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Nonequilibrium relaxation in neutral BCS superconductors: Ginzburg-Landau approach
with Landau damping in real time
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We present a field-theoretical method to obtain consistently the equations of motion for small amplitude
fluctuations of the order parameter directly in real time for a homogeneous, neutral BCS superconductor. This
method allows to study the nonequilibrium relaxation of the order parameter as an initial value problem. We
obtain the Ward identities and the effective actions for small phase the amplitude fluctuations to one-loop order.
Focusing on the long wavelength, low-frequency limit near the critical point, we obtain the time-dependent
Ginzburg-Landau effective action to one-loop order, which is nonlocal as a consequence of Landau damping.
The nonequilibrium relaxation of the phase and amplitude fluctuations is studied directly in real time. The
long-wavelength phase fluctuati¢Bogoliubov-Anderson-Goldstone mgde overdampedy Landau damp-
ing and the relaxation time scale diverges at the critical point, reveatitigal slowing down
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[. INTRODUCTION (Bogoliubov-Anderson-Goldstone modean be well ap-
proximated by simple quasiparticle poles at complex energy
Nonequilibrium phenomena in superconductors continuéind describe damped excitations with a linear and
to be the focus of attention. The dynamics of Josephson jundemperature-dependent  dispersion relation and narrow
tions, phase slip phenomena in the dynamics of vortices andidths.
relaxation of the order parameter and supercurrents are few An alternative approach to study nonequilibrium aspects

examples of the experimental effort that probe nonequilib0f superconductors is based on kinetic theory. Koprstud-
rium aspects of superconductivity. ied the nonequilibrium dynamics of flux flow in clean super-

Since the original work of Abrahams and Tsurfetioere conductors, but did not address the validity of the time-
has been an ongoing effort in trying to obtain the effectivedepe”dem Landau-Ginzburg description near the critical

time-dependent description of nonequilibrium phenomen oint. Watts-Tobiret al.*® studied the validity of the Landau-

flom a_microscopic. Bardeen-Cooper-Schrieier(8CS) AR JeRtRERR BEBl e Ee B ated b
theory. Whereas the effective Ginzburg-LantidGL) de- ' P y

o . lasti llisions.
scription in thestatic limit was derived by Gor'kov,® the (elastig colisions

o . coo =7 However, to the best of our knowledge, the description of
effective time dependent Ginzburg-Landau description is St”khe relaxational dynamics for the amplitude and the phase of

the focus of a substantial theoretical effort. There is a larggne orger parameter, as well as the validity of the Landau-
body of work that established the validity of a time- Ginzhurg descriptiomear the critical pointin cleanneutral
dependent nonlinear Schroedinger equation that describegperconductors had been the subject of several recent stud-
the dynamics of the order parameter at zero temperdtdfe. jes, but has not been completely understood. The region near
At finite temperature the dynamical description is compli-the critical temperature, wheté o(T)|<T with Ay(T) the
cated by the presence of Landau damping, which prevents fgite-temperature gaforder parameteris the region of va-
local description in time, because the spectral densities fedidity of the Ginzburg-Landau theory.
ture branch cuts that prevent a derivative expansion. This The interest on a deeper understanding of the time-
problem was originally pointed out by Abrahams anddependent effective action for long-wavelength phase fluc-
Tsuneta' At finite-temperature Landau damping cuts are un-tuations has been rekindled by several recent developments.
avoidable and result from processes that involve scattering8ecently there has been a substantial effort to obtain the
of quasiparticles in the thermal bath. In derivations of thetime-dependent effective action of long-wavelength collec-
effective Lagrangian for dynamical phenomena from a mi-tive excitations associated with phase fluctuationd-imave
croscopic theory the Landau-damping contribution had oftesuperconductor. 2
been ignored® In particular, these studies focused on the novel Carlson-
The absorptive contributions to the effective action ofGoldman mode&' These are Goldstone-like modes in
long-wavelength phase fluctuations at finite temperaturghargedsuperconductors that emerge near the critical tem-
have been studied by Aitchiscet al'* for a neutral BCS perature.
superconductor. These authors studied in detail the Landau- While at T=0 the Anderson-Higgs mechanism combines
damping contributions to the effective action of phase flucthe Goldstone and gauge fields into a gapped plasma mode,
tuations and concluded that for temperaturesT8<0.6T,  near the critical temperature a novel quasiparticle Goldstone-
the effective propagator for the phase fluctuationlike excitation, the Carlson-Goldman mode, is present in
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charged superconductors. This mode is a superposition of thia/e action is retarded and nonlocal because of Landau damp-
Bogoliubov-Anderson-Goldstone mode, presentnieutral  ing. (iv) We study the time evolution of small phase and
superconductors and the long-range gauge field which iemplitude fluctuations from the equilibrium configuration
screened at finite temperature. In Ref. 18 it was pointed ougnd reveal directly in real time the effect of Landau damping.
that the existence of this mode is associated both with Main results Implementing the Schwinger-Keldysh for-
screening and Landau damping of phase fluctuations. Th@ulation of nonequilibrium field theory and the tadpole
importance of the nonequilibrium dynamics of long- method, we obtain the retarded equations of motion for small

wavelengthphasefluctuations has also been highlighted re- fluctuations, which in turn lead to Ward identities associated
cently within the context of high-temperature with (global) gauge invariance botim and out of equilib-

superconductivity? rium. From these equations of motion we obtain the retarded
Furthermore recent experiments in ultracold alkali atoms®ne-loop effective action which isonlocalas a consequence
have demonstrated the trapping and coolindeofionical- ~ Of Landau damping.

kalis, in particular®® and SLi.?* One goal of this present ~ We then focus on the Ginzburg-Landad(<T) region
experimental effort is to observe a transition tneutral ~ and study the real-time relaxation of small phase and ampli-
fermi superfluicfor fermi systems with amttractiveinterac-  tude fluctuations. While the spectral density for phase fluc-
tion between atoms in two different hyperfine stéfeRe-  tuations features a peak that suggests a Goldstone-like dis-
cently the spectrum of low-energy collective excitations inPersion relation, the relaxational dynamics is completely
the collisionlessregime has been studied, in particular, fo- Overdampeds a consequence of Landau damping.
cusing on the emergence of Goldstone or phase fluctuations Far away from the Ginzburg-Landau regime at low tem-
in theseneutral Fermi superfluidé® A proposal for the de- Peratures, the spectral densities for both phase and amplitude
tection of the phase transition to a neutral Fermi superfluid irfluctuations feature narrow quasiparticle peaks confirming
6Li alkalis relies on the spectrum of long-wavelength collec-Previous result$®*In partlcular,_the (eal—t|me relaxation of
tive (Goldstong excitations?® long-wavelength .phase fluctuations is wealllyderdamped
The interest on neutral BCS Fermi superfluids is interdisPy Landau damping.

ciplinary, from the current experimental efforts in Fermi al-  The article is organized as follows. In Sec. Il we introduce
kalis and in mixtures with Bose-alkafé,to neutron super- the model and the linear response formulation to obtain the

fluidity in nuclear matter and neutron stars. For a recenfguations of motion. In Sec. lll we introduce the Schwinger-
discussion on neutral Fermi superfluids and their interest in §eldysh formulation in the Nambu-Gor’kov formalism to.
wide variety of fields see Ref. 27. study the nonequilibrium aspects of Bogoliubov quasiparti-
Hence the study of the dynamics of phase fluctuations irf!€S- In Sec. IV we introduce the tadpole method, obtain the
neutral Fermi superfluidgpr neutral BCS superconductprs €duations of motion directly in real time and cast them in

continues to be of timely interest and of experimental rel-terms of an initial value problem. We obtain explicitly the
evance. retarded self-energies to one-loop order and their spectral

The goals of this articleln this article we focus on the rgpresentations and ob'tain the onejloop.rletarded effective ac-
nonequilibriumreal-time dynamics of phase and amplitude tion. In_Sgc. V we obtain the_Ward identities and dlscqss the
fluctuations in neutral BCS superconductors in the GinzburgStatic limit of the self-energies. In Sec. VI we obtain the
Landau regime near the critical temperature. In particular, w&ffective time-dependent Ginzburg-Landau description fo-
obtain the effectivelynamicalGinzburg-Landau description €using on the Ginzburg-Landau regime and the long-
of nonequilibrium relaxation of long-wavelength, low- wavelength, low-frequency limit. In this section we provide

frequency fluctuations of the order paramatear the criti- @ thorough numerical analysis of the real-time evolution of
cal point the relaxation of phase and amplitude fluctuations. Section

While previous efforts, notably by Aitchiscet al1%14fo- VIl presents our conclusions and poses new directions. An
cused on the long-wavelength, low-frequency effective ac@Ppendix is devoted to an alternative derivation of the Bogo-
tion well below the critical temperature for0T<0.6T, our ~ llubov transformation, which facilitates the Schwinger-
goal is to study the critical regiopo(T)|<T, with Ay(T)  Keldysh nonequilibrium formulation.
the finite-temperature gap. Our study is different from previ-
ous attempts in several respects) We implement the

Schwinger-Keldysh formulation of nonequilibrium field Il. PRELIMINARIES

theor)fg_ along with the recently introducetddpole m_ethoﬁ A Neutral BCS model

to obtain the equations of motion for small amplitude fluc- o o
tuations of the order parameter igal time (i) The equa- The BCS Hamiltonian of a neutral electron gas is given

tions of motion obtained with these methods are retarded?y
lead to the Ward identities and allow to establish the retarded
effective action at once. Furthermore, the equations of mo-
tion describe an initial value problem that allows a real-time B 30 4

study of relaxation and dampingii) We then focus on the H_U:EM d Xl/f(r(X,t)( - ﬁ) by(X1)
Ginzburg-Landau regimg\ o(T)|/T<1 and establish they-
namical Ginzburg-Landau effective action to one-loop order
for long-wavelength, low-frequency fluctuations. This effec-

2

-9 f a3yl OGP ¥ (D (XD, (2.1
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where ,(X,t) are the Heisenberg complex fields represent-

ing electrons of massiand spine, andg>0 is the strength ~ L[#" w.AT A= >yl
of the sswave pairing interaction between spin-up and spin- o=
down electrons close to the Fermi surface. In this article, we 1
seth=kg=1. The fieldy,(x,t) and its Hermitian conjugate +yly[A——ATA. (2.9
satisfy the equal-timanticommutatiorrelations g

Yo+ ATy

We note that the pair field (x,t) is nota dynamical field as

{wg(x,t),zpl,(x’,t)}z500,5(3)(x—x’), (2.2 there is no corresponding kinetic term in the Lagrangian
(2.8.
(06,0, 0 (X O =1yl (x,1) ¢T (x' )} =0. In the superconducting phase, we decompose the paring

field into the condensate and noncondensate parts

The HamiltonianH is invariant under th& (1) gauge trans-
(1) gaug AD=(AX D)+ x(xD), (x(x0))=0, (2.9

formation
” where (O(x,t))=Tr[ pO(x,t) ]/ Trp denotes theexpectation
Po(X, 1) =€ (X1, valueof the Heisenberg operatd}(x,t) in theinitial density
_ matrix p, (A(x,t)) is the superconducting order parameter,
Phxt)—e yl(x), (2.3 and y(x,t) describes the noncondensate operator. The pres-

. ence of the condensatg\(x,t))#0 leads to spontaneous
where 6 is a constant phase. A consequence of thid)  preaking of theU(1) gauge symmetry. In the absence of
gauge symmetry is conservation of the number of electrons,y jicit symmetry breaking external sources, the condensate
Indeed, the number operator of electrons is homogeneous(i.e., space-time independgn{A(x,t))

=A,, which is the situation under consideration in this ar-
N= EH f A3l (X, 1) (X, ) (2.4  ficle.

