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Magnetization reversal through soliton flip in a biquadratic ferromagnet
with varying exchange interactions
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We study the phenomenon of magnetization reversal in the form of a soliton flip in a biquadratic ferromag-
netic spin chain induced by varying bilinear and biquadratic exchange interactions. This is carried out by
analyzing the evolution of the velocity and amplitude of the soliton using a perturbation analysis.
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I. INTRODUCTION

The magnetization reversal process, or the switch
properties obtained through an understanding of the unde
ing magnetization dynamics in magnetic systems, is an
portant issue mainly because the dynamic process is no
ear in nature. The importance of the issue is also based
the fact that the success and development of random ac
memories depend on the magnetization switching proc
The magnetization reversal process is normally based o
coherent rotation of the magnetization and a propagatio
domain walls in the presence of the magnetic field, and
has been studied in detail.1 One cannot rule out the possibi
ity of magnetization reversal without applying external ma
netic fields. Among the various approaches, magnetiza
switching by stress induced anisotropy and thermal act
tion assume importance.2,3 In our present study, we propos
that site-dependent or inhomogeneous exchange interac
can also be good candidates for activating magnetizatio
spin reversal processes in a ferromagnet. Most of the av
able results on the magnetization reversal process is base
experimental studies and numerical simulations, and ana
cal results are very limited. Recently, it was found that
classical Landau-Lifshitz~LL ! equation is a useful model t
describe the fast magnetization reversal process.4 In an en-
tirely different context, the LL equation, corresponding
different magnetic interactions has been proved to be c
pletely integrable, admitting soliton solutions in seve
cases.5–7 Thus the soliton has been identified as a very use
object that can describe localized coherent spin or magn
zation configurations in classical ferromagnetic syste
Higher order magnetic interactions, inhomogeneous exte
magnetic fields, etc., introduce perturbations to th
solitons.6,7 Thus it has become increasingly important to
vestigate the effect of these perturbations on the soliton a
in particular, a study to understand whether any of th
perturbations can contribute to magnetization reversal or
flip in ferromagnetic systems needs immediate attention
this paper, we try to find answer for the question whet
varying ~inhomogeneous! exchange interactions can induc
magnetization reversal process in a biquadratic ferrom
netic system. After deriving the equation of motion for spi
in a classical inhomogeneous biquadratic ferromagnetic
0163-1829/2002/66~18!/184433~6!/$20.00 66 1844
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tem, in Sec. II, we study the effects of quadratic and tang
hyperbolic type nonlinear inhomogeneity on the spin solit
and magnetization reversal in Sec. III. The paper is c
cluded in Sec. IV.

II. DYNAMICS OF BIQUADRATIC FERROMAGNET
WITH VARYING EXCHANGE INTERACTIONS

In some magnetic materials, the biquadratic exchange
teraction plays an important role, and therefore in rec
years there has been a considerable interest in the stud
quantum spin chains with competing bilinear and biquadra
exchange interactions. In particular, the complete integra
ity of spin chains with a spin magnitudeS. 1

2 has been es-
tablished if suitable polynomials in (Si•Sj ) are added to the
original bilinear Heisenberg spin chain (Si•Sj ).

8 When the
term (Si•Sj )

2 alone in the polynomial is added to it, it co
responds to a spin-1 Heisenberg ferromagnet with bilin
and biquadratic exchange interactions. The study of quan
fluctuations in systems withS.1 is far from reach. A theo-
retical explanation for the origin of biquadratic interactio
was given by Anderson9 and Kittel,10 and further treated by
Huang et al. and Allan et al.11 Also, much effort has been
devoted to studying quantum fluctuations and the low te
perature properties of one-dimensional spin Heisenberg
romagnets since the fascinating conjecture by Haldane
proposed.12 When the spin value is large, the quantum flu
tuation „1/@S(S11)#… ceases and the spin system is cons
ered classical. In this connection, it is also of interest to stu
the nonlinear spin dynamics of a biquadratic spin syste
with varying exchange interactions in the classical limit.

