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Quantum-fluctuation-induced collisions and subsequent excitation gap of an elastic string
between walls
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An elastic string embedded between rigid walls is simulated by means of the density-matrix renormalization
group. The string collides against the walls owing to the quantum-mechanical zero-point fluctuations. Such a
“quantum entropic” interaction has come under thorough theoretical investigation in the context of the stripe
phase observed experimentally in doped cuprates. We found that the excitation gap opens in the form of an
exponential singularitd E~exp(—Ad”) (d=wall spacing) with the exponent=0.6(3), which is substan-
tially smaller than the mean-field value=2. That is, the excitation gap is much larger than that anticipated
from mean field, suggesting that the string is subjected to a robust pinning potential due to the quantum
collisions. This feature supports Zaanen’s “order out of disorder” mechanism, which would be responsible for
the stabilization of the stripe phase.
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I. INTRODUCTION the stretchedexponential formB~exp(—Ad’3).12 It is note-
worthy that the elasticity moduluB is much larger than that
Recently, Zaanen brought up the problem of a “quantumof the mean field3 ~exp(—Ad). Hence, the result indicates
string,” which is a linelike object subjected to line tension, that contrary to our naive expectations, short-wavelength
and it wanders owing to quantum zero-point fluctuatibhs. modes are suppressed owing to collisions, and the collisions
The central concern is to estimate the interaction amongather contribute to solidification of the string gas; namely,
strings as it wanders quantum mechanically and undergodbe stripe phase is stabilized by the “order out of disorder”
entropy-reducing collisions with adjacent neighbors. The stamechanisnt:?
tistical mechanics of quantum-string gas would be respon- In our preceding papéf we have verified the above re-
sible for the low-energy physics of the stripe phase observethtion (1) and demonstrated that the elastic modulus is actu-
experimentally in doped cupratés. In particular, one is mo- ally governed by the stretched exponential foBr-exp
tivated to gain insight into how the stripe pattern acquires—Ad*#%®(*). We have carried out the first-principles simu-
stability. Actually, a good deal of theoretical analyses hadation by means of the density-matrix renormalization
predicted a tendency toward stripe-pattern formatioh. group®~?* We put a quantum string between rigid walls with
However,ab initio simulations on thé-J model still remain  spacingd and measured its repelling interactidihis tech-
controversial about that isst&:* nique has been utilized in the course of studies of the fluc-
In a series of papers’ the authors pointed out that the tuation pressure of stacked membrajfés?* The Hamil-
“quantum entropic” interaction lies out of the conventional tonian is given by
picture, and it would rather give rise to solidification of the
gas of strings; namely, the stripe phase is stabilized by mu- .
tual collisions.(In a different context, the entropic interaction H= Zl
was explored in Refs. 15 and 1&heir analysi&? is based "
on the Helfrich approximatioh’ which has been very suc- Here,x; denotes the operator of the transverse displacement
cessful in the course of studies of stacked membranes undef a particle at theth site, andp; is its conjugate momentum.
thermal undulations. Based on this approximation, they re-They satisfy the canonical commutation relatidns,p;]
vealed the significance ¢dng-wavelength fluctuations. Note =i% &, [x;,x;]=0 and[p;,p;]=0. HereV(x) is the rigid-
that in the conventional picture, on the contrary, the string isvall potential with spacing;
“disordered” as in the Einstein-like view of crystal, and only

