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Nonequilibrium relaxation in neutral BCS superconductors: Ginzburg-Landau approach
with Landau damping in real time
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We present a field-theoretical method to obtain consistently the equations of motion for small amplitude
fluctuations of the order parameter directly in real time for a homogeneous, neutral BCS superconductor. This
method allows to study the nonequilibrium relaxation of the order parameter as an initial value problem. We
obtain the Ward identities and the effective actions for small phase the amplitude fluctuations to one-loop order.
Focusing on the long wavelength, low-frequency limit near the critical point, we obtain the time-dependent
Ginzburg-Landau effective action to one-loop order, which is nonlocal as a consequence of Landau damping.
The nonequilibrium relaxation of the phase and amplitude fluctuations is studied directly in real time. The
long-wavelength phase fluctuation~Bogoliubov-Anderson-Goldstone mode! is overdampedby Landau damp-
ing and the relaxation time scale diverges at the critical point, revealingcritical slowing down.
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I. INTRODUCTION

Nonequilibrium phenomena in superconductors contin
to be the focus of attention. The dynamics of Josephson ju
tions, phase slip phenomena in the dynamics of vortices
relaxation of the order parameter and supercurrents are
examples of the experimental effort that probe nonequi
rium aspects of superconductivity.

Since the original work of Abrahams and Tsuneto1 there
has been an ongoing effort in trying to obtain the effect
time-dependent description of nonequilibrium phenome
from a microscopic Bardeen-Cooper-Schrieffer2,3 ~BCS!
theory. Whereas the effective Ginzburg-Landau4 ~GL! de-
scription in thestatic limit was derived by Gor’kov,5,6 the
effective time dependent Ginzburg-Landau description is
the focus of a substantial theoretical effort. There is a la
body of work that established the validity of a tim
dependent nonlinear Schroedinger equation that desc
the dynamics of the order parameter at zero temperature7–12

At finite temperature the dynamical description is comp
cated by the presence of Landau damping, which preven
local description in time, because the spectral densities
ture branch cuts that prevent a derivative expansion. T
problem was originally pointed out by Abrahams a
Tsuneto.1 At finite-temperature Landau damping cuts are u
avoidable and result from processes that involve scatter
of quasiparticles in the thermal bath. In derivations of t
effective Lagrangian for dynamical phenomena from a m
croscopic theory the Landau-damping contribution had of
been ignored.13

The absorptive contributions to the effective action
long-wavelength phase fluctuations at finite temperat
have been studied by Aitchisonet al.14 for a neutral BCS
superconductor. These authors studied in detail the Lan
damping contributions to the effective action of phase fl
tuations and concluded that for temperatures 0,T,0.6Tc
the effective propagator for the phase fluctuati
0163-1829/2002/66~18!/184502~23!/$20.00 66 1845
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~Bogoliubov-Anderson-Goldstone mode! can be well ap-
proximated by simple quasiparticle poles at complex ene
and describe damped excitations with a linear a
temperature-dependent dispersion relation and nar
widths.

An alternative approach to study nonequilibrium aspe
of superconductors is based on kinetic theory. Kopnin15 stud-
ied the nonequilibrium dynamics of flux flow in clean supe
conductors, but did not address the validity of the tim
dependent Landau-Ginzburg description near the crit
point. Watts-Tobinet al.16 studied the validity of the Landau
Ginzburg description near the critical point fordirty super-
conductors, where relaxational processes are dominate
~elastic! collisions.

However, to the best of our knowledge, the description
the relaxational dynamics for the amplitude and the phas
the order parameter, as well as the validity of the Land
Ginzburg descriptionnear the critical pointin cleanneutral
superconductors had been the subject of several recent
ies, but has not been completely understood. The region
the critical temperature, whereuD0(T)u!T with D0(T) the
finite-temperature gap~order parameter!, is the region of va-
lidity of the Ginzburg-Landau theory.

The interest on a deeper understanding of the tim
dependent effective action for long-wavelength phase fl
tuations has been rekindled by several recent developme
Recently there has been a substantial effort to obtain
time-dependent effective action of long-wavelength colle
tive excitations associated with phase fluctuations ind-wave
superconductors.17–20

In particular, these studies focused on the novel Carls
Goldman modes.21 These are Goldstone-like modes
chargedsuperconductors that emerge near the critical te
perature.

While at T50 the Anderson-Higgs mechanism combin
the Goldstone and gauge fields into a gapped plasma m
near the critical temperature a novel quasiparticle Goldsto
like excitation, the Carlson-Goldman mode, is present
©2002 The American Physical Society02-1
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charged superconductors. This mode is a superposition o
Bogoliubov-Anderson-Goldstone mode, present inneutral
superconductors and the long-range gauge field which
screened at finite temperature. In Ref. 18 it was pointed
that the existence of this mode is associated both w
screening and Landau damping of phase fluctuations.
importance of the nonequilibrium dynamics of lon
wavelengthphasefluctuations has also been highlighted r
cently within the context of high-temperatur
superconductivity.22

Furthermore recent experiments in ultracold alkali ato
have demonstrated the trapping and cooling offermionical-
kalis, in particular40K and 6Li. 23 One goal of this presen
experimental effort is to observe a transition to aneutral
fermi superfluidfor fermi systems with anattractive interac-
tion between atoms in two different hyperfine states.24 Re-
cently the spectrum of low-energy collective excitations
the collisionlessregime has been studied, in particular, f
cusing on the emergence of Goldstone or phase fluctuat
in theseneutral Fermi superfluids.25 A proposal for the de-
tection of the phase transition to a neutral Fermi superfluid
6Li alkalis relies on the spectrum of long-wavelength colle
tive ~Goldstone! excitations.26

The interest on neutral BCS Fermi superfluids is interd
ciplinary, from the current experimental efforts in Fermi a
kalis and in mixtures with Bose-alkalis,23 to neutron super-
fluidity in nuclear matter and neutron stars. For a rec
discussion on neutral Fermi superfluids and their interest
wide variety of fields see Ref. 27.

Hence the study of the dynamics of phase fluctuation
neutral Fermi superfluids,~or neutral BCS superconductor!
continues to be of timely interest and of experimental r
evance.

The goals of this article. In this article we focus on the
nonequilibriumreal-time dynamics of phase and amplitud
fluctuations in neutral BCS superconductors in the Ginzbu
Landau regime near the critical temperature. In particular,
obtain the effectivedynamicalGinzburg-Landau description
of nonequilibrium relaxation of long-wavelength, low
frequency fluctuations of the order parameternear the criti-
cal point.

While previous efforts, notably by Aitchisonet al.10,14 fo-
cused on the long-wavelength, low-frequency effective
tion well below the critical temperature for 0,T,0.6Tc our
goal is to study the critical regionuD0(T)u!Tc with D0(T)
the finite-temperature gap. Our study is different from pre
ous attempts in several respects:~i! We implement the
Schwinger-Keldysh formulation of nonequilibrium fiel
theory28 along with the recently introducedtadpole method31

to obtain the equations of motion for small amplitude flu
tuations of the order parameter inreal time. ~ii ! The equa-
tions of motion obtained with these methods are retard
lead to the Ward identities and allow to establish the retar
effective action at once. Furthermore, the equations of m
tion describe an initial value problem that allows a real-tim
study of relaxation and damping.~iii ! We then focus on the
Ginzburg-Landau regimeuD0(T)u/T!1 and establish thedy-
namicalGinzburg-Landau effective action to one-loop ord
for long-wavelength, low-frequency fluctuations. This effe
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tive action is retarded and nonlocal because of Landau da
ing. ~iv! We study the time evolution of small phase a
amplitude fluctuations from the equilibrium configuratio
and reveal directly in real time the effect of Landau dampin

Main results: Implementing the Schwinger-Keldysh for
mulation of nonequilibrium field theory and the tadpo
method, we obtain the retarded equations of motion for sm
fluctuations, which in turn lead to Ward identities associa
with ~global! gauge invariance bothin and out of equilib-
rium. From these equations of motion we obtain the retar
one-loop effective action which isnonlocalas a consequenc
of Landau damping.

We then focus on the Ginzburg-Landau (D0!T) region
and study the real-time relaxation of small phase and am
tude fluctuations. While the spectral density for phase fl
tuations features a peak that suggests a Goldstone-like
persion relation, the relaxational dynamics is complet
overdampedas a consequence of Landau damping.

Far away from the Ginzburg-Landau regime at low te
peratures, the spectral densities for both phase and ampl
fluctuations feature narrow quasiparticle peaks confirm
previous results.10,14 In particular, the real-time relaxation o
long-wavelength phase fluctuations is weaklyunderdamped
by Landau damping.

The article is organized as follows. In Sec. II we introdu
the model and the linear response formulation to obtain
equations of motion. In Sec. III we introduce the Schwing
Keldysh formulation in the Nambu-Gor’kov formalism t
study the nonequilibrium aspects of Bogoliubov quasipa
cles. In Sec. IV we introduce the tadpole method, obtain
equations of motion directly in real time and cast them
terms of an initial value problem. We obtain explicitly th
retarded self-energies to one-loop order and their spec
representations and obtain the one-loop retarded effective
tion. In Sec. V we obtain the Ward identities and discuss
static limit of the self-energies. In Sec. VI we obtain th
effective time-dependent Ginzburg-Landau description
cusing on the Ginzburg-Landau regime and the lon
wavelength, low-frequency limit. In this section we provid
a thorough numerical analysis of the real-time evolution
the relaxation of phase and amplitude fluctuations. Sec
VII presents our conclusions and poses new directions.
appendix is devoted to an alternative derivation of the Bo
liubov transformation, which facilitates the Schwinge
Keldysh nonequilibrium formulation.

II. PRELIMINARIES

A. Neutral BCS model

The BCS Hamiltonian of a neutral electron gas is giv
by

H5 (
s5↑,↓

E d3xcs
†~x,t !S 2

¹2

2mDcs~x,t !

2gE d3xc↑
†~x,t !c↓

†~x,t !c↓~x,t !c↑~x,t !, ~2.1!
2-2
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wherecs(x,t) are the Heisenberg complex fields represe
ing electrons of massm and spins, andg.0 is the strength
of the s-wave pairing interaction between spin-up and sp
down electrons close to the Fermi surface. In this article,
set\5kB51. The fieldcs(x,t) and its Hermitian conjugate
satisfy the equal-timeanticommutationrelations

$cs~x,t !,cs8
†

~x8,t !%5dss8d
(3)~x2x8!, ~2.2!

$cs~x,t !,cs8~x8,t !%5$cs
†~x,t !,cs8

†
~x8,t !%50.

The HamiltonianH is invariant under theU(1) gauge trans-
formation

cs~x,t !→eiucs~x,t !,

cs
†~x,t !→e2 iucs

†~x,t !, ~2.3!

where u is a constant phase. A consequence of thisU(1)
gauge symmetry is conservation of the number of electro
Indeed, the number operator of electrons

N5 (
s5↑,↓

E d3xcs
†~x,t !cs~x,t ! ~2.4!

commutes withH and hence is a constant of motion. How
ever, it is convenient to work in the grand-canonical e
semble in which the grand-canonical Hamiltonian is giv
by

K[H2mN5 (
s5↑,↓

E d3xcs
†~x,t !S 2

¹2

2m
2m Dcs~x,t !

2gE d3xc↑
†~x,t !c↓

†~x,t !c↓~x,t !c↑~x,t !, ~2.5!

where the chemical potentialm is the Lagrange multiplier
associated with conservation of number of electrons. T
chemical potentialm is determined by fixing the number o
electrons and in general is a function of the temperatu
However, for the situation under study in which the tempe
ture is much lower than the Fermi temperature,m can be
approximated by its zero-temperature value, i.e., the Fe
energy. The Lagrangian~density! corresponding toK is given
by

L@c†,c#5 (
s5↑,↓

cs
† S i

]

]t
1

¹2

2m
1m Dcs1gc↑

†c↓
†c↓c↑ .

~2.6!

Introducing the auxiliary complex scalarpair field and its
Hermitian conjugate defined as

D~x,t !5gc↓~x,t !c↑~x,t !,

D†~x,t !5gc↑
†~x,t !c↓

†~x,t !, ~2.7!

and performing the Hubbard-Stratonovich transformation32

the Lagrangian can be written as
18450
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L@c†,c,D†,D#5 (
s5↑,↓

cs
† S i

]

]t
1

¹2

2m
1m Dcs1D†c↓c↑

1c↑
†c↓

†D2
1

g
D†D. ~2.8!

We note that the pair fieldD(x,t) is not a dynamical field as
there is no corresponding kinetic term in the Lagrang
~2.8!.