. . . B. Real-time relaxation in linear response
commutes withH and hence is a constant of motion. How- P

ever, it is convenient to work in the grand-canonical en- The goal of this article is to obtaidirectly in real timethe
semble in which the grand-canonical Hamiltonian is givenequations of motion for small amplitude perturbations of the
by homogeneous superconducting condensate in an initial value
problem formulation. Our strategy to study the relaxation of
B B 3. .t the condensate perturbation as an initial value problem be-
K=H_MN—U;l X (X O] = 5= k| (X1 gins with preparing a superconducting state slightly per-
’ turbed away from equilibrium by applying an external source
" + coupled to the pair field. Once the external source is
_QJ XY DYDY (D P (XD, (2.9 switched off, the perturbed condensate must relax towards
equilibrium. It is precisely thiseal-time evolutionof the
where the chemical potential is the Lagrange multiplier nonequilibrium fluctuations around the condensate the focus
associated with conservation of number of electrons. Thef this article.
chemical potentia is determined by fixing the number of Let (x,t) be an externat-number source coupled to the
electrons and in general is a function of the temperaturepair field A(x,t), then the Lagrangian given b§2.8) be-
However, for the situation under study in which the temperacomes
ture is much lower than the Fermi temperaturecan be
approximated by its zero-temperature value, i.e., the Fermi  L[¢", ¢, AT A1— L[ y1, ¢, AT A1+ AT+ n*A.

2

energy. The Lagrangiaensity corresponding t& is given (2.10
by The presence of the external sourgeavill induce a(linean
g V2 response of the system in the form of an induced expectation
T = = — ot value
‘C[lp 1¢] U;,l 1/10' Iat+2m+ﬂ)l//a+gl//Twlwl¢T'
(2.6 (A(X,1)),=Ag+ 8(X,1). (2.1
Introducing the auxiliary complex scalpair fieldand its ~ Here (A(x,t)),, denotes the expectation value of the paring
Hermitian conjugate defined as field A(x,t) in the presence of the external sourcdg,
=(A(x,t)) is the homogeneous order parameter in the ab-
A, D =g¢ (X, 1) i (x,1), sence the external source, ad(k,t) is the space-time de-
pendent perturbation of the homogeneous condensata-
AT(x,t)=g<//}r(x,t)z//I(x,t), (2.77 duced by the external sourceThe linear response

perturbations(x,t) vanishes when the external soungf,t)
and performing the Hubbard-Stratonovich transformatfon, vanishes at all times. This is tantamount to decomposing the
the Lagrangian can be written as field into the homogeneous condensatg), a small ampli-
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tude perturbation induced by the external sourééx,t)], ¢Z,XT,A3 0%, n*
and the noncondensate paxt(x,t)] as oot . . .
He—IH/ZIAO—'e—IBXT,e—IHAO'e—I05,e—|07],
A(X,1)=A0+ 8(x,t) + x(x,1),  (x(x1)),=0. (2.1
(2.12

which, as will be seen below, is at the heart of the Ward
identity.

Whereas in general a gauge transformation is invoked to
fix the condensatd ; to bereal for convenience, this choice
corresponds téixing a particular gaugewhich in turn hides
etll]e underlying gauge symmetry. In order to obtain the Ward

identity associated with this symmetry we will keep a com-
plex condensatd, and analyze in detail the transformation
laws of the various contributions to the equations of motion.
The study of the static and dynamical properties of the
BCS theory is simplified by introducing the Nambu-Gor’kov

. . o . formulation. Let us introduce the two-component Nambu-
The adiabatic switching-on of the external source induces g kv field<Se:®

space-time-dependent condensate perturbaijmrt), which

In linear response theo§(x,t) can be expressed in terms
of theexactretarded Green'’s function of the pair fields in the
absence of external sourt&® An experimentally relevant
initial value problem formulation for the real-time relaxation
of the condensate perturbation can be obtained by consid
ing that the external source is adiabatically switched on at
= —oo and switched off at=0, i.e.,

(X0 =7(x)et@(—t), e—0". (2.13

is prepared adiabatically by the external source with a given Pi(x,0)

value 5(x,0) att=0 determined byy(x). Fort>0 after the P(x),t)= tot) | \If’f(x,t):[w}r(x,t),zpl(x,t)],
external source has been switched off, the perturbed conden- (%, 21
sate will evolve in the absence of any external source relax- (.17

ing toward equilibrium. Thus, the external sourgéx,t) is and the 22 Pauli matrices
necessary for preparing an initial statetat0 setting up an
initial value problem. This method has been applied to study 0 1 0 0 1 0
a wide variety of relaxation phenomena in different 7+Zlo o 1 0 0 —1/
settings;>** including the relaxation of condensate fluctua- (2.189
tions in homogeneous Bose-Einstein condensites.

Using the decompositio(ﬁ_la we expand the Lagrang_ in terms of which the Lagrangian can be written as
ian density, and consistently with linear response, keep only
the linear terms ins and 6*, which are the small amplitude LLWTW )T x]= Lol W W XX ]+ Lind ¥7 WX ],
perturbations from the homogeneous condensate induced by (2.19
the external source). The Lagrangian becomes(in the  with
presence of the external sourgg

’ o_= ’ 03=

2

d
L[ VT W T, =\I’T[i—+ —+u|to,A
Lyt x T x1= Lol vt o x X1+ Ll 0T 0 x T X1, ol XX gt 78\ gm T H T I+ 0
(2.14 .
* N |
with +o_Aj |V g)( X
T T T _(9 VZ * T T T 1 T T
Lol4" o, x" x]1= Zu Yol et ot | Yot Doty Li ¥, x" x]=V o, (6+x)V+ gX (Ag+d)+x'n
o1 +H.c. (2.20
'Hﬂﬂon_ aXTXa
. NONEQUILIBRIUM FORMULATION
L " 0 x" X1 A. Generating functional

1 The general framework to study of nonequilibrium phe-
=(*+ XN g — — (5 +A)x+ n* x+H.C., nomena is the Schwinger-Keldysh formulatf&nyhich we
9 briefly review here in a manner that leads immediately to a
(2.19  path integral formulation.

Consider that the system is described by an initial density
where we have discarded tbenumber(field operators inde-  matrix p and a perturbation is switched on at a titiae so
pendent terms. We note that the Lagrangia@fiy’, s, x".x]  that the total Hamiltonian for>t,, H(t), does not commute
is obviously invariant under the gauge transformations  with the initial density matrix. The expectation value of a

Heisenberg operatad(t) =U ~(t,t,) O(to) U(t,to) is given
B X Ao, 8, m—e 2y ety elfA,,el?5,el0n, by
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TrpU ~1(t,t0) OU(t,to) [t
(O(1))= Trp , 3.1 J+ c
whereU(t,to) is the unitary time evolution operator in the -® +©
Heisenberg picture J-
JB

U(t,to)zTexp[—i drH) |, (3.2 —00-iB

to

. . . . . . FIG. 1. The contou€ in complex time plane in the Schwinger-
with T the tlme—orde_rlng symbol. If_ Fhe_ initial _denSIIy matrix Keldysh formulation. It consists of a forward branch running from
p describes a state in thermal equilibrium at inverse temperg— _'» to t=+, a backward branch from=+ back tot

tUI’e,B W|th the unperturbed Haml|t0nla|F| (t<t0) = H, |e, —oo, and an imaginary branch fromp —o to t= _oo_|ﬂ The
g . sources)® serve to generate the nonequilibrium Green’s functions
p=e ""=U(to—iB.to), (3.3 of the Nambu-Gorkov fields.

then the expectation valu8.1) can be written in the form . o
notation we have suppressed the spin indeand the com-

TrU(to—iB,to)U (to,t) OU(t,to) plex conjugate of the sourceE. The denominator in Eq.
(O(1))= Tr0(to=15.to) . (34 (3.9 is given by Tp=2[0,0,0]. The generating functional
o /o Z[J*,J7,J#] can be written as a path integral along the
The numerator of this expression has the following interprecontour in complex time planesee, Fig. 1
tation: evolve in time front, up tot, insert the operato®,
evolve back front to the initial timet, and down the imagi- b _ a4 )
nary axis in time fromty to to—iB8. The denominator de- 237 "]B]_f DC‘PTDC\I,eX’{'Ld XCC[WT’\P’J]}‘
scribes the evolution in imaginary time which is the familiar (3.7
description of a thermal density matrix. We note that unlike + ) ) )
the S'matrix elements or transition amplitudes, expectationvhereDe¥ "D denotes the functional integration measure
values of Heisenberg operators require evolutiorward  along the contou€ and
and backwardin time (corresponding to th&) andU ! on Y
each sidtnT of the operatm). _ fd4xﬁc[\PT,w;J]:f d4xL[ W w3t
The time evolution operators have a path-integral c —o
representatioif in terms of the Lagrangian, and the insertion Y
of operators can _be systematic_ally hz_;mdled by introducing _ d4x L[ W= w07
sources coupled linearly to the fields, i.e., —w

LIV T x]= LYW T ]+ TI+ 3T+ ) Tj

—w—iB
+f d*x L[ WA W 3A,
+i* X, (3.5

—o

3.8
whereJ andJT are Grassmann-valued variables. The intro- 3.8

duction of sourced, JT, j, andj* also allows a systematic with [“Zd*x=[d3x[ Zdt, etc. Because of the trace and the
perturbative expansion. In such an expansion, powers of ofermionic nature of the operators, the path integral along the
erators are obtained by functional derivatives with respect teontourC requiresantiperiodic boundary conditionsn the
these sources, which are set to zero after functional differerfields. The superscripts and— refer to fields defined in the
tiation. We note that the sourcg$* introduced in Eq(3.5  upper and lower branches, respectively, corresponding to for-
to generate the perturbative expansion for the pair fields inward (+) and backward ) time evolution, while the su-
terms of functional derivatives with respect to these,dife  perscriptg refers to the field defined in the vertical branch
ferent from the external sources,n* introduced in Eq. running down parallel to the imaginary axis. The negative
(2.10 to generate an initial value problem in linear responsesign in front of the action along the backward branch is a
and to displace the condensate from equilibrium. result of the fact that backward time evolution is determined

Since there arehree different time evolution operators, by U ~1(+%,—) with U the time evolution operator. The
the forward, backward, and imaginary, we introdubese  contour sourcd that enters in the contour Lagrangidp in
different sources for each one of these time evolution operagq. (3.7) takes the values of the sourcés and J? in the
tors, respectively. Takingy— — o, we are led to considering respective branches as displayed in Fig. 1.

