
PHYSICAL REVIEW B 66, 184427 ~2002!
Extension of the coupled-cluster method: A variational formalism
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Department of Physics, UMIST (University of Manchester Institute of Science and Technology), P.O. Box 88,
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A general quantum many-body theory in configuration space is developed by extending the traditional
coupled-cluster method~CCM! to a variational formalism. Two independent sets~destruction and creation sets!
of distribution functions are introduced to evaluate the Hamiltonian expectation. An algebraic technique for
calculating these distribution functions via two self-consistent set of equations is given. By comparing with the
traditional CCM and with Arponen’s extension, it is shown that the former is equivalent to alinear approxi-
mation to one set of distribution functions and the latter is equivalent to a~generalized! random-phase approxi-
mation to it. In addition to these two approximations, other higher-order approximation schemes within the
formalism are also discussed. As a demonstration, we apply this technique to a quantum antiferromagnetic spin
model.
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I. INTRODUCTION

The main task of a microscopic quantum many-bo
theory is to study correlations between the constituent p
ticles of a quantum system in a systematic way. The tre
ment of these many-body correlations is either in real sp
or in configuration space. A real-space theory usually focu
on the potential part of many-body Hamiltonians; a config
ration space theory often starts from the kinetic part
Hamiltonians. One of the most successful real-space qu
tum many-body theories is the method of correlated ba
functions ~CBF!,1 in which real-space correlation function
of the ground state are determined variationally. Perhaps
closest counterpart of configuration-space theories to
real-space CBF is the coupled-cluster method~CCM!,2–4 in
which correlation operators are employed to construct
ground state. One key feature of the CCM is that the bra
ket states are not manifestly Hermitian to one another5.

In this paper, we propose a general variational theory
configuration space by extending the traditional CCM to
variational formalism, in which ket and bra states are H
mitian to one another. The difficult task of evaluating t
Hamiltonian expectation can be done by introducing dis
bution functions, which can then be determined either b
diagrammatic technique or by an algebraic one. The d
grammatic approach developed in this context is quite si
lar to that of the CBF. In the algebraic approach, one deri
two similar sets of self-consistent equations for the distri
tion functions; these equations can then be tackled by var
methods, e.g., iterative method. Easy comparison can
made with the traditional CCM in this approach. We w
mainly discuss the algebraic approach in this paper; the
grammatic approach will be discussed elsewhere.6 We apply
this variational method to a well-known spin model as
demonstration. Some of our preliminary results has been
ported in a conference paper7.

II. THE REPRESENTATION OF A MANY-BODY WAVE
FUNCTION

Similar to the method of correlated basis functions~CBF!,
the coupled-cluster method~CCM! deals directly with the
0163-1829/2002/66~18!/184427~6!/$20.00 66 1844
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wave functions of a many-body system. We shall take
spin-1/2 antiferromagnetic XXZ model on a bipartite latti
as an example. The model Hamiltonian is given by

H5
1

2 (
l ,r

Hl ,l 1r5
1

2 (
l ,r

S Dsl
zsl 1r

z 1
1

2
sl

1sl 1r
2 1

1

2
sl

2sl 1r
1 D ,

~1!

whereD is the anisotropy, the indexl runs over all lattice
sites,r runs over all nearest-neighbor sites, ands6 are the
usual spin raising (1) and lowering (2) operators. The
Hamiltonian of Eq.~1! at D51 corresponds to the isotropi
Heisenberg model which has been a focus of theoret
study in recent years due to its relevance to high-tempera
superconductivity.

In the limit D→`, the ground state of Eq.~1! is clearly
given by the classical Ne´el state with alternating spin-up an
spin-down sublattices. We shall exclusively use indexi for
the spin-up sublattice and the indexj for the spin-down sub-
lattice. For a finite value ofD, such as the isotropic poin
D51, the many-spin correlations in its ground state can th
be included by considering the excited states with respec
the uncorrelated Ne´el model state. These excited states a
constructed by applying the so-called configuration creat
operatorsCI

† to the Néel model state with the nominal inde
I labelling these operators. In our spin model, the opera
CI

† are given by any combination of the spin-flip operators
the Néel state, namelysi

2 andsj
1 and the indexI in this case

corresponds to the collection of the lattice indices (i ’s and
j ’s!. The hermitian conjugate operators ofCI

† are the con-
figuration destruction operatorCI , given by any combination
of si

1 andsj
2 . For example, the two-spin flip creation oper

tor is given byCi j
† 5si

2sj
1 , and their destruction counterpar

Ci j 5si
1sj

2 .
The traditional CCM is based on the Hubbard, Huge

holtz and Coester representation~HHC!2 for the ground ket
state, where the correlations are parametrized by an expo
tiated operator as,
©2002 The American Physical Society27-1
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uCg&5eSuF&, S5(
I

FICI
† . ~2!

For our spin model,uF& is the Néel state andFI are the
correlation coefficients. The configuration creation opera
CI

† in this case is given by a product of any number of pa
of the spin-flip operators,

(
I

FICI
†5 (

n51

N/2

(
i 1 . . . ,j 1 . . .

f i 1 . . . ,j 1 . . .

si 1
2 . . . si n

2sj 1

1 . . . sj n

1

~2s!n
,

~3!

wheres is the spin quantum number. Although we are main
interested ins51/2, we keep the factor of 1/2s for the pur-
pose of comparison with the large-s expansion. Notice also
that in Eq.~3! the spin-flip operators of thei-sublattice al-
ways pair with that of thej-sublattice to ensure the tota
z-componentstotal

z 50. For the bra state, however, the CC
proposes a different, practical form as3–5,

^C̃u5^FuS̃8e2S, ~4!

whereS is as given in the ket state and thelinear bra state
operatorS̃8 is constructed by the configuration destructi
operators only, namely,

S̃8511(
I

F̃ I CI51

1 (
n51

N/2

(
i 1 . . . ,j 1 . . .

f̃ i 1 . . . ,j 1 . . .

si 1
1 . . . si n

1sj 1

2 . . . sj n

2

~2s!n
.

