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Uemura relation in phase-fluctuation-dominated superconductors
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Starting from the ‘‘negative-U ’’ Hubbard Hamiltonian of a superconductor with nonretarded interaction on
a lattice in three dimensions, we establish an effective theory in terms of the modulus and phase of the
superconducting pairing field. This facilitates a scenario where pseudogap is associated with pairing without
phase order atT* while superfluidity corresponds to the onset of phase coherence atTc . Building on this
framework we calculate from the linear-response theory the penetration depthl as a function of temperature
and interaction strengthU. By studying the crossover from the amplitude to the phase-fluctuation-dominated
regime, we find a remarkable quasiuniversal behavior in form of the parametric Uemura plot for the superfluid
density ns;1/l2 which we discuss in the context of experiments in underdoped and overdoped high-Tc

cuprates.
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I. INTRODUCTION

After more than a decade of research effort in high-Tc
oxide superconductors~HTSC!, there is still no general con
sensus on the pairing mechanism and the essential ph
involved. Traditionally, a superconducting phase in ma
body system is represented by the existence of the so-c
off-diagonal long-range order in the system.1 According to
the theory of Bardeen, Cooper, and Schrieffer2 ~BCS! in me-
tallic superconductors, the pairing of charge carriers, the
mation of the gap in the density of states, and the setting
the coherence between electron pairs occur at the same
perature marking the superconducting transition at crit
temperatureTc . It turns out that in the BCS theory the pha
of the complex order parameter is unimportant for determ
ing Tc and other physical properties brought about by
transition. However, it has been realized that phase fluc
tions are crucial in oxide superconductors since they
doped insulators with a very low superfluid densityns .3,4,6,7

This quantity is related to the magnetic-field penetrat
depthl being the basic experimentally measurable para
eter of superconductivity. In the framework of the clean-lim
London model, 1/l2(T);ns(T)/m* ~wherem* is the effec-
tive mass!. Remarkably, Uemura and co-workers found o
that muon spin relaxation (mSR) measurements ofl in
HTSC reveal intriguing correlation betweenTc and ns(0):
Tc increases linearly withns(0) in the underdoped region
followed by a saturation with increasing superfluid densit8

Surprisingly,mSR measurements in heavily overdoped
2201 system show adepressionof Tc in the overdoped re-
gion accompanied by the decrease ofns(0) even though the
normal-state measurements clearly indicate anincreaseof
carrier concentration with doping.9 This is in contrast to the
common expectation~supported by the BCS theory! that
ns(0) should continue to increase with growing carrier co
centration in the overdoped regime. The existing data im
a Uemura diagram, whereTc vs ns(0) describes ‘‘boomer-
ang’’ ~or reflex loop! shaped path from the underdoped to t
heavily overdoped regime. Apparently, a number of exp
ments suggest that in HTSC the process of pair forma
and their coherence may take place at different temperatu
0163-1829/2002/66~18!/184504~7!/$20.00 66 1845
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pairing at the so-called pseudogap temperatureT* and phase
coherence atTc ~see, e.g., review in Ref. 10!. It is clear that
a systematic theory of this phenomenon has to include
effect of phase fluctuations on the same footing as the siz
the local superconducting gap.11,12Support for the paramoun
role of the phase fluctuations in HTSC comes also from
recent high-frequency transport experiments.13