The Hamiltonian for a classical Heisenberg ferromagne
spin chain with varying bilinear and biquadratic exchan
interactions can be written as

H52(
i

@Jef i~Si•Si 11!1Jbgi~Si•Si 11!2#,

Si5~Si
x ,Si

y ,Si
z!, ~1!

whereJe and Jb are the bilinear and biquadratic exchan
parameters, respectively, andf i andgi characterize the varia
tion of the bilinear and biquadratic exchange interactions
the lattice sites along the spin chain. The LL equation
©2002 The American Physical Society33-1
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motion13 corresponding to the spin Hamiltonian@Eq. ~1!# in
the case of a one-dimensional classical continuum spin c
can be obtained from the lattice equationdSi /dt
5$Si ,H%PB , and by taking the continuum limit by expand
ing Sn61 and f n21 , gn21 about S(x,t) and f (x),g(x) in
Taylor expansions wherex is a continuous variable. The re
sultant LL equation of motion reads

St5S̀ H FA2
a

2
Ax1

a2

2
Axx1

a2

2
Jbg~S•Sxx!GSxx

1FAx2
a

2
Axx1

a2

3
Jbg~S•Sxxx!GSx1

a2

12
ASxxxx

1
a2

6
AxSxxxJ , S251, ~2!

whereA(x)5Jef (x)1Jbg(x). Here the sufficest andx rep-
resent partial derivatives with respect tot andx, respectively.
As the LL equation~2! is a nontrivial vector nonlinear partia
differential equation, it is difficult to solve it in its natura
vector form to understand the underlying nonlinear spin
namics. Hence we intend to map this to one of the w
known nonlinear evolution equations that admits solito
Following Lakshmanan and co-workers’ space curve m
ping procedure,14,5 Eq. ~2! reduces to the following inhomo
geneous generalized higher order nonlinear Schro¨dinger
~NLS! equation,

iqt1~kq!xx12kuqu2q12qE
2`

x

kx8uqu2dx81
a2A

12
@qxxxx

1K1uqu2qxx1K2q2qxx* 1K3uqxu2q1K4q* qx
2

13K2uqu4q#1
a2

12
Ax@qxxx16uqu2qx#50, ~3!

where

k~x!5Ã1
a2

6
Axx ,

K15212S 11
4Jbg

A D ,

K2528S 11
3Jbg

A D ,

K35236S 11
8Jbg

3A D ,

K45214S 11
24Jbg

7A D .

Thus Eq.~3! describes the dynamics of spins in an inhom
geneous classical continuum biquadratic Heisenberg fe
magnetic spin chain in an equivalent representation wheq
is related to the energy and current densities of the spin
tem through the curvature and torsion of the space curv
Painlevésingularity structure analysis brings out the co
pletely integrable models underlying Eq.~3! at different or-
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ders and the integrability properties were studied
detail.5,6,15Therefore, we desist from presenting more resu
about this aspect here.

III. EFFECT OF NONLINEAR INHOMOGENEITY
ON THE SPIN SOLITON

AND MAGNETIZATION REVERSAL

The constraint on the inhomogeneity in the form of
linear function ofx for integrability raises an important ques
tion about the effect of nonlinear inhomogeneity on the so
ton which forms the major concern of the rest of the pap
We consider the inhomogeneous nonlinear equation from
~3! at the orderO(a0) and putk(x)5k01lk1(x), wherel
is a small parameter andk1(x) is a nonlinear function ofx.
After a suitable rescaling and a redefinition ofl, the equa-
tion reads

iqt1qxx12uqu2q1lF ~k1q!xx12k1uqu2q

12qE
2`

x

k1x8uqu2dx8G50. ~4!

