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Magnetization reversal through soliton flip in a biquadratic ferromagnet
with varying exchange interactions
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We study the phenomenon of magnetization reversal in the form of a soliton flip in a biquadratic ferromag-
netic spin chain induced by varying bilinear and biquadratic exchange interactions. This is carried out by
analyzing the evolution of the velocity and amplitude of the soliton using a perturbation analysis.
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[. INTRODUCTION tem, in Sec. I, we study the effects of quadratic and tangent
hyperbolic type nonlinear inhomogeneity on the spin soliton
The magnetization reversal process, or the switchinggnd magnetization reversal in Sec. Ill. The paper is con-

properties obtained through an understanding of the underly¢luded in Sec. IV.

ing magnetization dynamics in magnetic systems, is an im-

portant issue mainly because the dynamic process is nonlin- 1. DYNAMICS OF BIQUADRATIC FERROMAGNET
ear in nature. The importance of the issue is also based on  WITH VARYING EXCHANGE INTERACTIONS
the fact that the success and development of random access . . . . .
memories depend on the magnetization switching process. In some magnetic materials, the biquadratic exc_hange In-
The magnetization reversal process is normally based on &raction plays an important role, and therefore in recent

coherent rotation of the magnetization and a propagation oféars there_has b_een a con5|der_able Interest in the study_ of
domain walls in the presence of the magnetic field, and thiguantum spin chains with competing bilinear and biquadratic

has been studied in detaiDne cannot rule out the possibil- gxchange interactions. In particular, the complete integrabil-

. . X ) . 1
ity of magnetization reversal without applying external mag-'ty of spin chains with a spin magnitudg>; has been es-

netic fields. Among the various approaches, magnetizatiofP!ished if suitable polynomials irf- 5) are added to the

. e . . . 8
switching by stress induced anisotropy and thermal activa®/dinal bilinear Heisenberg spin chaig(S;).” When the

2 . - . . -
tion assume importan@ In our present study, we propose €M (S-$) alone in the polynomial is added to it, it cor-
that site-dependent or inhomogeneous exchange interactiof§SPONds 1o a spin-1 Heisenberg ferromagnet with bilinear

can also be good candidates for activating magnetization @&nd biquadratic exchange interactions. The study of quantum

spin reversal processes in a ferromagnet. Most of the avaifluctuations in systems wit8>1 is far from reach. A theo-

able results on the magnetization reversal process is based Bfic@l_explanation fo(r? the originlgf biquadratic interaction
experimental studies and numerical simulations, and analyt{¥@s given by Andersorand Kittel,™ and further treated by

cal results are very limited. Recently, it was found that thetuanget al. and Allan et al** Also, much effort has been
classical Landau-LifshitfLL) equation is a useful model to devoted to studying quantum fluctuations and the low tem-
describe the fast magnetization reversal proédssan en- ~ Perature properties of one-dimensional spin Heisenberg fer-
tirely different context, the LL equation, corresponding to "oMmagnets since the fascinating conjecture by Haldane was
different magnetic interactions has been proved to be conPFOPOSG&- When the spin value is large, the quantum fluc-
pletely integrable, admitting soliton solutions in severaltuation(1[S(S+1)]) ceases and the spin system is consid-
case€~" Thus the soliton has been identified as a very usefugred cIasgcaI. In.thls conngctlon, it is also of |_ntere_st to study
object that can describe localized coherent spin or magnetfh® nonlinear spin dynamics of a biquadratic spin system,
zation configurations in classical ferromagnetic systemsWith varying exchange interactions in the classical limit.
Higher order magnetic interactions, inhomogeneous external | he Hamiltonian for a classical Heisenberg ferromagnetic
magnetic fields, etc., introduce perturbations to thes@Pin chain with varying bilinear and biquadratic exchange
solitons®” Thus it has become increasingly important to in- INtéractions can be written as

vestigate the effect of these perturbations on the soliton and,

in particular, a study to understand whether any of these H=—2, [Ifi(S S0 +I0i(S S 12,
perturbations can contribute to magnetization reversal or spin !
flip in ferromagnetic systems needs immediate attention. In S=(S8.9.9), (1)

this paper, we try to find answer for the question whether

varying (inhomogeneoysexchange interactions can induce whereJ, and J,, are the bilinear and biquadratic exchange
magnetization reversal process in a biquadratic ferromagparameters, respectively, afdandg; characterize the varia-
netic system. After deriving the equation of motion for spinstion of the bilinear and biquadratic exchange interactions at
in a classical inhomogeneous biquadratic ferromagnetic syshe lattice sites along the spin chain. The LL equation of
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motion'® corresponding to the spin Hamiltoni§&q. (1)] in ders and the integrability properties were studied in
the case of a one-dimensional classical continuum spin chaidetail>®*°Therefore, we desist from presenting more results
can be obtained from the Iattice equatiodS/dt  about this aspect here.