To assess the relevance of phase-fluctuation picture
HTSC it is important to know how it is related to the bas
phenomenology of superconducting cuprates. For examp
is an interesting question as to how the picture proposed
Uemura correlates with the phase-fluctuation scenario, w
the behavior of the superfluid density is controlled by t
strength of pairing interaction. Theoretically, the proble
can be addressed without having to resort to a specific
croscopic mechanism for electron pairing. In the pres
work to model both quantal and spatial phase fluctuations
adopt a ‘‘negative-U ’’ Hubbard model on a three-
dimensional~3D! simple cubic lattice where pairing can b
conveniently described in terms of a single interaction
rameter. We perform the separation of the superconduc
order parameter into the modulusand phase variables~i.e.,
the Goldstone mode!, which is essential to capture the intr
cate relations between the onset of pairing of electrons
their condensation. Furthermore, we approach the prob
by analyzing the ‘‘phase-only’’ effective action resultin
from the microscopic model within the functional integr
framework. Subsequently, we study in the behavior of
superfluid densityns , by calculating the penetration dept
from the electromagnetic response of the system. In part
lar we examine theTc vs ns(0);1/l2(0) dependence in a
form of the parametric Uemura plot.

The outline of this paper is the following. In Sec. II w
introduce a negative-U Hubbard model for strongly corre
lated superconductor. To explicate the low-energy physic
the relevant Goldstone modes we pass to the effective ph
only action and subsequently to the nonlinears model for
the fluctuating superconducting order parameter. Furth
more, in Sec. III, by analyzing the electromagnetic respo
within the Matsubara ‘‘‘imaginary-time’’ formalism we cal
culate the interaction and temperature dependence of
©2002 The American Physical Society04-1
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penetration depth. Finally, we discuss and compare our fi
ings with the basic phenomenology of high-Tc cuprates.

II. THE MODEL AND EFFECTIVE PHASE-ONLY ACTION

Theoretically, the problem can be addressed without h
ing to resort to a specific microscopic mechanism for el
tron pairing and can be studied on the negative-U Hubbard
model. This is the simplest lattice model which can be st
ied where the pair size can be varied by changing
strength of the on-site attractionuUu relative to the nearest
neighbor hopping. The Hamiltonian reads

H5 (
^ i j &s

~ t i j e
ix i j 2md i j !cis

† cj s2uUu(
i

ni↑ni↓ . ~1!

Herecis
† (cis) annihilates an electron of spins at thei th site

( i 51, . . . ,N) andnis5cis
† cis ; 2uUu is the strength of~on-

site! attractive interaction, whilem denotes the chemical po
tential. Here,t i j is the hopping integral. For the latter th
bare band dispersion was presumed to bet(k)522te(k),
where e(k)5cos(akx)1cos(aky)1cos(akz) is the structure
factor of the simple cubic lattice in three dimensions w
lattice spacinga.

To study electromagnetic response, the magnetic-field
fect is included through the Peierls phase factor:14

x i j 5
2p

F0
E

Rj

Ri
A•dl, ~2!

whereF05hc/e is the magnetic-flux quantum andA is the
vector potential. Introducing the auxiliary~pair! bosonic
fields D i(t) depending on the imaginary–timet (0<t<b
[1/kBT) and employing the Hubbard–Stratonovich tran
formation to decouple the quartic~in fermionic variables!
Coulomb interaction term in Eq.~1! one arrives at the parti
tion function15

Z5E )
i

DD i* DD iDC̄ iDC iexpF2(
i
E

0

b

dt
uD i~t!u2

U

2(̂
i j &

E
0

b

dtC̄ i~t!~ t i j e
ix i j ŝ31Gi

21d i j !C j~t!G . ~3!

To compactify our notation we introduce Nambu spinor a
its Hermitian adjoint:

C i5S c↑

c̄↓D
i

, C̄ i5~ c̄↑c↓! i , ~4!

and the Nambu Green’s functionGi satisfies

F2
]

]t
11mŝ31D̂ j~t!ŝ1GGi~t2t8!5d~t2t8!. ~5!

Here,
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D̂ i~t!5D i~t!ŝ11D i* ~t!ŝ2,

ŝ65~ ŝ16 i ŝ2!/2 ~6!

andsa (a51,2,3) are Pauli matrices.

