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Quantum-fluctuation-induced collisions and subsequent excitation gap of an elastic string
between walls

Yoshihiro Nishiyama*
Department of Physics, Faculty of Science, Okayama University, Okayama 700-8530, Japan

~Received 1 February 2002; published 4 November 2002!

An elastic string embedded between rigid walls is simulated by means of the density-matrix renormalization
group. The string collides against the walls owing to the quantum-mechanical zero-point fluctuations. Such a
‘‘quantum entropic’’ interaction has come under thorough theoretical investigation in the context of the stripe
phase observed experimentally in doped cuprates. We found that the excitation gap opens in the form of an
exponential singularityDE;exp(2Ads) (d5wall spacing) with the exponents50.6(3), which is substan-
tially smaller than the mean-field values52. That is, the excitation gap is much larger than that anticipated
from mean field, suggesting that the string is subjected to a robust pinning potential due to the quantum
collisions. This feature supports Zaanen’s ‘‘order out of disorder’’ mechanism, which would be responsible for
the stabilization of the stripe phase.
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I. INTRODUCTION

Recently, Zaanen brought up the problem of a ‘‘quant
string,’’ which is a linelike object subjected to line tensio
and it wanders owing to quantum zero-point fluctuations1,2

The central concern is to estimate the interaction am
strings as it wanders quantum mechanically and underg
entropy-reducing collisions with adjacent neighbors. The s
tistical mechanics of quantum-string gas would be resp
sible for the low-energy physics of the stripe phase obser
experimentally in doped cuprates.3–5 In particular, one is mo-
tivated to gain insight into how the stripe pattern acqui
stability. Actually, a good deal of theoretical analyses h
predicted a tendency toward stripe-pattern formation6–9

However,ab initio simulations on thet-J model still remain
controversial about that issue.10–14

In a series of papers,1,2 the authors pointed out that th
‘‘quantum entropic’’ interaction lies out of the convention
picture, and it would rather give rise to solidification of th
gas of strings; namely, the stripe phase is stabilized by
tual collisions.~In a different context, the entropic interactio
was explored in Refs. 15 and 16.! Their analysis1,2 is based
on the Helfrich approximation,17 which has been very suc
cessful in the course of studies of stacked membranes u
thermal undulations. Based on this approximation, they
vealed the significance oflong-wavelength fluctuations. Note
that in the conventional picture, on the contrary, the string
‘‘disordered’’ as in the Einstein-like view of crystal, and on
short-wavelength fluctuations contribute to collisions.

To be specific, the key relation in their theory is

f 5C
B

Sd2 F lnS Sd

B D1C8G , ~1!

with collision-induced energy costf ~per unit volume! and
elasticity modulus~with respect to the compression of strin
intervals! B5d2]2f /]d2; see the Hamiltonian~2! as well.
The logarithmic term signals the significance of lon
wavelength fluctuations. The relation~1! yields remarkable
consequences. For instance, the elastic modulus is give
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thestretchedexponential formB;exp(2Ad2/3).1,2 It is note-
worthy that the elasticity modulusB is much larger than tha
of the mean fieldB;exp(2Ad2). Hence, the result indicate
that contrary to our naive expectations, short-wavelen
modes are suppressed owing to collisions, and the collis
rather contribute to solidification of the string gas; name
the stripe phase is stabilized by the ‘‘order out of disorde
mechanism.1,2

In our preceding paper,18 we have verified the above re
lation ~1! and demonstrated that the elastic modulus is ac
ally governed by the stretched exponential formB;exp
(2Ad0.808(1)). We have carried out the first-principles sim
lation by means of the density-matrix renormalizati
group19–21: We put a quantum string between rigid walls wi
spacingd and measured its repelling interaction.~This tech-
nique has been utilized in the course of studies of the fl
tuation pressure of stacked membranes.!22–24 The Hamil-
tonian is given by

H5(
i 51

L S pi
2

2m
1V~xi ! D 1 (

i 51

L21
S

2
~xi2xi 11!2. ~2!

Here,xi denotes the operator of the transverse displacem
of a particle at thei th site, andpi is its conjugate momentum
They satisfy the canonical commutation relations@xi ,pj #
5 i\d i j , @xi ,xj #50 and@pi ,pj #50. HereV(x) is the rigid-
wall potential with spacingd;

V~x!5H 0 for 0<x<d,

` otherwise.
~3!

