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Extension of the coupled-cluster method: A variational formalism
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A general quantum many-body theory in configuration space is developed by extending the traditional
coupled-cluster metho@CCM) to a variational formalism. Two independent s@sstruction and creation sgts
of distribution functions are introduced to evaluate the Hamiltonian expectation. An algebraic technique for
calculating these distribution functions via two self-consistent set of equations is given. By comparing with the
traditional CCM and with Arponen’s extension, it is shown that the former is equivalentinear approxi-
mation to one set of distribution functions and the latter is equivalen{gereralizefirandom-phase approxi-
mation to it. In addition to these two approximations, other higher-order approximation schemes within the
formalism are also discussed. As a demonstration, we apply this technique to a quantum antiferromagnetic spin
model.
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[. INTRODUCTION wave functions of a many-body system. We shall take the
spin-1/2 antiferromagnetic XXZ model on a bipartite lattice
The main task of a microscopic quantum many-bodyas an example. The model Hamiltonian is given by
theory is to study correlations between the constituent par-
ticles of a quantum system in a systematic way. The treat- L .
ment of these many-body correlations is either in real space, B 7.7 ;o -~
or in configuration space. A real-space theory usually focuseS' ~— 2 % H”*P_E ;p Asysiy,+ 551 Si+p T 58 Sy |
on the potential part of many-body Hamiltonians; a configu- (1)
ration space theory often starts from the kinetic part of
Hamiltonians. One of the most successful real-space quan-
tum many-body theories is the method of correlated basi¥hereA is the anisotropy, the indekruns over all lattice
functions (CBP),* in which real-space correlation functions sites,p runs over all nearest-neighbor sites, aidare the
of the ground state are determined variationally. Perhaps, thesual spin raising ) and lowering () operators. The
closest counterpart of configuration-space theories to thelamiltonian of Eq.(1) at A=1 corresponds to the isotropic
real-space CBF is the coupled-cluster metfi@€M),>~*in Heisenberg model which has been a focus of theoretical

which correlation operators are employed to construct th&tudy in recent years due to its relevance to high-temperature
ground state. One key feature of the CCM is that the bra anduperconductivity.

ket states are not manifestly Hermitian to one andther In the limit A—o, the ground state of Ed1) is clearly
In this paper, we propose a general variational theory inyiven by the classical N state with alternating spin-up and
configuration space by extending the traditional CCM 10 agpin-down sublattices. We shall exclusively use inddar

variational formalism, in which ket and bra states are Her-the spin-up sublattice and the indjefor the spin-down sub-
mitian to one another. The difficult task of evaluating thelattice. For a finite value of\, such as the isotropic point

Hamiltonian expectation can be done by introducing dIStrI-Azll the many-spin correlations in its ground state can then

bution functions, which can then be determined either by . N . :
diagrammatic technique or by an algebraic one. The diaebe included by considering the excited states with respect to

grammatic approach developed in this context is quite Simi:[he uncorrelated Ng model state. These excited states are

lar to that of the CBF. In the algebraic approach, one derivegonStrUCteq by applying the so-called configuration creation
two similar sets of self-consistent equations for the distribu-OPeratorsC/ to the Neel model state with the nominal index
tion functions; these equations can then be tackled by variouslabelling these operators. In our spin model, the operators
methods, e.g., iterative method. Easy comparison can b€, are given by any combination of the spin-flip operators to
made with the traditional CCM in this approach. We will the Neel state, namelg;” andsj+ and the index in this case
mainly discuss the algebraic approach in this paper; the diazorresponds to the collection of the lattice indiceés @nd
grammatic approach will be discussed elsewfiaie apply  j’s). The hermitian conjugate operators ©f are the con-
this variational method to a well-known spin model as afiguration destruction operat@, , given by any combination
demonstration. Some of our preliminary results has been rQ)f SiJr andS; . For example, the two_spin ﬂ|p Creation Opera_