2
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short-wavelength fluctuations contribute to collisions. for 0=x<d,
To be specific, the key relation in their theory is V=1, otherwise. )
B >d ) >, denotes the line tension which puts particles into line. The
f:C_Edz In B +C', () classical version of this Hamiltonian has been used as a

model for line dislocations and steps ofvicinal)
with collision-induced energy cost(per unit volumég and  surface$>~2’ Note that for sufficiently larg&, one can take
elasticity modulugwith respect to the compression of string a continuum limit, with which one arrives at a field-
intervaly B=d?3%f/9d?; see the Hamiltoniari2) as well.  theoretical version of quantum striRg.
The logarithmic term signals the significance of long- In the present paper, we are concerned in the excitation
wavelength fluctuations. The relatidth) yields remarkable (mas$ gap due to the collisions. We postulate the exponen-
consequences. For instance, the elastic modulus is given hial singularity
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AE~exp —Ad?) (4) Now, we are in a position to discuss the meaning of the
- singularity exponentr. The correlation length is propor-

for sufficiently larged. In Ref. 2, the gajicrossover tempera- ional to the inverse of the excitatidmas$ gap: namelyg
ture) Ty is calculated in the formT,=\B; namely, one  —exp@Ad’). Here¢ sets the characteristic length scale of the
should obtaino=2/3. This result cannot be understood in collision intervals. Therefore, in the length scale £, the
terms of the mean-field picture, yielding a much smallerrandom surface fluctuates freely. And so, the mean fluctua-
mass gapo=2. (We will outline this picture in the next tjon deviation is calculated,
section) The purpose of this paper is to judge the validity of
those scenarios by performing first-principles simulations. mwum)mwdolz. (6)
Our result isc~0.6(3) for>=0.5-4.

The rest of this paper is organized as follows. In the nextf-rom this relation, we see that reflects an amount of fluc-
section, we argue the physical implications of the singularitytuation amplitudes. In the meantime, the mean-field picture
exponents. We introduce the viewpoint of critical phenom- insists \(x?)ocd. (More precisely, an artificial mass term is
ena in order to interpret the gap formy. The mean-field included so as to enforce the condition; see Refs. 16 and 22.
argument is also explicated. In Sec. lll, we perform numeri-Hence, one should obtain
cal simulations and show evidence of the breakdown of the
mean field. In the last section, we give a summary and dis- o=2 7

cussion. . ) .
in the mean-field picture.

On the contrary, as mentioned in the Introduction, recent
theory-? predicts a much smaller singularity exponant
=2/3, from which one obtains a counterintuitive result
JOZ)~d¥<d. The result indicates that the string is

In the Introduction, we have overviewed the quantumstraightened macroscopically by collisions: This is quite
string in the context of the stripe phase. In this section, weeminiscent of the aforementioned claim that the infrared
will survey different aspects of the quantum string in termsmodes are still active, withstanding the collisidrfsA simi-
of statistical mechanics. This viewpoint is utilized in the lar, but slightly modest, exponent=1 was reportedin a

II. INTERPRETATION OF THE SINGULARITY
EXPONENT o
A STATISTICAL-MECHANICAL OVERVIEW

simulation-data analyses in the succeeding section III. different contexx with analytical calculation$>*°
In the path-integral picture, a quantum string spans a
“world sheet” as time eVOlvegs.3 Therefore, a quantum String IIl. NUMERICAL RESULTS AND DISCUSSIONS

is equivalent to the random surface undleermal undula-
tions. The random surface is in the critical phase of Koster- In this section, we perform first-principles simulations so
litz and ThoulessKT). [In our model(2), however, there as to estimate the singularity exponent First, we will ex-
appears no “flat phase,” because the “height” variabjgg  plicate the simulation algorithm.
are continuoug.The presence of rigid walls is supposed to
deStroy the KT Crltlcallty Therefore, the collision-induced A. Details of the density-matrix renormalization group
mass gap4) reflects the universality class of the phase tran-
sition at 1d—0. In that sense, our aim is to determine the
universality class.

