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Uemura relation in phase-fluctuation-dominated superconductors
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Starting from the “negativéJ” Hubbard Hamiltonian of a superconductor with nonretarded interaction on
a lattice in three dimensions, we establish an effective theory in terms of the modulus and phase of the
superconducting pairing field. This facilitates a scenario where pseudogap is associated with pairing without
phase order aT* while superfluidity corresponds to the onset of phase coherentg.aBuilding on this
framework we calculate from the linear-response theory the penetration Xlegstha function of temperature
and interaction strengtbl. By studying the crossover from the amplitude to the phase-fluctuation-dominated
regime, we find a remarkable quasiuniversal behavior in form of the parametric Uemura plot for the superfluid
density ng~1/\? which we discuss in the context of experiments in underdoped and overdoped high-
cuprates.
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[. INTRODUCTION pairing at the so-called pseudogap temperaitrend phase
coherence at. (see, e.g., review in Ref. 10lt is clear that
After more than a decade of research effort in high- a systematic theory of this phenomenon has to include the
oxide superconductor$iTSO), there is still no general con- effect of phase fluctuations on the same footing as the size of
sensus on the pairing mechanism and the essential physitise local superconducting gab*?Support for the paramount
involved. Traditionally, a superconducting phase in many+ole of the phase fluctuations in HTSC comes also from the
body system is represented by the existence of the so-calledcent high-frequency transport experimefits.
off-diagonal long-range order in the systémccording to To assess the relevance of phase-fluctuation picture in
the theory of Bardeen, Cooper, and Schriéff@CS) in me-  HTSC it is important to know how it is related to the basic
tallic superconductors, the pairing of charge carriers, the forphenomenology of superconducting cuprates. For example, it
mation of the gap in the density of states, and the setting d an interesting question as to how the picture proposed by
the coherence between electron pairs occur at the same tetdemura correlates with the phase-fluctuation scenario, when
perature marking the superconducting transition at criticathe behavior of the superfluid density is controlled by the
temperaturd . It turns out that in the BCS theory the phase strength of pairing interaction. Theoretically, the problem
of the complex order parameter is unimportant for determincan be addressed without having to resort to a specific mi-
ing T, and other physical properties brought about by thecroscopic mechanism for electron pairing. In the present
transition. However, it has been realized that phase fluctuawork to model both quantal and spatial phase fluctuations we
tions are crucial in oxide superconductors since they aradopt a “negativdd” Hubbard model on a three-
doped insulators with a very low superfluid density.>*%’  dimensional(3D) simple cubic lattice where pairing can be
This quantity is related to the magnetic-field penetrationconveniently described in terms of a single interaction pa-
depth\ being the basic experimentally measurable paramrameter. We perform the separation of the superconducting
eter of superconductivity. In the framework of the clean-limit order parameter into the modulasid phase variable$i.e.,
London model, IN?(T)~ng(T)/m* (wherem* is the effec- the Goldstone modewhich is essential to capture the intri-
tive mas$. Remarkably, Uemura and co-workers found outcate relations between the onset of pairing of electrons and
that muon spin relaxation {SR) measurements of in  their condensation. Furthermore, we approach the problem
HTSC reveal intriguing correlation betwed@n and ng(0): by analyzing the “phase-only” effective action resulting
T. increases linearly witng(0) in the underdoped region, from the microscopic model within the functional integral
followed by a saturation with increasing superfluid denSity. framework. Subsequently, we study in the behavior of the
Surprisingly, «SR measurements in heavily overdoped TI-superfluid densityng, by calculating the penetration depth
2201 system show depressiorof T, in the overdoped re- from the electromagnetic response of the system. In particu-
gion accompanied by the decreasengf0) even though the lar we examine thd. vs ng(0)~1/A?(0) dependence in a
normal-state measurements clearly indicateirmreaseof  form of the parametric Uemura plot.
carrier concentration with dopirgThis is in contrast to the The outline of this paper is the following. In Sec. Il we
common expectatiorfsupported by the BCS thegnthat introduce a negative} Hubbard model for strongly corre-
ns(0) should continue to increase with growing carrier con-lated superconductor. To explicate the low-energy physics of
centration in the overdoped regime. The existing data implthe relevant Goldstone modes we pass to the effective phase-
a Uemura diagram, wherg; vs ng(0) describes “boomer- only action and subsequently to the nonlineamodel for
ang” (or reflex loop shaped path from the underdoped to thethe fluctuating superconducting order parameter. Further-
heavily overdoped regime. Apparently, a number of experiimore, in Sec. lll, by analyzing the electromagnetic response
ments suggest that in HTSC the process of pair formatiomvithin the Matsubara *“imaginary-time” formalism we cal-
and their coherence may take place at different temperaturesulate the interaction and temperature dependence of the
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penetration depth_. Finally, we discuss ar)d compare our find- Ai(r)=Ai(r)c}++Ai*(r)&‘,
ings with the basic phenomenology of high-cuprates.