S denotes the line tension which puts particles into line. T
classical version of this Hamiltonian has been used a
model for line dislocations and steps on~vicinal!
surfaces.25–27Note that for sufficiently largeS, one can take
a continuum limit, with which one arrives at a field
theoretical version of quantum string.28

In the present paper, we are concerned in the excita
~mass! gap due to the collisions. We postulate the expon
tial singularity
©2002 The American Physical Society01-1
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DE;exp~2Ads! ~4!

for sufficiently larged. In Ref. 2, the gap~crossover tempera
ture! T0 is calculated in the formT0}AB; namely, one
should obtains52/3. This result cannot be understood
terms of the mean-field picture, yielding a much smal
mass gaps52. ~We will outline this picture in the nex
section.! The purpose of this paper is to judge the validity
those scenarios by performing first-principles simulatio
Our result iss'0.6(3) forS50.5–4.

The rest of this paper is organized as follows. In the n
section, we argue the physical implications of the singula
exponents. We introduce the viewpoint of critical phenom
ena in order to interpret the gap formula~4!. The mean-field
argument is also explicated. In Sec. III, we perform nume
cal simulations and show evidence of the breakdown of
mean field. In the last section, we give a summary and
cussion.

II. INTERPRETATION OF THE SINGULARITY
EXPONENT s:

A STATISTICAL-MECHANICAL OVERVIEW

In the Introduction, we have overviewed the quantu
string in the context of the stripe phase. In this section,
will survey different aspects of the quantum string in ter
of statistical mechanics. This viewpoint is utilized in th
simulation-data analyses in the succeeding section III.

In the path-integral picture, a quantum string span
‘‘world sheet’’ as time evolves.29 Therefore, a quantum strin
is equivalent to the random surface underthermal undula-
tions. The random surface is in the critical phase of Kos
litz and Thouless~KT!. @In our model ~2!, however, there
appears no ‘‘flat phase,’’ because the ‘‘height’’ variables$xi%
are continuous.# The presence of rigid walls is supposed
destroy the KT criticality. Therefore, the collision-induce
mass gap~4! reflects the universality class of the phase tra
sition at 1/d→0. In that sense, our aim is to determine t
universality class.

The phase transition has not been studied very extensi
so far. The rigid-wall potential is, by nature, nonanalytic, a
hence, it is quite cumbersome to carry out perturbat
analyses such as loop expansions. Moreover, the confine
due to walls destroys the applicability of the duality transf
mation, with which one could establish an elucidati
equivalence between the random surface and t
dimensionalXY model.

Even in computer simulations, verification of the gap fo
mula ~4! is rather troublesome. Note that the gap opens v
slowly. That is, the correlation length is kept exceeding
large in the vicinity of the critical point. The correlatio
length would exceed the system sizes. Note that the con
tional criticality exhibits thepower-lawsingularity

DE;j21;~1/d!n, ~5!

which would be much easier to cope with. We will overcom
the difficulty through resorting to the density-matrix reno
malization group19–21; with this technique, we treat system
sizes up toL542.
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Now, we are in a position to discuss the meaning of
singularity exponents. The correlation length is propor
tional to the inverse of the excitation~mass! gap: namely,j
;exp(Ads). Herej sets the characteristic length scale of t
collision intervals. Therefore, in the length scalel 5j, the
random surface fluctuates freely. And so, the mean fluc
tion deviation is calculated,

A^xi
2&;~ ln l !1/2;ds/2. ~6!

From this relation, we see thats reflects an amount of fluc
tuation amplitudes. In the meantime, the mean-field pict
insistsA^xi

2&}d. ~More precisely, an artificial mass term
included so as to enforce the condition; see Refs. 16 and!
Hence, one should obtain

s52 ~7!

in the mean-field picture.
On the contrary, as mentioned in the Introduction, rec

theory1,2 predicts a much smaller singularity exponents
52/3, from which one obtains a counterintuitive resu
A^xi

2&;d1/3!d. The result indicates that the string
straightened macroscopically by collisions: This is qu
reminiscent of the aforementioned claim that the infrar
modes are still active, withstanding the collisions.1,2 A simi-
lar, but slightly modest, exponents51 was reported~in a
different context! with analytical calculations.15,16

III. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we perform first-principles simulations
as to estimate the singularity exponents. First, we will ex-
plicate the simulation algorithm.

A. Details of the density-matrix renormalization group

The density-matrix renormalization group has been u
lized for the purpose of treating very large system sizes.19,20

The technique is based on an elaborate reduction of
Hilbert-space bases, and it has been applied to various
and electron systems very successfully.21 Meanwhile, the
technique had become applicable to bosonic systems suc
phonons and oscillators.30–33 ~Note that the full exact diago
nalization does not apply, because even a single oscill
spans infinite-dimensional Fock space. The huge dimens
ality overwhelms the computer memory space.! Here, we
employ the density-matrix-renormalization technique in
der to diagonalize the quantum string~2!. A full account of
the technical details is presented in our preceding paper.18 In
this paper, we will outline the simulation algorithm with a
emphasis on the modification to calculate the excitation
precisely.