We study the effect of nonlinear inhomogeneity on the s
soliton by treating terms proportional tol in Eq. ~4! as a
weak perturbation using multiple scale perturbati
analysis.16 It may be noted that while writing Eq.~4!, we
have dropped terms atO(a2) because inhomogeneity doe
not enter at that order. Also, in our earlier studies we ha
shown that these terms atO(a2) as a perturbation do no
alter the velocity and amplitude of the unperturb
soliton.6,17 When l50, Eq. ~4! reduces to the completel
integrable cubic NLS equation which admits envelope o
soliton in the form q5hsechh(u2u0)exp@ij(u2u0)1i(s
2s0)#, where u t522j, ux51, s t5h21j2, and sx50.
Writing h,j,u,u0, ands0 as functions of a new time scal
T5lt, andq5q̂(u,T;l)exp@ij(u2u0)1i(s2s0)#, under the
assumption of quasi-stationarity, on expandi
q̂ in terms of l as q̂(u,T;l)5q̂0(u,T)1lq̂1(u,T)1 . . . ,
where q̂05h sechh(u2u0), at O(l) after substitutingq̂1
5(f11 ic1) and (f1 ,c1 are real! we obtain 2h2f1

1f1uu16q̂0
2f15F1(q̂0) and 2h2c11c1uu12q̂0

2c1

5F2(q̂0) where F1(q̂0) and F2(q̂0) are given byF1(q̂0)
5 2 @jT(u 2u0) 2ju0T# 1 (k1q̂0)uu 2 k1j2q̂0 1 2k1uq̂0u2q̂0

12q̂0*2`
u k1u8uq̂0u2du8 and F2(q̂0)5@2q̂0T12(h1q̂0)uj#.

As q̂0u andq̂0 are solutions of the homogeneous parts of
above two equations forf1 andc1 respectively, the secular
ity conditions give

E
2`

`

q̂0uF1du50, E
2`

`

q̂0F2du50. ~5!

The effect of inhomogeneity in exchange interactions ‘‘k1’’
on spin solitonq̂0 can be understood by evaluating the abo
two integrals for specific forms of ‘‘k1.’’ As it is known that
the model supports soliton spin excitations when the in
mogeneity is in the form of a linear function ofx,15 in this
paper, we consider~i! a quadratic-type inhomogeneity repr
3-2
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FIG. 1. ~a! Time evolution of
the velocity (js) of the soliton and
~b! soliton flip in terms of ampli-
tude (hs), when Cs050 under
quadratic inhomogeneity with the
initial amplitudehs053.0.
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sented byk1(x)5b2x21b1x1b0, and ~ii ! a more compli-
cated localized inhomogeneous exchange interaction re
sented in terms ofk1(x)5b3 tanhhpx whereb0 ,b1 ,b2 , and
b3 are constants, andhp replaces theh in the solution.

A. Quadratic inhomogeneity

Substituting the quadratic form of inhomogeneity in sec
larity conditions~5!, we obtain

jsT52b̂~hs
22js

2!, hsT52b̂js~hs22!, ~6!

wherejs andhs are the velocity and amplitude of the solito
in this case~instead ofh and j), b̂5(b11b4) and b4

5b2hs@(u2u0)tanhhs(u2u0)#2`
` which is assumed to be

finite by choosingu0 appropriately. When the inhomogenei
is absent, the velocity and amplitude of the soliton rem
constant which is evident from Eq.~6!. To understand the
nature of evolution of the amplitude and velocity of the so
ton under the quadratic form of inhomogeneity, we solve
set of coupled equations~6!. We differentiate the second o
Eq. ~6! and use the first one in the resultant equation to
after integrating once~and suitable rescaling of T! hsT

2

2 1
2 hs

41 4
3 hs

35Cs0, whereCs0 is the constant of integration
In the above equationCs0 is found to be equivalent to th
energy of the soliton which oscillates under the potenti
(2 1

2 hs
41 4

3 hs
3).