ot =(0,xi0,)02 (6)

ando, («=1,2,3) are Pauli matrices.
Theoretically, the problem can be addressed without hav-
ing to resort to a specific microscopic mechanism for elec- IIl. EFFECTIVE PHASE-ONLY ACTION
tron pairing and can be studied on the negativétubbard
model. This is the simplest lattice model which can be stud-
ied where the pair size can be varied by changing the Since superconductivity emerges with the spontaneous
strength of the on-site attractih)| relative to the nearest- breaking of a local () phase invariance, the most impor-
neighbor hopping. The Hamiltonian reads tant degree of freedom is the phase of the pair field which is
the relevant Goldstone variable. It is well known that the
B " " BCS limit is a rather exotic case of a fermionic system with
H_<%” (tije "_/-Laij)ci(rcjzr_|U|Ei Nitip- (1 infinitesimal coupling strength when the disappearance of
superconductivity can be described as the pair-breaking tran-
HereCiTa—(Cia) annihilates an electron of spinat theith site sition. On the contrary, in the strong couplin_g. bosonic regime
(i=1,...N)andn,,= CiToCi(r; —|U] is the strength ofon- the temperature scales for pair dgcomposmon and tfle U
site) attractive interaction, whilg. denotes the chemical po- sy[nmhetry brez?kd_owhn canhbe arb|tr§1r|ly sepa}ratefd.hAs are-
tential. Here,t;; is the hopping integral. For the latter the rs]u L, the BCS limit ides the bo_sonlc scenario ot pnase co-
erence, while the strong-coupling regime misses the fermi-

bare band dispersion was presumed tot{de = — 2te(k), . . X
where (k) = cos@k)+cos@k)+cosék) is the structure f[)hnécr:e?;peecste?f gap formation. To combine both features we,

factor of the simple cubic lattice in three dimensions with

Il. THE MODEL AND EFFECTIVE PHASE-ONLY ACTION

A. Modulus-phase representation

lattice spacinga. A N—IA. —idi(Doar
To study electromagnetic response, the magnetic-field ef- Aj(n)=[Aj(n)][e 770, @)
fect is included through the Peierls phase faéfor: and decouple the phase figfgd(7) from the order-parameter
amplitude by performing a singular gauge transformation to
zwfRi new fermionic variables:
== A-dI, 2
Xij D, R 2 o= CJ_Ue—iqsi(r)/Z_ (8)

whered,=hcle is the magnetic-flux quantum ardis the  Physically, this amounts to replacing the original charged
vector potential. Introducing the auxiliargpain bosonic ~ fermionc;,(7) with spin carrying neutral fermiofy,(7) and
fields A;(7) depending on the imaginary—time(0<r<g  a spinless charged bosen'% (7’2 By integrating out neu-
=1/kgT) and employing the Hubbard—Stratonovich trans-tral fermionic fields, one obtains the partition function as a
formation to decouple the quartién fermionic variables  functional integral over the modulus and phase of the super-
Coulomb interaction term in Ed1) one arrives at the parti- conducting pair field:

tion functiort®

2= | TT 1a/IDIa [0 extsl 4,61

. 2
Z=J I1 DAi*DAiD@iDq;ieXF{_E jﬁdrlA'S)l

L B |Ai(D)I? . .
. Serl A,1= 2 fo dr—g——Tr N[ Z,(x)+G,"],
—% J'o dT\I’i(T)(tije'Xija3+Gf15ij)\Ifj(T) . 3 9)
where
To compactify our notation we introduce Nambu spinor and .
its Hermitian adjoint: [T4(0) lij=tije 1= A= 2xlos2g,
e\ G t=e 192G (1,1 ) el 9732,
Wi=lc | Wi=eei, 4
e A __ 7, 9D Ly
! =T 3 tluts or o3t|Aj(7)|oy.
and the Nambu Green’s functid®; satisfies (10