={S ,H}pg, and by taking the continuum limit by expand-

ing S,+, and f,,_;, g,_; aboutS(x,t) and f(x),g(x) in lll. EFFECT OF NONLINEAR INHOMOGENEITY
Taylor expansions whereis a continuous variable. The re- ON THE SPIN SOLITON
sultant LL equation of motion reads AND MAGNETIZATION REVERSAL
a 2 a? The constraint on the inhomogeneity in the form of a
SZS/\{ A= SAF 5 At 5 d0(S Sxx)}sxx linear function ofx for integrability raises an important ques-
tion about the effect of nonlinear inhomogeneity on the soli-
a a? a2 ton which forms the major concern of the rest of the paper.
AT At 3I09(S S | St 75AS 0 We consider the inhomogeneous nonlinear equation from Eq.
(3) at the orderO(a®) and putk(x)=ko+ \ki(X), wherex
a? 5 is a small parameter and (x) is a nonlinear function ok.
* EAXSXXX ., 5= 2 After a suitable rescaling and a redefinition of the equa-

) tion reads
whereA(x) =J.f(x) +Jpg(Xx). Here the sufficesandx rep-

resent partial derivatives with respectttandx, respectively.
As the LL equatior(2) is a nontrivial vector nonlinear partial
differential equation, it is difficult to solve it in its natural
vector form to understand the underlying nonlinear spin dy-
namics. Hence we intend to map this to one of the well
known nonlinear evolution equations that admits solitons
Following Lakshmanan and co-workers’ space curve map
ping proceduré’® Eq. (2) reduces to the following inhomo-
geneous generalized higher order nonlinear Stihger
(NLS) equation,

i0e+ Guxt 20l + N| (K1Q) it 24 |0l ?g

X
+20[" Kaolafax |~ @
We study the effect of nonlinear inhomogeneity on the spin
soliton by treating terms proportional o in Eq. (4) as a
weak perturbation using multiple scale perturbation
analysis'® It may be noted that while writing Eq4), we
have dropped terms @ (a?) because inhomogeneity does

X a2A not enter at that order. Also, in our earlier studies we have
i+ (KQ) gyt 2k|q|2q+2qf Ky |ql2dx’ + E[qXxxx shown that these terms &i(a?) as a perturbation do not
w alter the velocity and amplitude of the unperturbed
Ky 01200t K G20 Kl 020+ Kaq* g2 soliton®" When \=0, Eq. (4) reduces to the completely
a2 Soliton i the oM g yseomm(i-- do)exeiE ) (e
+3K2|q|4q]+ 1_2Ax[qxxx+6|q|2qx]:01 3 —0p)], where 6,=—2¢, Zx: 1, o= 7;)24_ £, and OO-X:()_
Writing 7,&,0,6,, ando as functions of a new time scale
where T=\t, andq=q(8,T:\)exdi&(6— 6)+i(o—ay)], under the
a2 assumption  of  quasi-stationarity, on  expanding
K(X)=A+ = A, q in terms of A asq(8,T;\)=0o(6,T)+Aq1(6,T)+ ...,
where qo= 7 sechy(6— 6,), at O(\) after substitutingq,
Koo 19 14 4Jbg) =(¢1+iys) and (b1,¢y are real we obtain — ¢,
! Al + ¢10§+ 605¢h1= Fl(flo) and o D+ Yrgt ZQ(Z)A%
33,9 =F2(qo) where F;(qo) and Ez(%) are giVen byEl(Qp)
Ko= _8( 1+ T) =~ [&(60—60) — £6or] + (K1Go) oo — kl§A2q0+ 2k1LQo|2QO
+290f0imk{0'|QO|2d3/ and F»(do) =[ —dor+2(h1d0) ¢¢]-
8J,0 As g4 andqg are solutions of the homogeneous parts of the
Ks=—36 1+ 3_A) ' above two equations fap, and ¢, respectively, the secular-

ity conditions give

24‘]bg
K4——14(1+ = )

Thus Eq.(3) describes the dynamics of spins in an inhomo-

geneous classical continuum biquadratic Heisenberg ferrolhe effect of inhomogeneity in exchange interactiorks
magnetic spin chain in an equivalent representation where on spin solitorgy can be understood by evaluating the above
is related to the energy and current densities of the spin syswo integrals for specific forms ofK;.” As it is known that
tem through the curvature and torsion of the space curve. #he model supports soliton spin excitations when the inho-
Painlevesingularity structure analysis brings out the com-mogeneity is in the form of a linear function &f*° in this
pletely integrable models underlying E@) at different or-  paper, we considdf) a quadratic-type inhomogeneity repre-