ported in a conference paper tor is given byC{i=s;"s", and their destruction counterpart,
Cii=s's; .
Il. THE REPRESENTATION OF A MANY-BODY WAVE 1 D .
FUNCTION The traditional CCM is based on the Hubbard, Hugen-
H 2
holtz and Coester representatighHC)“ for the ground ket
Similar to the method of correlated basis functio88F),  state, where the correlations are parametrized by an exponen-
the coupled-cluster metho@CCM) deals directly with the tiated operator as,
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our spin model calculations in R&fMore discussion of the
[wyy=e®), S=2 FC/. (2 problems in this traditional CCM will be given later.
! An obvious extension of the CCM is to apply the HHC
For our spin model]®) is the Neel state andF, are the representation to both the ket and bra states. Hence we write
correlation coefficients. The configuration creation operator
Cfr in this case is given by a product of any number of pairs

_ S _ t
of the spin-flip operators, V) =e7P), 5_2 FIC ®)
N/2 S-S S-S 5 2 ~
2FRC=X2 > fi.. : , (T|=(@le5, 5= FiC, 9
] N=21iq...07.- (2s) |
)

where the ket-state and bra-state correlation coefficiepts
wheres s the spin quantum number. Although we are mainlyandr:I are hermitian conjugate and independent to one an-
interes';ed irs=1/2, we I;eip tlhe factor of 'EZOI:I the pulr- other. For our spin model, the model stée) is the Nesl
ose of comparison with the largeexpansion. Notice also . + =

Fhat in Eq.(3§) the spin-flip operftﬁ?spof thesublattice al- sFate, a”d, the correlation operatcﬁ‘a:,C?,'andE,FlC, are
ways pair with that of thg-sublattice to ensure the total 9/V€N as in Eqgs(3) and (5). The coefficients{F, ,F} are
z-componens,,=0. For the bra state, however, the CCM then determined by the usual variational equations as
proposes a different, practical form3a3

~ ~ S(H) &(H)

— ' a—S R S S

(V]|=(D|S'e" 5, 4 5B, OF, ’
whereS is as given in the ket state and thieear bra state
operatorS’ is constructed by the configuration destructionWhere energy expectation is defined in the usual way as
operators only, namely,

(10

_(TH[¥) _(®|eHedD)

Q— = — = = (11)
S F Gml WGy el
N/2 B Sl ...SS ... Clearly, the normalization factofW|¥) and Hamiltonian
+> _ 2 fi g expectation(H) are highly nontrivial functions of the coef-
n=li;...Jg... * 1 (2s)" ~
' ficientsF, and F,. Their calculation in the standard varia-
(5  tional approach is in general difficult, contrast to the CCM
. = ~ where the expectation value of the Hamiltonian is a finite-
The coefficientsF, ,F}={f;, _; _ .fi, ) arede order polynomial of the coefficients, as described earlier.

termined Variationally through the Hamiltonian eXpeCtationThiS is perhaps the main reason that little progress has been

(H), noticing the normalization conditiof¥|¥)=1, made in this extension of the CCM except some general
_ o discussion and a few attempts
(V[H|P)=(D|H|D), (6) Hence, the key to the extension of the CCM to the stan-

o — o dard variational method as described in E@-(11) is to
where the similarity-transforme¢i =e "He> can be ex- develop a practical and consistent technique to evaluate the

panded as a series of nested commutators as normalization factor and the Hamiltonian expectation. It is
1 1 known in statistical mechanics and real space quantum
H=H+ F[H=S]+ E[[H,S],S]Jr e (77 ~ many-body theory that these evaluations can be done more

efficiently by employing distribution functions. One then

In most cased{ contains a finite order of destruction opera- needs to deve!op.a systematip and consistent scheme to cal-
tors. The above series then terminates at a finite ord& asculate these distribution functions. We have considered two