For large |U| amplitude fluctuations can be regarded as
highly massive excitations and all the important collective
variables are then in the phase sector. The saddle point of the
effective action with respect to the modulus of the pairing
Here, field 5See[ A, #1/ 8|A;(7)| =0 generates Hartree-Fock mean-

G(r—7)=68(r—1"). (5

J R “ N
[— E_l‘F,LLO’g,'i‘A](T)U'l
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field theory for the modulus of static and spatially uniform intimately related. The phase transition to the long—range
pairing amplitudes\;(7)=|A|. Now, focusing on the phase phase-coherent state is governed by the competition between
degrees of freedom, we expand the logarithm in the actiothe bare phase stiffneds;(A) and the effective Coulomb

(9) in powers of7,4(A) in a close analogy to the derivation interactionEc(A). WhenEc(A) is comparable td,(4),
of the phase action for Josephson-coupled superconddétorscharging effects give rise to profound quantum effects: zero-
The resulting lattice phase-only action then reads point fluctuations of the phase may destroy the long-range

. superconducting state evenTat 0.
Ec™(4) B [adi()]?
Suldl——S— 3 [an ™2

or IV. NONLINEAR o MODEL FORMULATION

B The action(11) implies the phase-fluctuation algebra of
— E d7E;(A)cog ¢i(7)— dj(7)—2xi;]- the Euclidean grouf, for the number density operat¢an-
Wy Jo gular momentumNjEi&/&qﬁj and the charged bosdlinear
(12) momentum ﬁjzei‘/’i, with the square of linear momentum

The Josephson-like coupling restricted to unity:’ P;P=sir’¢,+cofg=1. This con-
straint suggests that an effective continuum field theory in

EJ(A):thdeTelz(T)Glz(—T) (12) the form of a quantum-mechanical nonlinear model
0 (QNLoM) would be appropriate to capture the dynamics in

the phase sector beyond the mean-field 1&¥dlising the
eFadeev—Popov method with the Dirat functional (which
facilitates both the change of integration variables and the
imposition of the spherical constrajnie obtain

then will contribute to the bare phase stiffness, while th
kinetic-energy term

Ec'(A)=— foﬁdr[eﬂ(— G (1) -G~ 1GH(7)]

(13 Z:f H Dy Dy & Z |‘//i|2_N)
reflects the quantum fluctuations in the number density of
charge carriers. These terms incorporate the fermionic de- Xf Do Seil 4] Re v — cog b
grees of freedom via the local electron Green'’s function H & H oLRed; )]
. X o[ Im ¢, —sin( ;) ]. 17)
G()=(1B) 2 G(wm)e ", (14) Lim s )] , o
iz The convenient way to enforce the spherical constraint is to
where use the functional analog of thé-function representation
S(x)=[TZ(d¢2m)e'?, which introduces the Lagrange
B Al ab multiplier £(7).° The evaluation of Eq(17) in terms of the
7 5 35 5 order-parameter fieldg; yields the partition function of the
ab vitpt Al v ut A corresponding QNizM model:
G*(v)= _ , (19
1A —ly—u D¢ S [0
— . * @ gl ¥
v utHIAR ofeute]af? 2= | I oot | {zm e @

wherev;=m(2[+1)/8 (I1=0,£1,+2,...) are the(Ferm)  \yhere
Matsubara frequencies.

1
- * -1
B. Mapping on a quantum Hamiltonian of the 3D XY model Sol¥,61= BN ; ;I i (0)Gy (o) (). (19)

By performing the standard Legendre transformation fromrne symmation in Eq(19) is performed over all wave-
the “phase velocities’d¢; /97 to the conjugate “momenta” yector componentsk (— 7p/aN<k,<mp/aN, where a
Qj (that are interpreted as the number density fluctuations of. y y - 1y are integers, & p<N—1) and the(Bose Mat-
charge carriejswe obtain the basic Hamiltonian for the sys- sypara frequencieso,=21/8 (1=0,=1,+2, ...). Here,
tem in a form of thequantum3D XY model: Gi(w)) is the Fourier transform of the order-parameter sus-
ceptibility,
HIW=Ec(8) Qf—2 Ey(A)cosdi—¢)), (1) , " :
Xy =¢ SR S Iy Gij(1— 7" )=[Es(A)e*Xi 5 g+ {8;]18(7—1")