J GogF1d6=0, J QoF,d6=0. (5)
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—60 -

sented byk;(x)=B,x?+ B1x+ By, and(ii) a more compli- observe that as time passes on the velocity and amplitude of
cated localized inhomogeneous exchange interaction repréhe soliton increase and when reaching a maximum value
sented in terms dt, (x) = B3 tanhznx whereBy,81,8,, and  suddenly flip leading to magnetization reversal and moves in

B3 are constants, ang, replaces they in the solution. the opposite direction. Then the soliton dies out slowly due
to inhomogeneity of the exchange interactions along the spin
A. Quadratic inhomogeneity chain. As the velocity of the soliton is inversely proportional

- . , L to the inhomogeneity, the soliton damps very quickly in the
Substituting the quadratic form of inhomogeneity in seCu-.aca of highly inhomogeneous medium. The soliton would

larity conditions(S), we obtain have exploded had it not flipped and reversed when it moved
s 5 .2 - with high speed and fast growing amplitude.

§sT=2B(15= &), ms1=2BE( 15~ 2), ©) WhenCg,# 0, the equation can be integrated and the so-
whereé&, and 7, are the velocity and amplitude of the soliton !ution and hence the amplitudgs and velocity ¢ of the
. : ; -~ soliton can be expressed in terms of Jacobian elliptic
in this case(instead of » and ¢), S=(B1+Ba) and Bs ¢ erions!® The amplitude has the form
= Bon4d (60— Op)tanhns(6— 6,)1~.. which is assumed to be '
finite by choosing, appropriately. When the inhomogeneity

is absent, the velocity and amplitude of the soliton remain (e_—Cze+)—e+cn(I)
constant which is evident from E@6). To understand the ne(T) = 9
nature of evolution of the amplitude and velocity of the soli- s '
ton under the quadratic form of inhomogeneity, we solve the (6-—C36,)— 5+cn(§)

set of coupled equation®). We differentiate the second of
Eq. (6) and use the first one in the resultant equation to geivheree. = n,a,*+ 7,b,, d-=a,*b,,
after integrating once(and suitable rescaling of )T77§T

— 19+ 4 93=Cy, whereCy is the constant of integration. _ 201~ 7150)b2

In the above equatiol, is found to be equivalent to the C Ns004+ — €4
energy of the soliton which oscillates under the potential
(—37mst573). 1
When C4=0, the amplitude and velocity of the soliton g= Jaby’
are found to be respectivelys;= —6Q 1, azb,
£= 1—3(1— ° )1/2—2T} w2 ()"
° KQ(Q+3) 370 ' ' 4
where
(73+73)
1)\2 8 \¥_ 1) 6 T
=|T—-%] +3|1- T—z|——|,
N [( 2 37/50) ( 2) 7o

as=(7n,—b;)%+a3, andb3=(7n,—b;)?+a?. Here 54 is
and 7 is the initial amplitude of the soliton. Assuming that the initial amplitude»¢(0) of the soliton aff =0 and», and
the soliton with an initial amplitude ofys,= 3.0, starts from 7, are the two real roots of the polynomigl— & 3+ &
rest atT=0, we have plotted in Figs.(d and Xb), the =0, 73 is the complex root of the same and its complex
velocity and amplitude of the soliton. From the figures weconjugate. The velocit§, of the soliton is of the form
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Here sn{/g),cn(T/g) and dn{T/g) are Jacobian elliptic For instance, wheiC;= — 82/8, the solution after integrat-
functions. While evaluating the above expressions for ampliing once can be written in terms of the complete elliptic
tude and velocityCq, is chosen ag; for convenience. integral of first kind,F (¢,k)=3"{2C,— (82/4)T], where
The above expressions for the velocitg) and amplitude
(ns) of the soliton are plotted in Figs.(® and 2b). The
figures show that unlike the case correspondin@€g=0,
here the flipping of the soliton amplitude or magnetization
reversal and the reversal of the velocity of the soliton occur
doubly periodically and continues indefinitely. The soliton in 5,4 the period is given by
this case does not die out. This is because as mentioned
earlier,C4y, now acts as a source of energy for soliton flip or
for magnetic reversal, sustaining the soliton to oscillate dou- oV (@2+ \/§)
bly indefinitely periodically under the potenti@(—n‘S‘IZ) k=———.