In the superconducting phase, we decompose the pa
field into the condensate and noncondensate parts

D~x,t !5^D~x,t !&1x~x,t !, ^x~x,t !&50, ~2.9!

where ^O(x,t)&5Tr@rO(x,t)#/Trr denotes theexpectation
valueof the Heisenberg operatorO(x,t) in the initial density
matrix r, ^D(x,t)& is the superconducting order paramet
and x(x,t) describes the noncondensate operator. The p
ence of the condensatêD(x,t)&Þ0 leads to spontaneou
breaking of theU(1) gauge symmetry. In the absence
explicit symmetry breaking external sources, the conden
is homogeneous~i.e., space-time independent! ^D(x,t)&
5D0, which is the situation under consideration in this a
ticle.

B. Real-time relaxation in linear response

The goal of this article is to obtaindirectly in real timethe
equations of motion for small amplitude perturbations of t
homogeneous superconducting condensate in an initial v
problem formulation. Our strategy to study the relaxation
the condensate perturbation as an initial value problem
gins with preparing a superconducting state slightly p
turbed away from equilibrium by applying an external sour
coupled to the pair field. Once the external source
switched off, the perturbed condensate must relax towa
equilibrium. It is precisely thisreal-time evolutionof the
nonequilibrium fluctuations around the condensate the fo
of this article.

Let h(x,t) be an externalc-number source coupled to th
pair field D(x,t), then the Lagrangian given by~2.8! be-
comes

L@c†,c,D†,D#→L@c†,c,D†,D#1D†h1h* D.
~2.10!

The presence of the external sourceh will induce a ~linear!
response of the system in the form of an induced expecta
value

^D~x,t !&h5D01d~x,t !. ~2.11!

Here ^D(x,t)&h denotes the expectation value of the pari
field D(x,t) in the presence of the external source,D0
5^D(x,t)& is the homogeneous order parameter in the
sence the external source, andd(x,t) is the space-time de
pendent perturbation of the homogeneous condensateD0 in-
duced by the external source. The linear response
perturbationd(x,t) vanishes when the external sourceh(x,t)
vanishes at all times. This is tantamount to decomposing
field into the homogeneous condensate (D0), a small ampli-
2-3
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tude perturbation induced by the external source@d(x,t)#,
and the noncondensate part@x(x,t)# as

D~x,t !5D01d~x,t !1x~x,t !, ^x~x,t !&h50.
~2.12!

In linear response theoryd(x,t) can be expressed in term
of theexactretarded Green’s function of the pair fields in th
absence of external source.6,33 An experimentally relevan
initial value problem formulation for the real-time relaxatio
of the condensate perturbation can be obtained by cons
ing that the external source is adiabatically switched ont
52` and switched off att50, i.e.,

h~x,t !5h~x!eetQ~2t !, e→01. ~2.13!

The adiabatic switching-on of the external source induce
space-time-dependent condensate perturbationd(x,t), which
is prepared adiabatically by the external source with a gi
valued(x,0) at t50 determined byh(x). For t.0 after the
external source has been switched off, the perturbed con
sate will evolve in the absence of any external source re
ing toward equilibrium. Thus, the external sourceh(x,t) is
necessary for preparing an initial state att50 setting up an
initial value problem. This method has been applied to stu
a wide variety of relaxation phenomena in differe
settings,33,34 including the relaxation of condensate fluctu
tions in homogeneous Bose-Einstein condensates.35

Using the decomposition~2.12! we expand the Lagrang
ian density, and consistently with linear response, keep o
the linear terms ind andd* , which are the small amplitude
perturbations from the homogeneous condensate induce
the external sourceh. The LagrangianL becomes~in the
presence of the external sourceh)

L@c†,c,x†,x#5L0@c†,c,x†,x#1Lint@c†,c,x†,x#,
~2.14!

with

L0@c†,c,x†,x#5 (
s5↑,↓

cs
† S i

]

]t
1

¹2

2m
1m Dcs1D0* c↓c↑

1c↑
†c↓

†D02
1

g
x†x,

Lint@c†,c,x†,x#

5~d* 1x†!c↓c↑2
1

g
~d* 1D0* !x1h* x1H.c.,

~2.15!

where we have discarded thec-number~field operators inde-
pendent! terms. We note that the LagrangianL@c†,c,x†,x#
is obviously invariant under the gauge transformations

cs ,x,D0 ,d,h→eiu/2cs ,eiux,eiuD0 ,eiud,eiuh,
18450
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cs
† ,x†,D0* ,d* ,h*

→e2 iu/2cs
† ,e2 iux†,e2 iuD0 ,e2 iud,e2 iuh,

~2.16!

which, as will be seen below, is at the heart of the Wa
identity.

Whereas in general a gauge transformation is invoked
fix the condensateD0 to bereal for convenience, this choice
corresponds tofixing a particular gauge, which in turn hides
the underlying gauge symmetry. In order to obtain the W
identity associated with this symmetry we will keep a co
plex condensateD0 and analyze in detail the transformatio
laws of the various contributions to the equations of motio

The study of the static and dynamical properties of
BCS theory is simplified by introducing the Nambu-Gor’ko
formulation. Let us introduce the two-component Namb
Gor’kov fields36,6

C~x!,t)5Fc↑~x,t !

c↓
†~x,t !G , C†~x,t !5@c↑

†~x,t !,c↓~x,t !#,

~2.17!

and the 232 Pauli matrices

s15F0 1

0 0G , s25F0 0

1 0G , s35F1 0

0 21G ,
~2.18!

in terms of which the Lagrangian can be written as

L@C†,C,x†,x#5L0@C†,C,x†,x#1Lint@C†,C,x†,x#,
~2.19!

with

L0@C†,C,x†,x#5C†F i
]

]t
1s3S ¹2

2m
1m D1s1D0

1s2D0* GC2
1

g
x†x,

Lint@C†,C,x†,x#5C†s1~d1x!C1
1

g
x†~D01d!1x†h

1H.c. ~2.20!

III. NONEQUILIBRIUM FORMULATION

A. Generating functional

The general framework to study of nonequilibrium ph
nomena is the Schwinger-Keldysh formulation,28 which we
briefly review here in a manner that leads immediately to
path integral formulation.

Consider that the system is described by an initial den
matrix r and a perturbation is switched on at a timet0, so
that the total Hamiltonian fort.t0 , H(t), does not commute
with the initial density matrix. The expectation value of
Heisenberg operatorO(t)5U21(t,t0)O(t0)U(t,t0) is given
by
2-4
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^O~ t !&5
TrrU21~ t,t0!OU~ t,t0!

Trr
, ~3.1!

whereU(t,t0) is the unitary time evolution operator in th
Heisenberg picture

U~ t,t0!5TexpF2 i E
t0

t

dt8H~ t8!G , ~3.2!

with T the time-ordering symbol. If the initial density matri
r describes a state in thermal equilibrium at inverse temp
ture b with the unperturbed HamiltonianH(t,t0)5H, i.e.,

r5e2bH5U~ t02 ib,t0!, ~3.3!

then the expectation value~3.1! can be written in the form

^O~ t !&5
TrU~ t02 ib,t0!U21~ t0 ,t !OU~ t,t0!

TrU~ t02 ib,t0!
. ~3.4!

The numerator of this expression has the following interp
tation: evolve in time fromt0 up to t, insert the operatorO,
evolve back fromt to the initial timet0 and down the imagi-
nary axis in time fromt0 to t02 ib. The denominator de
scribes the evolution in imaginary time which is the famili
description of a thermal density matrix. We note that unl
the S-matrix elements or transition amplitudes, expectat
values of Heisenberg operators require evolutionforward
andbackwardin time ~corresponding to theU andU21 on
each side of the operatorO).

The time evolution operators have a path-integ
representation32 in terms of the Lagrangian, and the insertio
of operators can be systematically handled by introduc
sources coupled linearly to the fields, i.e.,

L@C†,C,x†,x#→L@C†,C,x†,x#1C†J1J†C1x† j

1 j * x, ~3.5!

whereJ and J† are Grassmann-valued variables. The int
duction of sourcesJ, J†, j, and j * also allows a systemati
perturbative expansion. In such an expansion, powers of
erators are obtained by functional derivatives with respec
these sources, which are set to zero after functional diffe
tiation. We note that the sourcesj,j * introduced in Eq.~3.5!
to generate the perturbative expansion for the pair field
terms of functional derivatives with respect to these, aredif-
ferent from the external sourcesh,h* introduced in Eq.
~2.10! to generate an initial value problem in linear respon
and to displace the condensate from equilibrium.

Since there arethree different time evolution operators
the forward, backward, and imaginary, we introducethree
different sources for each one of these time evolution op
tors, respectively. Takingt0→2`, we are led to considering
the generating functional29

Z@J1,J2,Jb#5TrU~2`2 ib,2`,Jb!U~2`,1`,J2!

3U~1`,2`;J1!, ~3.6!

where U(t f ,t i ;J) is the time evolution operator@see Eq.
~3.2!# in the presence of the sourceJ and for simplicity of
18450
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notation we have suppressed the spin indexs and the com-
plex conjugate of the sourcesJ†. The denominator in Eq
~3.4! is given by Trr5Z@0,0,0#. The generating functiona
Z@J1,J2,Jb# can be written as a path integral along t
contour in complex time plane~see, Fig. 1!

Z@J1,J2,Jb#5E DCC†DCCexpF i E
C
d4xLC@C†,C;J#G ,

~3.7!

whereDCC†DCC denotes the functional integration measu
along the contourC and

E
C
d4xLC@C†,C;J#5E

2`

1`

d4xL@C†1,C1;J1#

2E
2`

1`

d4xL@C†2,C2;J2#

1E
2`

2`2 ib

d4xL@C†b,Cb;Jb#,

~3.8!

with *2`
1`d4x[*d3x*2`

1`dt, etc. Because of the trace and th
fermionic nature of the operators, the path integral along
contourC requiresantiperiodic boundary conditionson the
fields. The superscripts1 and2 refer to fields defined in the
upper and lower branches, respectively, corresponding to
ward (1) and backward (2) time evolution, while the su-
perscriptb refers to the field defined in the vertical branc
running down parallel to the imaginary axis. The negat
sign in front of the action along the backward branch is
result of the fact that backward time evolution is determin
by U21(1`,2`) with U the time evolution operator. The
contour sourceJ that enters in the contour LagrangianLC in
Eq. ~3.7! takes the values of the sourcesJ6 and Jb in the
respective branches as displayed in Fig. 1.

Functional derivatives with respect to the sources in
forward branch give time-ordered Green’s functions, tho
with respect to the sources in the backward branch give
anti-time-ordered Green’s functions, and those with resp
to the sources in the imaginary branch give the us
imaginary-time ~Matsubara! Green’s functions. While the
sourcesJ1, J2, and Jb introduced to obtain the Green’

FIG. 1. The contourC in complex time plane in the Schwinger
Keldysh formulation. It consists of a forward branch running fro
t52` to t51`, a backward branch fromt51` back to t
2`, and an imaginary branch fromt52` to t52`2 ib. The
sourcesJ6 serve to generate the nonequilibrium Green’s functio
of the Nambu-Gor’kov fields.
2-5



an
e

e

t a
a

ur
re

r

g

r

r
of

he
q.
e

es
m
na-

n’s

t
nc-
ne
ther
n-

ly
s of
ting
re
ther

h
tion
is

n-

n’s
d
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functions via functional differentiation aredifferent in the
different branches, as they generate the time-ordered,
time-ordered, and Matsubara Green’s functions, respectiv
the external sourceh, the homogeneous condensateD0, and
the departure from equilibriumd are c numbers and henc
are thesamein all branches.

Writing the Lagrangian as a free and an interaction par
L5L01Lint , the generating functional can be written as
power series expansion in the interaction part, which in t
can be generated by taking functional derivatives with
spect to the sourcesJ,J† by identifying

C6→7 i
d

dJ†6
, C†6→6 i

d

dJ6
,

Cb→2 i
d

dJ†b
, C†b→ i

d

dJb
. ~3.9!

As a result, the full generating functional along the contouC
can be written as

Z@J#5expH i E
C
d4xLint,CF2 i

d

dJ†
,i

d

dJG J Z0@J#,

~3.10!

where free field generating functionalZ0@J# is given by Eqs.
~3.7! and ~3.8! but with L@C†,C;J# replaced by
L0@C†,C;J#.

B. Green’s functions

The equation of motion for thefreeNambu-Gor’kov field
C in the presence of the sourceJ reads

F i
]

]t
1s3S ¹2

2m
1m D1s1D01s2D0* GC~x,t !52J~x,t !.

~3.11!

The solution of this equation of motion is given by

CJ~x,t !52E
C
d4x8S~x2x8,t2t8!J~x8,t8!, ~3.12!

whereS(x2x8,t2t8) is the Green’s function matrix alon
the contourC and satisfies

F i
]

]t
1s3S ¹2

2m
1m D1s1D01s2D0* GS~x2x8,t2t8!