III. EFFECTIVE PHASE-ONLY ACTION

A. Modulus-phase representation

Since superconductivity emerges with the spontane
breaking of a local U~1! phase invariance, the most impo
tant degree of freedom is the phase of the pair field which
the relevant Goldstone variable. It is well known that t
BCS limit is a rather exotic case of a fermionic system w
infinitesimal coupling strength when the disappearance
superconductivity can be described as the pair-breaking t
sition. On the contrary, in the strong coupling bosonic regi
the temperature scales for pair decomposition and the U~1!
symmetry breakdown can be arbitrarily separated. As a
sult, the BCS limit hides the bosonic scenario of phase
herence, while the strong-coupling regime misses the fer
onic aspect of gap formation. To combine both features
therefore, set

D̂ j~t!5uD j~t!ue2 if j (t)s3
ˆ

ŝ1 ~7!

and decouple the phase fieldf i(t) from the order-paramete
amplitude by performing a singular gauge transformation
new fermionic variables:

f j s5cj se2 if i (t)/2. ~8!

Physically, this amounts to replacing the original charg
fermioncj s(t) with spin carrying neutral fermionf j s(t) and
a spinless charged bosone2 if i (t)/2. By integrating out neu-
tral fermionic fields, one obtains the partition function as
functional integral over the modulus and phase of the sup
conducting pair field:

Z5E )
i

uD i uDuD i uDf iexp$Seff@D,f#%,

Seff@D,f#5(
i
E

0

b

dt
uD i~t!u2

U
2Tr ln@ T̂f~x!1Gf

21#,

~9!

where

@ T̂f~x!# i j 5t i j e
2 i [f i (t)2f j (t)22x i j ] ŝ3/2ŝ3,

Gf i
215e2 ifŝ3/2Gi

21~t,t8!eifŝ3/2,

52
]

]t
11Fm1

i

2

]f j~t!

]t G ŝ31uD j~t!uŝ1 .

~10!

For large uUu amplitude fluctuations can be regarded
highly massive excitations and all the important collecti
variables are then in the phase sector. The saddle point o
effective action with respect to the modulus of the pairi
field dSeff@D,f#/duD i(t)u50 generates Hartree-Fock mea
4-2
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field theory for the modulus of static and spatially unifor
pairing amplitudesD i(t)[uDu. Now, focusing on the phas
degrees of freedom, we expand the logarithm in the ac
~9! in powers ofTf̂(A) in a close analogy to the derivatio
of the phase action for Josephson-coupled superconducto16

The resulting lattice phase-only action then reads

Seff@f#5
EC

21~D!

16 (
i
E

0

b

dtF]f i~t!

]t G2

2(̂
i j &

E
0

b

dtEJ~D!cos@f i~t!2f j~t!22x i j #.

~11!

The Josephson-like coupling

EJ~D!52t2E
0

b

dtG12~t!G12~2t! ~12!

then will contribute to the bare phase stiffness, while
kinetic-energy term

EC
21~D!52E

0

b

dt@G11~2t!G11~t!2G12~2t!G12~t!#

~13!

reflects the quantum fluctuations in the number density
charge carriers. These terms incorporate the fermionic
grees of freedom via the local electron Green’s function

G~t!5~1/b!(
n l

G~n l !e
2 in lt, ~14!

where

Gab~n l !5S 2 in l1m

n l
21m21uDu2

uDu

n l
21m21uDu2

uDu

n l
21m21uDu2

2 in l2m

n l
21m21uDu2

D ab

, ~15!

wheren l5p(2l 11)/b ( l 50,61,62, . . . ) are the~Fermi!
Matsubara frequencies.