contains only the creation operators. Hence, the Hamiltonia§UCl! Schemes. One is similar to the traditional technique in
expectation value in the CCM is a finite order polynomial Statistical mechanics employed by the CBF. In this method,
. - ~ . one introduces a generating functional whose functional de-
function of the coefficient¢F, ,F,}. More speC|f|ca‘\~IIy,<H> rivatives are the distribution functions. A diagrammatic tech-
in the CCM is linear in the bra-state coefficierfis and  npjque has been developed to evaluate these distribution
finite-order polynomial in the ket-state coefficiefts. Thus,  function$.
calculations in the CCM in general are quite straightforward; The other approach we have considered is an algebraic
when an approximation scheme is chogee., a truncation  technique. In this approach, one derives two similar self-
scheme with a finite set dfF, ,F,}), no further approxima- consistent sets of equations for tfuestruction and creatipn
tion is necessary in most calculations. However, this CCMdistribution functions by taking the advantage of the operator
parametrization of the ground state is problematic in dealinghature in the ground state as given in E(®)-(9). These
with long-range correlations as discussed in the context ofelf-consistent set of equations can then be tackled by vari-
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ous methods such as iteration method. As we shall see, \ghereG is a function linear irg; and finite order polynomial
most simple approximation to one of these two self-; =

consistent sets of equations reproduces the full CCM results, InJ;a similar fashion we write, by inserting identigfe~S
but one can easily go beyond that. We shall mainly discuss h ion foa ’
the algebraic approach in the followings. In the expression fog, ,

IIl. DISTRIBUTION FUNCTIONS AND THEIR U
SELF-CONSISTENT EQUATIONS g1=4(®[e%eCy[D) , (18)

We first introduce the so-called bare distribution functions ) )
as expectation value of the configuration operators, namelyVith the usual commutation series

=(cT o = — 1 1
g=(C), a=(C) , (12) Ci=e 5Cie%=Cy+ [C/ S+ 5 [C SIS+
where the expectation value is defined in the usual sense as ' ' (19
in Eqg. (11). In general these bare distribution functions are
nontrivial functions of{F ,ﬁJ}. Multiplying by the corre- and we obtain

sponding coefficients, we obtalf)g, andF,g, which are the

the usual full distribution functions useful in the diagram- ~
matic approach 9=G({gst{FsD) . (20)

Direct calculation of these functions is certainly not an i . ) ) )
easy task. Fortunately, by taking the advantage of the prop¥hereG is the same function as in E(L7) but now linear in
erties of the operators, one can derive self-consistent sets ¢§at and finite order polynomial ifF;}. As functionG is
equations which can then be tackled by various methods. 1€ same in Eq917) and(20), only one calculation is nec-
particular, asC/ commutes withS=3,F,Cf andC, with §  €S5aV- Notice that from Eqgl7) and(20), g, andF, can be

—3,E,C,, one can write determined as hermitian conjugategpandF, correspond-

ingly.
The conjugate Eqs(17) and (20) provide two self-

1 = 1 z 5
g|=K<¢>|eSC|TeS|¢>>= K<®|eseSC.T|¢>> . (13)  consistent sets of equations fgr and g, in terms of the
correlation coefficient$F;,F;}. We note that for a particu-
lar g, its equation in general contains a higher—order{ég},

and vice versa, even for a truncated coefficient{sgtF,}.
5 Therefore, in order to make any practical calculation, one has
whereA=(W¥| V) is the normalization constant. In order to to make two approximations, a truncation on the number of

find another expression, one inserts the idergitye® in the  coefficients{F, ,ﬁ|}, and a truncation on the number of bare

~ 1 = 1 <
51~ 5 (P]e%C D)= 1(B[Ce%D) , (19

expression ofy; as correlation functions{g,,g,}. After these two truncations,
1 1 one should be able to solve the self-consistent set of equa-
g|=z<¢|e~scfre:se~ses|¢>=K<¢|C|Te~ses|®> , tions to obtaing, and g, in terms of F; and F,. This is

contrary to the CCM where one needs only one truncation
(in {F,,F}}). As~we shall see, for a similar truncation in the
where the similarity-transformed operat@ can be ex- coefficients{F, ,F,}, one of our lowest order truncations in