where Q;= —2i(d/a¢;) is the chargepair) number opera- +W (1), (20
tor. A fundamental proPerty of the quantl_J)hY mod_el 'S" with the vectord running over nearest neighbors. Further-
provided by the fact tha®; and ¢; are canonically conjugate more,
variables and therefore satisfy the following commutation

relation[ Qp, #j1= —i 6m—thus, the fluctuation of these are W (7= 7') = (e![#(N=4i(7]) (21)
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- )T T
<>:Zglf17[ D(i)i(T)"'e_SC[¢], (22) 10 i 0.99

is the phase-phase correlation function, where

0907t 1Ujn=3

whereS [ 6] refers to the first term of the actigil) andZ,
is the statistical sum of the “noninteracting” system de-
scribed bySc[ 0]. In the spherical model the critical bound-

|Up=4

0.8

01 02 03 04 05 |

ary (in our case marking the onset of the superconducting os [T
phase-coherent stats determined by the divergence of the = o7k kBT y ] ]
order-parameter susceptibilitggjo(w,=0)=O. This fixes HoE EEcOdE
the saddle-point valugy:?® with the onset of the phase-  , [ |08 A
transition saddle-point value of the Lagrange multipligr Lk
“sticks” to that value at criticality ¢= ¢S 03 phase ]
y ¢(=¢g") and stays con- I A
stant in the whole low-temperature phase. o2 [f.F conerence | 11 _
ANs f
V. PENETRATION DEPTH i | 12345
o P P L [
To proceed with the penetration depth calculation, we ex- 0.2 0.4 0.6 0.8 Ll T
amine the response kernel as a function of the vegtand ¢
frequencyw, : FIG. 1. Temperature vs the inverse squared penetration depth,

[scaled byT, and the zero-temperature valié(0), respectively
(23) for several values of the interactigb|/t and f=0.8. Inset: a clo-
seup of the low-temperature region.

B eiQ)|'r+iq~ri52|nZ
N8 =2 Jo I A A0 |,

Then, in the static and uniform limit the magnetic-field pen-where Eq(y,A)= VI2yt(A)+ u]?+[A[? and t(A) is the
etration depth becomes ?=4lim,_oA,(d,0,=0). Ex-  renormalized (due to phase fluctuations bandwidth

plicitly, parameter?
1 327e? 2 +edyp(y)y
2 = @df%EJ(A) (24) t2(A)= §t2a(A) f_oc Tycotk[,BEp(y,A)]. (28)

so thatng/m* =8y3E,(A)/%i%a. Here,y=(e'?) is the or-  Finally, the band fillingf is determined self-consistently by
der parameter describing phase-coherent state. The technical

steps in obtainings, and the modulugA| in the form of the _ +°°dyp(y)[2yt(A)+,u]* B
self-consistent equations are quite similar to those in Ref. I Eq(y,A) tanh) 5 Eq(y,A)
15—we will therefore be quite brief. The value of the order (29)

parameter), then reads
andf=1 corresponds to half-filling. From Eq&5)—(29) it

5 +2dyp(y) follows that the modulus-phase representatiorresults in a
Yo=1— \/Za(A)f \/—COtV[,BEp(y,A)] (25  theory which combines th@seudd gap equatior(27) in a
—= N3y form resembling the standard BCS-like expression for

with E (y,A)=E,(A)\2(3—y)a(A) and  a(A) with the equation for the ordering of the phase degrees of
EEC(A)/EJ(A). Fljrther p(y) =" [d3k/(2m/a)%] 8]y freedom in the real spa¢@5)—in close analogy to the local-

B . . . . .. pair superconductor scenario given by the hard-core bosonic
e(k)] is the density of states for 3D simple cubic lattice: limit of the negativet) Hubbard model.

1 (minL2-y) The super_fluid dgnsity(or inverse square penetration
p(y)=— du®(ly|/3—1) depth normalized to itsT=0 value calculated from Eq24)
77 ) max(-1,-2-y) is plotted in Fig. 1 as a function of/T. for several repre-
1 sentative values ofU|/t ranging from the strong-coupling
JI=(u+y)%74]. (|U|>!UO 1) to vv_eak—c_oupllng_|(U|<|U0 0 regimes. Here,
% WK[ 1= (uty) /] 26 |Uopd is tﬁe “optimal” interaction strength for whichH '™
S ) =Tc(Ugpy. Plots in Fig. 1 show a quasiuniversal behavior
where K(x) and ©(x) are the elliptic integral of the first \jth respect to the interaction strength(T)/n(0) depends
kind and the unit step functlorj, respectwely_. Subsequentlyomy weakly on|U| [more precisely, according to numerical
the gap parametd| is determined self-consistently by analysis of Eq(24), 1/\2(T) is weakly interaction dependent
for roughly |U|/t>2]. This clearly indicates that, is the
+o dyp(y) tanr{éE (y,A) 27) only energy scale involved in the temperature dependence of
—» 2E4(y,A) 279 N(T) for interaction strength ranging from weak to strong