the generating function®l Functional derivatives with respect to the sources in the
b1 s . s B forward branch give time-ordered Green’s functions, those
Z[J7,37 P ]=TriU(—%—iB,—»,J")U(~%,+=,]7) with respect to the sources in the backward branch give the
X U(+o0,—o0:%), (3.6) anti-time-ordered Green’s functions, and those with respect

to the sources in the imaginary branch give the usual
where U(t;,t;;J) is the time evolution operatdrsee Eg. imaginary-time (Matsubara Green’s functions. While the
(3.2)] in the presence of the sourdeand for simplicity of sourcesJ™, J~, and J? introduced to obtain the Green’'s
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functions via functional differentiation ardifferentin the  where @,(t—t’) is the step function along the contour
different branches, as they generate the time-ordered, antind S=(x—x’,t—t’) obey the homogeneous equations of
time-ordered, and Matsubara Green’s functions, respectivelynotion.

the external source, the homogeneous condensaig and The antiperiodic boundary conditions on the fields in the
the departure from equilibriund are c numbers and hence path integral, a result of the trace over fermionic fields in Eq.
are thesamein all branches. (3.6), lead to the following boundary condition on the

Writing the Lagrangian as a free and an interaction part a&reen’s function
L= Ly+ Ly, the generating functional can be written as a ) _ )
power series expansion in the interaction part, which in turn M S(X=x",to—t")=— lim S(x=x",to—ig~-t").
can be generated by taking functional derivatives with re- 07~ to—r =

spect to the sourcekJ’ by identifying (319
Since along the contoug— —< is the earliesttime andt,
S S —ip is therefore thdatesttime, Eq.(3.15 entails
\Pi—>1i—+, P +j =
sJ= 83+ lim S<(x—x',to—t")
t0_>—m
.0 .0 =— lim S™(x—xto—ig—t'), Vvt
YA —i— Wi —. (3.9 0 ' '
AN PALS to =
(3.16

As a result, the full generating functional along the cont®ur
can be written as which is the Kubo-Martin-SchwingefKMS) condition for
equilibrium correlation function®

(o s 8 The free field generating function}[ J] is now obtained
Z[J]=ex |Ld XLint ¢ —|E,|§ Zo[J], by writing
(310 V(x,) =T (x,1)+Wy(x,1),
where free field generating functiongg[ J] is given by Egs. ~ ;
(3.7 and (3.8 but with £[V'W¥;J] replaced by WX, =W (x1)+Wi(xt), (3.17)
Lo[ W1, W],

which leads to the result

B. Green’s functions

_ _ _ ZO[J]=ZO[0]exp{—ifd4xf d*x’ IT(x)S(x—x")I(x") |,
The equation of motion for thieee Nambu-Gor’kov field c c
V¥ in the presence of the sourdeeads (3.18

where and hereaftex denotes the space-time coordinates
W(x,t)=—J(x,t). (x,t) for simplicity of notation. The source-independent term
Zy[ 0] will cancel between the numerator and the denomina-
(31D torinall expectation values in Eq3.1).
Furthermore, we are interested in computing Green’'s
functions offinite real timeswhich are defined for fields in
the forward (+) and backward {) time branches, but not
Vy(x,t)=— f d*x'S(x—x',t—t")I(x',t"), (3.12 in the imaginary branch. For these real-time Green's func-
¢ tions the contributions to the generating functional from one
where S(x—x',t—t') is the Green’s function matrix along SCUrce in the imaginary branch and .another source in either
the contourC and satisfies forward or backwarq branch' vanish by the Riemann-
Lebesgue lemm&*3since the time arguments are infinitely

VZ

—+
2m K

J
[iE-I—a'g +o At o_Aj

The solution of this equation of motion is given by

9 v2 far apart along the contour. Therefore the contour integrals of
[iﬁﬂrg ﬁ+,u +o, Agto Af|S(x—x"t—t") the source terms and Green'’s functions in the generating
functional factorize into a term in which the sources are

=Sp(t—t") 8@ (x—x"), (3.13  those either in forward and backward branches and another

term in whichboth sources are in the imaginary brart?
with d.(t—t") the Dirac delta function along the contour The latter term(with both sources in the imaginary branch
Jdt' 5(t—t")=1. The Green’'s functionS(x—x',t—t’)  cancel between numerator and denominator in expectation

has the form values and the only remnant of the imaginary branch is
through the periodic boundary conditions along the full con-
S(x—x",t=1")=S"(x—x",t=1")O(t—t") tour in the Green’s function.
Thus the generating functional for the real-time Green's
+SS(x—x",t—t") Ot —1), functions simplifies to the following expression, defined

(3.149  solely along forward and backward time branchés

184502-6



NONEQUILIBRIUM RELAXATION IN NEUTRAL BCS.. .. PHYSICAL REVIEW B 66, 184502 (2002

oo S (X=X =i(T] (X)W (X)), 3.2
Z[Ji,JTi]=ex+f d*x{ L —i 6183181637 (X X) =1 W0 o)) (322
where and hereaftea,b=1,2 denote the Nambu-Gor’kov
indices. The expectation values in the expressions above are
in the noninteracting thermal density matrix which corre-

—Lindi6/637 =i 5/53—]}}
sponds to the quadratic part of the Lagrandidamiltoniar),

+o0 +o0 ; ; i ; ; :
r 4 dorr 1t it i.e., the density matrix that describes free Bogoliubov quasi-
Xexp{ 'f_x d Xf_x d*x I (x)S" " (x particles in thermal equilibrium at inverse temperatgre
. i o - While the matrix elementS;,(x—x’) can be obtained
=X )IT(X)+ITT(X)ST T (x=x")I"(x") through the usual Bogoliubov transformation to the quasipar-

ticle basis we present in the Appendix an alternative deri-
vation of these correlation functions directly from the spinor
. . B solutions of the homogeneous equations of motion. We find
=37 ()8 T (x=x)IT (XD ], (3.19  that the correlation functions in Eq3.22 in the infinite
volume limit are given by

I (x)ST T (x—x")I"(x")

with
S++_r:S>_r_l®_r - d3k> . o
(x—=x')=S"(x=x',t—t")O(t—t") §b(><—><’)=f S5kt -t o),
+S (X=X, t—t")O(t' —t), T (323
STT(x—x")=S"(x—x"t—t")O(t'—1) where
+SS(x—x',t—t")O(t—t'),
ok t—t') = —i[[1-ne(EQ) Sap(k)e B
S H(x—=x")=S"(x—x",t—t"), aol I i( 18at(
+ne(Ey) Sap(K)e =],
ST (x—x') =SS (x—x' t—t"), (3.20 Pk e
where now—=<t,t’<+% and the superscripts,— cor- S§b(k,t—t’)=i[nF(Ek)Sab(k)e‘iEk(“")
respond to the sources defined on the forwaftg @nd the o _
backward ) time branches, respectively. An important is- +[1—nF(Ek)]Sab(k)e'Ek(t*“)],

sue that must be highlighted at this stage, is that derivatives
with respect to sources in the forward J time branch cor-
respond to insertion of operatopsemultiplyingthe density with
matrix p and derivatives with respect to sources in the back-
ward (—) branch correspond to the insertion of operators ) .
postmultiplyingthe density matrix. That this is so is a con- — lo® Uk
sequence of the fact that the density matrix evolves in time ~ (K)= —uwr |vd? | S(k)= U U2
asU(t,to) poU ~1(t,to) with U(t,ty) the time evolution op- (3.29
erator.

These four Green'’s functions are not independent becausg the above expressions= k|, ng(w)=1/(ef“+1) is the

of the identity Fermi-Dirac distribution functiony, and v, satisfying u?
o ot ot ottt +|v|?=1 are the Bogoliubov coefficienfsee Eq.(A4)],
ST X=X+ ST (Xx=X) =S (x=x) =5 (x=x') and E, is the energy of free Bogoliubov quasiparticles

(3.29

uz  —uey

=0. (3.2)  (bogolong
The diagonal elements 8" "(x—x') are the normal N ey
Green’s functions, representing the propagation of single E=Véict|Aol% (3.26

electrons, whereas the off-diagonal elements are the anoma- ) ] )

lous Green’s functions, corresponding to the annihilation andvhere&=k/2m— u (see the Appendix Using the relation

creation of two electrons of opposite spins, respectively. 1_”F(w)§eﬁw”F(w)1 one can easily verify the KMS
The functionsS=(x—x'), which are solutions of the ho- conditior?

mogeneous free field equation of motion, are simply related

to the correlation functions of the free Nambu-Gor’kov fields ST (kt—ip—t')=—S~(kt—t'). (3.27

¥, ¥, Indeed, taking variational derivatives of the free field

generating functionae[ J] with respect ta)*,J™, one can  Hence, the correlation functions for the Nambu-Gor’kov

show that fields W, ¥ that will enter in the nonequilibrium perturba-

) tive expansion are completely determined by E@22—
Sap(X=X) = =i (W()PH(X)), (3.26.
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grangian relevant for the nonequilibrium calculations is
given by (a)

LMW W (T 1= LW W Tyt

C. Feynman rules + + N
From the generating functional of nonequilibrium Green'’s "'C;Q(TO + ---;Q;—O
functions(3.19), it is clear that the effective interaction La-
—Lin YW XX, _.-% + DR =
(328) G_ (o0 (o0 G_
(b)

where the fieldsP ™=, ¥*, x™* andy™ are defined on the
forward (+) and backwards ) time branches, respec-
tively. Consequently, this generating functional leads to the FIG. 2. Feynman diagrams contributing to the retarded self-
following Feynman rules that define the perturbative expanenergies(a) 2,,(x—x’) and (b) 2,5x—x’) to one-loop order. A
sion for calculations of nonequilibrium expectation values. solid line with arrow denotes the Nambu-Gor’kov field, a dashed
(i) There aretwo sets of interaction vertices defined by line denotes the pair field, and a solid line with ogéhed) circle
LEMw ™= w* T y*1: those in which the fields are in the denotes the condensate perturbab(s*).
forward (+) branch and those in which the fields are in the
backward () branch. There is a relative minus sign be- consider the interaction Lagrangiah, ¥ ', ¥, x",x] given
tween these two types of vertices. in Eq. (2.20 in perturbation theory and impose thadpole
(i) For each kind of fields there afeur types of Green’s condition
functions corresponding to correlations between fields de-
fined in the forward or backward branch. . <Xt(X)>n=<XTi(X)>ﬂ:0 (4.2
The Green’s functions of the Nambu-Gor’kov fields
¥, ¥ are given by Eq(3.20 in terms of the correlation order by order in the perturbative expansion, but, consistent
functions displayed in Eq3.22 that are completely deter- with linear response, only keep contributions linear in
mined by Eqs(3.24), (3.25, and(3.26. The Green’s func-  §(x),5* (X).
tions of the pair fields,x" can be obtained in an analogous  Using the Feynman rules described in the preceding sec-
manner. However, due to the nonpropagating nature of théon, to one-loop order the tadpole conditidiy*(0)),
pair fields, the Green’s functions are local in time, and hencez(X“(O))n:O leads to the following expression:
those of fields defined in different branches vanish identi-
cally.
(i) The combinatoric factors, trace over the Nambu- f d*(x T (0)x" (%))
Gor’kov indices for fermion loops, etc., are the same as in
the imaginary-timgMatsubara formulation.

o(X)
(T+f A2 14(x—Xx") 8(x")