(19

panded in the nested commutator series as the bare correlation functiofy, ,g,} will reproduce the full
CCM results. However, it is a simple step to go beyond this
C|T=e~SC|Te‘~S= Cl‘rJr i[éicrﬁ i[NS,[é,CTH e appr(_)ximation .by including some higher-or_der distrib_ution
— 1! 2! functionsg, which has proved to be essential to obtain the

(16) consistent long-range behaviors of the spin correlation func-

. L o ~ , tions (and the low-lying excitation energieas we shall see
+
and this series is finite &, is finite andS contains only the ;"0 . spin model calculation.

destruction operators. By definitior(®|C{=0, hence Since Hamiltonian usually contains terms involving both
<<I>|ET can be expressed in a form linear in the destructionyeation operator@,T and destruction operato,, using

operatorsC, and finite order polynomial in the coefficients the similar argument to the distribution discussed above, it is
F;. The expectation values of these finite order terms isot difficult to obtain that the expectation value of a general

therefore linear irg, and finite order polynomial if,. This ~ Hamiltonian can be expressed as a function lineag,iand
yields a linear relation betwean and{g,}. Hence we write 9 and a finite order polynomial if; or F,,

9 =G({g,}{Fs}) . (17) (Hy=H{ag}{o {F)=H{a} o} FD . (@)
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This expression is not unique; using E@$7) or (20), one

can express the Hamiltonian expectation as a function linear

in g, and finite-order polynomial i, only, or as a function
linear ing, and finite-order polynomial ifr, only,

(Hy=H'({gi}{FH=H{a}.{F D) - (22)

This expression of the Hamiltonian expectation is usefu
when we compare with the traditional CCM. Solutions of
Egs.(17) and(20) can be substituted into these equations and

we obtain(H) as a function of F, ,F,}. Variational calcula-

tion in Eq. (10) can then be carried out. In the following, we

PHYSICAL REVIEW B 66, 184427 (2002

<Hij>:_A52+S

§|J+g|J+AE nirj+AE nijr)
I’ J'/

—A(E Gijr’irj"l'nij . (30)
K

tAs can be seen, these physical quantities involve up to two-

body distribution functions.
The self-consistent set of equations for the bare distribu-
tion functions are derived as described in Sec. lll. In particu-

lar, the equation for the one-body functigy) is

consider a simple application to the spin model as a demon-

stration.

IV. TWO-SPIN FLIP APPROXIMATION IN A SPIN MODEL

As a demonstration, we consider a simple truncation ap-

proximation in which the correlation operat@sndS retain
only the two-spin flip correlations as

(W) =e2|d), (W,|=(D|e>, (23
where
B S - <~ SS
Sz—%_: fij T 52—%_: fij T (24)

Using the usual angular momentum commutations
[sf.s 1=+s 6, [s'.s,]1=2s61, (25

and the Nel state eigenequationss{|®)=s|®),s|®)

giljl:filil+i2j fiilfiljgii
> f > ¢
- 2s 11| 4 ij, 9, T - i,i9i
1
+2_52 fiilfiljfilj’gilj,ij'
1]

1
*t5s % ITRIGRINTTNY

2
F ez i

oy

(28)% i)

E fijlfiljgiljl,ij

gi1j1+ (ZS)Zfiljl ]

+ (31

IURIBRINUNTISRUROTE

The equation for the two-body functiag); ;-;» will contain

= —s|®), it is a straightforward calculation to derive expec- up to twelve-body functions, etc. The hermitian conjugate of
tation value of various operators with respect to the states dhese equations are the self-consistent set of equations for
Egs.(23). In this approximation, for example, the order pa- g;; ,gij i’j- ,» etc. Clearly, we need to make further truncations
rameter is derived as for any practical calculation.