B. Mapping on a quantum Hamiltonian of the 3D XY model

By performing the standard Legendre transformation fr
the ‘‘phase velocities’’]f j /]t to the conjugate ‘‘momenta’
Qj ~that are interpreted as the number density fluctuation
charge carriers! we obtain the basic Hamiltonian for the sy
tem in a form of thequantum3D XY model:

H XY
qm5EC~D!(

i
Q̂i

22(̂
i j &

EJ~D!cos~f i2f j !, ~16!

whereQ̂j522i (]/]f j ) is the charge~pair! number opera-
tor. A fundamental property of the quantumXY model is
provided by the fact thatQ̂j andf j are canonically conjugate
variables and therefore satisfy the following commutat
relation@Q̂m ,f j #52 idm j—thus, the fluctuation of these ar
18450
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intimately related. The phase transition to the long–ran
phase-coherent state is governed by the competition betw
the bare phase stiffnessEJ(D) and the effective Coulomb
interactionEC(D). When EC(D) is comparable toEJ(D),
charging effects give rise to profound quantum effects: ze
point fluctuations of the phase may destroy the long-ra
superconducting state even atT50.

IV. NONLINEAR s MODEL FORMULATION

The action~11! implies the phase-fluctuation algebra
the Euclidean groupE2 for the number density operator~an-
gular momentum! N̂j[ i ]/]f j and the charged boson~linear
momentum! P̂j[eif j , with the square of linear momentum
restricted to unity:17 P̂i P̂i

†5sin2fi1cos2fi51. This con-
straint suggests that an effective continuum field theory
the form of a quantum-mechanical nonlinears model
(QNLsM) would be appropriate to capture the dynamics
the phase sector beyond the mean-field level.18 Using the
Fadeev-Popov method with the Diracd functional ~which
facilitates both the change of integration variables and
imposition of the spherical constraint! we obtain

Z5E )
i

Dc iDc i* dS (
i

uc i u22ND
3E )

i
Df ie

2Seff[f])
i

d@Rec i2cos~f i !#

3d@ Im c i2sin~f i !#. ~17!

The convenient way to enforce the spherical constraint is
use the functional analog of thed-function representation
d(x)5*2`

1`(dz/2p)ei zx, which introduces the Lagrang
multiplier z(t).19 The evaluation of Eq.~17! in terms of the
order-parameter fieldsc i yields the partition function of the
corresponding QNLsM model:

Zs5E )
j

Dc jDc j* E F Dz

2p i Ge2Ss[c,z] , ~18!

where

Ss@c,z#5
1

bN (
k

(
v l

ck* ~v l !Gk
21~v l !ck~v l !. ~19!

The summation in Eq.~19! is performed over all wave-
vector componentsk (2pp/aN<ka<pp/aN, where a
5x,y,z; p are integers, 0<p<N21) and the~Bose! Mat-
subara frequenciesv l52p l /b ( l 50,61,62, . . . ). Here,
Gk(v l) is the Fourier transform of the order-parameter s
ceptibility,

Gi j ~t2t8!5@EJ~D!e2ix i j d i , j 1d1zd i j #d~t2t8!

1Wi j
21~t2t8!, ~20!

with the vectord running over nearest neighbors. Furthe
more,

Wi j ~t2t8!5^ei [f i (t)2f j (t8)]& ~21!
4-3
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is the phase-phase correlation function, where

^•••&5Z0
21E )

i
Df i~t!•••e2SC[f] , ~22!

whereSC@u# refers to the first term of the action~11! andZ0
is the statistical sum of the ‘‘noninteracting’’ system d
scribed bySC@u#. In the spherical model the critical bound
ary ~in our case marking the onset of the superconduc
phase-coherent state! is determined by the divergence of th
order-parameter susceptibilityGk50

21 (v l50)50. This fixes
the saddle-point valuez0:20 with the onset of the phase
transition saddle-point value of the Lagrange multiplierz0

‘‘sticks’’ to that value at criticality (z5z0
crit) and stays con-

stant in the whole low-temperature phase.

V. PENETRATION DEPTH

To proceed with the penetration depth calculation, we
amine the response kernel as a function of the vectorq and
frequencyv l :

Lxx~q,v l !5(
i
E

0

b

dt
eiv lt1 iq•r id2ln Z

dAx~r i ,t!dAx~0,0!
U

A50

. ~23!