+3(x=x") 5 (x") ]+ T(Ag,A5) — 1(x) [ =0,

IV. RELAXATION OF CONDENSATE PERTURBATIONS:
AN INITIAL VALUE PROBLEM

6*(X) ! ! !
A. Equations of motion J d*%(x " (0)x " (x)) g +f d*x'[Z (X = x") 8* (X')
The equations of motion for the small amplitude super-
conducting condensate perturbatié{x) induced by the ex- +351(x=x")8(X") ]+ T*(Ag,A5) — 7" (x)|=0, (4.3
ternal sourcep(x) is obtained by implementing thadpole

method®*3 This method begins by writing the pair fields
A*(x) in the forward ) and backward £) time branches
as

where, ,(x—x") are the retarded self-energies of the pair

fields and thetadpole 7{A(,Ag) denotes term independent

of the condensate perturbatio, 5*. The diagrams for
A= (X)=Ag+ 8(X) + x5 (), (4.1) 2 11(x—x") andX,(x—x") to one-loop order are depicted in

Fig. 2, and those fo ,,(x—x’') and X,(x—x') can be

whereA, is the homogeneous condensate in the absence obtained in an analogous manner. Explicitly to one-loop or-

external sourceg(x) is the perturbation of the condensate der we find

induced by the external source which vanishes in the absence

of external source, ang™(x) are the noncondensate part of 3,,(x—x")=—i[(¥T*(x)o_ ¥ ()P (x)o, ¥ (x"))
the pair fields in the forward and the backward time it N o _
branches. The external sourg¢x) arec-number fields and —(PTT (X))o POV (X o W T(X) ]
hence taken the same value in both forward and backward =—ito_S" " (x=x")o, ST (X' —X)
branches. The strategy to obtain the equations of motion for

small amplitude condensate perturbatié(x),5* (x) is to —o_ST (x—x")o.S (X' —x)],

184502-8
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wp d
-+ ---C{Q gN(O)JODé[l—ZnF(E)]=1. 4.9

FIG. 3. Feynman diagrams contributing to the tadpole Introducing the space Fourier transforms &fx), 7(x),
T(Aq,A%) to one-loop order. A wiggly line denotes the homoge- and> ,,(x—x') as
neous condensatk.

d3k :
S (t)elk-x’

3 x—x) = —i[(¥ T ()0 W 0w (X)W (X)) 5(X)'t):J (2m3*
'

—(¥ () V()P (X ) oW (X))]
=—itfo_S" " (x—x")o_S* T (x' —x)
—o_St " (x=x")o_S T (x'—x)], (4.9

+ o
where tr denotes the trace over the Nambu-Gor’kov indices. 5k(t)+gJ dt'[2 19k, t=t") 8 (t") + 214Kk t
The expressions faE ,5(x—X") and,,(x—x") can be ob- _°°
tained, respectively, from expressions in E4.4) through —t’)édik(t')]ﬂLgﬂAo,AS)5(3)('()—977;(('[):0,
the replacementr, <~ o _ .
The diagrams for the tadpol&A,,Af) are depicted in

etc., we find the equations of motion in momentum space to
be given by

. . : +oo
Fig. 3, from which we find 5ik(t)+gf7 dt' [ oK, t—t") 8% () + 2 oy(k,t
A
T(Ao, A7) = EO—<‘P”(X)U-‘I’+(X)> —t')8(t")]+gT* (A,A5) 8¥(k) — g 7% () =0.
(4.10
Ao .
=—+it{o_S~(0)]. 4.5 ) i .

g The equations of motion obtained from the tadpole con-

. — _ T7 _ .
A simple calculation with the nonequilibrium Green’s func- dition (x (0)),=(x""(0)),=0 are the same as those given
tions of the Nambu-Gor'kov fields obtained in the preceding" the above expressions. While the equations of motion

section shows that the tadpole to one-loop order is given b{/*-10 are obtained to one-loop order, it is straightforward to
conclude after a simple diagrammatic analysis that the struc-

ture of the equations of motion obtained above is general and
, (4.6 valid to all orders in perturbation theory. From the explicit
expressions for the self-energies or by taking complex con-
jugation of the equation of motion faf,(t), one can show

1 J d*q 1-2ng(Ey)
g (2m)®  2Eq
whereE on the right-hand side of E@4.6) is understood to

T(A0,A5) =40

be a function of|A,| [see Eq.(3.26] and, hereafter, the that
momentum integral [d3q/(2)%] is restricted to the elec- , . /
tronic states near the Fermi surface. Sk t=t") =37 (—k,t—-t"),
It is customary to rewrite the integral over the momentum
g as being over the energy(measured from the Fermi sur- Sk t—t") =3 (—k,t—t"). (4.11)

face at the expense of introducing the density of states

N(€), which is taken to be constant near the Fermi surfacef-urthermore, rotational and parity invariance imply that the

and cutting the integral off at wp with wp being the Debye self-energies are only functions & Upon expressing the

energy, thus leading to nonequilibrium Green'’s functions in terms of the correlation
functions S=, one finds immediately that the retarded self-

1 wp d§ energies have the following causal structure
ﬂAo,AS):Ao[a_/\f(O)L E[l—znﬂEn}, J J

(4.7) Sk t—t) =Sk t—t)O(t—t"),
whereE= \&2+[Ao|? andAN(0)=mk27? is the density of , o , ,
states at the Fermi surface. Setting the external soyrce Sk t—t) =25k t—=t)O(t—t"). (4.12

=0, the equilibrium condition for the homogeneous conden- ) ) .
sate7(Ag,A%)=0 becomes Before proceeding further, we note that the invariance of the

Lagrangian under the global gauge transformat®6) im-

1 wp dé plies thatall the terms in the equations of motion fér(6*)
Ao[——/\/(O)f E[l_an(E)]} =0. (4.8)  must transform a$ (5*) itself under the gauge transforma-

g 0 tion. This in turn entails that the normal self-enerdgigs and

In equilibrium and below the critical temperature, the con-2,, must be invariant under the gauge transformat®a6),

densateAy#0. Therefore Eq.(4.8) leads to the finite- while the anomalous onés,;, ands ,; must transform adj
temperature BCS gap equation that determitug@T): andAZ2, respectively. Thus, it is proved convenient to write
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SRk t—t)=3% (k,t—t")=3p(kt—t"), quasiparticles are either created or destroyed, whereas the
terms proportional tdng(E4) —ne(E,) ] arise fromLandau-
SRk t—t) =33 (kt—t")=(Ag/A¥)So(k,t—1"), dampingprocesses corresponding to scattering of quasiparti-

(4.13 cle excitations in the medium.
In an experimental situation the dynamical evolution of
the small amplitude condensate perturbation is studied by
reparing a superconducting state slightly perturbed away

where both® , andX, areinvariant under the gauge trans-
formation (2.16). While rewriting the self-energies in this

manner may seem a redundant exercise, the main point is ¥y 1 equilibrium by adiabatically coupling to some external

highlight and make explicit their transformation laws undersqrce in the infinite past. Once the source is switched-off at
the gauge transformation. This is an important aspect thaje (— o the perturbed condensate relaxes towards equilib-
needs to be addressed carefully in order to extract the Warg ., and the relaxation dynamics is studied. As discussed
identities, anexactresult of the underlying gauge symmetry ghqye  this experimental situation can be realized within the
to be explored below. real-time formulation described here by taking the spatial

The gauge-invariant self-energieg and=.o can be writ- 4 rier transform of the external source to be of the form
ten in terms of their spectral representation as

()= ned(—-t), e—0". (4.1

+oo _
Zptkt=t")= f_x dofA(k,0)sinw(t=t') The e term serves to switch-on the source adiabatically from

o t=—o0 s0 as not to disturb the system too far from equilib-
+iS(k,w)cosw(t—t")], rium in the process. If at= —« the system was in an equi-
librium state, then the condition of equilibriu(4.8) ensures

, to ) ) that fort<<0O there is a solution of the equations of motion
Sokt=t)=| deoAkwe)sine(t—t'). (414 (410 of the form

The symmetric §) and antisymmetric4,A) spectral func- Si(t)= 28 (0)ee"  for t<O, (4.17)
tions are, respectively, even and odd functionswcdind are

to be given by whered,(0) is related toy, through the equations of motion

for t<0. The advantage of the adiabatic switching-on of the

1 d3q £ £ external source is that the time derivative of the solution
S(k,w)=— Zf 3[ [1-ng(Eq) —ne(Ep)] E—q+ E_p) (4.17 satisfiesSk(t<0)—>O ase—0%.
(2m) d P Let us introduce auxiliary quantitids?, (k,t—t") defined
X[8(w—Eq—Ep) + 8(w+Eq+Ep)] as
fa_ & : : i :
~[Ne(Eq)—ne(Ep)]| £ = £ |[8(w—Eq+Ey) (kt=t)=au [l (kt=t), (4.18
q p ab ab

+ S(w+Eq—Ey)] then upon using integration by parts, neglecting terms that

a TR vanish in the adiabatic limi&— 0", and takingA, to be the

equilibrium condensate and hen@éA,,A5)=0, we find
gqu) the equations of motio4.10 become

_ 1 dq

Ak, 0)=— Zf (ZW)S{[l_nF(Eq)_nF(Ep)]( 1+ E.E,
X[6(w—Eq—Ep)—d(w+Eq+Ep)]

€aép

Equ

R
1+g11 (k,0)

R t R
5k(t)+g]:! (k,0)5’ik(t)—gf0dt’[]11 (Kt

R
_[nF(Eq)_nF(Ep)]<1_ )[6(w_Eq+Ep) —t’)5k(t’)+H (k,t_t/);yik(t/)}zol
12

— 8w+ Eq—Ep)]],

R R t R
1+9[] (k,O)}é’ik(t)JrgH (k,0)5k(t)—9f dt'[ (k,t
22 21 0 22
Ako)=7] T2 1 g e Ep 5 i
)= — == 1{[1-ne(Eq) —ne(E, ® _ _
4) (2m)® EqEp —t) & () +]] (k,t—t')&k(t’)}zo. (4.19
21
—Eq—Ep)—8(0+Eq+E,) ]+ [Nne(Eq) —N(Ep) ]
_ _ _ The above coupled equations of motion for the conden-
X[o(@=Eq By~ dl0+Eq=Ep) 1, (4.19 sate perturbation are now in the form of amitial value
wherep=|k+q| and §q=q2/2m—,u. problemwith initial conditions specified at=0 and can be

The terms proportional t§1—ng(Ey) —ng(Ep)] in the  solved by Laplace transform. Introducing a two-component
above expressions correspond to processes in which twdambu-Gor’kov spinor and its Laplace transform
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B. Self-energies in the long-wavelength, low-frequency limit

In this article we are interested to study the relaxation of
long-wavelength, low-frequency fluctuations of the pair

wheres s the Laplace variable, one can rewrite the Laplacdi€ld, hence our next task is to expand the self-energies as a
transformed equations of motion in a compact matrix form agunction ofk,s up to O(k*,s%). With £,=0q°/2m—u andp

=-1 ~ :l =-1 _A-1
G (k,8) di(s) S[G (k,8)— G *(k,0)]¢«(0).
(4.21)

In the above equatior ~*(k,s) is the inverse Green’s func-
tion (matrix) to one-loop order expressed in terms of the

Laplace variables

9(Ao/AH)S o(k,9)

1+93p(k,—5)
(4.22

1+93p(k,s)

G Yk,s)= 5
Q(AS/AO)EO(KS)

whereS; and3 g are the Laplace transforms ®f, and3 o,
respectively,

~ +te d — —
ED(k,S)=f i [A(k, ko) +S(k,ko) ],

— o0 k0_|s

- v dky -
Eo(k,s)=f_wko—iA(k,ko).