1=|U|
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FIG. 2. Uemura-type plot of ;. vs zero-temperature superfluid T /TC

density for several values of the filing parameteNariation of ) ] )
|U|/t as the control parameter for the parametric plot; arrows indi- FIG- 3. Effect of classical phase fluctuations. Plot of1T) as
cate the crossover from the strong to weak couplihgre A, in Fig. 1 but calculated for the classical version of 3I¥ Hamil-
—32me?t/fi2c?a). Inset: T—|U| phase diagram showing* and  tonian[see Eq(30)].
T, for f=0.8 (see Ref. 15

c _ _ — b
coupling?® Indeed, the inspection of Eq&l1) and (24) re- Hphasé™ % Ey(A)cod éi— ), (30)
veals that the bare phase stiffnedSg(A), which sets the
energy scale okgT., also enters the expression fon3(T)
linearly. It is interesting to note, that in high: cuprates X ) - :
similar behavior was found experimentaffwhen the tem- Ordered state which can be easily obtained from @) in
perature scale is normalized By, the overall temperature the limit a(A)—0:
dependence ok?(0)/\?(T) is remarkably independent of E,(A) v ple)
dopingx, so the data collapse approximately onto one curve. kJ— = f €e——
Furthermore, we plot in Fig. 2 the critical temperatiievs BTc —»  37€
the zero-temperature value of the superfluid densj{9) in  Fyrthermore, the order paramet@6) in this limit becomes
a form of the Uemura plot. It can be seen thaf0) follows
a reentrant loop, resembling the outline of a fly’s wing, as the ) kgT
control parameter for the parametric plot—the interaction ¢o=1—Kc—EJ( A) (32
|U| moves from the strong to weak regime. Experimentally, _ _ .
the relation between the critical temperature and the zergvhich implies a linear temperature behavior of the superfluid

with the bare phase stiffness given By(A) as a single
energy parameter. The transition temperafliyénto phase-

=K.~0.5054620197. (31

temperature muon spin depolarization rate(T=0) density in the low-temperature regifef. Eq(24) and Fig. 3
[~1/A\2(T=0)] in the form resembling the plots in Fig. 2. in agreement with the results of Refs. 4 and 5 and Monte
was seen in a number of cuprafes. Carlo simulations on the classical 30Y model® In par-

ticular, the slope of the superfluid densityTat 0 according
to Egs.(24) and(32) becomes
VI. EFFECT OF CLASSICAL PHASE FLUCTUATIONS
\?(0)

It is interesting to consider the effect ofassical phase d
\A(T)

fluctuations on the low-temperature properties of the penetra- d(T/T,)
tion depth. It was suggested that classical phase fluctuations

are capable to produce a linear temperature dependence leér reference, estimates of the quantitd/[d(T/
A2(0)/\%(T) which may be relevant to explain the behavior T.) ][A?(0)/\%(T)]|r-o for various cuprates and doping lev-

of the penetration depth in high; superconductor$A suit-  els are in the range 0.94 to— 0.512* Interestingly, by com-
able treatment of classical phase fluctuations is readily obparing Figs. 1 and 3 we see that charging endomantum
tained by neglecting the quantum term with the Coulombeffects alleviate the low-temperature lindadependence of
energy[for Ec(A)—0] in the effective phase-only action 1/\%(T): the linear temperature behavior is replaced by the
[see Eq.(11)]. A “reverse engineering” of the action from dominant exponential temperature dependence in the quan-
the Lagrange to the Hamilton description results then in théum case. However, as shown in Ref.4 the linear temperature
classicalX Y-model Hamiltoniansee also Eq(16)] behavior can be restored in the quantum case when the com-