To begin with, we need to set up local~on-site! Hilbert-
space bases: Provided that the line tensionS is turned off,
oscillators are independent, and each of them reduces to
textbook problem of a ‘‘particle in a box.’’ Hence, the full se
of eigensystems is calculated easily. In this way, we set
the intrasite Hilbert space with use of the low-lyingM512
states and discarded the others.
1-2
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Second, provided that those intrasite bases are at hand
are able to apply the density-matrix renormalization gro
The total system consists of block, site, site, and block. T
left-half part ~block and site! is renormalized into a new
block with reduced dimensionalitym; we set, at most,m
550. More precisely, thosem bases are chosen from th
eigenvectors of the density matrix for the left-half part,

r5TrRuC&^Cu, ~8!

with the largestm eigenvalues. TrR denotes the partial trac
with respect to the right-half part anduC&5u0&1u1& with
the ground stateu0& and the first excitation stateu1& of the
total system.~Note that in our previous simulation,18 we sim-
ply set uC&5u0&, because we were just concerned in t
ground-state properties.! The ground stateu0& has even par-
ity with respect to the reflectionxi→2xi , whereas the first
excitation stateu1& belongs to the odd-parity sector. In oth
words, each of them is the ground state of the respec
subspaces. Therefore, we setuC&5u0&1u1& in order to
cover both subspaces.~This choice is suitable as for calcu
lating the first excitation gap. However, in order to calcula
the spectral function, one should prepare a much larger se
of target states.21! Note that the change of signuC&5u0&
2u1& does not make any difference; the phase of the w
function should not affect the physics. In fact, from the de
nition of the density matrix~8!, we see that the density
matrix eigenvalues are kept invariant under that change.

To summarize, we have carried out truncations of ba
through two steps: One is the truncation of the intrasite ba
M, and the other is the truncation of the ‘‘block’’ statesm
through the density-matrix renormalization. Each of the
procedures is monitored carefully, and the relative error
low-lying energy levels is kept within 1027; see Ref. 18 for
details.

We have repeated renormalizations 20 times. The sys
size reachesL542.

B. Excitation energy gap

We have plotted the energy gap against the inverse of
spacing 1/d for several values of line tensionS; see Fig. 1.
From the plot, we see that the gap opens extremely slow
namely, in the range 1/d&0.3, the mass gapDE is main-
tained to be very small. This is a typical signature of t
exponential singularity~4! rather than the power law~5!. For
1/d,0.2, the simulation does not continue, because the
merical diagonalization fails in resolving the nearly degen
ate low-lying levels.

In the inset, we have presented the logarithmic plot. T
data exhibit convex curves. Hence, we see that the singu
ity exponents would not exceeds51. As is mentioned in
Sec. II, the mean-field argument predictss52. Therefore,
we found that the collision-induced gap cannot be und
stood in terms of the mean-field picture.

C. b-function analyses

The criticality is best analyzed by theb function. Theb
function describes the flow of a certain controllable para
18450
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eter ~in our case,d51/d) with respect to the infinitesima
rescaling of the unit of length: namely,

b~1/d!5
j~1/d!

j8~1/d!
5S d

d~1/d!
ln j D 21

, ~9!

with correlation lengthj. Because the mass gap is the i
verse of the correlation length, we obtain

b~1/d!52S d

d~1/d!
ln DED 21

, ~10!

with excitation gapDE.
As is emphasized in Sec. II, the gap formula~4! is deeply

concerned with the criticality atd51/d→0. Theb function
reflects the universality class of the phase transition. For
stance, as for the exponential singularity such as Eq.~4!, it
behaves like

b~1/d!;1/~As!~1/d!s11. ~11!

On the other hand, the conventional second-order transi
~5! is characterized by the behavior

b~1/d!5~1/d!/n. ~12!

In this way, we can read off the critical exponents such as
andn.

As is presented in the previous subsection, the excitat
gap dataDE are readily available. The remaining task is
perform the numerical derivatives ofDE8. We adopted the
‘‘Richardson’s deferred approach to the limit’’ algorithm i
the textbook of Ref. 34. In this algorithm, one takes an e
trapolation after calculating various finite-difference diffe
entiations. We monitored the relative error and checked
the error is kept within 1028. From these preparations, w
can calculate theb function from our simulation data.