(4.23

The solution of Eq(4.22 reads

~ 1 ~ ~
Pu(s)= g[l—G(k,S)Gfl(k,O)Mk(O), (4.24

where

Glk,s)= D(k,s)

1+g3,(k,—s)

y —g(Ao/Az;)io(k,s)]
—g(A3 /A0S o(k,S)

1+935(k,s)
(4.25

with the denominatob (k,s) given by

D(k,5)=[1+03p(k,9)1[1+93p(k,—S)]-[920(k,S)]%
(4.26

The real-time evolution of the condensate perturbatior'(/ariab
¢i(t) with an initial value¢,(0) is now obtained from the

inverse Laplace transform

ds -
P ()= fs 2—ﬂ95t¢k(5), (4.27)

where the Bromwich contouB runs parallel to the imagi-
nary axis in the comples plane to the right of all the sin-

gularities (poles and cutsof @ (s).3® We note that there is
no isolated pole irfﬁk(s) ats=0 since the residue vanishes.

=|q+k| we use the following approximations

Ey~Eqt+ 08, Sé=vekeosd,

8¢ (8€)? |A|?
Eszq'f'qu—q'f' > E3 ,
q

(4.28

where ¢ is the angle betweek andq. We keep only up to
terms of O(k?s?) in the Laplace transform of the self-
energies and obtain

- B wp | 1-2ng(E) &
ED(k,S)__MO)J'O df[T (14‘;)
( LS T e 5gz>v§k2§2
12E2 4E? E?) 6E*
_ ng(E) Ag?

vészz . 3s?
2E4 2E?

JE E2

X1

iSE  is/vpk+ ¢/E
2ueké islvk— ¢IE

|Ao|2{1—2nF<E>

So(ke)=M0) | Pae S S

X [ —

4 6E%) E? 4FE?
neE)|vak?[1 & 3s? &2
JE | 2E2\3 E? 2E% £

iSE  is/upk+ &/E

X1 2o ke MisTo k= ¢/E

(4.29

whereE = \/&%+]A,|? and the dots stand for terms of higher
order in the ratiok/|A|,s/|Ag|. We note that to this order

bothS.p(k,s) andS o(k,s) are even functions of the Laplace
les. This important feature leads to the decoupling of
the phase and amplitude fluctuations of the pair field in the
equations of motion, as will be shown below.

C. One-loop effective action

The full equations of motion in real tim@.10 and their
Laplace transform around the equilibrium stéde21) allow
us to obtain at once theetarded effective actiom Fourier
space. The retarded Green'’s function kernel is obtained from

G Y(k,s) in Eq. (4.21) by the analytic continuation in the
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complex s plane s——iw+0*. In terms of the Fourier bation theory, for space-time independeéhtind 5*. Com-
transform(retardedl of the two-component Nambu-Gor’kov paring the coefficients of,5* we recognize immediately

spinor and the tadpole spinor that
T(Ag,A7) dTAg,A%) 1
T(w)= (k) 8(w), 4.3 Temel = — 0=
k(w) T*(Ao,Ag) ( ) (Lt)) ( Q ﬁAO —g+211(k—0,(1)—0),
the retarded one-loop effective action to quadratic order in
the fluctuations is therefore given by IT(Ag,Af)
M—*Zzlz(k=0,w=0), (5.2
1 0
8[5,5*]=S[o,01+2—f d*kdwl¢" \(—©)G (ko)
g which relate the self-energies zro frequencyandzero mo-
X (@) 4201 (— ) T(@)] (4.3)) mentumto the derivatives of the tadpole with respect to the
g K K ’ condensate and is valid #dl orders in perturbation theory
where G~ 1(k,w)=G " Y(k,s=—iw+0") and §0,0] is a The second important ingredient and which stems from
function of Ag,A¢ such that the equations of motiof4.10 is that under a global gauge
(phasg transformation(2.16 the tadpole7(A,,Ag) trans-
39 0,0] 99[0,0] forms just as 8, Ay and %, ie., 7(e'%Aq,e”'A¥)
A =T(A0,40), aA, =T*(80,A7)- =e'%T(Aq,AY). Taking the gauge parametérto be infini-

(4.32 tesimal and comparing the linear termsénwe find toall

) o o ) orders in perturbation theoryhe Ward identity for the tad-
Obviously, variational derivatives with respect &5* re- pole
produce the retarded equations of motion. We identify Eq.
(4.31) with the one-loop effective action quadratic in the * *
fluctuations. T(AO,AS):[?T(AO' o), _ 97A0.40)

dAo ° IAG

AE. (5.3

V. WARD IDENTITY AND STATIC SELF-ENERGIES o ) )
Therefore upon combining Ed@5.2) and the Ward identity

The Ward identities, a consequence of the underlyings 3), we obtain an alternative statement of the Ward identity

(globa) gauge invariance, are an integral part of the progranjyhich is anexactrelationship between the tadpole and the
to establish a connection with the Glnzburg-Landau descrlpse”_energies at zero frequency and momentum

tion. Furthermore the equations of motiarustfulfill these

for consistency. In this section we show how the Ward iden-

tities emerge directly from the method described above used Ag
to obtain the equations of motion.

A straightforward diagrammatic analysis with the Feyn-
man rules described above reveals that the generic structu
of the equations of motion obtained via the tadpole metho
remains the same to all orders in perturbation theory. Wheg
combined with the transformation propertieshqyf, 8, andy
under the gauge transformati§®.16), this general form of
the equations of motion allows to derive to all orders in

1
§+211(0,0) —A321A0,0=T(Ag,A7), (5.9

where 3 ,,(0,0) stands forX ,,(k=0,0=0) for notational
?mplicity. Above the critical temperaturéoth the tadpole

nd the condensate vanish thus the above equation becomes
trivial identity. However, below the critical temperature
Ay#0 and hence E(5.4) leads to

. : . g7(Ag,Af) Ag
perturbitlon theory the Ward identity for the tadpole AO 0 —1+g 211(0’0)_A_0212(0’0) . (5.5
T(Ag,A7). 0 0
First, consider the case in which 7= 0 the tadpole con-
dition (x*(0)),=0 leads t07(Ag,A§)=0, which is the It is customary to choose the condensate to be real by

equilibrium condition for the homogeneous condensate. Fofedefining its phase via the gauge transformati@r.
a space-time independent shift of the condensaje-A,  However, as argued above, for a condensate with an arbitrary
+ & induced by a space-time independent soujc¢he tad-  Phase, the anomalous self-eneby must beproportional to
pole condition now leads t&( Ao+ 6,A% + 6*) = — 7, which A2 since in the equation of motion it multiplie$*, which

upon expanding to linear order i and 8* becomes transforms under gauge transformations jUSﬂ@S This fact
can be seen explicitly at the one-loop order in the expres-
IT(Ag,AY) IT(Ag,AY) sions for the respective anomalous self-energy in(Bd.3
T(Ao,A5)+ A, o+ AY =—7. as well as in Eq(4.14 with the spectral functions given by
0

Eq.(4.15. Since the product ;,6* must transform just a8

5D or Ay, therefore the phaskf/A, cancels the phase Af(z) in
We now compare Eq5.1) with the first equation of motion 3,,. In terms of thegauge-invariantself-energies>, and
given in Eq.(4.10, which has the same generic structure as®, the Ward identity(5.5) can be cast into an explicit
the full equation of motion obtained to all orders in pertur- gauge-invariant form
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g7(Ag,A7) g7(Ag,A7)

A =14+9¢35(0,0-936(0,0. (5.6 A —1+935(0,0— g3 (0,0)
0 0

We emphasize that the Ward ident{#.5) or (5.6) is an exact
relationship validin or out of equilibrium[corresponding to
when the tadpol&/{Ay,Af) vanishes or not, respectivaly
In equilibrium the equilibrium conditiory{Ay,A5)=0 im-

lies that the self-energies in the static limit must satisfy the . . . . .
Eelation g bt Therefore, the Ward identity5.6) is manifestly fulfilled to

one-loop order. This is an important advantage of the tadpole
method of nonequilibrium field theory: the equations of mo-
tion obtained at a given order in the loop expansion are
o ) .. causal and guaranteed to fulfill the corresponding Ward iden-
The long-wavelength limit of thestatic self-energies is ijties to that order.
definedas We highlight that whereas the Ward identity is indepen-
dent of the limits k,s—0, the individual self-energies have
2p(0,00=lim limXp(k,s), different limits because of the nonanalyticity of the Landau-
k=050 damping contribution. The relationship between the self-
energies and the tadpa(B.2) is only valid in the static limit
20(0,0=Ilim lim2(k,s), (5.8 (5.9.
k—0 s—0 The results of this section, namely, the Ward identity
) ) ) which relates the self-energies to derivatives of the tadpole
which, using Eq.(4.29, are found to one-loop order given \yjjl play an important role in the derivation of the effective
by Ginzburg-Landau theory.

op d
=1—gN<0>fO El1-2nE),

(5.17

1+9%p(0,00—92(0,0=0. (5.7

VI. TIME-DEPENDENT GINZBURG-LANDAU THEORY

1-2n(E 2
172nB) L &
2E E2

35(0,0=— A(0) waDdf

We are now in a position to establish contact with the
Ginzburg-Landau description of the long-wavelength, low-
' frequency excitations near the critical point. The Ginzburg-
Landau description in terms of a functional of the order pa-
rameter is valid near the critical region whei —T,|
Ao|?[1-2ng(E) dng(E) <T, A(T)=[T(T.—T)]¥’<T.. The link between the
E2 2E + JE |’ Ginzburg-LandayGL) theory and the microscopic theory of
(5.9 superconductivity in the static limit was established by
' Gor’kov.®

The opposite limit ling_olim,_oSp o(k,s) yields the first Identifying the expectation value of the pair field
terms in the expressions.9), but not the last terms propor- =(A(X,t)) as the complex order parameter, the free energy
tional to ang(E)/JE. This is a consequence of the nonana-iN Ginzburg-Landau theory for an homogeneous order pa-
lyticity of the Landau-damping contributions to the self- ”ameter(absence of gradientss given by
energies.

Using the expression for the one-loop tadpole given by b
Eg.(4.7) it becomes clear that the identitiés2) are fulfilled FAA*)=a(T)|A|2+ §|A
by the precise order of limits determined by E§.9), i.e.,
the long-wavelength limit of thetatic (s=0) self-energies.