When Cs050, the amplitude and velocity of the solito
are found to be respectivelyhs526Q21,

js5
3

KQ~Q13! F123S 12
8

3h0s
D 1/2

22TG ,
where

Q5F S T2
1

2D 2

13S 12
8

3hs0
D 1/2S T2

1

2D2
6

hs0
G ,

andhs0 is the initial amplitude of the soliton. Assuming th
the soliton with an initial amplitude ofhs053.0, starts from
rest atT50, we have plotted in Figs. 1~a! and 1~b!, the
velocity and amplitude of the soliton. From the figures w
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observe that as time passes on the velocity and amplitud
the soliton increase and when reaching a maximum va
suddenly flip leading to magnetization reversal and move
the opposite direction. Then the soliton dies out slowly d
to inhomogeneity of the exchange interactions along the s
chain. As the velocity of the soliton is inversely proportion
to the inhomogeneity, the soliton damps very quickly in t
case of highly inhomogeneous medium. The soliton wo
have exploded had it not flipped and reversed when it mo
with high speed and fast growing amplitude.

WhenCs0Þ0, the equation can be integrated and the
lution and hence the amplitudehs and velocityjs of the
soliton can be expressed in terms of Jacobian ellip
functions.18 The amplitude has the form

hs~T!5

~e22C2e1!2e1cnS T

gD
~d22C2d1!2d1cnS T

gD ,

wheree65h2a26h1b2 , d65a26b2,

C25
2~h12hs0!b2

hs0d12e1
,

g5
1

Aa2b2

,

a1
25

2~h32h3* !2

4
,

b15
~h31h3* !

2
,

a2
25(h12b1)21a1

2, and b2
25(h22b1)21a1

2. Here hs0 is
the initial amplitudehs(0) of the soliton atT50 andh1 and
h2 are the two real roots of the polynomialhs

42 8
3 hs

31 7
81

50, h3 is the complex root of the same andh3* its complex
conjugate. The velocityjs of the soliton is of the form
3-3



M. DANIEL AND L. KAVITHA PHYSICAL REVIEW B 66, 184433 ~2002!
js5

~e1d22d1e2!snS T

g
D dnS T

g
D

KgH F ~d22C2d1!2d1cnS T

g
D GF ~e22C2e1!2e1cnS T

g
D G22F ~d22C2d1!2d1cnS T

g
D G2J .

FIG. 2. ~a! Time evolution of
the velocity(js) of the soliton and
~b! soliton flip in terms of ampli-
tude(hs), when Cs05

7
81 under

quadratic inhomogeneity with the
initial amplitudehs053.0.
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Here sn(T/g),cn(T/g) and dn(T/g) are Jacobian elliptic
functions. While evaluating the above expressions for am
tude and velocityCs0 is chosen as7

81 for convenience.
The above expressions for the velocity (js) and amplitude

(hs) of the soliton are plotted in Figs. 2~a! and 2~b!. The
figures show that unlike the case corresponding toCs050,
here the flipping of the soliton amplitude or magnetizati
reversal and the reversal of the velocity of the soliton oc
doubly periodically and continues indefinitely. The soliton
this case does not die out. This is because as mentio
earlier,Cs0, now acts as a source of energy for soliton flip
for magnetic reversal, sustaining the soliton to oscillate d
bly indefinitely periodically under the potential@(2hs

4/2)
1 4

3 hs
3# ~forced oscillations!.

B. Localized „kink … inhomogeneity

As a second example, we consider the inhomogeneit
the exchange interactions in the formk1(x)5b5tanhhpx.
Substituting the above form ofk1(x) in the secularity condi-
tions and on evaluating the integrals and after resca
T→ (24/3)T, jp→24jp , we obtain

hpT5b5hp
2jp , jpT52b5hpS 3

8
hp

212jp
2D . ~7!

The above equations can be combined together to
hpTT1(3b5

2/8)hp
550, which on integrating once become

(hpT)22(b5
2/8)hp

65C3, whereC3 is an arbitrary constant o
integration. In order to understand the effect of the pres
inhomogeneity on the velocity and amplitude of the solit
more transparently, we chooseC356b5

2/8 for convenience.
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For instance, whenC352b5
2/8, the solution after integrat

ing once can be written in terms of the complete ellip
integral of first kind,F(ĉ,k̂)531/4@2C42(b5

2/4)T#, where

ĉ5cos21F11~12A3!hp
2

11~11A3!hp
2G

and the period is given by

k̂5
A~21A3!

2
.