+ % 72] (forced oscillations 2

1+(1-\3)n,

. 1 A-\3)my
y=cos 1+(1+\3) 7,

When C,=82/8, using the transformatiom)=1/(1+2?),
B. Localized (kink ) inhomogeneity the equation after integrating once can be written as

As a second example, we consider the inhomogeneity of
the exchange interactions in the forkj(x)= Bstanhnx. 2
Substituting the above form &, (x) in the secularity condi- fx dz _ —Bs
tions and on evaluating the integrals and after rescaling y JZ*+37%+3 8
T— (—4/3)T, {,——4¢,, we obtain

T+Cs,

whereCs is another constant of integration. The above equa-
) tion can be integrated and z can be expressed in terms of
Jacobian elliptic functions. Thus, the final form of the ampli-

tude 5, and velocity¢, read as
The above equations can be combined together to give

2 3 2 2
Mp1=Bs M, Ep1= ~Bsp| g Mot 260

nprr+ (3B2/8)n5=0, which on integrating once becomes L 1o venT 132
(1p7)%— (B2/8) 7= C3, whereCj is an arbitrary constant of _— xen
integration. In order to understand the effect of the present P 1-3
inhomogeneity on the velocity and amplitude of the soliton (1+ \/E) 1-——
more transparently, we choo§g= + ,8%/8 for convenience. 1++3c¢cnT
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)

where y=[1-23(1+3) 77,230]; sn, cn, and dn are Jaco- The details of calculations and the perturbed solutions will

bian elliptic functions with the period/(2— ;}3), and 7o be published elsewhere.

is the initial amplitude of the soliton in this case. In Figs.
3(a) and 3b), we plot the velocity and amplitude of the IV. CONCLUSIONS

soliton by choosing the initial amplitude of the soliton as .
In summary we studied the effect of nonlinear inhomoge-

(1— \/5) neity in bilinear and biquadratic exchange interactions on the
Moo= spin soliton of a classical continuum Heisenberg ferromag-
P 4\/5(1+ \/§) netic spin chain, the dynamics of which is governed by an

inhomogeneous generalized higher order NLS equation upon
for convenience. Unlike the case of quadratic inhomogeneitymapping the spin chain onto a moving space curve. The ef-
in this case, due to the high nonlinear nature of the inhomotfect of inhomogeneity was understood by carrying out a mul-
geneity the soliton flip and hence the magnetization reversdiple scale perturbation analysis on an inhomogeneous NLS
does not occur very dominantly. The amplitude of the solitonequation and by analyzing the evolution of the velocity and
in fact oscillates doubly periodically smoothly with a mar- amplitude of the soliton. As examples, we considered qua-
ginal reversal in the amplitude. However, the velocity of thedratic and tangent hyperbolic-type inhomogeneities. The re-
soliton shows dramatic turns at the points when it reverses agults of the perturbation analysis show an interesting phe-
switches. It is observed that when the soliton amplitudenomenon of soliton flipping leading to magnetizatigpin)
changes from positivénegative to negative(positive, it  reversal in the ferromagnetic medium. When the soliton
suddenly moves either forward or backward and on all othemoves along the spin chain with quadratic-type inhomogene-
occasions it moves very slowly and the soliton is almost aity, starting from rest with a finite amplitude, the soliton am-
rest. Thus, in this case, due to the high nonlinear nature gflitude grows and is accelerated and, when the velocity
inhomogeneity the soliton is almost arrested and jumps sudeaches a maximum value, it suddenly flipsagnetization
denly forward or backward when the amplitude of the solitonreversal, then slows down, and once again flips; and this
reverses. The perturbed soliton can be constructed by solvinrghenomenon is found to occur doubly periodically for an
¢, and ¢, equations after using the velocity and amplitudeindefinite time. However, when the inhomogeneity is in the
evolution equations corresponding to quadratic and tangerfbrm of a tangent hyperbolic function, the soliton jumps back
hyperbolic inhomogeneities. The resultant solutions contairand forth and the amplitude in this case changes smoothly,
secular terms which make the solutions unbounded. We reand doubly periodically, though only with a marginal amount
move these secular terms by choosing the arbitrary constant$ negative amplitude. Finally, we also constructed perturbed
in the solutions appropriately. Also the boundary conditionssolitons in both cases of inhomogeneity. The above spin soli-
determine the more arbitrary constants available in the soluon flipping phenomenon which leads to magnetization re-
tions. Construction of the solutions involve an evaluation ofversal in a ferromangetic medium is expected to have poten-
several complicated integrals and very lengthy calculationgtial applications in magnetic memories and recording.
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