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Fine structure of chiral symmetry breaking in the QED4 theory
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We study the effects of the leading irrelevant perturbations on chiral symmetry breaking in the effective
QED; theory ofd-wave superconductor-insulator transition in underdoped cuprates. For weak symmetry break-
ing, the effect of a perturbation on energies of various insulating states can be classified according to its
engineering dimension in the maximally symmetric theory. Considering the velocity anisotropy, repulsive
interactions, and higher-order derivatives we show that the insulating state with the lowest energy is the spin
density wave.
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[. INTRODUCTION dimensional charge-density waveSDW’s), in the classifi-
cation of Refs. 1 and 3.

The d-wave superconducting state, besides the familiar In the case of the maximal U(4) chiral symmetry, all the
rotational invariance, at low energies possesses an additionabove insulating states, and their various combinaticars,
“chiral” symmetry for its quasiparticle excitation'sit was  equally likely outcomes of the spontaneous symmetry break-
recently showh that the quantum phase transition from theing. This degeneracy is in reality removed by the symmetry-
antiferromagnetic insulator to theé-wave superconductor Preaking perturbations to the QgDthe most prominent of
may be understood in terms of this hidden symmetry: whilevhich have already been mentioned above. For example, it
present in the superconducting state, chiral symmetry i¥/as shown in Ref. 1 that the short-range repulsion between
manifestly broken when the spin-density wa&DW) order quasiparticles favors the SDW over tle-ip insulator, and,

develops. The dynamical agent that brings about this chand@©r€0Vver, enhances the SDW order deeper in the insulating

of symmetry was argued to be provided by the vortex flucState. In this paper we study the effects of weak velocity

tuations of the condensate, that can be represented by g{qlsc_)tropy, _hlgher-order derlvat|ve§, and short-range .rep.ul—
Sive interaction on the pattern of chiral symmetry breaking in

effective gauge field minimally coupled to gapless quasipar; . -
ticles of thed-wave staté:* That way the theory of the phase the QED; theory of the phase fluctuatingiwave supercon

. ductors. All of these perturbations are irrelevant at low ener-
fluctuatingd-wave superconductor can be mapped onto th‘?‘:;ie:s, and we show that their effects on the energies of vari-

three-dimensional quantum electrodynamics (QEDvhich o5 states with weakly broken chiral symmetry can be
was proposed as an effective low-energy description of thggered according to their engineering dimensionality: veloc-
underdoped high-temperature ;uperconduétors. ity anisotropy, being only marginally irrelevaht, provides
Chiral symmetry, however, is not an exact symmetry ofthen the dominant perturbation. Weak repulsion and the
the d-wave superconducting state, but arises only in the lowsecond-order derivatives are both equallipearly) irrel-
energy limit of the standard quasiparticle action. At low en-eyant, but to the first order it is only the repulsion that affects
ergies one is allowed to linearize the spectrum near the nodgRe energies of the insulating states. Fine structure of the

of the d-wave order parameter and neglect the higher-ordeghiral manifold of insulators is schematically depicted in
derivatives and the short-range interactions between quasgig. 2.

particles, which are both linearly irrelevant by power count-
ing. In this approximation the action becomes symmetric un-
der a global U(2X U(2) transformation, where each U(2)

factor acts onto a four-component Dirac field that describes
the gapless excitations near the pair of the diagonally op-
posed nodés(see Fig. 1 If one would also neglect the

intrinsic velocity anisotropy of thel-wave superconductor |-
ve>v,, With ve being the Fermi velocity and, the veloc-
ity related to the amplitude of the superconducting order pa- [ P

rameter, the chiral symmetry group would be enlarged into e P
the 16 dimensional 4}). The SDWinsulator corresponds to I I
breaking of this symmetry along one particular “direction,” A )
while the broken generators of U(4) rotate it towards one of b

the other possible broken symmetry states. Among these, one >
can discern three additional types of insulators, related to the