5dC~ t2t8!d (3)~x2x8!, ~3.13!

with dC(t2t8) the Dirac delta function along the contou
*Cdt8dC(t2t8)51. The Green’s functionS(x2x8,t2t8)
has the form

S~x2x8,t2t8!5S.~x2x8,t2t8!QC~ t2t8!

1S,~x2x8,t2t8!QC~ t82t !,
~3.14!
18450
ti-
ly;

s

n
-

where QC(t2t8) is the step function along the contou
and S:(x2x8,t2t8) obey the homogeneous equations
motion.

The antiperiodic boundary conditions on the fields in t
path integral, a result of the trace over fermionic fields in E
~3.6!, lead to the following boundary condition on th
Green’s function

lim
t0→2`

S~x2x8,t02t8!52 lim
t0→2`

S~x2x8,t02 ib2t8!.

~3.15!

Since along the contourt0→2` is theearliest time andt0
2 ib is therefore thelatest time, Eq.~3.15! entails

lim
t0→2`

S,~x2x8,t02t8!

52 lim
t0→2`

S.~x2x8,t02 ib2t8!, ;t8,

~3.16!

which is the Kubo-Martin-Schwinger~KMS! condition for
equilibrium correlation functions.30

The free field generating functionalZ0@J# is now obtained
by writing

C~x,t !5C̃~x,t !1CJ~x,t !,

C†~x,t !5C̃†~x,t !1CJ
†~x,t !, ~3.17!

which leads to the result

Z0@J#5Z0@0#expF2 i E
C
d4xE

C
d4x8J†~x!S~x2x8!J~x8!G ,

~3.18!

where and hereafterx denotes the space-time coordinat
(x,t) for simplicity of notation. The source-independent ter
Z0@0# will cancel between the numerator and the denomi
tor in all expectation values in Eq.~3.1!.

Furthermore, we are interested in computing Gree
functions offinite real timeswhich are defined for fields in
the forward (1) and backward (2) time branches, but no
in the imaginary branch. For these real-time Green’s fu
tions the contributions to the generating functional from o
source in the imaginary branch and another source in ei
forward or backward branch vanish by the Rieman
Lebesgue lemma,31,33 since the time arguments are infinite
far apart along the contour. Therefore the contour integral
the source terms and Green’s functions in the genera
functional factorize into a term in which the sources a
those either in forward and backward branches and ano
term in whichboth sources are in the imaginary branch.31,33

The latter term~with both sources in the imaginary branc!
cancel between numerator and denominator in expecta
values and the only remnant of the imaginary branch
through the periodic boundary conditions along the full co
tour in the Green’s function.

Thus the generating functional for the real-time Gree
functions simplifies to the following expression, define
solely along forward and backward time branches31,33
2-6
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Z@J6,J†6#5expF i E
2`

1`

d4x$Lint@2 id/dJ†1,id/dJ1#

2Lint@ id/dJ†2,2 id/dJ2#%G
3expH 2 i E

2`

1`

d4xE
2`

1`

d4x8@J†1~x!S11~x

2x8!J1~x8!1J†2~x!S22~x2x8!J2~x8!

2J†1~x!S12~x2x8!J2~x8!

2J†2~x!S21~x2x8!J1~x8!#J , ~3.19!

with

S11~x2x8!5S.~x2x8,t2t8!Q~ t2t8!

1S,~x2x8,t2t8!Q~ t82t !,

S22~x2x8!5S.~x2x8,t2t8!Q~ t82t !

1S,~x2x8,t2t8!Q~ t2t8!,

S21~x2x8!5S.~x2x8,t2t8!,

S12~x2x8!5S,~x2x8,t2t8!, ~3.20!

where now2`<t,t8<1` and the superscripts1,2 cor-
respond to the sources defined on the forward (1) and the
backward (2) time branches, respectively. An important i
sue that must be highlighted at this stage, is that derivat
with respect to sources in the forward (1) time branch cor-
respond to insertion of operatorspremultiplying the density
matrix r and derivatives with respect to sources in the ba
ward (2) branch correspond to the insertion of operat
postmultiplyingthe density matrix. That this is so is a co
sequence of the fact that the density matrix evolves in t
as U(t,t0)r0U21(t,t0) with U(t,t0) the time evolution op-
erator.

These four Green’s functions are not independent beca
of the identity

S11~x2x8!1S22~x2x8!2S12~x2x8!2S21~x2x8!

50. ~3.21!

The diagonal elements inS11(x2x8) are the normal
Green’s functions, representing the propagation of sin
electrons, whereas the off-diagonal elements are the ano
lous Green’s functions, corresponding to the annihilation a
creation of two electrons of opposite spins, respectively.

The functionsS:(x2x8), which are solutions of the ho
mogeneous free field equation of motion, are simply rela
to the correlation functions of the free Nambu-Gor’kov fiel
C,C†. Indeed, taking variational derivatives of the free fie
generating functionalZ0@J# with respect toJ6,J†6, one can
show that

Sab
. ~x2x8!52 i ^Ca~x!Cb

†~x8!&,
18450
es

-
s

e

se

le
a-
d

d

Sab
, ~x2x8!5 i ^Cb

†~x8!Ca~x!&, ~3.22!

where and hereaftera,b51,2 denote the Nambu-Gor’kov
indices. The expectation values in the expressions above
in the noninteracting thermal density matrix which corr
sponds to the quadratic part of the Lagrangian~Hamiltonian!,
i.e., the density matrix that describes free Bogoliubov qua
particles in thermal equilibrium at inverse temperatureb.

While the matrix elementsSab
: (x2x8) can be obtained

through the usual Bogoliubov transformation to the quasip
ticle basis,6 we present in the Appendix an alternative de
vation of these correlation functions directly from the spin
solutions of the homogeneous equations of motion. We fi
that the correlation functions in Eq.~3.22! in the infinite
volume limit are given by

Sab
: ~x2x8!5E d3k

~2p!3
Sab

: ~k,t2t8!eik•(x2x8),

~3.23!

where

Sab
. ~k,t2t8!52 i †@12nF~Ek!#Sab~k!e2 iEk(t2t8)

1nF~Ek! S̄ab~k!eiEk(t2t8)
‡,

Sab
, ~k,t2t8!5 i †nF~Ek!Sab~k!e2 iEk(t2t8)

1@12nF~Ek!#S̄ab~k!eiEk(t2t8)
‡,

~3.24!

with

S~k!5F uk
2 2ukvk*

2ukvk uvku2
G , S̄~k!5F uvku2 ukvk*

ukvk uk
2 G .

~3.25!

In the above expressionsk[uku, nF(v)51/(ebv11) is the
Fermi-Dirac distribution function,uk and vk satisfying uk

2

1uvku251 are the Bogoliubov coefficients@see Eq.~A4!#,
and Ek is the energy of free Bogoliubov quasiparticle
~bogolons!

Ek5Ajk
21uD0u2, ~3.26!

wherejk5k2/2m2m ~see the Appendix!. Using the relation
12nF(v)5ebvnF(v), one can easily verify the KMS
condition30

S.~k,t2 ib2t8!52S,~k,t2t8!. ~3.27!

Hence, the correlation functions for the Nambu-Gor’k
fields C,C† that will enter in the nonequilibrium perturba
tive expansion are completely determined by Eqs.~3.22!–
~3.26!.
2-7
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C. Feynman rules

From the generating functional of nonequilibrium Gree
functions~3.19!, it is clear that the effective interaction La
grangian relevant for the nonequilibrium calculations
given by

Lint
eff@C†6,C6,x†6,x6#5Lint@C†1,C1,x†1,x1#

2Lint@C†2,C2,x†2,x2#,

~3.28!

where the fieldsC†6, C6, x†6, andx6 are defined on the
forward (1) and backwards (2) time branches, respec
tively. Consequently, this generating functional leads to
following Feynman rules that define the perturbative exp
sion for calculations of nonequilibrium expectation values

~i! There aretwo sets of interaction vertices defined b
Lint

eff@C†6,C6,x†6,x6#: those in which the fields are in th
forward (1) branch and those in which the fields are in t
backward (2) branch. There is a relative minus sign b
tween these two types of vertices.

~ii ! For each kind of fields there arefour types of Green’s
functions corresponding to correlations between fields
fined in the forward or backward branch.

The Green’s functions of the Nambu-Gor’kov field
C,C† are given by Eq.~3.20! in terms of the correlation
functions displayed in Eq.~3.22! that are completely deter
mined by Eqs.~3.24!, ~3.25!, and~3.26!. The Green’s func-
tions of the pair fieldsx,x† can be obtained in an analogou
manner. However, due to the nonpropagating nature of
pair fields, the Green’s functions are local in time, and he
those of fields defined in different branches vanish ide
cally.

~iii ! The combinatoric factors, trace over the Namb
Gor’kov indices for fermion loops, etc., are the same as
the imaginary-time~Matsubara! formulation.

IV. RELAXATION OF CONDENSATE PERTURBATIONS:
AN INITIAL VALUE PROBLEM

A. Equations of motion

The equations of motion for the small amplitude sup
conducting condensate perturbationd(x) induced by the ex-
ternal sourceh(x) is obtained by implementing thetadpole
method.31,33 This method begins by writing the pair field
D6(x) in the forward (1) and backward (2) time branches
as

D6~x!5D01d~x!1x6~x!, ~4.1!

whereD0 is the homogeneous condensate in the absenc
external source,d(x) is the perturbation of the condensa
induced by the external source which vanishes in the abs
of external source, andx6(x) are the noncondensate part
the pair fields in the forward and the backward tim
branches. The external sourceh(x) arec-number fields and
hence taken the same value in both forward and backw
branches. The strategy to obtain the equations of motion
small amplitude condensate perturbationd(x),d* (x) is to
18450
e
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-

e
e
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consider the interaction LagrangianLint@C†,C,x†,x# given
in Eq. ~2.20! in perturbation theory and impose thetadpole
condition

^x6~x!&h5^x†6~x!&h50 ~4.2!

order by order in the perturbative expansion, but, consis
with linear response, only keep contributions linear
d(x),d* (x).

Using the Feynman rules described in the preceding s
tion, to one-loop order the tadpole condition̂x1(0)&h
5^x†1(0)&h50 leads to the following expression:

E d4x^x1~0!x†1~x!&Fd~x!

g
1E d4x8@S11~x2x8!d~x8!

1S12~x2x8!d* ~x8!#1T~D0 ,D0* !2h~x!G50,

E d4x^x†1~0!x1~x!&Fd* ~x!

g
1E d4x8@S22~x2x8!d* ~x8!

1S21~x2x8!d~x8!#1T * ~D0 ,D0* !2h* ~x!G50, ~4.3!

whereSab(x2x8) are the retarded self-energies of the p
fields and thetadpoleT(D0 ,D0* ) denotes term independen
of the condensate perturbationd,d* . The diagrams for
S11(x2x8) andS12(x2x8) to one-loop order are depicted i
Fig. 2, and those forS22(x2x8) and S21(x2x8) can be
obtained in an analogous manner. Explicitly to one-loop
der we find

S11~x2x8!52 i @^C†1~x!s2C1~x!C†1~x8!s1C1~x8!&

2^C†1~x!s2C1~x!C†2~x8!s1C2~x8!&#

52 i tr@s2S11~x2x8!s1S11~x82x!

2s2S12~x2x8!s1S21~x82x!#,

FIG. 2. Feynman diagrams contributing to the retarded s
energies~a! S11(x2x8) and ~b! S12(x2x8) to one-loop order. A
solid line with arrow denotes the Nambu-Gor’kov field, a dash
line denotes the pair field, and a solid line with open~filled! circle
denotes the condensate perturbationd (d* ).
2-8
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S12~x2x8!52 i @^C†1~x!s2C1~x!C†1~x8!s2C1~x8!&

2^C†1~x!s2C1~x!C†2~x8!s2C2~x8!&#

52 i tr@s2S11~x2x8!s2S11~x82x!

2s2S12~x2x8!s2S21~x82x!#, ~4.4!

where tr denotes the trace over the Nambu-Gor’kov indic
The expressions forS22(x2x8) andS21(x2x8) can be ob-
tained, respectively, from expressions in Eq.~4.4! through
the replacements1↔s2 .

The diagrams for the tadpoleT(D0 ,D0* ) are depicted in
Fig. 3, from which we find

T~D0 ,D0* !5
D0

g
2^C†1~x!s2C1~x!&

5
D0

g
1 i tr@s2S,~0!#. ~4.5!

A simple calculation with the nonequilibrium Green’s fun
tions of the Nambu-Gor’kov fields obtained in the preced
section shows that the tadpole to one-loop order is given

T~D0 ,D0* !5D0F1

g
2E d3q

~2p!3

122nF~Eq!