The phase transition has not been studied very extensive-{}

so far. The rigid-wall potential is, by nature, nonanalytic, and d elect ; 2 hile. th
hence, it is quite cumbersome to carry out perturbative""n electron systems very successfuilMeanwhile, the

analyses such as loop expansions. Moreover, the confineme {.:hnlque had become applicable to bosonic systems such as

. _33 .
due to walls destroys the applicability of the duality transfor-PONoNs and oscillatorS=** (Note that the full exact d|agp—
mation, with which one could establish an elucidatingnal'zat'on does not apply, because even a single oscillator

equivalence between the random surface and twoSP@NS infinite-dimensional Fock space. The huge dimension-
dimensionalXY model ality overwhelms the computer memory spackere, we

Even in computer simulations, verification of the gap for_employ the density-matrix-renormalization technique in or-

mula(4) is rather troublesome. Note that the gap opens ver heer ggcgﬁggrggfae”;hg q?easr:etﬁtrg dsitrr]'(ﬁ'r Arf;élezicrfog g‘;
slowly. That is, the correlation length is kept exceedingly, . : P ; Urp 'ng p :
this paper, we will outline the simulation algorithm with an

large in the vicinity of the critical point. The correlation . e L
length would exceed the system sizes. Note that the conveﬁ-mphas's on the modification to calculate the excitation gap

The density-matrix renormalization group has been uti-
lized for the purpose of treating very large system stZ&8.
he technique is based on an elaborate reduction of the
ilbert-space bases, and it has been applied to various spin

: L o ) ; : precisely.
tional criticality exhibits thepower-lawsingularity To begin with, we need to set up locain-sitd Hilbert-
AE~¢ 1~ (1/d)" (5) space bases: Provided that the line tensiois turned off,

oscillators are independent, and each of them reduces to the
which would be much easier to cope with. We will overcometextbook problem of a “particle in a box.” Hence, the full set
the difficulty through resorting to the density-matrix renor- of eigensystems is calculated easily. In this way, we set up
malization group®=2% with this technique, we treat system the intrasite Hilbert space with use of the low-lyilw=12
sizes up toL=42. states and discarded the others.
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Second, provided that those intrasite bases are at hand, w 16 ' ' ' '

are able to apply the density-matrix renormalization group. |16
The total system consists of block, site, site, and block. The AE
left-half part (block and sitg¢ is renormalized into a new 12 L

block with reduced dimensionalityn; we set, at mostm < 1

=50. More precisely, thosen bases are chosen from the 10
eigenvectors of the density matrix for the left-half part,

8_

0.1
p=Tral W){(¥[, ®) 6f
with the largesim eigenvalues. T denotes the partial trace al
with respect to the right-half part arjdl’)=|0)+|1) with
the ground stat¢0) and the first excitation statd) of the 2r

total system(Note that in our previous simulatiofiwe sim- o
ply set|W¥)=|0), because we were just concerned in the 0 . .
ground-state propertiosThe ground stat¢0) has even par- 1/d
ity with respect to the reflectior,— — x;, whereas the first i .

FIG. 1. Excitation gap AE is plotted for 1d (d

excitation statél) belongs to the odd-parity sector. In other _wall spacing). The excitation gahE opens extremely slowly:

words, each of them is the ground state of the reSpeCtIV?his feature is characteristic of the universality class of exponential

subsp%ceﬁ. Tgerefore_l,_h\_/ve rﬁe.mz.lmﬂlgl in ofrder tlo singularity (4) rather than the power lab). The inset shows the
COYer ot _Su Spacgs IS choice Is Su'_ta € as 1or calcu- logarithmic plot. The curves bend convexly. Therefore, the singu-
lating the first excitation gap. However, in order to calculate|arity exponent would not exceat=1.
the spectral function, one should prepare a much larger series

1 H —
of target state$’) Note that the change of sigh)=|0)  eter (in our case,s=1/d) with respect to the infinitesimal
—|1) does not make any difference; the phase of the WaVeascaling of the unit of length: namely
function should not affect the physics. In fact, from the defi-

nition of the density matrix(8), we see that the density- £(1/d) d -1
matrix eigenvalues are kept invariant under that change. B(1ld)= = Ing| 9)
To summarize, we have carried out truncations of bases ¢'(1d) \d(1/d)

through two steps: One is the truncation of the intrasite bases. . . .
. . b " with correlation lengthé. Because the mass gap is the in-
M, and the other is the truncation of the “block” states . .
. . - verse of the correlation length, we obtain
through the density-matrix renormalization. Each of these
procedures is monitored carefully, and the relative error of
low-lying energy levels is kept within 10; see Ref. 18 for B(1/d)=—
details.
We have repeated renormalizations 20 times. The systefiih excitation gapAE.