Then, in the static and uniform limit the magnetic-field pe
etration depth becomesl2254p limq→0Lxx(q,v l50). Ex-
plicitly,

1

l2
5

32pe2

\2c2a
c0

2EJ~D! ~24!

so thatns /m* [8c0
2EJ(D)/\2a. Here,c05^eif j& is the or-

der parameter describing phase-coherent state. The tech
steps in obtainingc0 and the modulusuDu in the form of the
self-consistent equations are quite similar to those in R
15—we will therefore be quite brief. The value of the ord
parameterc0 then reads

c0
2512A2a~D!E

2`

1`dyr~y!

A32y
coth@bEp~y,D!# ~25!

with Ep(y,D)5EJ(D)A2(32y)a(D) and a(D)
[EC(D)/EJ(D). Further, r(y)5*2p

p @d3k/(2p/a)3#d@y
2e(k)# is the density of states for 3D simple cubic lattice

r~y!5
1

p3Emax(21,222y)

min(1,22y)

duQ~ uyu/321!

3
1

A12u2
K @A12~u1y!2/4#, ~26!

where K (x) and Q(x) are the elliptic integral of the firs
kind and the unit step function, respectively. Subsequen
the gap parameteruDu is determined self-consistently by

15uUu E
2`

1` dyr~y!

2Eg~y,D!
tanhFb2 Eg~y,D!G , ~27!
18450
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where Eg(y,D)5A@2yt(D)1m#21uDu2 and t(D) is the
renormalized ~due to phase fluctuations! bandwidth
parameter:15

t2~D!5
2

9
t2a~D!E

2`

1`dyr~y!y

A32y
coth@bEp~y,D!#. ~28!

Finally, the band fillingf is determined self-consistently by

f 215E
2`

1`dyr~y!@2yt~D!1m#

Eg~y,D!
tanhFb2 Eg~y,D!G

~29!

and f 51 corresponds to half-filling. From Eqs.~25!–~29! it
follows that the modulus-phase representation~7! results in a
theory which combines the~pseudo! gap equation~27! in a
form resembling the standard BCS-like expression forD
with the equation for the ordering of the phase degrees
freedom in the real space~25!—in close analogy to the local
pair superconductor scenario given by the hard-core bos
limit of the negative-U Hubbard model.

The superfluid density~or inverse square penetratio
depth! normalized to itsT50 value calculated from Eq.~24!
is plotted in Fig. 1 as a function ofT/Tc for several repre-
sentative values ofuUu/t ranging from the strong-coupling
(uUu.uUoptu) to weak-coupling (uUu,uUoptu) regimes. Here,
uUoptu is the ‘‘optimal’’ interaction strength for whichTc

max

5Tc(Uopt). Plots in Fig. 1 show a quasiuniversal behav
with respect to the interaction strength:ns(T)/ns(0) depends
only weakly onuUu @more precisely, according to numeric
analysis of Eq.~24!, 1/l2(T) is weakly interaction dependen
for roughly uUu/t.2]. This clearly indicates thatTc is the
only energy scale involved in the temperature dependenc
l(T) for interaction strength ranging from weak to stron

FIG. 1. Temperature vs the inverse squared penetration de
@scaled byTc and the zero-temperature valuel2(0), respectively#
for several values of the interactionuUu/t and f 50.8. Inset: a clo-
seup of the low-temperature region.
4-4
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coupling.21 Indeed, the inspection of Eqs.~11! and ~24! re-
veals that the bare phase stiffnessEJ(D), which sets the
energy scale ofkBTc , also enters the expression for 1/l2(T)
linearly. It is interesting to note, that in high-Tc cuprates
similar behavior was found experimentally:22 when the tem-
perature scale is normalized byTc , the overall temperature
dependence ofl2(0)/l2(T) is remarkably independent o
dopingx, so the data collapse approximately onto one cur
Furthermore, we plot in Fig. 2 the critical temperatureTc vs
the zero-temperature value of the superfluid densityns(0) in
a form of the Uemura plot. It can be seen thatns(0) follows
a reentrant loop, resembling the outline of a fly’s wing, as
control parameter for the parametric plot—the interact
uUu moves from the strong to weak regime. Experimenta
the relation between the critical temperature and the z
temperature muon spin depolarization rates(T50)
@;1/l2(T50)# in the form resembling the plots in Fig. 2
was seen in a number of cuprates.8,9

