducto
may be understood in terms of this hidden symmetry: wh
present in the superconducting state, chiral symmetry
manifestly broken when the spin-density wave~SDW! order
develops. The dynamical agent that brings about this cha
of symmetry was argued to be provided by the vortex fl
tuations of the condensate, that can be represented b
effective gauge field minimally coupled to gapless quasip
ticles of thed-wave state.2,1 That way the theory of the phas
fluctuatingd-wave superconductor can be mapped onto
three-dimensional quantum electrodynamics (QED3), which
was proposed as an effective low-energy description of
underdoped high-temperature superconductors.1

Chiral symmetry, however, is not an exact symmetry
thed-wave superconducting state, but arises only in the lo
energy limit of the standard quasiparticle action. At low e
ergies one is allowed to linearize the spectrum near the no
of the d-wave order parameter and neglect the higher-or
derivatives and the short-range interactions between qu
particles, which are both linearly irrelevant by power cou
ing. In this approximation the action becomes symmetric
der a global U(2)3U(2) transformation, where each U(2
factor acts onto a four-component Dirac field that descri
the gapless excitations near the pair of the diagonally
posed nodes1 ~see Fig. 1!. If one would also neglect the
intrinsic velocity anisotropy of thed-wave superconducto
vF@vD , with vF being the Fermi velocity andvD the veloc-
ity related to the amplitude of the superconducting order
rameter, the chiral symmetry group would be enlarged i
the 16 dimensional U(4). The SDWinsulator corresponds to
breaking of this symmetry along one particular ‘‘direction
while the broken generators of U(4) rotate it towards one
the other possible broken symmetry states. Among these,
can discern three additional types of insulators, related to
SDW ~and to each other! by chiral symmetry: the ‘‘d1 ip ’’
and ‘‘d1 is’’ insulating states, and the stripelike one
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dimensional charge-density waves~CDW’s!, in the classifi-
cation of Refs. 1 and 3.

In the case of the maximal U(4) chiral symmetry, all th
above insulating states, and their various combinations,1 are
equally likely outcomes of the spontaneous symmetry bre
ing. This degeneracy is in reality removed by the symmet
breaking perturbations to the QED3, the most prominent of
which have already been mentioned above. For exampl
was shown in Ref. 1 that the short-range repulsion betw
quasiparticles favors the SDW over thed1 ip insulator, and,
moreover, enhances the SDW order deeper in the insula
state. In this paper we study the effects of weak veloc
anisotropy, higher-order derivatives, and short-range re
sive interaction on the pattern of chiral symmetry breaking
the QED3 theory of the phase fluctuatingd-wave supercon-
ductors. All of these perturbations are irrelevant at low en
gies, and we show that their effects on the energies of v
ous states with weakly broken chiral symmetry can
ordered according to their engineering dimensionality: vel
ity anisotropy, being only marginally irrelevant,4,5 provides
then the dominant perturbation. Weak repulsion and
second-order derivatives are both equally~linearly! irrel-
evant, but to the first order it is only the repulsion that affe
the energies of the insulating states. Fine structure of
chiral manifold of insulators is schematically depicted
Fig. 2.

FIG. 1. Four nodes of thed-wave order parameter. Dashed lin
is the putative Fermi surface.
©2002 The American Physical Society07-1
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Our main conclusion is that, to the leading order, it is t
SDW state that is selected by the weak perturbations to
QED3. Although in real systems none of the above pertur
tions is truly weak, we believe our result provides a use
qualitative guide. In particular, it agrees with the stand
picture of underdoped cuprates, upon identification of
SDW insulator as being continuously connected with
Mott insulating antiferromagnet near half filling.

In what follows we first briefly review the salient poin
of the QED3 theory of phase fluctuatingd-wave supercon-
ductor, and set up the convenient notation in terms of
eight component Dirac fields. We then proceed to calcu
the lowest-order splittings of the energies due to veloc
anisotropy, short-range repulsion, and higher-order der
tive terms. We end with the summary and some conclud
remarks on our results.

II. QED 3

We start with the finite temperature (TÞ0) quantum me-
chanical action for the interactingd-wave quasiparticles,

S5SBCS1SU , ~1!

where

SBCS5T(
vn

E d2kW

~2p!2 S (
s

@ ivn1j~kW !#cs
†~kW ,vn!cs~kW ,vn!