FIG. 1. Excitation gap DE is plotted for 1/d (d
5wall spacing). The excitation gapDE opens extremely slowly:
This feature is characteristic of the universality class of exponen
singularity ~4! rather than the power law~5!. The inset shows the
logarithmic plot. The curves bend convexly. Therefore, the sin
larity exponent would not exceeds51.
1-3
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We have plotted theb function b(1/d) in Fig. 2 for S
52. We see that there appear two regimes: As is indicate
the plot, in the region 1/d&0.3, theb function is best fitted
by a power law (1/d)1.6. Hence, the universality would be
long to the exponential singularity~11! with exponents
50.6. Note that such stretched-exponential behavior is s
gested in the previous subsection. On the contrary, thb
function falls in the simple behavior 1/n(1/d) with the index
n52 for large 1/d; see Eq.~12!. That result tells us that fo
large 1/d, the gap formula enters the regime of power la
~5!. That is quite convincing, because for large 1/d, S be-
comes irrelevant and the system reduces18 to the textbook
problem of a ‘‘particle in a box.’’ Hence, the excitation gap
simply given by the power law~5! with the indexn52. To
summarize, we found that for large 1/d, the physics change
so that we must look into the behavior in the vicinity
1/d50.

In order to estimates, we have presented the log-log pl
in Fig. 3 for variousS. From the slopes, we obtain an es
mates50.6(3).This estimate is far less than the mean-fie
values52. It clearly supports Zaanen’s claims52/3 ~Refs.
1 and 2! that the collision-induced mass gap is governed
the stretched-exponential singularity. That is, the collisio

FIG. 2. b function ~10! is plotted forS52. There appear two
regimes with respective asymptotic forms; see text. The smalld
behavior indicates that the transition belongs to the universa
class of exponential singularity withs'0.6; see Eqs.~11! and~12!.

FIG. 3. Logarithmic plot of theb function for variousS. From
the slopes, we read off the singularity exponents50.6(3); see Eq.
~11!. Our result indicates the breakdown of the mean-field pict
s52.
18450
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induced mass gap is far larger than that anticipated from
mean field, and hence, the string is subjected to robust
ning potential due to quantum collisions; see Sec. II.

Meanwhile, we also calculated the Roomany-Wyld a
proximant of theb function,35

b52
11 ln~DEl /DEl 8!/ ln~ l / l 8!

~DEl8DEl 8
8 /DElDEl 8!

1/2
, ~13!

where l and l 8 denote a pair of system sizes. This appro
mant, in general, exhibits smaller finite-size collections.
fact, we found that it converges rapidly to the thermod
namic limit. However, the resultant data are identical to tho
with the aforementioned formula~10! for sufficiently largeL.
Because we take advantage of very large system sizes o
to the density-matrix renormalization group, the approxim
formula ~13! is not particularly necessary.

D. Mean-fluctuation deviation

So far, we have extracted the singularity exponent direc
from the excitation-gap data. However, as is mentioned
Sec. II, the mean deviation of the string undulations conta
information about the exponent:

D5A^xi
2&2^xi&

2;ds/2. ~14!

In Fig. 4, we plotted the mean fluctuation widthD for
variousd and S50.5–4. From the plot, we see that the
appear two distinctive regimes as in Fig. 2. For smalld, D is
proportional tod, as is anticipated from a naive argumen
see Sec. II. However, for larged, D starts to bend down
indicating that the string undulation becomes suppress
Hence, for larged, the conventional picture does not app
From the slopes, we read off the exponents/2'0.5. @This
result supports our estimates50.6(3) rather than the mean
field values52.# Hence, we seeD/d!1 as ford→`. As a
consequence, we found fairly definitely that the string
straightened macroscopically due to quantum collisions. T
feature is reminiscent of the infrared divergences enco
tered in the theory by Zaanen.1

/
ty

e

FIG. 4. Mean fluctuation widthD, Eq. ~14!, is plotted for wall
spacingd. A naive argument postulatesD}d. However, the simu-
lation data exhibitD;d0.5. We see that the string is straightene
macroscopically. Our result supports the ‘‘order out of disorde
mechanism proposed by Refs. 1 and 2.
1-4
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IV. SUMMARY AND DISCUSSIONS

We have investigated the quantum entropic~collision-
induced! interaction of an elastic string confined betwe
walls ~2!. We performed a first-principles simulation b
means of the density-matrix renormalization group. Our a
is to estimate the singularity exponents in the excitation-gap
formula ~4!. The exponent contains a number of significa
pieces of information which are overviewed in Sec. II.

In order to estimates, we utilized theb function ~10!,
which is readily accessible from our simulation data. Fro
the asymptotic form of larged, we obtained the estimates
50.6(3) forS50.5–4; see Fig. 3. Our estimate supports
recent proposal1,2 that DE is described by the stretched
exponential form withs52/3, whereas it might conflict with
the mean-field values52. It would be noteworthy that the
elastic modulus also obeys the stretched exponential, a
shown in our previous study.18 Hence, it is established fairly
definitely that the excitation gap is also described by
stretched-exponential singularity. Namely, the excitation g
is much larger than that anticipated from the mean-fie
Moreover, we found that the mean fluctuation widthD is far
less than the wall spacingd: namely, D;d0.5. This again
supports our conclusion rather than the mean field; see
~6!.
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