SDW (and to each othgrby chiral symmetry: the d+ip” FIG. 1. Four nodes of thé-wave order parameter. Dashed line
and “d+is” insulating states, and the stripelike one- is the putative Fermi surface.
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cow cow cow (g, 0n)=[c(Ki+d,0,),c/(-Ki—d,~ o),
i cl(—Ki+q,p),c/(Ki—q,~wp)]. (4
! dip,dis At T=0, with gp=w, the action may be then written as
‘:' - dip,dis
{ SDW(dip,dis /| N— d36|
— — . . -
',/,/ N SDW szf 2 )3\If(q)F0{|qo+|M (q)}¥(q)
SDW,dip,dis,COW J _— m
Higher-Order
Bare Theory Anisotropy Repulsion ll)in'vatives +U f d TdZF [ ‘I_’ ( lZ’ , T)BU\I’(F , T)]Z, (5)

FIG. 2. Energies of the four types of insulators in the unper-_ . >N .
turbed(bare action, with the velocity anisotropy, repulsive interac- Vllgi]agl(\;l_;qg{:)d;s% hﬁ;(gxmqggrlygég%e?jx{a]s where iM;
tion, and the nonlineathigher-order derivativeterms. oo
Our main conclusion is that, to the leading order, it is the &(Ki+q) AKi+q) (6)
SDW state that is selected by the weak perturbations to the A*(Ki+q) —&(—K—Qq)

QED;s. Although in real systems none of the above perturba-
tions is truly weak, we believe our result provides a usefuHere W=¥'Ty and T'o=diag(yo,yo), With yo=0

qualitative guide. In particular, it agrees with the standard®l,y,=—0,803,y,=—0,Q0,y3= —0,®0,, satisfy-

picture of underdoped cuprates, upon identification of théng the Clifford algebra{y,,v,}=246,,. Finally, By

SDW insulator as being continuously connected with the=T'gAy, with Ay=diag(cs,03,03,03).

Mott insulating antiferromagnet near half filling. One may next expandM (q) around the nodes of the
In what follows we first briefly revi_ew the salient points superconducting order parameter in powersjoftt is con-

of the QED; theory of phase fluctuating-wave Supercon- yenient to define the following matricesM;=—ics

ductor, and set up the convenient notation in terms of th 03,M,=—ios®0,. Using the symmetry property of the

eight component Dirac fields. We then proceed to calculate

the lowest-order splittings of the energies due to velocr[yd wave gap and the quasiparticle dispersinfr—k) =A(K)

anisotropy, short-range repulsion, and higher-order deriva@ndé(— k)= £(k), one finds

tive terms. We end with the summary and some concluding

remarks on our results. Spcs=So+ Sat S 0

so=fdeZF@F,T){roaﬁrlax+r2ay}«1r(F,T), ®)

Il. QED 4

We start with the finite temperaturd ¢ 0) quantum me-
chanical action for the interactingfwave quasiparticles, SA:f drd?r W (r, r){BlaX+Bzay}‘lf(F, ), 9
S=Ssest Su D here T =ToA, B =TgA: A= diagMi.M,),
where Az =diagMz,M1),  0A; =diag(\gM1,AaM3), A,
=diag()\AM2,)\|:|\/|1) and )\F:UF_l, )\A:vA_l W|th

UF:‘?qxg(Kl+q)|q=OvUA:(9qu(KI+q)|q=0- v and vy
(2 [i oy +§(k)]c (K ,@n)Cq (K, @p) are the two characteristic velocities of the linearized spec-
trum, in units of some fixed velocitg, which we set toc
=1. The isotropic theory is recovered in the linit=uv, .
(2 we will discuss the form of theSy. that represents the
higher-order derivative terms shortly. Note that the matrices

2.)