1D~kW !c↑
†~kW ,vn!c↓

†~2kW ,2vn!1H.c.D , ~2!

with vn’s denoting fermionic Matsubara frequencies, a
with D(kW ) as the standardd-wave gap.SU represents the
short-range repulsion between electrons,

SU5UE
0

b

dtE d2rWS (
s

cs
†~rW,t!cs~rW,t! D 2

, ~3!

with U.0. Shifting the momenta askW5KW i1qW , i 5I ,II , and
rotating the coordinate frame as in Fig. 1, we define
eight-component Dirac fieldC†5(C I

† ,C II
† ) where for each

nodei 5I ,II ,

FIG. 2. Energies of the four types of insulators in the unp
turbed~bare! action, with the velocity anisotropy, repulsive intera
tion, and the nonlinear~higher-order derivative! terms.
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C i
†~qW ,vn![@c↑

†~KW i1qW ,vn!,c↓~2KW i2qW ,2vn!,

c↑
†~2KW i1qW ,vn!,c↓~KW i2qW ,2vn!#. ~4!

At T50, with q0[v, the action may be then written as

S5E d3qW

~2p!3
C̄~q!G0$ iq01 iM ~qW !%C~q!

1UE dtd2rW@C̄~rW,t!BUC~rW,t!#2, ~5!

with M (qW )5diag@MI(qx ,qy),MII (qy ,qx)#, where iM i
5diag(Hi ,H ī ) is a 434 matrix defined as

Hi5S j~KW i1qW ! D~KW i1qW !

D* ~KW i1qW ! 2j~2KW i2qW !
D . ~6!

Here C̄5C†G0, and G05diag(g0 ,g0), with g05s1
^ 1,g152s2^ s3 ,g252s2^ s1 ,g352s2^ s2 , satisfy-
ing the Clifford algebra $gm ,gn%52dmn . Finally, BU
5G0AU , with AU5diag(s3 ,s3 ,s3 ,s3).

One may next expandiM (qW ) around the nodes of the
superconducting order parameter in powers ofqW . It is con-
venient to define the following matrices:M152 is3
^ s3 ,M252 is3^ s1 . Using the symmetry property of th
d-wave gap and the quasiparticle dispersionD(2kW )5D(kW )
andj(2kW )5j(kW ), one finds

SBCS5S01SA1SNL , ~7!

S05E dtd2rWC̄~rW,t!$G0]t1G1]x1G2]y%C~rW,t!, ~8!

SA5E dtd2rWC̄~rW,t!$B1]x1B2]y%C~rW,t!, ~9!

where G i 5 G0Ai , Bi 5 G0dAi ; A1 5 diag(M1 ,M2),
A2 5 diag(M2 ,M1), dA1 5 diag(lFM1 ,lDM2), dA2
5diag(lDM2 ,lFM1) and lF5vF21, lD5vD21 with

vF5]qx
j(KW I1qW )uq50 ,vD5]qy

D(KW I1qW )uq50 . vF and vD

are the two characteristic velocities of the linearized sp
trum, in units of some fixed velocityc, which we set toc
51. The isotropic theory is recovered in the limitvF5vD .
We will discuss the form of theSNL that represents the
higher-order derivative terms shortly. Note that the matric
Ai ’s anddAi ’s are independent ofG0.

In the rest of the paper we will consider the linear, isotr
pic, noninteractingS0 to be the maximally symmetric action
It remains invariant under a global chiral rotation,

C→ei(
i 51

16

u i JiC, ~10!

with the generatorsJi ,i 51•••16, forming the U(4) algebra
The explicit form of the generators is given in Ref. 1. T
connection to the QED3 is finalized by coupling the gaples
quasiparticles to the fluctuating vortex excitations, whi

-
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upon a singular gauge transformation may be represente
an effective gauge field inS0, by ]m→]m1 iam . The charge
of the gauge field is proportional to the vortex condensa1

Such a gauge transformation also turns thed-wave quasipar-
ticles into neutral spin-1/2 excitations. In the phase coher
i.e., superconducting state, charge vanishes and the g
field is effectively decoupled, leaving the sharp spinon~or
quasiparticle! excitations behind. When the vortices co
dense, on the other hand, superconductivity is lost, and
multaneously the spinon ‘‘mass’’ term;mC̄C becomes dy-
namically generated.6 Here, m5S(q→0)Þ0, with S(q)
representing the spinon self-energy due to the interac
with the gauge field. Rewriting the mass term in terms of
electron operators one recognizes that it simply represen
two-dimensional SDW with the periodicity determined b
the wave vectors 2KW i .1

The SDW order therefore corresponds to the particu
form of theG0 matrix we have chosen. By applying a unita
U(4) transformation on ourG0 one recovers all other insu
lating states that are related to the SDW by chiral symme
In particular, transformingG0 as

G0→ei (p/4)JG0e2 i (p/4)J ~11!

with J51^ g3 produces thed1 ip insulator: the phase inco
herent, translationally symmetric state with an additio
p-wave pairing between spinons. Similarly,J5(1/A2)s1
^ $@g12g21 ig0(g11g2)#% yields thed1 is insulator, and
J5(1/A2)s2^ (g12g2) gives the CDW with the periodicity
set by the wave vectorKW I2KW II . Of course, there is a con
tinuum of other chiral rotations that are possible, and wh
lead to various linear combinations of the four fundamen
states defined above.