2Eq
G , ~4.6!

whereEq on the right-hand side of Eq.~4.6! is understood to
be a function ofuD0u @see Eq.~3.26!# and, hereafter, the
momentum integral@*d3q/(2p)3# is restricted to the elec
tronic states near the Fermi surface.

It is customary to rewrite the integral over the momentu
q as being over the energyj ~measured from the Fermi su
face! at the expense of introducing the density of sta
N(j), which is taken to be constant near the Fermi surfa
and cutting the integral off at6vD with vD being the Debye
energy, thus leading to

T~D0 ,D0* !5D0F1

g
2N~0!E

0

vD dj

E
@122nF~E!#G ,

~4.7!

whereE5Aj21uD0u2 andN(0)5mkF/2p2 is the density of
states at the Fermi surface. Setting the external sourch
50, the equilibrium condition for the homogeneous cond
sateT(D0 ,D0* )50 becomes

D0F1

g
2N~0!E

0

vD dj

E
@122nF~E!#G50. ~4.8!

In equilibrium and below the critical temperature, the co
densateD0Þ0. Therefore Eq.~4.8! leads to the finite-
temperature BCS gap equation that determinesD0(T):

FIG. 3. Feynman diagrams contributing to the tadp
T(D0 ,D0* ) to one-loop order. A wiggly line denotes the homog
neous condensateD0.
18450
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gN~0!E
0

vD dj

E
@122nF~E!#51. ~4.9!

Introducing the space Fourier transforms ford(x), h(x),
andSab(x2x8) as

d~x!,t)5E d3k

~2p!3
dk~ t !eik"Ã,

etc., we find the equations of motion in momentum space
be given by

dk~ t !1gE
2`

1`

dt8@S11~k,t2t8!dk~ t8!1S12~k,t

2t8!d2k* ~ t8!#1gT~D0 ,D0* !d (3)~k!2ghk~ t !50,

d2k* ~ t !1gE
2`

1`

dt8@S22~k,t2t8!d2k* ~ t8!1S21~k,t

2t8!dk~ t8!#1gT* ~D0 ,D0* !d (3)~k!2gh2k* ~ t !50.

~4.10!

The equations of motion obtained from the tadpole co
dition ^x2(0)&h5^x†2(0)&h50 are the same as those give
in the above expressions. While the equations of mot
~4.10! are obtained to one-loop order, it is straightforward
conclude after a simple diagrammatic analysis that the st
ture of the equations of motion obtained above is general
valid to all orders in perturbation theory. From the explic
expressions for the self-energies or by taking complex c
jugation of the equation of motion fordk(t), one can show
that

S21~k,t2t8!5S12* ~2k,t2t8!,

S22~k,t2t8!5S11* ~2k,t2t8!. ~4.11!

Furthermore, rotational and parity invariance imply that t
self-energies are only functions ofk. Upon expressing the
nonequilibrium Green’s functions in terms of the correlati
functionsS:, one finds immediately that the retarded se
energies have the following causal structure

S11~k,t2t8!5S11
R ~k,t2t8!Q~ t2t8!,

S12~k,t2t8!5S12
R ~k,t2t8!Q~ t2t8!. ~4.12!

Before proceeding further, we note that the invariance of
Lagrangian under the global gauge transformation~2.16! im-
plies thatall the terms in the equations of motion ford (d* )
must transform asd (d* ) itself under the gauge transforma
tion. This in turn entails that the normal self-energiesS11 and
S22 must be invariant under the gauge transformation~2.16!,
while the anomalous onesS12 andS21 must transform asD0

2

andD0*
2, respectively. Thus, it is proved convenient to wri
2-9
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S11
R ~k,t2t8!5S22

R* ~k,t2t8!5SD~k,t2t8!,

S12
R ~k,t2t8!5S21

R* ~k,t2t8!5~D0 /D0* !SO~k,t2t8!,
~4.13!

where bothSD andSO are invariant under the gauge trans
formation ~2.16!. While rewriting the self-energies in thi
manner may seem a redundant exercise, the main point
highlight and make explicit their transformation laws und
the gauge transformation. This is an important aspect
needs to be addressed carefully in order to extract the W
identities, anexactresult of the underlying gauge symmet
to be explored below.

The gauge-invariant self-energiesSD andSO can be writ-
ten in terms of their spectral representation as

SD~k,t2t8!5E
2`

1`

dv@Ā~k,v!sinv~ t2t8!

1 iS̄~k,v!cosv~ t2t8!#,

SO~k,t2t8!5E
2`

1`

dvÂ~k,v!sinv~ t2t8!. ~4.14!

The symmetric (S̄) and antisymmetric (Ā,Â) spectral func-
tions are, respectively, even and odd functions ofv and are
to be given by

S̄~k,v!52
1

4E d3q

~2p!3H @12nF~Eq!2nF~Ep!#S jq

Eq
1

jp

Ep
D

3@d~v2Eq2Ep!1d~v1Eq1Ep!#

2@nF~Eq!2nF~Ep!#S jq

Eq
2

jp

Ep
D @d~v2Eq1Ep!

1d~v1Eq2Ep!#J ,

Ā~k,v!52
1

4E d3q

~2p!3H @12nF~Eq!2nF~Ep!#S 11
jqjp

EqEp
D

3@d~v2Eq2Ep!2d~v1Eq1Ep!#

2@nF~Eq!2nF~Ep!#S 12
jqjp

EqEp
D @d~v2Eq1Ep!

2d~v1Eq2Ep!#J ,

Â~k,v!5
1

4E d3q

~2p!3

uD0u2

EqEp
$@12nF~Eq!2nF~Ep!#@d~v

2Eq2Ep!2d~v1Eq1Ep!#1@nF~Eq!2nF~Ep!#

3@d~v2Eq1Ep!2d~v1Eq2Ep!#%, ~4.15!

wherep5uk1qu andjq5q2/2m2m.
The terms proportional to@12nF(Eq)2nF(Ep)# in the

above expressions correspond to processes in which
18450
to
r
at
rd

o

quasiparticles are either created or destroyed, whereas
terms proportional to@nF(Eq)2nF(Ep)# arise fromLandau-
dampingprocesses corresponding to scattering of quasipa
cle excitations in the medium.

In an experimental situation the dynamical evolution
the small amplitude condensate perturbation is studied
preparing a superconducting state slightly perturbed aw
from equilibrium by adiabatically coupling to some extern
source in the infinite past. Once the source is switched-of
time t50 the perturbed condensate relaxes towards equ
rium, and the relaxation dynamics is studied. As discus
above, this experimental situation can be realized within
real-time formulation described here by taking the spa
Fourier transform of the external source to be of the form

hk~ t !5hke
etQ~2t !, e→01. ~4.16!

Thee term serves to switch-on the source adiabatically fr
t52` so as not to disturb the system too far from equil
rium in the process. If att52` the system was in an equ
librium state, then the condition of equilibrium~4.8! ensures
that for t,0 there is a solution of the equations of motio
~4.10! of the form

dk~ t !5dk~0!eet for t,0, ~4.17!

wheredk(0) is related tohk through the equations of motio
for t,0. The advantage of the adiabatic switching-on of t
external source is that the time derivative of the solut
~4.17! satisfiesḋk(t,0)→0 ase→01.

Let us introduce auxiliary quantitiesPab
R (k,t2t8) defined

as

(
ab

R

~k,t2t8!5] t8)
ab

R

~k,t2t8!, ~4.18!

then upon using integration by parts, neglecting terms t
vanish in the adiabatic limite→01, and takingD0 to be the
equilibrium condensate and henceT(D0 ,D0* )50, we find
the equations of motion~4.10! become

F11g)
11

R

~k,0!Gdk~ t !1g)
12

R

~k,0!d2k* ~ t !2gE
0

t

dt8F)
11

R

(k,t

2t8) ḋk(t8)1)
12

R

(k,t2t8) ḋ2k* (t8)G50,

F11g)
22

R

~k,0!Gd2k* ~ t !1g)
21

R

~k,0!dk~ t !2gE
0

t

dt8F)
22

R

~k,t

2t8!ḋ2k* ~ t8!1)
21

R

~k,t2t8!ḋk~ t8!G50. ~4.19!

The above coupled equations of motion for the cond
sate perturbation are now in the form of aninitial value
problemwith initial conditions specified att50 and can be
solved by Laplace transform. Introducing a two-compon
Nambu-Gor’kov spinor and its Laplace transform
2-10
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fk~ t !5F dk~ t !

d2k* ~ t !G , f̃k~s!5F d̃k~s!

d̃2k* ~s!
G , ~4.20!

wheres is the Laplace variable, one can rewrite the Lapla
transformed equations of motion in a compact matrix form

G̃21~k,s!f̃k~s!5
1

s
@G̃21~k,s!2G̃21~k,0!#fk~0!.

~4.21!

In the above equation,G̃21(k,s) is the inverse Green’s func
tion ~matrix! to one-loop order expressed in terms of t
Laplace variables

G̃21~k,s!5F 11gS̃D~k,s! g~D0 /D0* !S̃O~k,s!

g~D0* /D0!S̃O~k,s! 11gS̃D~k,2s!
G ,

~4.22!

whereS̃D andS̃O are the Laplace transforms ofSD andSO ,
respectively,

S̃D~k,s!5E
2`

1` dk0

k02 is
@Ā~k,k0!1S̄~k,k0!#,

S̃O~k,s!5E
2`

1` dk0

k02 is
Â~k,k0!. ~4.23!

The solution of Eq.~4.22! reads

f̃k~s!5
1

s
@12G̃~k,s!G̃21~k,0!#fk~0!, ~4.24!

where

G̃~k,s!5
1

D̃~k,s!

3F 11gS̃D~k,2s! 2g~D0 /D0* !S̃O~k,s!

2g~D0* /D0!S̃O~k,s! 11gS̃D~k,s!
G ,

~4.25!

with the denominatorD̃(k,s) given by

D̃~k,s!5@11gS̃D~k,s!#@11gS̃D~k,2s!#2@gS̃O~k,s!#2.
~4.26!

The real-time evolution of the condensate perturbat
fk(t) with an initial valuefk(0) is now obtained from the
inverse Laplace transform

fk~ t !5E
B

ds

2p i
estf̃k~s!, ~4.27!

where the Bromwich contourB runs parallel to the imagi-
nary axis in the complexs plane to the right of all the sin
gularities~poles and cuts! of f̃k(s).33 We note that there is
no isolated pole inf̃k(s) at s50 since the residue vanishe
18450
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B. Self-energies in the long-wavelength, low-frequency limit

In this article we are interested to study the relaxation
long-wavelength, low-frequency fluctuations of the pa
field, hence our next task is to expand the self-energies
function of k,s up to O(k2,s2). With jq5q2/2m2m and p
5uq1ku we use the following approximations

jp'jq1dj, dj5vFkcosu,

Ep5Eq1jq

dj

Eq
1

~dj!2

2

uD0u2

Eq
3

, ~4.28!

whereu is the angle betweenk̂ and q̂. We keep only up to
terms of O(k2,s2) in the Laplace transform of the self
energies and obtain

S̃D~k,s!52N~0!E
0

vD
djH 122nF~E!

2E F S 11
j2

E2D
3S 12

vF
2k2

12E2
2

s2

4E2D 2S 32
5j2

E2 D vF
2k2j2

6E4 G
2

]nF~E!

]E

uD0u2

E2 FvF
2k2j2

2E4
1S 12

3s2

2E2D
3S 12

isE

2vFkj
ln

is/vFk1j/E

is/vFk2j/ED G J 1•••,

S̃O~k,s!5N~0!E
0

vD
dj

uD0u2

E2 H 122nF~E!

2E

3F12S 1

4
2

5j2

6E2D vF
2k2

E2
2

s2

4E2G
2

]nF~E!

]E FvF
2k2

2E2 S 1

3
2

j2

E2D 2S 12
3s2

2E2
1

s2

j2D
3S 12

isE

2vFkj
ln

is/vFk1j/E

is/vFk2j/ED G J 1•••,

~4.29!

whereE5Aj21uD0u2 and the dots stand for terms of high
order in the ratiosk/uD0u,s/uD0u. We note that to this orde
bothS̃D(k,s) andS̃O(k,s) are even functions of the Laplac
variables. This important feature leads to the decoupling
the phase and amplitude fluctuations of the pair field in
equations of motion, as will be shown below.

C. One-loop effective action

The full equations of motion in real time~4.10! and their
Laplace transform around the equilibrium state~4.21! allow
us to obtain at once theretarded effective actionin Fourier
space. The retarded Green’s function kernel is obtained f
G̃21(k,s) in Eq. ~4.21! by the analytic continuation in the
2-11
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complex s plane s→2 iv101. In terms of the Fourier
transform~retarded! of the two-component Nambu-Gor’ko
spinor and the tadpole spinor

Tk~v!5F T~D0 ,D0* !