We now show explicitly that the Ward identit§s.6) is ~ Where near the critical temperatua€T) o« (T—T,).
fulfilled to one-loop order. The tadpole to one-loop order is  The linearized equation of motion of the small amplitude
given by Eq.(4.7). From the explicit form of the one-loop fluctuation of the condensate can be obtained by expanding
self-energies in the static limi6.9), find that the free energy around the equilibrium value of gap function;
namely, A; and Af. Writing A=Ay+5 and A*=Aj
+ 6%, keeping only quadratic terms in the fluctuations,

_ dng(E) |A?
JE E2

36(0,0=A0) J:Dd§|

4 (6.2

wp d&
ED<0,0>—20<0,0)=—N<0>J0 Sl1-2neE)]

(5.10 W OF IF P*F
]—'(A,A*)=]—'(AO,AO)+5E+5* . + 66* .
which is anexactrelationship to one-loop order, obtained for dA dAIA
arbitrary A . 2 .2 2
Upon collecting the above results, we find to one-loop + iﬂr+ 5*_ IF . (6.2)
order that 2 9A2 2 gA*?
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The linearized equation of mation for bothand 6* can 1.14wp
then be obtained by minimizing with respect tas* and 6, 97(Ag,A7) = 1—gN(O)In( - )
respectively, and are given by

Ao

79N(0) (3
SO+ 3 T8 +TOH(Ag,45)=0, +5%%$}LMM$+OM®,6&
™ C
GL GL L —
35,8 + 3500+ [TCH(Ag,A%)]* =0, 6.3 where ¢ is the Riemanng function with £(3)=1.202 and
with Te=1.14wpe~ YoMO)_ For T~T, the coefficient of the linear
term can be expanded g3/{0)(T—T.)/T., therefore from
T (Ag,A%)=Ac[a(T)+b|Ag|?], the relationg5.2) and the definitiong4.13 we obtain
gTC" T—T¢| 79M0){(3)
GL_ vy GL1# _ 2_ = 2
38=[38L *—a(Ty+2mA0|_-ﬁA0, 1+92p(0,0=gMO0) T >+ 4712 |A0l%,
(6.9
(? L
GL__ GLyx _ 2_
0 920(0,0= ———5—14¢"~.

872T2
The gap equation obtained from the Ginzburg-Landau ¢

free energy(6.1) is We now focus on the long-wavelength, low-frequency

L _ self-energies in the Ginzburg-Landau regime characterized
T%H(A0,A5)=0, (6.5 by vek,s<|Ag|<T. This regime corresponds to the descrip-
which determines the equilibrium value of the order paramon of the long-wavelength, low-frequency excitations near
eter for 5= 8* =0. When the gap equatiai6.5) is fulfilled the critical point and will allow a consistent analysis of the
the matrix of the second derivatives of the free engfyg) ~ '€@/-time dynamics ofsmal) phase and amplitude fluctua-

with respect tos, 5 has a zero eigenvalue with eigenvector 10NS- We Dbegin by writing the long-wavelength, low-
determined by the relation frequency self-energies @see Eq.(4.29]

I 66 S5(k,)=3p(0,0+I(k,3),

Obviously this eigenvector with zero eigenvalue corresponds >0(ks)=20(0.0+J(k;s), (610
to a phase quct.uation and is the Goldstone .boson, or th@ith 35.0(0,0) given by Eq.(5.9). Since the self-energies
Anderson-Bogoliubov-Goldstone mode, associated with thgre dimensionless functions of their arguments, the expan-
broken global gauge symmetry. _ sion in terms ok ands must involve ratios of these variables
The similarity between the equations of motit§3) and  and the typical scales in the integrals. There are two, widely
(4.10 for an homogeneous perturbation with vanishing eX-separated scales in the Ginzburg-Landau regime, nariely,
tgrnal sources, as well as the similarit.ies between the identL&Tc and|Ao| with |Ao|/T<1. The expressions fdrJ fea-
ties (6.4), (5.2, and(5.4) are now obvious and suggest the re energy denominators that would lead to infrared diver-
following identification: gences if|Ao| is set to zero. These divergences reflect the
. . . presence of inverse powers [df,| in the expansions.
T(Ao,A5) =T (A, A7), The leading terms in the expansion can be extracted by

rescaling
1+2(oo)<:>2GL
g " =ul0 11 E=|Aglz, E=|Agle, (6.11)
310,038, (6.7) with e=yZz%+1 and introducing the dimensionless variables
where the self-energies on the left-hand side of the relations [Ao vgk — s
are understood as the long-wavelength limit of skegtic self- X=—4 K= IR (6.12

energies as discussed in Sec. V. This similarity can be put on

firmer footing by expanding the one-loop expression for thein the integrals forl (k,s) andJ(k,s). We obtain
tadpole 7(Ay,A%), Eq. (4.7), in terms of a power series

expansion inAy,A§ and keeping up to third order consis- |(k,S):N(O)X[K2|a(X)+K2g2|b(§,X)+i§C(;,X)],

tently with the Ginzburg-Landau expansion. (6.13
Using the form of the tadpole given in E¢1.7) and the

results obtained in Ref. 37, we find € kg=1) where
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0 1fwd 2T(x,2)| 22> Z*-1 +22
X)=— z —— —
a 4Jo 3xed e* 4¢2 €2
C(x,2)Z?
260 ’
I6(S,X) 1fwd T2, z
S, X)=— z —
b 4Jo 2x€® €2
3C(x,2) ise is+zle
+ 1- ——In= ,
26 22 is—7z/e
| (_ ) 1f°°d C(x,z)I is+zle 6.14
S, X)=— Z n— , .
¢ 4Jo 2ze is—zle

with

Xe€ Xe€
T(x,z)=tan|‘(7), C(x,z)=cosh‘2(7). (6.195
Similarly, for J(k,s) we obtain

J(K,S) = MO)X[ k23 ,(X) + k%523, (5,X) +i5Jc(S,X) ],

(6.16)
where
] 1 ocd T 72°-3 c 27°—1
A= 754], 44 T(x.2) N (x,2) & |
J(_) lfwd T(X,z)
S,X)=— = yA
b 8Jo Xe®
o )222—1 i?el is+2zle
— X,Z — —IN=
72e* 2Z is—7zle
Je(s,X) =1(s,%). (6.17)

An important consequence of the long-wavelength, low

frequency expansion of the self-energies in E§10 to-

PHYSICAL REVIEW B 66, 184502 (2002

1
1 1 A,
== A* ] T:__ 11__ y
g V2i —A—C; P V2i Ag
1 ! 1] A
a=-—=| Ay |, a'=—|1—|, (6.19
V2 Ay V2| A

in terms of these vectors and the Nambu-Gor’kov spinors
(4.20), the phase and amplitude fluctuations can be written as

50 = ——pt.pxn), PXY s sk
SNCTVA o V24, o
(6.20
or, equivalently,
- __ “5p
()= 2 B0,(s)p+ 2 :is)a. (6.21)

In terms of the Laplace transformsf,(s) and opy(s),
the equations of motiofd.21) now become

[1+9Zp(k,5)—9Z0(k,5)]66,(S)
= 1S9~ So(k9)]
—[Ep(k,0) = Z6(k,01}86,(0),
[1+9Sp(k,5)+9Z0(k,5) ]opi(s)
= S0k 9+ 3ok s)]

—[S0(k0)+20(k,0) 1+ 5p(0).  (6.22
The decoupling of the equations of motion between phase

and amplitude fluctuations is a direct consequence of the fact

that self-energies are even functions of the Laplace variable

to this, lowest order. In particular the equalityp(k,s)

=3 p(k,—s) to this order guarantees that the vectomnda

gether with Eqs(6.14 and(6.17) is that to lowest order the are eigenvectors of the matrZ~*(k,s) in Eq. (4.21). The

self-energies arevenfunctions of the Laplace variable

right-hand sides of Eq(6.22 are identified as the Laplace

This important aspect leads to the decoupling of the phaséansform of the source ternds,J,,, respectively, that serve
and amplitude fluctuations in the equations of motion, as caf’€ purpose of setting up the initial value problem.

be seen as follows.

In particular to lowest order in the long-wavelength ex-

If we write the fluctuation of the order parameter aroundPansion, and after the analytic continuatisf> —iw+0",
the space-time constant equilibrium solution of the tadpoldhe retardedone-loop effective action for fluctuations around

equation(4.8) in the form

A(X,1)=Ag+ (X,t)=[ po+ Sp(X,t)]e'for o000,
(6.18

where dp(x,t) and 560(x,t), respectively, are identified as

the equilibrium solution is given, up to a constant, by

A 2
S.i 86, 8p] =%f dBkdw{80_,(— »)[1+ 95 p(k,w)

—920(k,0)]80k(0) +23 5 _(— w) 56(w)}

the amplitude and phase fluctuations of the order parameter

A(x,t). Itis convenient to introduce the following projection

vectors

+ifd3kd 8 —w)[1+93(k
29 (1){ p*k( w)[ g D( ,(1))
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+920(k,0)]6pk(w) +2J, _((—w)dpy(w)},
(6.23

where3 o(k,0) =3 o(k,s= —iw+0") and the momen-

tum integral must be understood to be restricted near the

Fermi surface. Expanding the self-energies as in(BEd.O
together with Eqs(6.14),(6.17), and using the Ward identi-
ties (5.6) valid in equilibrium, one can easily show that the

phase fluctuations are Goldstone modes. Using the explici

expressions fof(k,s) andJ(k,s), we find that the effective

action for the phase fluctuation is identical to that obtained in
Refs. 10,14 to quadratic order, while the effective action for

the amplitude fluctuation is a new contribution.

The approach followed here, based directly on the equa:

tions of motion in real time also allows us to obtain the

effective action for the amplitude fluctuations on the same

footing.

A. Phase fluctuations

The initial value problem for the phase and amplitude
fluctuations described by the equations of moti&2 can

now be studied straightforwardly. For the phase fluctuation

PHYSICAL REVIEW B 66, 184502 (2002
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FIG. 4. The fullx dependence of(x) is plotted for O<x<5.
The inset shows(x) in the Ginzburg-Landau regime<1.

the inverse Laplace transform is obtained by integrating

“56,(s) along the Bromwich contour in the compleyplane
parallel to the imaginary axis and to the right of all the sin-
gularities of the Laplace transform

B6(s) 1 F(sx)
== — , 6.2
06k (0) s F(s,x)+f(x) (629
where
f(X)=14(x) = Ja(X),
F(5,%) =87 15(5,X) — Jp(5,X)]. (6.29

In the Ginzburg-Landau regime<1, we find from Egs.
(6.14 and(6.17) that

X (*dz

12)0 A3

74(3)
4872

tan

z 4
f(x)=— -5

+O(x%) = X+ O(x?).

(6.26

Figure 4 displays a numerical evaluationf¢k) with the full
x dependence. It shows clearly tHgi) <1 and thatf(x) is
accurately described by E¢.26 in the Ginzburg-Landau
regime.

To leading order irx, we can sek—0 in the arguments
when evaluating~(s,x). After the analytic continuatiors
——iw+0" and introducing the dimensionless variable

S 6.2

we find in the Ginzburg-Landau regime that the real and

imaginary parts ofF(§= —ia+07,0) are, respectively,
given by (here we have set—0)

Z
_a2 »dz 1 ae €
FR(a’)—g 0? 1+; 1—Eln -
a——
€
a<lﬂ.2|a|3
64
. _11'013 oy o dze<lga 6.2
|(a)_ 16 ( a) _— 236_ 321 ( . &

wherez,,,=a?/(1— a?) and we have set—0 in the ar-

gument ofF(s,X). These expressions agree with those found
by Aitchisonet al* in the limit x—0.%8

The real[Fr(«)] and imaginary[ F,(a)] parts of F(«)
for 0O<a=<1 are displayed in Fig. 5. The real part is a mono-
tonically increasing function o& while the imaginary part
only has contribution in the Landau-damping cutl<«
<1 corresponding to- v k<w<vgk.