=-1. (33

T=0
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bined effect of charging interactions and dissipation is in-for U—0 can be comprehended by realizing that thodgh
cluded. Whether or not the low-temperature features(d) becomes small in this limit, the coherence length becomes
due to classical phase fluctuations can solely account expenery large resulting in a finite value for the stiffness. In other
mental data of the penetration depth in high-cuprates words, in the BCS limit the weak-coupling superfluid density
without invoking, e.g., excitations near the nodes of theis dominated by the concentration of the available charge
d-wave gap, is an interesting but presently unsettled issue.carriers. It might be then surprising that E§2) which fol-
ApproachingT . from belowA?(0)/\?(T) vanishes with a lows from modulus-phase representation predicts/éresh-

finite slope ing of the T=0 superfluid density in thgJ|—0 limit where
the BCS and modulus-phase model EfL) formally should
d A2(0) Ej(A,T=T,) overlap. To account for this discrepancy we note that there is
d(T/T.) W - Ey(A,T=0) ° (34 a fundamental difference between BCS continuum formula-
T=T, tion in the momentum space and the discrete modulus-phase

This is distinct from the Monte Carlo result of Ref.23 where '€Presentation on a lattice in real space: the latter manifestly
AZ(O)/)\Z(T)~(T/T —1)0-673implies an infinite slope at the violates Galilean invariance for arbitrary interactidh

c . . . .
critical temperature. Close ff, , however, the effect of fluc- Cl€arly, even in thgU|—0 limit the action(11) describes

tuations is profound and the spherical model appraheing ~ charges moving through activatédopping process in real
effectively at a one-loop levels unable to reproduce correc- SPace rather than moving as plane waves in momentum do-

tions due to critical fluctuations in all details. Note that the Main- As a result radically different behavior 0f(0) in the
universal behavior of the quantum modalee Eq.(11)] weak-coupling limit for both models emerges: the vanishing

shown in Fig. 1 exhibits neither the low-temperature linearity®’ T=0 superfluid stifiness in the modulus—phase model

nor (also due to the fluctuation corrections mentioned apove!©!lows then from the loss of coherence between sites due to

the genuine critical 3DXY behavior neafl, as the classical € diminishing of the amplitude pairin@r pair decay in
XY model of Ref.23. the |[U|—0 limit. Therefore, if one consistently adopts the

point of view that the changeover from underdoped to over-
doped behavior in high-, cuprates is somehow related to
the passage from strong to weak coupliag the pseudogap
Following the Uemura suggestion relating the phenomenon seems to suggetsten the “weak-coupling”
Bose Einstein—BCS (BE-BCS crossover scenaro?’  overdoped regime cannot be described as the genuine-BCS
to the under/overdoped phenomenology of high- limit (in momentum spagealthough other characteristics as,
superconductord;?8it is tempting to associate the smil{ ~ e.g., amplitude ratios #/kgT, seem to suggest a typical
regime with the overdoped and larfig} regime with the ~BCS behavioP>* This last observation is perhaps less strik-
underdoped region of highiz superconductors. In this anal- ing when one realizes that virtually all approaches to high-
ogy the interaction parametfd| translates then to the dop- superconductivity underline the important role of inhomoge-
ing parametex for cuprategwith |U,,{ corresponding to the neity both in real and in momentum space.
optimal doping. In doing so, one should bear in mind that, In conclusion, in making the analogy between the inter-
of course, the negativid-Hubbard system cannot serve as aaction driven BE-BCS crossover with the phenomenology of
realistic model of highF, cuprates. However, it can be em- superconducting cuprates, there are differences that should
ployed as a useful tool to explore mutual effects of pairingbe recognized and points whose precise clarification presum-
and phase fluctuations. Strong suppression of the superflugbly would require to go beyond aawave attractive Hub-
density seen in experiments in hih-cuprates disagrees, as bard model. However, the similarities and analogies we
we noted, from the predictions of the BCS theory. It is well found are very intriguing and we believe that the concept of
known that the superfluid stiffnesg(0) in a system of fer- pairing without phase coherence is a promising scenario
mions is finite at zero temperature for infinitesimal interac-while exploiting the properties of highiz superconductors.
tion and drops discontinuously to(0)=0 at exactly zero
interaction. Specifically, as a direct consequence of the the
Galilean invariance of the continuum BCS modsith para-
bolic dispersion one hasg(0)=n:/4m wheren; is the fer- This work has been supported by the Polish Science Com-
mion density. The fact thatg(0) approaches a finite value mittee (KBN) under Grant No. 5 PO3B 058 20.

VII. DISCUSSION AND FINAL REMARKS
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