T * ~D0 ,D0* !
Gd (3)~k!d~v!, ~4.30!

the retarded one-loop effective action to quadratic orde
the fluctuations is therefore given by

S@d,d* #5S@0,0#1
1

2gE d3kdv@f2k
† ~2v!G21~k,v!

3fk~v!12f2k
† ~2v!Tk~v!#, ~4.31!

where G21(k,v)5G̃21(k,s52 iv101) and S@0,0# is a
function of D0 ,D0* such that

]S@0,0#

]D0*
5T~D0 ,D0* !,

]S@0,0#

]D0
5T * ~D0 ,D0* !.

~4.32!

Obviously, variational derivatives with respect tod,d* re-
produce the retarded equations of motion. We identify
~4.31! with the one-loop effective action quadratic in th
fluctuations.

V. WARD IDENTITY AND STATIC SELF-ENERGIES

The Ward identities, a consequence of the underly
~global! gauge invariance, are an integral part of the progr
to establish a connection with the Ginzburg-Landau desc
tion. Furthermore the equations of motionmust fulfill these
for consistency. In this section we show how the Ward id
tities emerge directly from the method described above u
to obtain the equations of motion.

A straightforward diagrammatic analysis with the Fey
man rules described above reveals that the generic stru
of the equations of motion obtained via the tadpole meth
remains the same to all orders in perturbation theory. W
combined with the transformation properties ofD0 , d, andx
under the gauge transformation~2.16!, this general form of
the equations of motion allows to derive to all orders
perturbation theory the Ward identity for the tadpo
T(D0 ,D0* ).

First, consider the case in whichd,h50 the tadpole con-
dition ^x1(0)&h50 leads toT(D0 ,D0* )50, which is the
equilibrium condition for the homogeneous condensate.
a space-time independent shift of the condensateD0→D0
1d induced by a space-time independent sourceh, the tad-
pole condition now leads toT(D01d,D0* 1d* )52h, which
upon expanding to linear order ind andd* becomes

T~D0 ,D0* !1
]T~D0 ,D0* !

]D0
d1

]T~D0 ,D0* !

]D0*
d* 52h.

~5.1!

We now compare Eq.~5.1! with the first equation of motion
given in Eq.~4.10!, which has the same generic structure
the full equation of motion obtained to all orders in pertu
18450
n

.

g

-

-
d

-
re

d
n

or

s

bation theory, for space-time independentd and d* . Com-
paring the coefficients ofd,d* we recognize immediately
that

]T~D0 ,D0* !

]D0
5

1

g
1S11~k50,v50!,

]T~D0 ,D0* !

]D0*
5S12~k50,v50!, ~5.2!

which relate the self-energies atzero frequencyandzero mo-
mentumto the derivatives of the tadpole with respect to t
condensate and is valid toall orders in perturbation theory.

The second important ingredient and which stems fr
the equations of motion~4.10! is that under a global gaug
~phase! transformation~2.16! the tadpoleT(D0 ,D0* ) trans-
forms just as d, D0, and h, i.e., T(eiuD0 ,e2 iuD0* )
5eiuT(D0 ,D0* ). Taking the gauge parameteru to be infini-
tesimal and comparing the linear terms inu, we find toall
orders in perturbation theorythe Ward identity for the tad-
pole

T~D0 ,D0* !5
]T~D0 ,D0* !

]D0
D02

]T~D0 ,D0* !

]D0*
D0* . ~5.3!

Therefore upon combining Eq.~5.2! and the Ward identity
~5.3!, we obtain an alternative statement of the Ward iden
which is anexact relationship between the tadpole and t
self-energies at zero frequency and momentum

D0F1

g
1S11~0,0!G2D0* S12~0,0!5T~D0 ,D0* !, ~5.4!

where Sab(0,0) stands forSab(k50,v50) for notational
simplicity. Above the critical temperature,both the tadpole
and the condensate vanish thus the above equation bec
a trivial identity. However, below the critical temperatu
D0Þ0 and hence Eq.~5.4! leads to

gT~D0 ,D0* !

D0
511gFS11~0,0!2

D0*

D0
S12~0,0!G . ~5.5!

It is customary to choose the condensate to be rea
redefining its phase via the gauge transformation~2.16!.
However, as argued above, for a condensate with an arbit
phase, the anomalous self-energyS12 must beproportional to
D0

2 since in the equation of motion it multipliesd* , which
transforms under gauge transformations just asD0* . This fact
can be seen explicitly at the one-loop order in the expr
sions for the respective anomalous self-energy in Eq.~4.13!
as well as in Eq.~4.14! with the spectral functions given b
Eq. ~4.15!. Since the productS12d* must transform just asd
or D0, therefore the phaseD0* /D0 cancels the phase ofD0

2 in
S12. In terms of thegauge-invariantself-energiesSD and
SO , the Ward identity~5.5! can be cast into an explici
gauge-invariant form
2-12



th

n

-
a
lf-

b

is

or

op

ole
o-
are
en-

n-
e
u-
lf-

ity
ole
e

he
w-
rg-
a-

f
by

rgy
pa-

de
ding
on;

NONEQUILIBRIUM RELAXATION IN NEUTRAL BC S . . . PHYSICAL REVIEW B 66, 184502 ~2002!
gT~D0 ,D0* !

D0
511gSD~0,0!2gSO~0,0!. ~5.6!

We emphasize that the Ward identity~5.5! or ~5.6! is an exact
relationship validin or out of equilibrium @corresponding to
when the tadpoleT(D0 ,D0* ) vanishes or not, respectively#.
In equilibrium the equilibrium conditionT(D0 ,D0* )50 im-
plies that the self-energies in the static limit must satisfy
relation

11gSD~0,0!2gSO~0,0!50. ~5.7!

The long-wavelength limit of thestatic self-energies is
definedas

SD~0,0!5 lim
k→0

lim
s→0

SD~k,s!,

SO~0,0!5 lim
k→0

lim
s→0

SO~k,s!, ~5.8!

which, using Eq.~4.29!, are found to one-loop order give
by

SD~0,0!52N~0!E
0

vD
djF122nF~E!

2E S 11
j2

E2D
2

]nF~E!

]E

uD0u2

E2 G ,

SO~0,0!5N~0!E
0

vD
dj

uD0u2

E2 F122nF~E!

2E
1

]nF~E!

]E G .
~5.9!

The opposite limit lims→0limk→0SD,O(k,s) yields the first
terms in the expressions~5.9!, but not the last terms propor
tional to ]nF(E)/]E. This is a consequence of the nonan
lyticity of the Landau-damping contributions to the se
energies.

Using the expression for the one-loop tadpole given
Eq. ~4.7! it becomes clear that the identities~5.2! are fulfilled
by the precise order of limits determined by Eq.~5.9!, i.e.,
the long-wavelength limit of thestatic (s50) self-energies.

We now show explicitly that the Ward identity~5.6! is
fulfilled to one-loop order. The tadpole to one-loop order
given by Eq.~4.7!. From the explicit form of the one-loop
self-energies in the static limit~5.9!, find that

SD~0,0!2SO~0,0!52N~0!E
0

vD dj

E
@122nF~E!#,

~5.10!

which is anexactrelationship to one-loop order, obtained f
arbitraryD0.

Upon collecting the above results, we find to one-lo
order that
18450
e

-

y

gT~D0 ,D0* !

D0
511gSD~0,0!2gSO~0,0!

512gN~0!E
0

vD dj

E
@122nF~E!#.

~5.11!

Therefore, the Ward identity~5.6! is manifestly fulfilled to
one-loop order. This is an important advantage of the tadp
method of nonequilibrium field theory: the equations of m
tion obtained at a given order in the loop expansion
causal and guaranteed to fulfill the corresponding Ward id
tities to that order.

We highlight that whereas the Ward identity is indepe
dent of the limits,k,s→0, the individual self-energies hav
different limits because of the nonanalyticity of the Landa
damping contribution. The relationship between the se
energies and the tadpole~5.2! is only valid in the static limit
~5.9!.

The results of this section, namely, the Ward ident
which relates the self-energies to derivatives of the tadp
will play an important role in the derivation of the effectiv
Ginzburg-Landau theory.

VI. TIME-DEPENDENT GINZBURG-LANDAU THEORY

We are now in a position to establish contact with t
Ginzburg-Landau description of the long-wavelength, lo
frequency excitations near the critical point. The Ginzbu
Landau description in terms of a functional of the order p
rameter is valid near the critical region whenuT2Tcu
!Tc ,D(T).@Tc(Tc2T)#1/2!Tc . The link between the
Ginzburg-Landau~GL! theory and the microscopic theory o
superconductivity in the static limit was established
Gor’kov.5

Identifying the expectation value of the pair fieldD
[^D(x,t)& as the complex order parameter, the free ene
in Ginzburg-Landau theory for an homogeneous order
rameter~absence of gradients! is given by

F~D,D* !5a~T!uDu21
b

2
uDu4, ~6.1!

where near the critical temperaturea(T)}(T2Tc).
The linearized equation of motion of the small amplitu

fluctuation of the condensate can be obtained by expan
the free energy around the equilibrium value of gap functi
namely, D0 and D0* . Writing D5D01d and D* 5D0*
1d* , keeping only quadratic terms in the fluctuations,

F~D,D* !5F~D0 ,D0* !1d
]F
]D

1d*
]F

]D*
1dd*

]2F
]D]D*

1
d2

2

]2F
]D2

1
d* 2

2

]2F
]D* 2

. ~6.2!
2-13
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The linearized equation of motion for bothd andd* can
then be obtained by minimizingF with respect tod* andd,
respectively, and are given by

S11
GLd1S12

GLd* 1T GL~D0 ,D0* !50,

S22
GLd* 1S21

GLd1@T GL~D0 ,D0* !#* 50, ~6.3!

with

T GL~D0 ,D0* !5D0@a~T!1buD0u2#,

S11
GL5@S22

GL#* 5a~T!12buD0u2[
]T GL

]D0
,

S12
GL5@S21

GL#* 5bD0
2[

]T GL

]D0*
. ~6.4!

The gap equation obtained from the Ginzburg-Land
free energy~6.1! is

T GL~D0 ,D0* !50, ~6.5!

which determines the equilibrium value of the order para
eter ford5d* 50. When the gap equation~6.5! is fulfilled,
the matrix of the second derivatives of the free energy~6.1!
with respect tod,d* has a zero eigenvalue with eigenvect
determined by the relation

d* 52
D0*

D0
d. ~6.6!

Obviously this eigenvector with zero eigenvalue correspo
to a phase fluctuation and is the Goldstone boson, or
Anderson-Bogoliubov-Goldstone mode, associated with
broken global gauge symmetry.

The similarity between the equations of motion~6.3! and
~4.10! for an homogeneous perturbation with vanishing e
ternal sources, as well as the similarities between the ide
ties ~6.4!, ~5.2!, and ~5.4! are now obvious and suggest th
following identification:

T~D0 ,D0* !⇔T GL~D0 ,D0* !,

1

g
1S11~0,0!⇔S11

GL ,

S12~0,0!⇔S12
GL , ~6.7!

where the self-energies on the left-hand side of the relat
are understood as the long-wavelength limit of thestaticself-
energies as discussed in Sec. V. This similarity can be pu
firmer footing by expanding the one-loop expression for
tadpole T(D0 ,D0* ), Eq. ~4.7!, in terms of a power serie
expansion inD0 ,D0* and keeping up to third order consi
tently with the Ginzburg-Landau expansion.

Using the form of the tadpole given in Eq.~4.7! and the
results obtained in Ref. 37, we find (\5kB51)
18450
u

-

s
e
e

-
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n
e

gT~D0 ,D0* !5F12gN~0!lnS 1.14vD

T D GD0

1
7gN~0!z~3!

8p2Tc
2

D0uD0u21O~D0
5!, ~6.8!

where z is the Riemannz function with z(3)51.202 and
Tc51.14vDe21/gN(0). For T'Tc the coefficient of the linear
term can be expanded asgN(0)(T2Tc)/Tc , therefore from
the relations~5.2! and the definitions~4.13! we obtain

11gSD~0,0!5gN~0!S T2Tc

Tc
D1

7gN~0!z~3!

4p2Tc
2

uD0u2,

~6.9!

gSO~0,0!5
7gN~0!z~3!

8p2Tc
2

uD0u2.