VI. EFFECT OF CLASSICAL PHASE FLUCTUATIONS

It is interesting to consider the effect ofclassicalphase
fluctuations on the low-temperature properties of the pene
tion depth. It was suggested that classical phase fluctuat
are capable to produce a linear temperature dependen
l2(0)/l2(T) which may be relevant to explain the behavi
of the penetration depth in high-Tc superconductors.4 A suit-
able treatment of classical phase fluctuations is readily
tained by neglecting the quantum term with the Coulo
energy @for EC(D)→0] in the effective phase-only actio
@see Eq.~11!#. A ‘‘reverse engineering’’ of the action from
the Lagrange to the Hamilton description results then in
classicalXY-model Hamiltonian@see also Eq.~16!#

FIG. 2. Uemura-type plot ofTc vs zero-temperature superflui
density for several values of the filing parameterf. Variation of
uUu/t as the control parameter for the parametric plot; arrows in
cate the crossover from the strong to weak coupling~here l0

532pe2t/\2c2a). Inset: T2uUu phase diagram showingT* and
Tc for f 50.8 ~see Ref. 15!.
18450
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Hphase
cl 52(̂

i j &
EJ~D!cos~f i2f j !, ~30!

with the bare phase stiffness given byEJ(D) as a single
energy parameter. The transition temperatureTc into phase-
ordered state which can be easily obtained from Eq.~25! in
the limit a(D)→0:

EJ~D!

kBTc
5E

2`

1`

de
r~e!

32e
5Kc'0.505 462 019 7. ~31!

Furthermore, the order parameter~25! in this limit becomes

c0
2512Kc

kBT

EJ~D!
, ~32!

which implies a linear temperature behavior of the superfl
density in the low-temperature region@cf. Eq.~24! and Fig. 3#
in agreement with the results of Refs. 4 and 5 and Mo
Carlo simulations on the classical 3DXY model.23 In par-
ticular, the slope of the superfluid density atT50 according
to Eqs.~24! and ~32! becomes

d

d~T/Tc!
F l2~0!

l2~T!
GU

T50

521. ~33!

For reference, estimates of the quantityd/@d(T/
Tc)#@l2(0)/l2(T)#uT50 for various cuprates and doping lev
els are in the range20.94 to20.51.24 Interestingly, by com-
paring Figs. 1 and 3 we see that charging energy~quantum!
effects alleviate the low-temperature linear-T dependence of
1/l2(T): the linear temperature behavior is replaced by
dominant exponential temperature dependence in the q
tum case. However, as shown in Ref.4 the linear tempera
behavior can be restored in the quantum case when the c

i- FIG. 3. Effect of classical phase fluctuations. Plot of 1/l2(T) as
in Fig. 1 but calculated for the classical version of 3DXY Hamil-
tonian @see Eq.~30!#.
4-5
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bined effect of charging interactions and dissipation is
cluded. Whether or not the low-temperature features ofl(T)
due to classical phase fluctuations can solely account ex
mental data of the penetration depth in high-Tc cuprates
without invoking, e.g., excitations near the nodes of
d-wave gap, is an interesting but presently unsettled issu

ApproachingTc from belowl2(0)/l2(T) vanishes with a
finite slope

d

d~T/Tc!
F l2~0!

l2~T!
GU

T5Tc

52
EJ~D,T5Tc!

EJ~D,T50!
. ~34!