When C35b5
2/8, using the transformationhp

251/(11z2),
the equation after integrating once can be written as

E
y

` dz

Az413z213
5

2b5
2

8
T1C5 ,

whereC5 is another constant of integration. The above eq
tion can be integrated and z can be expressed in term
Jacobian elliptic functions. Thus, the final form of the amp
tudehp and velocityjp read as

hp5
1

A~11A3! F 12xcnT

12
12A3

11A3 cnT

G 1/2

,

3-4
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jp5
31/8~11A3!

A16@~11A3!2~12A3!cnT]
F ~12A3!

~11A3!
$12xcnT%21/21xF12

~12A3!

~11A3!
cnTG $12xcnT%23/2]snTdnT,

FIG. 3. Time evolution of~a!
the velocity (jp) and ~b! the am-
plitude (hp) of the soliton under
tangent hyperbolic inhomogeneit
when the initial amplitude ishp0

5(12A3)/4A3(11A3).
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wherex5@122A3(11A3)hp0
2 #; sn, cn, and dn are Jaco

bian elliptic functions with the period12A(22A3), andhp0

is the initial amplitude of the soliton in this case. In Fig
3~a! and 3~b!, we plot the velocity and amplitude of th
soliton by choosing the initial amplitude of the soliton as

hp05
~12A3!

4A3~11A3!

for convenience. Unlike the case of quadratic inhomogene
in this case, due to the high nonlinear nature of the inhom
geneity the soliton flip and hence the magnetization reve
does not occur very dominantly. The amplitude of the soli
in fact oscillates doubly periodically smoothly with a ma
ginal reversal in the amplitude. However, the velocity of t
soliton shows dramatic turns at the points when it reverse
switches. It is observed that when the soliton amplitu
changes from positive~negative! to negative~positive!, it
suddenly moves either forward or backward and on all ot
occasions it moves very slowly and the soliton is almos
rest. Thus, in this case, due to the high nonlinear natur
inhomogeneity the soliton is almost arrested and jumps s
denly forward or backward when the amplitude of the solit
reverses. The perturbed soliton can be constructed by sol
f1 andc1 equations after using the velocity and amplitu
evolution equations corresponding to quadratic and tang
hyperbolic inhomogeneities. The resultant solutions con
secular terms which make the solutions unbounded. We
move these secular terms by choosing the arbitrary cons
in the solutions appropriately. Also the boundary conditio
determine the more arbitrary constants available in the s
tions. Construction of the solutions involve an evaluation
several complicated integrals and very lengthy calculatio
18443
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The details of calculations and the perturbed solutions w
be published elsewhere.

IV. CONCLUSIONS

In summary we studied the effect of nonlinear inhomog
neity in bilinear and biquadratic exchange interactions on
spin soliton of a classical continuum Heisenberg ferrom
netic spin chain, the dynamics of which is governed by
inhomogeneous generalized higher order NLS equation u
mapping the spin chain onto a moving space curve. The
fect of inhomogeneity was understood by carrying out a m
tiple scale perturbation analysis on an inhomogeneous N
equation and by analyzing the evolution of the velocity a
amplitude of the soliton. As examples, we considered q
dratic and tangent hyperbolic-type inhomogeneities. The
sults of the perturbation analysis show an interesting p
nomenon of soliton flipping leading to magnetization~spin!
reversal in the ferromagnetic medium. When the solit
moves along the spin chain with quadratic-type inhomoge
ity, starting from rest with a finite amplitude, the soliton am
plitude grows and is accelerated and, when the velo
reaches a maximum value, it suddenly flips~magnetization
reversal!, then slows down, and once again flips; and t
phenomenon is found to occur doubly periodically for
indefinite time. However, when the inhomogeneity is in t
form of a tangent hyperbolic function, the soliton jumps ba
and forth and the amplitude in this case changes smoo
and doubly periodically, though only with a marginal amou
of negative amplitude. Finally, we also constructed perturb
solitons in both cases of inhomogeneity. The above spin s
ton flipping phenomenon which leads to magnetization
versal in a ferromangetic medium is expected to have po
tial applications in magnetic memories and recording.
3-5
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