We now focus on the long-wavelength, low-frequen
self-energies in the Ginzburg-Landau regime characteri
by vFk,s!uD0u!T. This regime corresponds to the descri
tion of the long-wavelength, low-frequency excitations ne
the critical point and will allow a consistent analysis of th
real-time dynamics of~small! phase and amplitude fluctua
tions. We begin by writing the long-wavelength, low
frequency self-energies as@see Eq.~4.29!#

S̃D~k,s!5SD~0,0!1I ~k,s!,

S̃O~k,s!5SO~0,0!1J~k,s!, ~6.10!

with SD,O(0,0) given by Eq.~5.9!. Since the self-energie
are dimensionless functions of their arguments, the exp
sion in terms ofk ands must involve ratios of these variable
and the typical scales in the integrals. There are two, wid
separated scales in the Ginzburg-Landau regime, nameT
'Tc and uD0u with uD0u/T!1. The expressions forI ,J fea-
ture energy denominators that would lead to infrared div
gences ifuD0u is set to zero. These divergences reflect
presence of inverse powers ofuD0u in the expansions.

The leading terms in the expansion can be extracted
rescaling

j5uD0uz, E5uD0ue, ~6.11!

with e5Az211 and introducing the dimensionless variabl

x5
uD0u

T
, k5

vFk

uD0u
, s̄5

s

vFk
, ~6.12!

in the integrals forI (k,s) andJ(k,s). We obtain

I ~k,s!5N~0!x@k2I a~x!1k2s̄2I b~ s̄,x!1 i s̄I c~ s̄,x!#,
~6.13!

where
2-14
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I a~x!5
1

4E0

`

dzH 2T~x,z!

3xe3 F2z2

e4
2

z221

4e2 S 11
z2

e2D G
2

C~x,z!z2

2e6 J ,

I b~ s̄,x!5
1

4E0

`

dzH T~x,z!

2xe3 S 11
z2

e2D
1

3C~x,z!

2e4 F12
i s̄e

2z
ln

i s̄1z/e

i s̄2z/e
G J ,

I c~ s̄,x!5
1

4E0

`

dzFC~x,z!

2ze
ln

i s̄1z/e

i s̄2z/e
G , ~6.14!

with

T~x,z!5tanhS xe

2 D , C~x,z!5cosh22S xe

2 D . ~6.15!

Similarly, for J(k,s) we obtain

J~k,s!5N~0!x@k2Ja~x!1k2s̄2Jb~ s̄,x!1 i s̄Jc~ s̄,x!#,
~6.16!

where

Ja~x!5
1

24E0

`

dzFT~x,z!
7z223

xe7
2C~x,z!

2z221

e6 G ,

Jb~ s̄,x!52
1

8E0

`

dzH T~x,z!

xe5

2C~x,z!
2z221

z2e4 F12
i s̄e

2z
ln

i s̄1z/e

i s̄2z/e
G J ,

Jc~ s̄,x!5I c~ s̄,x!. ~6.17!

An important consequence of the long-wavelength, lo
frequency expansion of the self-energies in Eq.~6.10! to-
gether with Eqs.~6.14! and~6.17! is that to lowest order the
self-energies areeven functions of the Laplace variables.
This important aspect leads to the decoupling of the ph
and amplitude fluctuations in the equations of motion, as
be seen as follows.

If we write the fluctuation of the order parameter arou
the space-time constant equilibrium solution of the tadp
equation~4.8! in the form

D~x,t !5D01d~x,t ![@r01dr~x,t !#eiu01 idu(x,t),
~6.18!

where dr(x,t) and du(x,t), respectively, are identified a
the amplitude and phase fluctuations of the order param
D(x,t). It is convenient to introduce the following projectio
vectors
18450
-
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ter

p5
1

A2i F 1

2
D0*

D0

G , p†52
1

A2i
F1,2

D0

D0*
G ,

a5
1

A2 F 1

D0*

D0

G , a†5
1

A2
F1,

D0

D0*
G , ~6.19!

in terms of these vectors and the Nambu-Gor’kov spin
~4.20!, the phase and amplitude fluctuations can be written

du~x,t !5
1

A2D0

p†
•f~x,t !,

dr~x,t !

r0
5

1

A2D0

a†
•f~x,t !,

~6.20!

or, equivalently,

f̃k~s!5A2D0Fdũk~s!p1
dr̃k~s!

r0
aG . ~6.21!

In terms of the Laplace transformsdũk(s) and dr̃k(s),
the equations of motion~4.21! now become

@11gS̃D~k,s!2gS̃O~k,s!#dũk~s!

5
g

s
$@S̃D~k,s!2S̃O~k,s!#

2@S̃D~k,0!2S̃O~k,0!#%duk~0!,

@11gS̃D~k,s!1gS̃O~k,s!#dr̃k~s!

5
g

s
$@S̃D~k,s!1S̃O~k,s!#

2@S̃D~k,0!1S̃O~k,0!#%drk~0!. ~6.22!

The decoupling of the equations of motion between ph
and amplitude fluctuations is a direct consequence of the
that self-energies are even functions of the Laplace varia
to this, lowest order. In particular the equalitySD(k,s)
5SD(k,2s) to this order guarantees that the vectorsp anda
are eigenvectors of the matrixG̃21(k,s) in Eq. ~4.21!. The
right-hand sides of Eq.~6.22! are identified as the Laplac
transform of the source termsJu ,Jr , respectively, that serve
the purpose of setting up the initial value problem.

In particular to lowest order in the long-wavelength e
pansion, and after the analytic continuations→2 iv101,
the retardedone-loop effective action for fluctuations aroun
the equilibrium solution is given, up to a constant, by

Seff@du,dr#5
uD0u2

2g E d3kdv$du2k~2v!@11gSD~k,v!

2gSO~k,v!#duk~v!12Ju,2k~2v!duk~v!%

1
1

2gE d3kdv$dr2k~2v!@11gSD~k,v!
2-15
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1gSO~k,v!#drk~v!12Jr,2k~2v!drk~v!%,

~6.23!

whereSD,O(k,v)5S̃D,O(k,s52 iv101) and the momen-
tum integral must be understood to be restricted near
Fermi surface. Expanding the self-energies as in Eq.~6.10!
together with Eqs.~6.14!,~6.17!, and using the Ward identi
ties ~5.6! valid in equilibrium, one can easily show that th
phase fluctuations are Goldstone modes. Using the exp
expressions forI (k,s) andJ(k,s), we find that the effective
action for the phase fluctuation is identical to that obtained
Refs. 10,14 to quadratic order, while the effective action
the amplitude fluctuation is a new contribution.

The approach followed here, based directly on the eq
tions of motion in real time also allows us to obtain t
effective action for the amplitude fluctuations on the sa
footing.

A. Phase fluctuations

The initial value problem for the phase and amplitu
fluctuations described by the equations of motions~6.22! can
now be studied straightforwardly. For the phase fluctuat
the inverse Laplace transform is obtained by integrat
dũk(s) along the Bromwich contour in the complexs plane
parallel to the imaginary axis and to the right of all the s
gularities of the Laplace transform

dũk~s!

duk~0!
5

1

s

F~ s̄,x!

F~ s̄,x!1 f ~x!
, ~6.24!

where

f ~x!5I a~x!2Ja~x!,

F~ s̄,x!5 s̄2@ I b~ s̄,x!2Jb~ s̄,x!#. ~6.25!

In the Ginzburg-Landau regimex!1, we find from Eqs.
~6.14! and ~6.17! that

f ~x!.2
x

12E0

`dz

z3 F tanh
z

2
2

z

2G1O~x2!5
7z~3!

48p2
x1O~x2!.

~6.26!

Figure 4 displays a numerical evaluation off (x) with the full
x dependence. It shows clearly thatf (x)!1 and thatf (x) is
accurately described by Eq.~6.26! in the Ginzburg-Landau
regime.

To leading order inx, we can setx→0 in the arguments
when evaluatingF( s̄,x). After the analytic continuations
→2 iv101 and introducing the dimensionless variable

a5
v

vFk
, ~6.27!

we find in the Ginzburg-Landau regime that the real a
imaginary parts of F( s̄52 ia101,0) are, respectively
given by ~here we have setx→0)
18450
e

cit

n
r

a-

e

n
g

-

d

FR~a!5
a2

8 E
0

`dz

e2 F 11
1

z2S 12
ae

2z
lnU a1

z

e

a2
z

e

U D G
.

a!1p2uau3

64
,

F I~a!5
pa3

16
Q~12a2!E

zmin

` dz

z3e
.

a!1pa

32
, ~6.28!

wherezmin5Aa2/(12a2) and we have setx→0 in the ar-
gument ofF( s̄,x). These expressions agree with those fou
by Aitchisonet al.14 in the limit x→0.38

The real@FR(a)# and imaginary@F I(a)# parts ofF(a)
for 0<a<1 are displayed in Fig. 5. The real part is a mon
tonically increasing function ofa while the imaginary part
only has contribution in the Landau-damping cut21,a
,1 corresponding to2vFk,v,vFk.

Isolatedreal poles of the Laplace transform, describin
stable quasiparticle excitations, correspond to the soluti
of the following equations

FIG. 4. The full x dependence off (x) is plotted for 0,x,5.
The inset showsf (x) in the Ginzburg-Landau regimex!1.

FIG. 5. Real and imaginary parts ofF(a).
2-16
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FR~a!2 f ~x!50, F I~a!50. ~6.29!

It is clear from Eq.~6.26! and Fig. 5 that the first equation i
Eq. ~6.29! can be fulfilled forf (x)!1 only in a region where
F I(a)Þ0. Therefore in the Ginzburg-Landau regime t
long-wavelength, low-frequency Laplace transform~6.24!
hasno isolated quasiparticle poles, the only singularity is
branch cut in the imaginary axis2 ivFk,s, ivFk, a conse-
quence of Landau damping.

Having understood the analytic structure of the Lapla
transform, we can now proceed to study the time evolut
via the inverse Laplace transform~4.27! by closing the
Bromwich contour wrapping around the cut2 ivFk,s
, ivFk. We obtain

duk~ t !5E
21

1 da

a
rph~a!cos~at!duk~0!, ~6.30!

wheret5vFkt and the spectral density for the phase fluctu
tions is given by

rph~a!5
1

p

f ~x!F I~a!

@FR~a!2 f ~x!#21F I
2~a!

. ~6.31!

The spectral densityrph(a) and the real-time evolution o
duk(t) for several values ofx&1 are displayed in Figs. 6
and 7, respectively. Three important features are glea
from these figures:

~i! The spectral density features a sharp peak at a v
apeak(x) that vanishes continuously asx→0. This peak
would indicate quasiparticle excitations with dispersion re
tion v5apeak(x)vFk. The group velocity vg(x)
.14z(3)vFx/3p3 vanishes at the critical pointx50 and in-
creases linearly withx at least within the range 0,x&0.2.

~ii ! While the spectral density is not of the Breit-Wign
type~Lorentzian or resonance! and hence a true width canno
be extracted unambiguously, it is clear from the figure t
qualitatively the quasiparticle excitations have a ‘‘width
This width vanishes at the critical point and increases mo
tonically with x!1 at least within the range consistent wi
a Ginzburg-Landau expansion. Therefore these quasipart

FIG. 6. Spectral densityrph(a) vs a in the Ginzburg-Landau
regime.
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will be Landau damped belowTc and the relaxation time
scale ~the inverse of the ‘‘width’’! diverges at the critical
point x50. This expectation will be confirmed below an
suggests critical slowing down of long-wavelength pha
fluctuations.

~iii ! The reason that despite the appearance of a s
peak in the spectral density near the critical point the re
time dynamics does not reveal the oscillations associa
with a ‘‘quasiparticle pole’’ is clear. Asx→0 both the damp-
ing rate and the group velocityvg(x) vanish in such a way
that the time scale for damping is either shorter or of
same order as the time scale for the oscillation.

Furthermore, Eq.~6.30! evaluated att50 leads to the sum
rule

E
21

1 da

a
rph~a!51, ~6.32!

which we have confirmed numerically for a wide range ofx.
It is clear that damping becomes more pronounced

larger x and while the peak would seem to lead to oscil
tions with period 2p/apeak(x) there are no hints of oscilla
tory behavior in the real-time evolution. Phase fluctuatio
are strongly overdamped without featuring a propagat
mode. Hence we conclude that near the critical point, in
Ginzburg-Landau regimex!1, Goldstone modes or phas
fluctuations are severely damped despite the fact that
spectral density features a peak that would indicate a qu
particle ‘‘dispersion relation’’v5apeak(x)k. The damping
becomes larger for largerx and is solely a consequence
collisionlessLandau damping.

For x!1, we find that the nonequilibrium relaxation o
the phase fluctuation is very well approximated by an ex
nential ~see the logarithmic plot in Fig. 7!. The numerical
analysis clearly indicates thatduk(t).duk(0)e2gk(x)t,
where from Eqs.~6.26! and~6.28! the damping rategk(x) is
found to be given by

FIG. 7. Real-time evolution of the phase fluctuationduk(t) vs t
in the Ginzburg-Landau regime is plotted in linear scale~top! and
logarithmic scale~bottom!.
2-17
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gk~x!.
14z~3!vFk

3p3
x for x!1. ~6.33!