size reaches =42. As is emphasized in Sec. Il, the gap form@ais deeply
concerned with the criticality af=1/d—0. The g function
B. Excitation energy gap reflects the universality class of the phase transition. For in-
tance, as for the exponential singularity such as(&y.it
ehaves like

d -1
mlnAE) ) (10)

We have plotted the energy gap against the inverse of wa
spacing 1d for several values of line tensian; see Fig. 1.
From the plot, we see that the gap opens extremely slowly; _ o1
namely, in the range d~<0.3, the mass gapE is main- A(LId)~ LU Aa) (L) (D
tained to be very small. This is a typical signature of theOn the other hand, the conventional second-order transition
exponential singularity4) rather than the power lafb). For  (5) is characterized by the behavior
1/d<0.2, the simulation does not continue, because the nu-
merical diagonalization fails in resolving the nearly degener- B(1d)=(1/d)/v. (12
ate low-lying levels. . "

In the inset, we have presented the logarithmic plot. Tha" this way, we can read off the critical exponents sucloas
data exhibit convex curves. Hence, we see that the singulaia-nd v. . ) . o
ity exponento would not exceedr=1. As is mentioned in As is presented in .the previous subsectlor),.the excnguon—
Sec. II, the mean-field argument prediets=2. Therefore, gap dataAE are readily available. The remaining task is to

we found that the collision-induced gap cannot be underPerform the numerical derivatives ofE’. We adopted the
stood in terms of the mean-field picture. Richardson’s deferred approach to the limit” algorithm in

the textbook of Ref. 34. In this algorithm, one takes an ex-
trapolation after calculating various finite-difference differ-
entiations. We monitored the relative error and checked that
The criticality is best analyzed by the function. Theg  the error is kept within 108. From these preparations, we
function describes the flow of a certain controllable param-can calculate thg function from our simulation data.

C. B-function analyses
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FIG. 2. g function (10) is plotted for%=2. There appear two FIG. 4. Mean fluctuation widtiA, Eq. (14), is plotted for wall
regimes with respective asymptotic forms; see text. The small-1/ spacingd. A naive argument postulatels<d. However, the simu-
behavior indicates that the transition belongs to the universalityation data exhibitA~d%° We see that the string is straightened
class of exponential singularity wii~0.6; see Eqg11) and(12).  macroscopically. Our result supports the “order out of disorder”

mechanism proposed by Refs. 1 and 2.

We have plotted the8 function g(1/d) in Fig. 2 for 3
=2. We see that there appear two regimes: As is indicated imduced mass gap is far larger than that anticipated from the
the plot, in the region t/<0.3, theg function is best fited mean field, and hence, the string is subjected to robust pin-
by a power law (1d)*. Hence, the universality would be- ning potential due to quantum collisions; see Sec. II.
long to the exponential singularityll) with exponento Meanwhile, we also calculated the Roomany-Wyld ap-
=0.6. Note that such stretched-exponential behavior is sugeroximant of theg function®
gested in the previous subsection. On the contrary,ghe
function falls in the simple behavior 4¢1/d) with the index _ 1+In(AE/AE;)/In(1/17)
v=2 for large 1d; see Eq(12). That result tells us that for B=- (AE/AE/,/AE,AE, Y2 ' (13
large 14, the gap formula enters the regime of power law e =
(5). That is quite convincing, because for largel,1E. be- wherel and|’ denote a pair of system sizes. This approxi-
comes irrelevant and the system redd@de the textbook mant, in general, exhibits smaller finite-size collections. In
problem of a “particle in a box.” Hence, the excitation gap is fact, we found that it converges rapidly to the thermody-
simply given by the power lawb) with the indexr=2. To  namic limit. However, the resultant data are identical to those
summarize, we found that for largedl/the physics changes with the aforementioned formuld0) for sufficiently largeL.
so that we must look into the behavior in the vicinity of Because we take advantage of very large system sizes owing
1/d=0. to the density-matrix renormalization group, the approximant