In the rest of the paper we study how the degener
between the SDW, CDW,d1 ip, andd1 is states as defined
above is removed by the leading perturbations toS0: anisot-
ropy, repulsion, and higher-order derivatives.

III. ANISOTROPY

We setU50 in S to study first the effect of weak aniso
ropy (lF ,lD!1) on the energy of the degenerate grou
states of the chiral symmetry broken, isotropic QED3. Since
the actionSBCS is symmetric under the exchangevF↔vD ,
the energies of various states should be invariant under
same exchange. Moreover, ifvF5vD , both velocities can be
rescaled out of the problem by an appropriate choice oc.
The energy splittings between the states must therefore
proportional to (lF2lD)2, to the lowest order. Indeed, de
fining the three-dimensional volume asV5(2p)23*dtd2rW,
the first-order correction of the energies per volume due
the velocity anisotropy is

DEA
(1)5

1

V
^SA&05(

i
tr~BiG i !I 0 ~12!

58m3~lF1lD!I 0 , ~13!
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independently of the choice ofG0 . I 0 is a positive, dimen-
sionless integral

I 05
1

3E
L/m d3xW

~2p!3

x2

s2~x!1x2
, ~14!

where xW5qW /m and s(x)5S(x)/m is the rescaled self-
energy.L denotes the upper cutoff.DEA

(1) therefore provides
only an overall energy shift, the same for all states.

To the second order, however, we find

DEA
(2)52

1

2V
~^SA

2&02^SA&0
2!

52
1

2
m3(

i j
@ tr~BiBj !I i j 2tr~BiGaBjGb!I i j ,ab#,

~15!

where

I i j 5EL/m d3xW

~2p!3

s2~x!xixj

~s2~x!1x2!2
, ~16!

I i j ,ab5EL/m d3xW

~2p!3

xixjxaxb

~s2~x!1x2!2
. ~17!

Since the rescaled self-energys(x) in the QED3 falls off
rapidly forx@1,6 we will setL5m in I i j , and then approxi-
mates(x)51 under the integral. This ‘‘constant mass’’ ap
proximation seems not to be appropriate for the integ
I i j ,ab , which is withouts(x) in the numerator of the inte
grand. Luckily, however, tr(BiGaBjGb) is independent of the
choice of G0 and therefore the term withI i j ,ab does not
contribute to the energy differences, but only to the ove
shift of the energies. This will be the generic situation in
further calculations. We will then takeL5m ands(x)51 in
all the integrals hereafter.

The lowest~second!-order effect of the velocity anisot
ropy is to increase the energy of the CDW relative to t
SDW, d1 ip andd1 is, which remain degenerate:

DEA,CDW2DEA,other54m3~vF2vD!2I .0,

I 5
1

3E
1 d3xW

~2p!3

x2

~11x2!2
5

1023p

48p2
. ~18!

The energy splitting vanishes whenvF5vD , as expected.
The fact thatd1 ip and d1 is insulators have the sam

energy in presence of velocity anisotropy can be sho
to be generally true to any order of the perturbation theo
To see this, note thatd1 ip and d1 is states are rep-
resented byG0,d1 ip5diag(s2 ,2s2 ,s2 ,2s2), and G0,d1 is
5diag(s2 ,s2 ,s2 ,s2), respectively. When written in the 2
32 from, the only difference between the two is in the sig
of some terms, which always may be changed by a unit
transformation. Put differently, the choice ofG0 enters the
energy calculation only through the combinationBi
5G0dAi . MatricesBi , on the other hand, have to appear
7-3
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even numbers in our calculation, as in Eq.~15!, otherwise the
accompanying integrals will be odd in some moment
component and vanish. SinceAi ’s are block diagonal, the
sign of the block-diagonal elements inBi ’s, then, cannot
matter:d1 ip and d1 is states remain degenerate to all o
ders in weak anisotropy.

IV. REPULSION

We now setvF5vD51 to work out the first finite energy
contribution of the short-range repulsionSU to the degener-
ate ground states of the isotropic action. It is found that

DEU
(1)5

1

V
^SU&05m4UJ2$@ tr~BU!#22tr~BU

2 !%,

J5E1 d3xW

~2p!3

1

11x2
5

42p

8p2
. ~19!