This result revealscritical slowing downsince the damping
rate vanishes at the critical point. Furthermore we also
that for fixedx the damping rate also vanishes in the lon
wavelength limit, in agreement with the expectation that
relaxation time scale of Goldstone bosons should diverg
the long-wavelength limit. This is one of the main results
this study: The long-wavelength phase fluctuations areover-
dampedby Landau damping in the Ginzburg-Landau regim
but the damping rate vanishes at the critical point indicat
critical slowing down.

In the Ginzburg-Landau regime and for long-waveleng
low-frequency fluctuations the nonequilibrium retard
Ginzburg-Landau effective action for phase fluctuatio
~Goldstone modes! is given to lowest order by~we have set
Ju50)

Sph
GL@du#5N~0!

uD0u
2Tc

E d3kdv$du2k~2v!~vFk!2@F~k,v!

2 f ~x!#duk~v!%, ~6.34!

up to an additive constant, wheref (x) and F(k,v)5F(a
5v/vFk) are given by Eqs.~6.26! and ~6.28!, respectively.
The imaginary part ofF(v,k) originates in Landau damping
This long-wavelength, low-frequency effective action lea
to the equations of motion for long-wavelength phase fl
tuations in the linearized approximation valid in th
Ginzburg-Landau regime. Thus it can be genuinely called
effective time-dependent Ginzburg-Landau effective acti
It is nonlocal in time as a consequence of Landau damp
and describes real-time relaxation which is completely ov
damped. The damping rate vanishes at the critical temp
ture thus signaling critical slowing down.

Away from the Ginzburg-Landau regime. xœ1

While we have focused in the Ginzburg-Landau regi
x!1, we now study the regionx*1 away from the domain

FIG. 8. Spectral densityrph(a) vs a away from the Ginzburg-
Landau regime.
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of validity of the Ginzburg-Landau expansion mainly wi
the purpose of comparing our results to those obtained
Refs. 10,14.

In this case we must keep the fullx dependence of the
functions I a,b and Ja,b . The spectral density has the sam
form as in Eq.~6.31! but now with the replacementF(a)
→F( s̄52 ia101,x), whose real@FR(a,x)# and imaginary
@F I(a,x)# parts can be found straightforwardly as in the p
vious case. In the low-temperature limitx@1, we obtain

f ~x!.
1

12x
,

FR~a,x!.
a2

4x
,

F I~a,x!.
pa

8 FA12a2 e2x/A12a2
1

a2x

2
@exEi~2x1!

1e2xEi~2x2!#G , ~6.35!

where Ei(x) is the exponential integral function,x6

5x(1/A12a261) and the exponentially small temperatu
corrections tof (x) and FR(a,x) have been neglected. Th
spectral density with the fullx dependence is displayed i
Fig. 8 for x*1 away from the regime of validity of the
Ginzburg-Landau approximation. It shows clearly the em
gence of a sharp quasiparticle peak, which forx@1 is at
apeak51/A3 in agreement with the results of Refs. 14,1
The real-time evolution of phase fluctuations in this regim
is displayed in Fig. 9. It is clear from these figures that t
sharp quasiparticle peak in the spectral density results
real-time dynamics that is weaklyunderdampedby Landau
damping. This is in contrast to the real-time dynamics in
Ginzburg-Landau regime, where Landau damping is so
vere that the phase fluctuation is overdamped, and he
there is no quasiparticle interpretation. Thus the real-ti
evolution displayed above for this case confirms the res
of Refs. 10,14 valid well below the critical temperature, th

FIG. 9. Real-time evolution of the phase fluctuationduk(t) vs t
away from the Ginzburg-Landau regime.
2-18
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a narrow quasiparticle peak describes the dynamics of p
fluctuations. As in the previous case discussed above,
damping rate is found to be given by

gk~x!.
5pvFk

6
e2A3/2x for x@1, ~6.36!

where the factorvFk is again a consequence of the Goldsto
nature of the phase fluctuation, leading to a vanishing da
ing rate in the long-wavelength limit. Because the effects
Landau damping are suppressed in the low-temperature
(x@1), the damping rate becomes smaller as the temp
ture decreases and hence the oscillatory behavior assoc
with the ‘‘quasiparticle pole’’ is evidenced. In this region
local time-dependent effective theory is a good approxim
description of the nonequilibrium dynamics. On the contra
the real-time dynamics in the Ginzburg-Landau regimex
!1) is overdamped, dominated by Landau damping an
cannotbe accurately described by a local effective action
real time. Thus the Ginzburg-Landau dynamics ispurely dis-
sipative.

B. Amplitude fluctuations

For the amplitude fluctuations in the long-waveleng
low-frequency limit the equation of motion in terms of th
Laplace transform requires the inverse propagator
1gS̃D(k,s)1gS̃O(k,s). In the case of amplitude fluctua
tions we expect a ‘‘gap’’ of orderuD0u in the spectrum of the
quasiparticle excitations. While this pole is away from t
region of validity of the long-wavelength, low-frequency a
proximation we can, nevertheless, obtain a qualitative if
a quantitative estimate of the dispersion relation for am
tude fluctuations.

Isolated poles. Since the imaginary parts ofSD ,SO are
nonzero only for2vFk,v,vFk, for k.0 andv.uD0u the
expected quasiparticle pole will be away from the co
tinuum. We can find the position of this pole by looking f
the solutions of

Re@11gS̃D~k,s!1gS̃O~k,s!#s52 iv10150. ~6.37!

This equation has solutions for values ofv given by
vamp(k), which determine the dispersion relation for the a
plitude fluctuation.

In the Ginzburg-Landau regime the gap of the spectr
can be estimated by settingk50 in the expressions of th
self-energies and keeping the lowest order@O(s2)# terms in
the expansion of the self-energies. After rescaling variab
in the integrals, we obtain

11gS̃D~0,s!1gS̃O~0,s!

.gN~0!E
0

`

dz
T~x,z!

e3 F11
z2s2

4e2uD0u2
G ,

~6.38!

where use has been made of the gap equation. Keeping
lowest order inx!1 in the Ginzburg-Landau regime, th
integrals can be done straightforwardly and we find
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11gS̃D~0,s!1gS̃O~0,s!.gN~0!
px

4 F11
s2

8uD0u2G ,

~6.39!

which, upon the analytic continuations→2 iv101, sug-
gests the gap of the spectrum in the Ginzburg-Landau reg
to be given by 2A2uD0u.

Away from the Ginzburg-Landau regime and for arbitra
values ofk the equation for the dispersion relation~6.37!
must be solved numerically. Figure 10 displays the disp
sion relation for several values ofx away from the Ginzburg-
Landau regime. The values of the gap shown are consis
with the results obtained by Aitchisonet al.39 We hasten to
emphasize, however, that the position of these sin
~quasi!particle poles areawayfrom the regime of validity of
our approximations and must only be taken as indicative
consistent with the findings of Ref. 14 butnot as accurate
dispersion relations since higher orders in the ratios/uD0u
will modify these results.

This analysis is included here with the sole purposes o~i!
emphasizing that there are single~quasi!particle poles away
from the Landau damping continuum, consistent with t
expectation of a gap in the spectrum of small amplitude fl
tuations,~ii ! establishing a comparison with the results
Ref. 14, and~iii ! offering at least a qualitative, if not a reli
able quantitative, discussion of the terms contributing to
time evolution of amplitude fluctuations. The full dispersio
relations must be obtained by keepingall terms in the self-
energies which will involve a substantial numerical effort,
task clearly beyond the scope of this article whose focu
on the Ginzburg-Landau regime in the long-waveleng
low-frequency limit.

Landau damping cut. The imaginary part associated wit
Landau damping arises forkÞ0 and is nonvanishing only
along the Landau damping cut2vFk,v,vFk. Focusing on
the long-wavelength, low-frequency limit and in th
Ginzburg-Landau regime, we find

11gS̃D~k,s!1gS̃O~k,s!.2g@SO~0,0!1 i s̄xN~0!I c~ s̄,x!#,
~6.40!

FIG. 10. Dispersion relation for the amplitude fluctuatio
vamp(k) away from the Ginzburg-Landau regime.
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where we have used the Ward identity~5.5! and neglected
the contributions fromI a,b andJa,b , which are subdominan
for vFk,s!uD0u. We note that in the case of phase fluctu
tions the terms withI c and Jc cancel each other in the dif
ference in the self-energies becauseI c5Jc , however, for
amplitude fluctuations these terms add up and furnish
dominant contribution.

We now proceed to study the real-time evolution of t
amplitude fluctuation by integratingdr̃k(s) along the
Bromwich contour in the complexs plane parallel to the
imaginary axis and to the right of all the singularities of t
Laplace transform

dr̃k~s!

drk~0!
5

1

s

H~ s̄,x!

H~ s̄,x!1h
, ~6.41!

where

xh5SO~0,0!/N~0!, H~ s̄,x!5 i s̄I c~ s̄,x!. ~6.42!

We obtain

drk~ t !5E
2`

` dv

v
rph~v,k!cos~vt !drk~0!, ~6.43!

where ramp(v,k) is the spectral density for the amplitud
fluctuation

ramp~v,k!5sgn~v!Z~k!vamp
2 ~k!d@v22vamp

2 ~k!#

1ramp
cut ~a!,

ramp
cut ~a!5

1

p
ImF h

h1H~ s̄,x!
G

s̄52 ia101

. ~6.44!

In the above expression the first term arises from quasip
cle pole vamp(k) and the second term arises from t
Landau-damping cut2vFk,v,vFk.

The quasiparticle pole will contribute an undamped os
latory component to the time evolution given by

drk
pole~ t !5Z~k!cos@vamp~k!t#. ~6.45!

The residue of the quasiparticle poleZ(k) is determined by

Z~k!512E
21

1 da

a
ramp

cut ~a!. ~6.46!

Figure 11 shows the temperature dependence ofZ(k) in the
long-wavelength limitvFk!uD0u. It reveals clearly that in
the Ginzburg-Landau regime (x!1) the spectral density
ramp(k,v) is dominated by the Landau-damping cut.

Whereas the damping rate of the quasiparticle vanishe
the long-wavelength, low-frequency approximation, we e
pect that higher-order contributions, in particular the dec
into a pair of Bogoliubov quasiparticles~bogolons!,37 will
lead to a width of the quasiparticle pole and hence a fin
damping rate if the gap the quasiparticle spectrum is gre
than 2uD0u, as seems to be the case from the previous an
sis. However, a more comprehensive study of the disper
relation is needed before reaching a quantitative conclus
18450
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e
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y

e
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n

n.

Again this is beyond the regime of validity of the long
wavelength, low-frequency approximation studied here.
the Ginzburg-Landau regimex!1, we find@see Eq.~6.9!#

h5
7z~3!

8p2
x, ~6.47!

and the real and imaginary parts ofH( s̄52 ia101,0) to be
given by ~here we have setx50)

HR~a!5
a

8E0

`dz

ze
lnU a1

z

e

a2
z

e

U ,

.
a!1p2uau

16 ,

H I~a!52
pa

8
Q~12a2!E

zmin

` dz

ze
,

.
a!1

2
pa
8 ln

2
a , ~6.48!

respectively, wherezmin5Aa2/(12a2). The real and imagi-
nary parts ofH(a) are displayed in Fig. 12. The Landau
damping contribution to the spectral density in the Ginzbu
Landau regime and the long-wavelength, low-frequen
limit is accurately described by

ramp
cut ~a!5

huH I~a!u

@h1HR~a!#21H I
2~a!

. ~6.49!

which, as displayed in Fig. 13, clearly reveals a sharp p
neara'0.

The real-time evolution of the Landau-damping contrib
tion to the amplitude fluctuationdrk

cut(t) is displayed in Fig.
14. While forx&0.05 the nonequilibrium relaxation throug
Landau-damping can be approximated by an exponen
clearly such is not the case forx*0.05. Nevertheless we stil

FIG. 11. Temperature dependence of the residue for the qu
particle poleZ(k) in the long-wavelength limit.
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find that the Landau-damping relaxation time scale beco
longer asx→0, revealing that this contribution to the non
equilibrium relaxation seems to be critically slowed dow
near the critical point. We close this section, by providing
nonlocal Landau-damping contribution to theretardedeffec-
tive action for long-wavelength, low-frequency amplitud
fluctuations in the Ginzburg-Landau regime~we have set
Jr50)

Samp
GL @dr#52N~0!

uD0u
Tc

E d3kdvdr2k~2v!F7z~3!uD0u

8p2T

1H~v,k!Gdrk~v!, ~6.50!

up to an additive constant, whereH(v,k)5H(a5v/vFk)
given by Eq.~6.48!. Obviously, Samp

GL @dr# leads to the re-
tarded equations of motion for the long-wavelength, lo
frequency amplitude fluctuations.