This is distinct from the Monte Carlo result of Ref.23 whe
l2(0)/l2(T);(T/Tc21)0.673 implies an infinite slope at the
critical temperature. Close toTc , however, the effect of fluc-
tuations is profound and the spherical model approach~being
effectively at a one-loop level! is unable to reproduce correc
tions due to critical fluctuations in all details. Note that t
universal behavior of the quantum model@see Eq.~11!#
shown in Fig. 1 exhibits neither the low-temperature linear
nor ~also due to the fluctuation corrections mentioned abo!
the genuine critical 3DXY behavior nearTc as the classica
XY model of Ref.23.

VII. DISCUSSION AND FINAL REMARKS

Following the Uemura suggestion relating th
Bose Einstein–BCS ~BE-BCS! crossover scenario25–27

to the under/overdoped phenomenology of high-Tc
superconductors,21,28 it is tempting to associate the small-uUu
regime with the overdoped and large-uUu regime with the
underdoped region of high-Tc superconductors. In this ana
ogy the interaction parameteruUu translates then to the dop
ing parameterx for cuprates~with uUoptu corresponding to the
optimal doping!. In doing so, one should bear in mind tha
of course, the negative-U Hubbard system cannot serve as
realistic model of high-Tc cuprates. However, it can be em
ployed as a useful tool to explore mutual effects of pair
and phase fluctuations. Strong suppression of the super
density seen in experiments in high-Tc cuprates disagrees, a
we noted, from the predictions of the BCS theory. It is w
known that the superfluid stiffnessns(0) in a system of fer-
mions is finite at zero temperature for infinitesimal intera
tion and drops discontinuously tons(0)50 at exactly zero
interaction. Specifically, as a direct consequence of the
Galilean invariance of the continuum BCS model~with para-
bolic dispersion! one hasns(0)5nf /4m wherenf is the fer-
mion density. The fact thatns(0) approaches a finite valu
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for U→0 can be comprehended by realizing that thoughD
becomes small in this limit, the coherence length becom
very large resulting in a finite value for the stiffness. In oth
words, in the BCS limit the weak-coupling superfluid dens
is dominated by the concentration of the available cha
carriers. It might be then surprising that Eq.~12! which fol-
lows from modulus-phase representation predicts thevanish-
ing of theT50 superfluid density in theuUu→0 limit where
the BCS and modulus-phase model Eq.~11! formally should
overlap. To account for this discrepancy we note that ther
a fundamental difference between BCS continuum formu
tion in the momentum space and the discrete modulus-ph
representation on a lattice in real space: the latter manife
violates Galilean invariance for arbitrary interactionU.29

Clearly, even in theuUu→0 limit the action~11! describes
charges moving through activated~hopping! process in real
space rather than moving as plane waves in momentum
main. As a result radically different behavior ofns(0) in the
weak-coupling limit for both models emerges: the vanish
of T50 superfluid stiffness in the modulus–phase mo
follows then from the loss of coherence between sites du
the diminishing of the amplitude pairing~or pair decay! in
the uUu→0 limit. Therefore, if one consistently adopts th
point of view that the changeover from underdoped to ov
doped behavior in high-Tc cuprates is somehow related
the passage from strong to weak coupling~as the pseudogap
phenomenon seems to suggest! then the ‘‘weak-coupling’’
overdoped regime cannot be described as the genuine-
limit ~in momentum space! although other characteristics a
e.g., amplitude ratios 2D/kBTc seem to suggest a typica
BCS behavior.30,31This last observation is perhaps less str
ing when one realizes that virtually all approaches to highTc
superconductivity underline the important role of inhomog
neity both in real and in momentum space.

In conclusion, in making the analogy between the int
action driven BE-BCS crossover with the phenomenology
superconducting cuprates, there are differences that sh
be recognized and points whose precise clarification pres
ably would require to go beyond ans-wave attractive Hub-
bard model. However, the similarities and analogies
found are very intriguing and we believe that the concept
pairing without phase coherence is a promising scen
while exploiting the properties of high-Tc superconductors.
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