Consider a simple truncation in which we retain only the
first two terms in Eq(31), noticing that all other terms are

(26 higher-order in terms of 18expansion,

MP=(sh=5-3 n,,

wheren, is the full one-body distribution function given by ~ 32
(sis)

nij:fijgij:fijT,

(27) and similar equation fog;; . Using the Fourier transforma-
tion technique and translational symmetry, it is easy to solve
and we have taken the advantage of translational invarianage two equations to obtain

by writing n;; =n, with j=i+r; the usual two-spin correla-

tion function is given by

; ni,j+? nijr)—(izj’ Gijr'irj+nij

o f ~
-1, *ioeg,

Ok (33

(sisfy=—s*+s

wheregy andf, are Fourier transformations @f; andfj;,

(28) etc. To the same order in B2the ground-state energy, Eq.
30), i
whereG;; ;- is the full two-body distribution function (30) is
2 ~
<si_sj+si_,sj+,> e=—= > (Hij;,)=—As*+s(g;+0;)+2As>, n;,
Gij,i’j/:fijfi’j'gij,i'j':fijfi'j'—2; (29) ZN hLp r
(2s) (34)

and finally, the expectation value of EQ.) is then given by wherez is the number of nearest-neighbor sites and
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_ Yfk ~ 7k?k
9u=3 T80 T F 1T
S -y (35)
r ' 1_?kfk,
with
n=- 2 €k (36)

The variational equationgje/df, = del if, =0, reduce to a

quadratic equation fof, andf,. The physical solution to
these equations is

~ A
fk:fk:ﬁ(_l‘F\ l_’yk/Az) (37)

The ground-state energy and order parameter are then ob-

tained as

e=—ASP+sAD, (—1+1—»Z/A?) (39)
k
and
1 1
MZ=s— — 1. 39
2% (vl—vﬁ/ﬁz ) 9

On the surface, one may conclude the energy from(E8).
becomes a complex number&s<1. But asA<1, different

solutions to EQ.(37) may be used and the corresponding

PHYSICAL REVIEW B6, 184427 (2002

Hence, the normalized two-spin correlation function be-
comes

Cr:<siZSiZ+r _<Siz><siz+r>:_gr§r: _gr2 (42

In fact, our above results of the ground-state energy, order
parameter and the correlation function are the same as that of
the spin-wave theof§*? In particular, the long-range behav-
ior of the correlation functiort,«1/r? asr — for a square
lattice system at\ =1 can not be obtained without the con-
tribution of the two-body distribution function. Using itera-

tion method for solving the equations gf; andaij, it is
straightforward to include higher-order contribution for other
physical quantities. But we refrain ourselves from more de-
tailed calculation in this article as our main purpose here is to
introduce the new variational formalism and its comparison
with the traditional CCM.

V. COMPARISON WITH THE CCM

In order to make a more detailed comparison with the
traditional CCM, we first summarize our variational exten-
sion. We apply the HHC representation of E@-(9) for the
ground state wave function of a quantum many-body system
to both the ket and bra states with two independent, hermit-
ian conjugate correlation coefficients, ,ff|} which are de-
termined by the variational equations as

d(H) J(H)
o E

The difficult task of expressing the Hamiltonian expectation
(Hy=H{F, ,I~:|}) can be done by introducing the bare dis-

energy from Eq(34) remains real. We leave further discus- tribution functionsg, :<.C|T> andg,=(C,) and solving their
sion and its possible implication of a quantum phase transiself-consistency equations

tion to somewhere else.
It is not difficult to include the contribution of higher-
order many-body distribution functions within our varia-

tional formalism. Consider the two-spin correlation function

of Eq. (28), which contain the important full two-body dis-
tribution function. The bare two-body distribution functions

gij.i/j and g;;;/;» can be calculated through their self-

consistent set of equations by keeping the same order tern{&®

9= G({EJ}a{TzJ}), E]l =G({gs}.{FJ})-

Using the expression of E¢22) for the Hamiltonian ex-
pectation

(H)=H'({ah{F}),

see that the traditional CCM is equivalent to timear

in the (1/2) expansion as we have done for the one-body?PProximation in the self-consistensy equation fag, ,

distribution function in Eqs(31)-(32). Without going into

details of derivation, to the same approximation, we obtain

the following results

9ij.i'i'~9ij9i"jr T 9ij Qi (40)

which, in fact, is usually referred as random-phase approxi-
mation. A simpler way to obtain the same results for the

two-body functions is to employ the following sequential
equation

J
ﬂgij:gij,i’j’_gijgi’j’u (41)

to gj andE]ij in Eq. (32) and its hermitian conjugate.