VII. CONCLUSIONS

In this article we have focused on the real-time noneq
librium dynamics of small phase and amplitude fluctuatio

FIG. 12. Real and the imaginary parts ofH(a).

FIG. 13. Spectral densityramp
cut (a) vs a in the Ginzburg-Landau

regime.
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of the order parameter in neutral BCS superconductors in
Ginzburg-Landau regime near the critical point. We ha
implemented the Schwinger-Keldysh formulation of no
equilibrium field theory combined with the novel tadpo
method to obtain directly in real time theretardedequations
of motion for small fluctuations around equilibrium. The
equations allow to extract the one-loop effective action
the long-wavelength, low-frequency phase and amplitu
fluctuations in the Ginzburg-Landau regime, which is ch
acterized byuD0(T)u/T!1 with D0(T) the finite-temperature
gap. Furthermore, the retarded equations of motion can
cast as an initial value problem to study the relaxation
nonequilibrium fluctuations directly in real time.

We studied in detail the relaxation of phase fluctuatio
within and away from the Ginzburg-Landau regime. Desp
the fact that the spectral density features a sharp peak w
Goldstone-like dispersion relation in the Ginzburg-Land
regime the relaxation is completelyoverdampedas a conse-
quence of Landau damping. This is consistent with a pur
dissipative time-dependent Ginzburg-Landau equation. H
ever, the effective action is nonlocal because of Land
damping. The relaxation is exponential in time with th
damping rategk(T)514z(3)vFkuD0(T)u/3p3T. The factor
vFk is a consequence of the Goldstone nature of the ph
fluctuations. The relaxation of phase fluctuations near
critical point featurescritical slowing down, i.e., the relax-
ation time scale diverges at the critical point.

Far away from the Ginzburg-Landau regime at low te
peratures, the spectral density features sharp quasipa
peaks and the nonequilibrium relaxation isunderdampedin
agreement with the results of Refs. 10,14. Away from t
critical region, the contribution from Landau-damping
negligible. The long-wavelength amplitude fluctuations a
severely Landau-damped near the critical region and the
laxation time scales also feature critical slowing down.

While we have focused on the nonequilibrium dynam

FIG. 14. Real-time evolution of the Landau-damping contrib
tion to the amplitude fluctuationdrk

cut(t) in the Ginzburg-Landau
regime is plotted in linear scale~top! and logarithmic scale~bot-
tom!.
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of neutral BCS superconductors, as a next step we will ap
these methods to the case of charged superconducto
study in detail the dynamics of the Carlson-Goldman mo
as well as the effective action including gauge fields near
critical temperature. We postpone this study to a forthcom
article.
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APPENDIX: PLANE-WAVE SOLUTIONS
AND THE BOGOLIUBOV TRANSFORMATION

In this Appendix we present an alternative derivation
the correlation functions for the fieldscs ,cs

† directly from
the plane-wave solutions of the homogeneous equation
motion ~i.e., in the absence of source! for the Nambu-
Gor’kov field given by~3.11!

F i
]

]t
1s3S ¹2

2m
1m D1s1D01s2D0* GC~x,t !50.

~A1!

The plane-wave solution can be written in the form

C~x,t !5F~k!e2 i (vt2k•x), F~k!5FUk

Vk
G . ~A2!

The two-component Nambu-Gor’kov spinor obeys

F jk 2D0

2D0* 2jk
GFUk

Vk
G5vFUk

Vk
G , ~A3!

where jk5k2/2m2m. This is an eigenvalue equation wit
the eigenvalues given by v56Ek , where Ek

5Ajk
21uD0u2. The normalization of the positive and neg

tive energy spinors is chosen so thatF (a)†(k)F (b)(k)
5dab , where a,b51,2 ~not to be confused with the
Nambu-Gor’kov indices! correspond tov56Ek , respec-
tively. Introducing the Bogoliubov coefficientsuk ,vk given
by

uk5S jk1Ek

2Ek
D 1/2

, vk5ukS D0*

jk1Ek
D , ukvk5

D0*

2Ek
,

~A4!
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2vk
G , F (2)~k!5Fvk*

uk
G , ~A5!
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1
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1dk
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uk
Gei (Ekt2k•x)J , ~A6!

whereV is the quantization volume.
At the level of second quantization, one recognizes t

Eq. ~A6! is the Bogoliubov transformation, in which the op
erator bk

† ,dk
† creates Bogoliubov quasiparticles of mome

tum k ~energyEk), and obey the usual canonical anticom
mutation relations. The correlation functions of the Namb
Gor’kov fields in the density matrix that describes fr
Bogoliubov quasiparticles in thermal equilibrium at inver
temperatureb are therefore found to be given by~in the
continuum limit!

^Ca~x,t !Cb
†~x8,t8!&

5E d3k

~2p!3
@12nF~Ek!#Sab~k!e2 iEk(t2t8)

1nF~Ek!S̄ab~k!eiEk(t2t8)]eik•(x2x8),

^Cb
†~x8,t8!Ca~x,t !&

5E d3k

~2p!3
@nF~Ek!Sab~k!e2 iEk(t2t8)

1@12nF~Ek!#S̄ab~k!eiEk(t2t8)#eik•(x2x8),

wherenF(Ek) is the equilibrium distribution for Bogoliubov
quasiparticles of momentumk

nF~Ek!5^bk
†bk&5^dk

†dk&5
1

ebEk11
, ~A7!

andS(k),S̄(k) are given by Eq.~3.25!.

~Addison-Wesley, Redwood City, CA, 1989!.
4V.I. Ginzburg and L.D. Landau, Zh. Eksp. Teor. Fiz.20, 1064

~1950!.
5L.P. Gor’kov, Zh. Eksp. Teor. Fiz.36, 1918 ~1959! @Sov. Phys.

JETP9, 1364~1959!#.
6A. Fetter and J. Walecka,Quantum Theory of Many-Particle Sys

tems~McGraw-Hill, New York, 1971!.
2-22



ev

rty

p

a

e

l,

L.

ys

e

p.

er-

of
the

ga,

n,

s

ng,

-
ky,
d
.

z.

-

r

he

NONEQUILIBRIUM RELAXATION IN NEUTRAL BC S . . . PHYSICAL REVIEW B 66, 184502 ~2002!
7C.M. Fraser, Z. Phys. C28, 101 ~1985!.
8M. Greiter, F. Wilczek, and E. Witten, Mod. Phys. Lett. B3, 903

~1989!.
9A.M.J. Schakel, Mod. Phys. Lett. B4, 927 ~1990!.

10I.J.R. Aitchison, P. Ao, D.J. Thouless, and X.M. Zhu, Phys. R
B 51, 6531~1995!.

11M. Stone, Int. J. Mod. Phys. B9, 1359~1995!.
12S.D. Palo, C. Castellani, C. DiCastro, and B.K. Chakrave

Phys. Rev. B60, 564 ~1999!.
13H.T.C. Stoof, Phys. Rev. B47, 7979~1992!.
14I.J.R. Aitchison and D.J. Lee, Phys. Rev. B56, 8303 ~1997!;

I.J.R. Aitchison, G. Metikas, and D.J. Lee,ibid. 62, 6638~2000!.
15N.P. Kopnin, J. Low Temp. Phys.97, 157 ~1994!.
16R.J. Watts-Tobin, Y. Krahenbuhl, and L. Kramer, J. Low Tem

Phys.42, 459 ~1981!.
17S.G. Sharapov, H. Beck, and V.M. Loktev, Phys. Rev. B64,

134519~2001!; S.G. Sharapov and H. Beck,ibid. 65, 134516
~2002!.

18Y. Ohashi and S. Takada, Phys. Rev. B62, 5971~2000!; K.Y.M.
Wong and S. Takada,ibid. 37, 5644~1988!.

19A. Paramekanti, M. Randeria, T.V. Ramakrishnan, and S.S. M
dal, Phys. Rev. B62, 6786~2000!.

20L. Benfatto, A. Toschi, S. Caprara, and C. Castellani, Phys. R
B 64, 140506~2001!.

21R.V. Carlson and A.M. Goldman, Phys. Rev. Lett.31, 880~1973!;
J. Low Temp. Phys.25, 67 ~1976!; F.E. Aspen and A.M. Gold-
man, ibid. 43, 559 ~1981!.

22V.M. Loktev, R.M. Quick, and S.G. Sharapov, Phys. Rep.349, 1
~2001!.

23F. Schreck, L. Khaykovich, K.L. Corwin, G. Ferrari, T. Bourde
J. Cubizolles, and C. Salomon, Phys. Rev. Lett.87, 080403
~2001!; F. Schreck, G. Ferrari, K.L. Corwin, J. Cubizolles,
Khaykovich, M.-O. Mewes, and C. Salomon, Phys. Rev. A64,
011402~2001!.

24H.T.C. Stoof, M. Houbiers, C.A. Sackett, and R.G. Hulet, Ph
Rev. Lett.76, 10 ~1996!.

25G.M. Bruun and B.R. Mottelson, Phys. Rev. Lett.87, 270403
~2001!.

26F. Zambelli and S. Stringari, Phys. Rev. A63, 033602~2001!; A.
Minguzzi and M.P. Tosi,ibid. 63, 023609~2001!; G.M. Bruun
and C.W. Clark, J. Phys. B33, 3953~2000!; G. Bruun, Y. Castin,
R. Dum, and K. Burnett, Eur. Phys. J. D7, 433 ~1999!; G.M.
Bruun and H. Heiselberg, Phys. Rev. A65, 053407~2002!.

27C. J. Pethick and H. Smith,Bose Einstein Condensation in Dilut
18450
.

,

.

n-

v.

.

Gases~Cambridge University Press, Cambridge, 2002!, see sec-
tion 14.

28J. Schwinger, J. Math. Phys.2, 407 ~1961!; L.V. Keldysh, Zh.
Eksp. Teor. Fiz.47, 1515 ~1964! @Sov. Phys. JETP20, 1018
~1965!#; K.-C. Chou, Z.-B. Su, B.-L. Hao, and L. Yu, Phys. Re
118, 1 ~1985!; J. Rammer and H. Smith, Rev. Mod. Phys.58,
323 ~1986!; E. Lifschitz and L. Pitaevskii,Physical Kinetics
~Pergamon Press, Oxford, 1981!.

29For simplicity of presentation, we consider here only the gen
ating functional for the Nambu-Gor’kov fieldsC and C†,
whose Green’s functions will enter explicitly in the equations
motion for the condenstate perturbation. The inclusion of
~bosonic! pair fields x and x† in the generating functional is
straightforward.

30L. P. Kadanoff and G. Baym,Quantum Statistical Mechanics~W.
A. Benjamin, New York, 1962!.

31See, for example, D. Boyanovsky, M. D’Attanasio, H.J. de Ve
R. Holman, and D.-S. Lee, Phys. Rev. D52, 6805 ~1995!; D.
Boyanovsky, M. D’Attanasio, H.J. de Vega, and R. Holma
ibid. 54, 1748~1996!, and references therein.

32J. W. Negele and H. Orland,Quantum Many-Particle System
~Perseus Books, Reading, MA, 1998!.

33D. Boyanovsky, H.J. de Vega, D.-S. Lee, Y.J. Ng, and S.-Y. Wa
Phys. Rev. D59, 105001~1999!; S.-Y. Wang, D. Boyanovsky,
H.J. de Vega, D.-S. Lee, and Y.J. Ng,ibid. 61, 065004~2000!;
S.-Y. Wang, D. Boyanovsky, H.J. de Vega, and D.-S. Lee,ibid.
62, 105026~2000!. For the description of nonequilibrium meth
ods in quantum-field theory see, for example, D. Boyanovs
H. J. de Vega, and R. Holman, inProceedings of the Secon
Paris Cosmology Colloquium, edited by H. J. de Vega and N
Sanchez~World Scientific, Singapore, 1995!, and references
therein.

34N.V. Mikheev and N.V. Chistyakov, Pis’ma Zh. Eksp. Teor. Fi
73, 726 ~2001! @JETP Lett.73, 642 ~2001!#.

35D. Boyanovsky, S.-Y. Wang, D.-S. Lee, H.-L. Yu, and S.M. Alam
oudi, Ann. Phys.~N.Y.! 300, 1 ~2001!.

36Y. Nambu, Phys. Rev.117, 648 ~1960!; L.P. Gor’kov, Sov. Phys.
JETP7, 505 ~1958!.

37See, J. B. Ketterson and S. N. Song,Superconductivity~Cam-
bridge University Press, Cambridge, 1999!, Sec. 45.

38Up to an overall factor, the expression forF(a) coincides with
thex→0 limit of Eq. ~39! in the second reference in Ref. 14 fo
n51.

39In the first reference in Ref. 14, it is found that the value of t
gap is'1/A0.085.3.43 @see Eq.~31! in that reference#.
2-23