In order to estimater, we have presented the log-log plot formula (13) is not particularly necessary.
in Fig. 3 for various,. From the slopes, we obtain an esti-
mateo=0.6(3). This estimate is far less than the mean-field D. Mean-fluctuation deviation
valueo=2. It clearly supports Zaanen'’s claior= 2/3 (Refs.

1 and 2 that the collision-induced mass gap is governed byfro
the stretched-exponential singularity. That is, the collision—S

So far, we have extracted the singularity exponent directly
m the excitation-gap data. However, as is mentioned in
ec. Il, the mean deviation of the string undulations contains
information about the exponent:

A= {(x7) = (x)*~d"" (14

In Fig. 4, we plotted the mean fluctuation width for
variousd and 2 =0.5-4. From the plot, we see that there
appear two distinctive regimes as in Fig. 2. For srdalA is
proportional tod, as is anticipated from a naive argument;
see Sec. Il. However, for large, A starts to bend down,
indicating that the string undulation becomes suppressed.
Hence, for larged, the conventional picture does not apply.

: From the slopes, we read off the exponeti2~0.5. [This
1/d 1 result supports our estimate=0.6(3) rather than the mean-
field valueoc=2.] Hence, we sed/d<1 as ford—=. As a

FIG. 3. Logarithmic plot of the3 function for variousS. From  consequence, we found fairly definitely that the string is
the slopes, we read off the singularity exponert0.6(3); see Eq.  Straightened macroscopically due to quantum collisions. This
(12). Our result indicates the breakdown of the mean-field picturefeature is reminiscent of the infrared divergences encoun-
o=2. tered in the theory by Zaanén.
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IV. SUMMARY AND DISCUSSIONS

We have investigated the quantum entrofoollision-
induced interaction of an elastic string confined between
walls (2). We performed a first-principles simulation by
means of the density-matrix renormalization group. Our ai
is to estimate the singularity exponenin the excitation-gap

formula (4). The exponent contains a number of significant

pieces of information which are overviewed in Sec. Il.
In order to estimater, we utilized theB function (10),

which is readily accessible from our simulation data. From

the asymptotic form of large, we obtained the estimate

=0.6(3) for2=0.5—-4; see Fig. 3. Our estimate supports the

recent proposaf that AE is described by the stretched-
exponential form witho= 2/3, whereas it might conflict with
the mean-field value-=2. It would be noteworthy that the
elastic modulus also obeys the stretched exponential, as
shown in our previous study.Hence, it is established fairly

definitely that the excitation gap is also described by the
stretched-exponential singularity. Namely, the excitation gap

is much larger than that anticipated from the mean-field
Moreover, we found that the mean fluctuation widths far
less than the wall spacind: namely, A~d®5. This again

PHYSICAL REVIEW B66, 184501 (2002

From those observations, we are led to the conclusion that
the string is confined by an extremely robust effective pin-
ning potential due to the quantum collisions; subsequently, a
large mass gap opens aAdjets bounded. Those features are
also quite consistent with the findings of the series of works

MRefs. 1 and 2, validating their “order out of disorder”

mechanism responsible for the stabilization of the stripe
phase.

Provided that plural strings are concerned, does the value
o get affected? As a matter of fact, the exponents not
necessarily universal, but it does exhibit continuous
variatior?®?" for a certain class of extended models. More
specifically, in Refs. 38 and 39, the authors claim that ex-
tended models with high central charg#éisat is, many ran-
dom surfacesexhibit various types of criticalities. There-
fore, it is likely that o would acquire corrections for the
Fﬁultistring case. An extended simulation directed to this is-
sue remains for future study.
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