Isolatedreal poles of the Laplace transform, describing
stable quasiparticle excitations, correspond to the solutions
of the following equations

0.2

— FR(o)

0.15

0.1

Fg(o), F(a)

0.05

L

FIG. 5. Real and imaginary parts B «).
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regime. 107 50 100 150
T
Fr(a)—f(x)=0, Fi(a)=0. (6.29 FIG. 7. Real-time evolution of the phase fluctuatidf(7) vs 7

in the Ginzburg-Landau regime is plotted in linear scatg) and

It is clear from Eq.(6.26) and Fig. 5 that the first equation in logarithmic scalebotton.

Eq. (6.29 can be fulfilled forf (x)<1 only in a region where

Fi(a)#0. Therefore in the Ginzburg-Landau regime theWiII be Landau damped below, and the relaxation time
Iong-wgvelength, onv-frequency Laplace trarlusfo(ﬁsl.24). scale (the inverse of the “width’) diverges at the critical
hasno |sola_ted qu.a3|pa.1rt|cle pqlgs, the on.Iy singularity is apoint x=0. This expectation will be confirmed below and
branch cut in the imaginary axisivek<s<ivek, a conse- suggests critical slowing down of long-wavelength phase
guence of Landau damping. fluctuations
Having understood the analytic structure of the Lapla}ce (i) The reason that despite the appearance of a sharp
tr_an?;‘]orm, we carﬂ n(?w procee(;l to st2udybthe ':|m_e eV%IUt'OFbeak in the spectral density near the critical point the real-
\é'a e |r:1verse aplace t.rans Orr@ﬂ.d7) h y C°$'”?( e time dynamics does not reveal the oscillations associated
<r_oml\<N|c\:N c%ntc_)ur wrapping around the CUtiveK<sS i a “quasiparticle pole” is clear. Ax— 0 boththe damp-
lvgk. We obtain ing rate and the group velocity,(x) vanish in such a way
1 da that the time scale for damping is either shorter or of the
50k(t):J — pprl@)cod ar) 86,(0),  (6.30  same order as the time scale for the oscillation.
-1 Furthermore, Eq(6.30 evaluated at=0 leads to the sum

wherer=uv gkt and the spectral density for the phase quctua-rLJIe
tions is given by 1 da
f — ppr@)=1, (6.32
1 fO)F(a) o
Ponl ) = a [Frla)—f(X)12+FXa)’ (631 \which we have confirmed numerically for a wide rangexof

It is clear that damping becomes more pronounced for

The spectral densitp,,(«) and the real-time evolution of largerx and while the peak would seem to lead to oscilla-
o6, (t) for several values ok=<1 are displayed in Figs. 6 tions with period 27/ ape,(X) there are no hints of oscilla-
and 7, respectively. Three important features are gleaneiry behavior in the real-time evolution. Phase fluctuations
from these figures: are strongly overdamped without featuring a propagating

(i) The spectral density features a sharp peak at a valumode. Hence we conclude that near the critical point, in the
apeal(X) that vanishes continuously as—0. This peak Ginzburg-Landau regimg<1, Goldstone modes or phase
would indicate quasiparticle excitations with dispersion relafluctuations are severely damped despite the fact that the
tion  w=ape(X)vek.  The group velocity vy(X) spectral density features a peak that would indicate a quasi-
~14¢(3)vx/37* vanishes at the critical point=0 and in-  particle “dispersion relation”o=apes(X)k. The damping
creases linearly witlx at least within the range<0x=<0.2. becomes larger for largec and is solely a consequence of

(i) While the spectral density is not of the Breit-Wigner collisionlessLandau damping.
type (Lorentzian or resonangand hence a true width cannot ~ For x<<1, we find that the nonequilibrium relaxation of
be extracted unambiguously, it is clear from the figure thathe phase fluctuation is very well approximated by an expo-
qualitatively the quasiparticle excitations have a “width.” nential (see the logarithmic plot in Fig.)7 The numerical
This width vanishes at the critical point and increases monoanalysis clearly indicates thaw6,(t)=56,(0)e” "™,
tonically with x<1 at least within the range consistent with where from Eqs(6.26) and(6.28 the damping ratey,(x) is
a Ginzburg-Landau expansion. Therefore these quasiparticlésund to be given by
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FIG. 8. Spectral density,(@) vs a away from the Ginzburg- FIG. 9. Real-time evolution of the phase fluctuati@f(7) vs 7
Landau regime. away from the Ginzburg-Landau regime.
of validity of the Ginzburg-Landau expansion mainly with
147(3)vek the purpose of comparing our results to those obtained in
(X)) =———x for x<Ll. (6.33 purp paring
37 Refs. 10,14.

In this case we must keep the fulldependence of the
This result revealsritical slowing downsince the damping  functions|,, andJ,,. The spectral density has the same
rate vanishes at the critical point. Furthermore we also segfym as in 'Eq_(e_gjj but now with the replacemerf(«)
that for fixedx the damping rate also vanishes in the Iong-_}F(gz —ia+0%,x), whose real F(«,x)] and imaginary
wavelength limit, in agreement with the expectation that the - (a.X)] parts ca;n t;e found straightfo’rwardly as in the pre-
relaxation time scale of Goldstone bosons should diverge %iolus 'case In the low-temperature limit1, we obtain
the long-wavelength limit. This is one of the main results of ' '
this study: The long-wavelength phase fluctuationscses- 1
dampedby Landau damping in the Ginzburg-Landau regime f(X)= -,
but the damping rate vanishes at the critical point indicating 12x
critical slowing down.

In the Ginzburg-Landau regime and for long-wavelength, Fo(ax)= a_z
low-frequency fluctuations the nonequilibrium retarded RUGA= 2y
Ginzburg-Landau effective action for phase fluctuations
(Goldstone modgss given to lowest order bywe have set Ta —  a®
3,=0) F|(a,X)2?[\/l—a2 e I —[€Ei(—x,)
SSH 66 —NoM d*kdw{80_(— K)2[F(k “XEj
onl 001=M )ZTC {80 (— ) (vek)TF (K, 0) +e *Ei(—x_)]/, (6.35
—f(x)]860k(w)}, (6.3  where Eik) is the exponential integral functionx.

=x(1/\1—a?+1) and the exponentially small temperature
corrections tof (x) and Fg(a,Xx) have been neglected. The

— wlvgk) are given by Eqs(6.26 and (6.28, respectively.  gnecyra| density with the fulk dependence is displayed in
The imaginary part oF (w,k) originates in Landau damping. Fig. 8 for x=1 away from the regime of validity of the

This long-wavelength, low-frequency effective action leadsg;n,,rg-| andau approximation. It shows clearly the emer-
to the equations OT motion for Iong—wavglength pha;e quC'gence of a sharp quasiparticle peak, which %erl is at

tuations in the Ime_anzed approximation _vaI|d inthe Apeak= 1/\3 in agreement with the results of Refs. 14,10.
szbyrg-!.andau regime. Thus it can be genumely caIIed. th%’he real-time evolution of phase fluctuations in this regime
effective time-dependent Ginzburg-Landau effective action;g displayed in Fig. 9. It is clear from these figures that the

It is nonlo_cal n tlme_ as a consequence (.)f Landau dampm%harp guasiparticle peak in the spectral density results in a
and describes real-time relaxation which is completely over-

. X " real-time dynamics that is weaklynderdampedy Landau
?u???ﬁl?s. ligizglﬁqng;pczlﬂgc:tglc\)/v?/inr:zhgjv?r: the critical temper%}:}mping. This is in contrast to the real-time dyngmigs in the
' Ginzburg-Landau regime, where Landau damping is so se-
vere that the phase fluctuation is overdamped, and hence
there is no quasiparticle interpretation. Thus the real-time
While we have focused in the Ginzburg-Landau regimeevolution displayed above for this case confirms the results
x<1, we now study the regior=1 awayfrom the domain of Refs. 10,14 valid well below the critical temperature, that

up to an additive constant, whefé¢x) and F(k,w)=F(«

Away from the Ginzburg-Landau regime. &1
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a narrow quasiparticle peak describes the dynamics of phas 3% ——7— ] T
fluctuations. As in the previous case discussed above, the 3181F
damping rate is found to be given by 3 801

% 3.179

3.488
3.487

57vk ‘ % r 2486
Yi(X) = TF e P for x>1, (6.36 g -

3.177 3483

where the factoo (k is again a consequence of the Goldstone ~ *'™ saser T

nature of the phase fluctuation, leading to a vanishing damp.-  33%[
ing rate in the long-wavelength limit. Because the effects of _ 3351
Landau damping are suppressed in the low-temperature Iimig 3354
(x>1), the damping rate becomes smaller as the tempera=, sss
ture decreases and hence the oscillatory behavior associate & 1392
with the “quasiparticle pole” is evidenced. In this region a 33s1L
local time-dependent effective theory is a good approximate ., . 1+ 1+ . 1 Ll . |

.. L e . 0 0.1 02 03 0 0.1 02
description of the nonequilibrium dynamics. On the contrary, vek 1A ek 1A

. . . . . F F

the real-time dynamics in the Ginzburg-Landau regime (
<1) is overdamped dominated by Landau damping and  FIG. 10. Dispersion relation for the amplitude fluctuation
cannotbe accurately described by a local effective action inw,,{k) away from the Ginzburg-Landau regime.
real time. Thus the Ginzburg-Landau dynamicpusely dis-
sipative

3497 — —
3496 = x=10.0 A
3.495— —

3.494 - —

3.493 — —

0.3

2
1+

mX
4

1+935(08)+950(0,5) =gMO0) PTE
B. Amplitude fluctuations 0 (6.39

For the amplitude fluctuations in the long-wavelength,,yhich, upon the analytic continuatios— —iw+0", sug-
low-frequency limit the equation of motion in terms of the gests the gap of the spectrum in the Ginzburg-Landau regime
Laplace transform requires the inverse propagator 3, pe given by 2/2|A,|.
+92p(k,8)+920(k,s). In the case of amplitude fluctua-  Away from the Ginzburg-Landau regime and for arbitrary
tions we expect a “gap” of ordefA,| in the spectrum of the  values ofk the equation for the dispersion relati¢6.37)
quasiparticle excitations. While this pole is away from themust be solved numerically. Figure 10 displays the disper-
region of validity of the long-wavelength, low-frequency ap- sion relation for several values rfaway from the Ginzburg-
proximation we can, nevertheless, obtain a qualitative if noLandau regime. The values of the gap shown are consistent
a quantitative estimate of the dispersion relation for ampli-with the results obtained by Aitchiscet al3® We hasten to
tude fluctuations. emphasize, however, that the position of these single

Isolated polesSince the imaginary parts & ,%o are  (quasjparticle poles arawayfrom the regime of validity of
nonzero only for-vek<w<wvgk, for k=0 andw=|Ay| the  our approximations and must only be taken as indicative and
expected quasiparticle pole will be away from the con-consistent with the findings of Ref. 14 buobt as accurate
tinuum. We can find the position of this pole by looking for dispersion relations since higher orders in the rafi |
the solutions of will modify these results.