SBCS_ 2

wn )

+A(K) el (K, wp)cl(—K,—wy) +H.c.|,

with ,’s denoting fermionic Matsubara frequencies, andAi’s and 8A;’s are independent df. . _
In the rest of the paper we will consider the linear, isotro-

with A(IZ) as the standard-wave gap.S, represents the . ) . ; !
pic, noninteractings, to be the maximally symmetric action.

short-range repulsion between electrons, S . : .
It remains invariant under a global chiral rotation,
B N R R 2
suzuf drf dzr(z CT,(F,T)CU(I’,T)) ! <
0 > Vel W, (10)
with U>0. Shifting the momenta ds=K;+q, i=1,II, and  with the generatord; ,i=1- - - 16, forming the U(4) algebra.

rotating the coordinate frame as in Flg 1, we define theThe explicit form of the generators is given in Ref. 1. The

eight-component Dirac flelbi”—(\ler ,\If”) where for each  connection to the QEPis finalized by coupling the gapless
nodei=1,lIlI, quasiparticles to the fluctuating vortex excitations, which

184507-2



FINE STRUCTURE OF CHIRAL SYMMETRY BREAKING . .. PHYSICAL REVIEW B56, 184507 (2002

upon a singular gauge transformation may be represented ligdependently of the choice df,. I, is a positive, dimen-
an effective gauge field i6,, by d,—d,+ia,. The charge sionless integral
of the gauge field is proportional to the vortex condenSate. .
Such a gauge transformation also turnsdhgave quasipar- 1 (Aam d3x X
ticles into neutral spin-1/2 excitations. In the phase coherent, '0:§f (2m)3 m’
i.e., superconducting state, charge vanishes and the gauge
field is EﬁectiVEIy decoupIEd, |eaVing the sharp Spif{on where )Z: a/m and o-(x):E(x)/m is the rescaled self-
quasiparticl¢ excitations behind. When the vortices con- energy.A denotes the upper cutofi ESY therefore provides
dense, on the other hand, superconductivity is lost, and siniy an overall energy shift, the same for all states.
multaneously the spinon “mass” termm¥W¥ becomes dy- To the second order, however, we find
namically generate®.Here, m=3(q—0)#0, with 3(q)
representing the spinon self-energy due to the interaction AE(Z)——L @) _(S,)2
with the gauge field. Rewriting the mass term in terms of the A zv(< a0~ (Sa)o)
electron operators one recognizes that it simply represents a L
two-dimensional %D\iv with the periodicity determined by =——m32 [tr(B;B));; —tr(BiT ,B;T o)l o],
the wave vectors R, . 2 9

The SDW order therefore corresponds to the particular (15)
form of thely matrix we have chosen. By applying a unitary
U(4) transformation on ouF, one recovers all other insu- where
lating states that are related to the SDW by chiral symmetry. N
In particular, transforming’, as B fA’m d*x (X)X

ij

2

(14)

, (16)
_ _ (2m)3 (a?(x)+x?)?
1‘*0_>e|(7'r/4).]1-*0e7|(77/4)‘] (11)
ith J=1® duces thel+ip insulator: the phase i | f @ XXXk (17)
WI = roauces 1P INsulator:. the ase INCo- i aB= .
73 P " o ap (27)3 (a2(X) +x2)?

herent, translationally symmetric state with an additional

p-wave pairing between spinons. Similarly=(1/V2)o1  since the rescaled self-energy(x) in the QED; falls off
@il y1~ 721 v0(y1+ 72)]} vields thed+is insulator, and  rapidly forxs1,° we will setA=min I;; , and then approxi-
I=(1N2)o,® (v1— 72) gives the CDW with the periodicity mateg(x)=1 under the integral. This “constant mass” ap-
set by the wave vectdﬁ,—K,, . Of course, there is a con- proximation seems not to be appropriate for the integral
tinuum of other chiral rotations that are possible, and which; .5, which is withouto(x) in the numerator of the inte-
lead to various linear combinations of the four fundamentagrand. Luckily, however, t&;T" ,B;T" ) is independent of the
states defined above. choice ofI'y and therefore the term with;; ,; does not

In the rest of the paper we study how the degeneracyontribute to the energy differences, but only to the overall
between the SDW, CDWJ+ip, andd+is states as defined shift of the energies. This will be the generic situation in all
above is removed by the leading perturbation§goanisot-  further calculations. We will then tak&=m ando(x)=1 in
ropy, repulsion, and higher-order derivatives. all the integrals hereatfter.