namely

9~F, (43

for all possible values of; the Hamiltonian expectation is
then reduced to a simple form

(Hy~Heem{Fi}{FD),

where functior{ccy, is linear inF, and finite order irF, . In

our spin model calculation of Sec. IV, within the similar
truncation involving only up to two-spin flip correlatiokthe
so-called SUB2 approximatipnthe corresponding CCM
calculation is to ignore all two-body and higher-order many-
body distribution functions in Eq31). The two-spin corre-
lation function thus calculated has unphysical behaviors as

(44)

184427-5



Y. XIAN PHYSICAL REVIEW B 66, 184427 (2002

discussed in Ref. 8. Furthermorig, andE, are not longer  large energy gap separating the ground and excited States
hermitian conjugate to one another and the energy thus calfut, as pointed out earlier, it is poor when long-range corre-
culated can not be guaranteed to be real, as is well knownlations in the system are important; and Arponen’s extension
In Arponen’s extension of the CCMwhile keeping the Provides a remedy in producing the physical long range be-
ket state in the traditional CCM form, the bra state, also nofaviors. But both these two methods are known to be poor in
manifestly hermitian to ket state, is parametrized by a nondealing with strongly correlated systems which demand cor-
linear factor as rect description at short-range, in most cases, strongly repul-
_ sive. We believe the variational formalism represented here

(¥|=(V|eSeS, (45  may provide an effective approach to the strongly correlated

- systems. Furthermore, its strong overlap with other well
where correlation operatoSandS are give as in Eqs8)-  known many-body theories such as the method of correlated
(9). Within our variational formalism, as can be demon-basis functionals can provide useful clues in making suitable
strated, this representation of the bra state is equivalent tgpproximations in practical calculations. As the necessary

applying the random-phase approximation to gh@quation  further truncation in our technique is flexible, different trun-

to obtaing, as finite-order polynormial off ;!, cation approximations may be required for different physical
~ systems and we hope to gain experience by applying the
g ~g,({fi}). (46)  technique to a variety of systems. In this regard, we are en-

A detailed calculation in our spin model revealed that in thecouraged to read a recent prej which a fully varia-

similar SUB2 truncation in Arponen’s approach, the random—tIonal approach has been employed to study several weakly

phase results of EG40) for the two-body distribution func- interacting boson systems using the so-called independent

tion is reproduced. While it is clearly an improvement ov rpair correlation functions, which, in fact, is the correspond-
tr?e trsad(iat?ogalucceé:M Ar eoneﬁ’sC gite)g;on isp <’S|S§ kiowcrjw teoing SUB2 truncation of the Eq23) but writing in the real

» ATP space. We like to point out that a clear advantage of the
be poor for the strongly correlated systefesg., quantum

! . . ) algebraic approach presented here is that it is straightfor-
:Tlellum—4 fluid %vendwr_lrehr_] hlgh-ortcjjer n?atn)(/j—btod%/hcontrgu- wardly extendible to include higher-order many-body corre-
lons are considered. 'Mis may be related 1o the Tandofyyiong beyond the SUB2 level and as well as to other sys-
phase approximation of E¢46).

In conclusion, our variational extension of the CCM pro- tems as electrons.
vides a general many-body theory in which the traditional
CCM represents a simple linear approximation and Ar-
ponen’s extension represents a random-phase approximation.
The traditional CCM is well known to be efficient in obtain-  Many useful discussions with J. Arponen, R.F. Bishop, F.
ing accurate ground state energy for a finite system with &oester, and H. Kmmel are acknowledged.
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