_ _ This analysis is included here with the sole purpose$)of

R 1+92p(k,s)+920(K,S)Js=—iw+0+=0. (6.37)  emphasizing that there are sindtguasjparticle poles away
from the Landau damping continuum, consistent with the
. ) . : . expectation of a gap in the spectrum of small amplitude fluc-
wamdk), which determine the dispersion relation for the am_tuations,(ii) establishing a comparison with the results of

plitude fluctuation. . T .
in e Ginzhrg-Lancau regime he oap of the specuunST 16, 20A) TN aLest o deptahe s et
can be estimated by settidg=0 in the expressions of the . 4 . ' : . ting to
. . > , time evolution of amplitude fluctuations. The full dispersion
self-energies and keeping the lowest org@(s<) ] terms in

. . . . relations must be obtained by keepialy terms in the self-
the expansion of the self-energies. After rescaling variables . ; o - .
) ! . energies which will involve a substantial numerical effort, a
in the integrals, we obtain . . .
task clearly beyond the scope of this article whose focus is

on the Ginzburg-Landau regime in the long-wavelength,

This equation has solutions for values af given by

1+925(0.8) +920(0) low-frequency limit.
= T(x,2) 7252 Landau damping cufThe imaginary part associated with
:g/\/(O)f dz |1t Landau damping arises fde#0 and is nonvanishing only
0 € 4€*|A| along the Landau damping ctitv (k< w<v k. Focusing on

(6.39 the long-wavelength, low-frequency limit and in the

) i Ginzburg-Landau regime, we find
where use has been made of the gap equation. Keeping the

lowest order inx<1 in the Ginzburg-Landau regime, the 1+g3 (k,s)+g3o(k,S)=2g[3 (0,0 +isxM0)l«(s,X)],
integrals can be done straightforwardly and we find (6.40
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where we have used the Ward ident{.5 and neglected ' ' ' ' ' ' ' '
the contributions from, , andJ, ,,, which are subdominant I
for vek,s<|Ag|. We note that in the case of phase fluctua- sor — Hp(@)

tions the terms witH ; andJ, cancel each other in the dif- | - - el ]
ference in the self-energies because=J., however, for |
amplitude fluctuations these terms add up and furnish thev L _
dominant contribution. L

A

We now proceed to study the real-time evolution of the & 8 o3 _

|H

amplitude fluctuation by integratingdp,(s) along the I R
Bromwich contour in the comples plane parallel to the 02 //" ‘\\ .
imaginary axis and to the right of all the singularities of the T T
Laplace transform o \\—
_ B \
opr(s) 1 H(sx) (6.41 A R Y I T 1.0
=— — , . o
opk(0) S H(s,x)+h . .
FIG. 11. Temperature dependence of the residue for the quasi-
where particle poleZ(k) in the long-wavelength limit.

xh=30(0,0/MM0), H(sx)=isl,(sx). (6.42  Again this is beyond the regime of validity of the long-
wavelength, low-frequency approximation studied here. In

We obtain
! the Ginzburg-Landau regime<1, we find[see Eq(6.9)]
* dw
Spu(t)= f — ppr(w,k)cog wt) 5py(0),  (6.43 7¢(3)
- @ h= FX, (6.47)
where p,n{ w,K) is the spectral density for the amplitude m -
fluctuation and the real and imaginary partsté{s=—ia+0",0) to be
given by (here we have set=0)
pamp(w,lo=sgr(w>2<k>w§mgk>6[w2—wim,ﬁk)]
peut z
p(oz H B af“dzl “+E
ou n “78loze"|
. =—Im| ———— 6.4 a——
Pamd @)= I hrHGEX - o (6.44 €
In the above expression the first term arises from quasiparti- afj1772|01|
cle pole w,n{k) and the second term arises from the — 16
Landau-damping cut vek<w<uvgk.
The quasiparticle pole will contribute an undamped oscil- ® 5 [* dz
latory component to the time evolution given by Hi(a)=——5-0(1-a) mez'
SpR7(t) =Z(K)cOg wamg K)1]. (6.4 acl a2
The residue of the quasiparticle pd¢k) is determined by =g g 6.43
1 respectively, where,=/a?/(1— «?). The real and imagi-
Z(k)zl—f —pgl,’ﬁp(a) (6.46  nary parts ofH(a) are displayed in Fig. 12. The Landau-

damping contribution to the spectral density in the Ginzburg-

Figure 11 shows the temperature dependencg(kf in the ~ Landau regime and the long-wavelength, low-frequency

long-wavelength limitv k<|A,|. It reveals clearly that in limit is accurately described by

the Ginzburg-Landau regimex{1) the spectral density

pamd K, ) is dominated by the Landau-damping cut. Ut (o) — h[H ()| (6.49
Whereas the damping rate of the quasiparticle vanishes in Pamd @ [h+Hg(a)]?+H¥a) ‘

the long-wavelength, low-frequency approximation, we ex-

pect that higher-order contributions, in particular the decayvhich, as displayed in Fig. 13, clearly reveals a sharp peak

into a pair of Bogoliubov quasiparticledogolon,®” will  neara~0.

lead to a width of the quasiparticle pole and hence a finite The real-time evolution of the Landau-damping contribu-

damping rate if the gap the quasiparticle spectrum is greatdion to the amplitude fluctuatiodpg"{(t) is displayed in Fig.

than 3A,|, as seems to be the case from the previous analyt4. While forx=0.05 the nonequilibrium relaxation through

sis. However, a more comprehensive study of the dispersiohandau-damping can be approximated by an exponential,

relation is needed before reaching a quantitative conclusiortlearly such is not the case fee0.05. Nevertheless we still
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FIG. 12. Real and the imaginary partste{«).
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find that the Landau-damping relaxation time scale becomes
longer asx—0, revealing that this contribution to the non- |G 14. Real-time evolution of the Landau-damping contribu-
equilibrium relaxation seems to be critically slowed downtion to the amplitude fluctuatiodp“(t) in the Ginzburg-Landau
near the critical point. We close this section, by providing theregime is plotted in linear scalgop) and logarithmic scalébot-
nonlocal Landau-damping contribution to tregardedeffec-  tom).

tive action for long-wavelength, low-frequency amplitude

fluctuations in the Ginzburg-Landau regint@e have set of the order parameter in neutral BCS superconductors in the

J,=0) Ginzburg-Landau regime near the critical point. We have

1A 7¢3)|Ay| implemented the Schwinger-Keldysh formulation of non-

SOL T 501=2M10 _Of d3kdwso _o(— 0 equilibrium fielq th.eory c_ombine_d with the novel tgdpole
ami 9P © Te wdp-k(~w) 82T method to obtain directly in real time thretardedequations

of motion for small fluctuations around equilibrium. These

equations allow to extract the one-loop effective action for
Spi(w), (650 {he long-wavelength, low-frequency phase and amplitude

fluctuations in the Ginzburg-Landau regime, which is char-
up to an additive constant, wheté(w,k) =H(a=w/vek)  acterized byAy(T)|/T<1 with Ay(T) the finite-temperature
given by Eq.(6.48. Obviously, SS‘,TL“{ op] leads to the re- gap. Furthermore, the retarded equations of motion can be
tarded equations of motion for the long-wavelength, low-cast as an initial value problem to study the relaxation of

+H(w,k)

frequency amplitude fluctuations. nonequilibrium fluctuations directly in real time.
We studied in detail the relaxation of phase fluctuations
VII. CONCLUSIONS within and away from the Ginzburg-Landau regime. Despite

the fact that the spectral density features a sharp peak with a

In this article we have focused on the real-time nonequi-Goldstone-like dispersion relation in the Ginzburg-Landau
librium dynamics of small phase and amplitude fluctuationsregime the relaxation is completetwerdampedis a conse-
quence of Landau damping. This is consistent with a purely
dissipative time-dependent Ginzburg-Landau equation. How-
ever, the effective action is nonlocal because of Landau
damping. The relaxation is exponential in time with the
damping ratey,(T)=14(3)vk|Ao(T)|/373T. The factor
m vek is a consequence of the Goldstone nature of the phase
fluctuations. The relaxation of phase fluctuations near the
critical point feature<ritical slowing down i.e., the relax-
ation time scale diverges at the critical point.

Far away from the Ginzburg-Landau regime at low tem-
peratures, the spectral density features sharp quasiparticle
| peaks and the nonequilibrium relaxationuisderdampedn
. agreement with the results of Refs. 10,14. Away from the

e LT critical region, the contribution from Landau-damping is
04 0.6 08 1 negligible. The long-wavelength amplitude fluctuations are
severely Landau-damped near the critical region and the re-
FIG. 13. Spectral densitygy{@) vs « in the Ginzburg-Landau  laxation time scales also feature critical slowing down.

am

regime. While we have focused on the nonequilibrium dynamics

0.15 T T T
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of neutral BCS superconductors, as a next step we will appland satisfyingu2+|v,/?=1, we find that the positive and
these methods to the case of charged superconductors iiegative energy spinors are given by
study in detail the dynamics of the Carlson-Goldman modes

as well as the effective action including gauge fields near the L Uy 5 vk
critical temperature. We postpone this study to a forthcoming oM(k)=| J D@ (k)= wl’ (A5)
article. K

respectively. After accounting for the interpretation of nega-
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APPENDIX: PLANE-WAVE SOLUTIONS ) o
AND THE BOGOLIUBOV TRANSFORMATION whereV is the quantization volume.
At the level of second quantization, one recognizes that
In this Appendix we present an alternative derivation ofEgq, (A6) is the Bogoliubov transformation, in which the op-
the correlation functions for the fields, i, directly from  eratorb; ,df creates Bogoliubov quasiparticles of momen-
the plane-wave solutions of the homogeneous equations @fim k (energyE,), and obey the usual canonical anticom-
motion (i.e., in the absence of soujcéor the Nambu- mutation relations. The correlation functions of the Nambu-

Gor’kov field given by(3.11) Gor’kov fields in the density matrix that describes free
V2 Bogoliubov quasiparticles in thermal equilibrium at inverse
[ J — oy o=t | o Agt o AE [W(x,1)=0. temperatureS are therefore found to be given kn the
ot 2m continuum limip
The plane-wave solution can be written in the form (Wo(x,)WIX )
i d*k —iE(t—t")
P(x,t)=d(k)e (kX P(k)= (A2) = 31— Ne(Ey) ]Sap(k)e ™k
v (27)
The two-component Nambu-Gor’kov spinor obeys +nF(Ek)gab(k)eiEk(tft’)]eik-(xfx’),
& —Ao Uy
= WX )W (%t
{—As —adlvid Tl ") POEENT)
3
where £,=k?/2m— w. This is an eigenvalue equation with _f d°k — [NE(EQ) Sap(k) e B t')
. . = 3 LR\ Ek/Qab
the eigenvalues given by w==*E,, where E; (2m)

= J&2+|Ao[%. The normalization of the positive and nega- _ , . )
tive energy spinors is chosen so th@(®T(k)d® (k) +[ 1= Ne(Ey) 1Sap(k) €]l (x),
=045, Where a,=1,2 (not to be confused with the
Nambu-Gor’kov indices correspond tow= *+E,, respec-
tively. Introducing the Bogoliubov coefficients v, given

whereng(E,) is the equilibrium distribution for Bogoliubov
quasiparticles of momentuin

by 1
—/hth N — /4T —
EHE\Y? A} A¥ NE(Ey) = (beby) = (dydy) = FEr 1’ (A7)
U= 2E, v U= Uy & +E UkUk—z—Ek, B
(A4) and S(k),S(k) are given by Eq(3.25.
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