The lowest(secongrorder effect of the velocity anisot-
ropy is to increase the energy of the CDW relative to the
SDW, d+ip andd+is, which remain degenerate:

We setU=0 in Sto study first the effect of weak anisot-

IIl. ANISOTROPY

ropy (\r,A,<1) on the energy of the degenerate ground AEn cow— AEa othe=4M>(vg—v,)?1>0,

states of the chiral symmetry broken, isotropic QEBince R

the actionSgcg is symmetric under the exchangg«—uv,, C 1t d¥% x> 10-37

the energies of various states should be invariant under the |= 3 (2m)3 (1+x2)2 T 4802 (18)

same exchange. Moreoveryif=v, , both velocities can be
rescaled out of the problem by an appropriate choice.of The energy splitting vanishes wher=uv,, as expected.

The energy splittings between the states must therefore be The fact thatd+ip andd-+is insulators have the same
proportional to f—\,)?, to the lowest order. Indeed, de- energy in presence of velocity anisotropy can be shown

fining the three-dimensional volume ¥s=(27) ~3fd7d?r, to be generally true to any order of the perturbation theory.
the first-order correction of the energies per volume due tdo see this, note thatl+ip and d+is states are rep-
the velocity anisotropy is resented byl'g4+ip=diag(o,,— 02,02, —03), andggis

=diag(o,,0,,0,,07), respectively. When written in the 2
1 X 2 from, the only difference between the two is in the signs
AE%):\—/<SA>O=Z tr(BiI'i)1g (120  of some terms, which always may be changed by a unitary
! transformation. Put differently, the choice bf, enters the
energy calculation only through the combinatioB;
=8m>*(Ag+Ay)lg, (13 =I"yS8A,;. MatricesB;, on the other hand, have to appear in
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even numbers in our calculation, as in Ebp), otherwise the &(Ky k) = — 2t(cosk,a+ coskpa) — u,
accompanying integrals will be odd in some momentum
component and vanish. Sindg's are block diagonal, the A(Kg,Kp) = Ag(cosk,a—coskya), (24

sign of the block-diagonal elements By’s, then, cannot
matter:d+ip andd+is states remain degenerate to all or-
ders in weak anisotropy.

wheret is the nearest-neighbor hopping matrix elemerisg
the lattice spacingy is the chemical potential, ankl; is the
amplitude of thed-wave superconducting order parameter.

The result is then
IV. REPULSION

. . 2 _AE(@  _— _gm3 2
We now setv=v,=1 to work out the first finite energy AENLa+ip=ABNL a+is= —8M (MA)L, (29

contribution of the short-range repulsi&y to the degener- 2) B 3 5
ate ground states of the isotropic action. It is found that AENL spw=+8m (ma)-L, (26)
A EF\JZB,CDW: 0. (27)

1
AEP==(Sy)o=m*UI[tr(By) 12— tr(B3)},
v V< u)o {r(B)] (BU)} Again L is a positive, dimensionless integral, given by

13X 1 44— (cotkg)? (1 d3x 1
:f = : (19 L= 4f 3 2\2
(2m)% 1+x%> 877 4(ma) (27)° (1+x°)
The first term in Eq(19) vanishes identically for all states; X ({ve[cogmax") +cogmax ) —2)]}?
the second term also vanishes for the CDW, but it increases N L 2 28
the energy of thel+ip and thed+is, while decreasing the {va[cogmax’) —cogmax)]}%), (28)
energy of the SDW, whereke = (1/y/2)kea andx* = (1/y/2) (gx* dy)/m. Assum-
ing that near the transitioma<1, to the zeroth order ima
AEEJ]-,)dJrip:AEEJl,)st: +8m*uJ?, (20 yields,
AEf spw=—8m‘U?, (21 1 ot dX 1
L= —(cotkg) j —
16 3 (14 x2)2
AEJow=0. (22 (2m)” (1439

2,2 2\2 2 2 2
Note thatd+ip andd+is remain degenerate in presence of X[oR(XHX0) "+ v (2x1%2) "]+ OL(MA)7]

the repulsive interaction as well. T

= 1g(cotke) *(2vE+v3) + O[(ma)?], (29

V. HIGHER-DERIVATIVE TERMS

o _ wherel = (157 — 46)/18072.