The first term in Eq.~19! vanishes identically for all states
the second term also vanishes for the CDW, but it increa
the energy of thed1 ip and thed1 is, while decreasing the
energy of the SDW,

DEU,d1 ip
(1) 5DEU,d1 is

(1) 518m4UJ2, ~20!

DEU,SDW
(1) 528m4UJ2, ~21!

DEU,CDW
(1) 50. ~22!

Note thatd1 ip andd1 is remain degenerate in presence
the repulsive interaction as well.

V. HIGHER-DERIVATIVE TERMS

We may expandiM (qW ) beyond the linear terms that led t
the anisotropic action, Eqs.~8! and~9!. For instance, defining
M j51^ s3 ,MD51^ s1 , the second-derivative term i
given by

SNL52E dtd2rWC I
†$M jj09~]2!1MDD09~]2!%C I

1$I→II ,x↔y%1•••, ~23!

where j09(x1 ,x2)5( i j xixj]xi
]xj

j(x1 ,x2)uxW50 and similarly

for D09 . Ellipsis indicates higher than second derivati
terms. It seems, then, that we need to specify the disper
relation and the gap function to determine the effect of
higher-order derivative terms on the energies of the dege
ate ground states. Interestingly, it turns out that up to the
first nonvanishing~second! order of perturbation, the quali
tative effect of these terms is to raise the energy of the SD
lower that ofd1 ip and d1 is, and keep the energy of th
CDW unchanged, independently of the functional form
the dispersion and the gap function.

For definiteness, we present here the results for the ti
binding model on a square lattice, for which the dispers
and thed-wave gap are given by
18450
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j~ka ,kb!522t~coskaa1coskba!2m,

D~ka ,kb!5D0~coskaa2coskba!, ~24!

wheret is the nearest-neighbor hopping matrix element,a is
the lattice spacing,m is the chemical potential, andD0 is the
amplitude of thed-wave superconducting order paramet
The result is then

DENL,d1 ip
(2) 5DENL,d1 is

(2) 528m3~ma!2L, ~25!

DENL,SDW
(2) 518m3~ma!2L, ~26!

DENL,CDW
(2) 50. ~27!

Again L is a positive, dimensionless integral, given by

L5
~cotk̃F!2

4~ma!4 E1 d3xW

~2p!3

1

~11x2!2

3„$vF@cos~max1!1cos~max2!22!#%2

1$vD@cos~max1!2cos~max2!#%2
…, ~28!

wherek̃F5(1/A2)kFa andx65(1/A2)(qx6qy)/m. Assum-
ing that near the transition,ma!1, to the zeroth order inma
yields,

L5
1

16
~cotk̃F!2E1 d3xW

~2p!3

1

~11x2!2

3@vF
2~x1

21x2
2!21vD

2 ~2x1x2!2#1O@~ma!2#

5
L̃

16
~cotk̃F!2~2vF

21vD
2 !1O@~ma!2#, ~29!

whereL̃5(15p246)/180p2.

VI. SUMMARY

Collecting our results together, the shift in energy of
given state may be written as

DE58m3H 1

2
uA ~vF2vD!2I 1uU ~mU!J21uNL ~ma!2LJ ,

~30!

where eachuA,U,NL50 or 61, depending on the change i
energy of the state in consideration. In our constant m
approximation all three integralsI ,J, andL are mass inde-
pendent positive constants, so that Eq.~30! represents an
expansion of the energies of the insulating states in pow
of the dynamically generated massm.

For weak chiral symmetry breaking, there is a hierarc
of the perturbation terms, in which each symmetry-break
perturbation assumes a place according to the degree o
irrelevancy. Velocity anisotropy then, being the marginal p
turbation at the bare level, provides the dominant contri
tion, while the repulsive interaction, is the subdominant o
Second-order derivatives, although equally irrelevant as
repulsion, contribute to the energies of the insulating sta
7-4
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only to the second order, and therefore are the least impo
perturbation. Breaking of the degeneracy between the in
lators due to each perturbation is schematically given
Fig. 2.

Our conclusion is that the degeneracy of the chiral ma
fold is broken in favor of the SDW, which is the lowe
energy state when the weak perturbations to the maxim
chirally symmetric action are taken into account. The tra
lationally symmetricd1 ip andd1 is insulators remain de
generate, as one would expect, since the translational s
metry remains intact even in presence of all thr
18450
nt
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ly
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m-
e

perturbations. Assuming thatd-wave superconductor
insulator transition is continuous, or possibly weakly fir
order, implies then that the insulating state is the SDW. If
transition is strongly first order,7 chiral massm increases and
it is conceivable that there could be some level crossing
our fine structure of the chiral manifold.
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