We may expandM (q) beyond the linear terms that led to ( )

the anisotropic action, Eq&) and(9). For instance, defining

M,=1l®03,My=1®0;, the second-derivative term is

given by Collecting our results together, the shift in energy of a
given state may be written as

VI. SUMMARY

Sni= _f drd?r¥ {M ¢&5(0%) + My Ag(a7)} P, 1
AE=8m° EaA(vF—vA)2| + 6y (MU)J2+ 6y (ma)?L{,
H{I—=1l Xyt -, (23
(30)

where £5(X1,%2) = 2ijXiX; 9, 0%, £(X1,X2) [i=0 @nd similarly  \here eacty, , y =0 or +1, depending on the change in
for Aj. Ellipsis indicates higher than second derivativeenergy of the state in consideration. In our constant mass
terms. It seems, then, that we need to specify the dispersicapproximation all three integralsJ, andL are mass inde-
relation and the gap function to determine the effect of thependent positive constants, so that Eg0) represents an
higher-order derivative terms on the energies of the degeneexpansion of the energies of the insulating states in powers
ate ground states. Interestingly, it turns out that up to the thef the dynamically generated mass
first nonvanishing'second order of perturbation, the quali- For weak chiral symmetry breaking, there is a hierarchy
tative effect of these terms is to raise the energy of the SDWof the perturbation terms, in which each symmetry-breaking
lower that ofd+ip andd+is, and keep the energy of the perturbation assumes a place according to the degree of its
CDW unchanged, independently of the functional form ofirrelevancy. Velocity anisotropy then, being the marginal per-
the dispersion and the gap function. turbation at the bare level, provides the dominant contribu-

For definiteness, we present here the results for the tightion, while the repulsive interaction, is the subdominant one.
binding model on a square lattice, for which the dispersionSecond-order derivatives, although equally irrelevant as the
and thed-wave gap are given by repulsion, contribute to the energies of the insulating states
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only to the second order, and therefore are the least importaperturbations. Assuming thatd-wave superconductor-

perturbation. Breaking of the degeneracy between the insunsulator transition is continuous, or possibly weakly first

lators due to each perturbation is schematically given irorder, implies then that the insulating state is the SDW. If the

Fig. 2. transition is strongly first orderchiral masamincreases and
Our conclusion is that the degeneracy of the chiral maniit is conceivable that there could be some level crossings in

fold is broken in favor of the SDW, which is the lowest our fine structure of the chiral manifold.

energy state when the weak perturbations to the maximally

ch!rally symmetric action are take_n into account. The trans- ACKNOWLEDGMENT

lationally symmetricd+ip andd+is insulators remain de-

generate, as one would expect, since the translational sym- This work was supported by NSERC of Canada and the

metry remains intact even in presence of all threeResearch Corporation.

1I.F. Herbut, Phys. Rev. Let88, 047006(2002; Phys. Rev. B56, 4D.J. Lee and I.F. Herbut, Phys. Rev.688, 094512(2002.

094504(2002. 50. Vafek, Z. TéanoviG and M. Franz, Phys. Rev. Let89,
2M. Franz and Z. Teanovig Phys. Rev. Lett87, 257003(2001); 157003(2002.

M. Franz, Z. Teanovig and O. Vafek, Phys. Rev. B6, 054535  ®T. Appelquist, D. Nash, and L.C.R. Wijewardhana, Phys. Rev.

(2002. Lett. 60, 2575(1988.

%Z. Tesmanovig O. Vafek, and M. Franz, Phys. Rev.@5, 180511  7p . Lee and I.F. Herbut, cond-mat/02101@@publishedl
(2002.

184507-5