~5!

The coefficients$FI ,F̃ I%5$ f i 1 . . . j 1 . . . , f̃ i 1 . . . j 1 . . . % are de-
termined variationally through the Hamiltonian expectati

^H&, noticing the normalization condition̂C̃uC&51,

^C̃uHuC&5^FuH̄uF&, ~6!

where the similarity-transformedH̄5e2SHeS can be ex-
panded as a series of nested commutators as

H̄5H1
1

1!
@H,S#1

1

2!
@@H,S#,S#1••• . ~7!

In most cases,H contains a finite order of destruction oper
tors. The above series then terminates at a finite orderS
contains only the creation operators. Hence, the Hamilton
expectation value in the CCM is a finite order polynom
function of the coefficients$FI ,F̃ I%. More specifically,̂ H&
in the CCM is linear in the bra-state coefficientsF̃ I and
finite-order polynomial in the ket-state coefficientsFI . Thus,
calculations in the CCM in general are quite straightforwa
when an approximation scheme is chosen~i.e., a truncation
scheme with a finite set of$FI ,F̃ I%), no further approxima-
tion is necessary in most calculations. However, this CC
parametrization of the ground state is problematic in dea
with long-range correlations as discussed in the contex
18442
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our spin model calculations in Ref.8. More discussion of the
problems in this traditional CCM will be given later.

An obvious extension of the CCM is to apply the HH
representation to both the ket and bra states. Hence we w

uC&5eSuF&, S5(
I

FICI
† , ~8!

^C̃u5^FueS̃, S̃5(
I

F̃ ICI , ~9!

where the ket-state and bra-state correlation coefficientsFI

and F̃ I are hermitian conjugate and independent to one
other. For our spin model, the model stateuF& is the Néel
state, and the correlation operators( IFICI

† and ( I F̃ ICI are

given as in Eqs.~3! and ~5!. The coefficients$FI ,F̃ I% are
then determined by the usual variational equations as

d^H&

dF̃ I

5
d^H&
dFI

50 , ~10!

where energy expectation is defined in the usual way as

^H&5
^C̃uHuC&

^C̃uC&
5

^FueS̃HeSuF&

^FueS̃eSuF&
. ~11!

Clearly, the normalization factor̂C̃uC& and Hamiltonian
expectation̂ H& are highly nontrivial functions of the coef
ficients FI and F̃ I . Their calculation in the standard varia
tional approach is in general difficult, contrast to the CC
where the expectation value of the Hamiltonian is a fini
order polynomial of the coefficients, as described earl
This is perhaps the main reason that little progress has b
made in this extension of the CCM except some gene
discussion and a few attempts9.

Hence, the key to the extension of the CCM to the st
dard variational method as described in Eqs.~8!-~11! is to
develop a practical and consistent technique to evaluate
normalization factor and the Hamiltonian expectation. It
known in statistical mechanics and real space quan
many-body theory that these evaluations can be done m
efficiently by employing distribution functions. One the
needs to develop a systematic and consistent scheme to
culate these distribution functions. We have considered
such schemes. One is similar to the traditional technique
statistical mechanics employed by the CBF. In this meth
one introduces a generating functional whose functional
rivatives are the distribution functions. A diagrammatic tec
nique has been developed to evaluate these distribu
functions6.

The other approach we have considered is an algeb
technique. In this approach, one derives two similar s
consistent sets of equations for the~destruction and creation!
distribution functions by taking the advantage of the opera
nature in the ground state as given in Eqs.~8!-~9!. These
self-consistent set of equations can then be tackled by v
7-2
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ous methods such as iteration method. As we shall se
most simple approximation to one of these two se
consistent sets of equations reproduces the full CCM res
but one can easily go beyond that. We shall mainly disc
the algebraic approach in the followings.

III. DISTRIBUTION FUNCTIONS AND THEIR
SELF-CONSISTENT EQUATIONS

We first introduce the so-called bare distribution functio
as expectation value of the configuration operators, nam

gI5^CI
†&, g̃I5^CI& , ~12!

where the expectation value is defined in the usual sens
in Eq. ~11!. In general these bare distribution functions a
nontrivial functions of$FJ ,F̃J%. Multiplying by the corre-
sponding coefficients, we obtainFIgI andF̃ I g̃I which are the
the usual full distribution functions useful in the diagram
matic approach6.

Direct calculation of these functions is certainly not
easy task. Fortunately, by taking the advantage of the p
erties of the operators, one can derive self-consistent se
equations which can then be tackled by various methods
particular, asCI

† commutes withS5( IFICI
† andCI with S̃

5( I F̃ ICI , one can write

gI5
1

A
^FueS̃CI

†eSuF&5
1

A
^FueS̃eSCI

†uF& , ~13!

g̃I5
1

A
^FueS̃CIe

SuF&5
1

A
^FuCIe

S̃eSuF& , ~14!

whereA5^C̃uC& is the normalization constant. In order
find another expression, one inserts the identitye2S̃eS̃ in the
expression ofgI as

gI5
1

A
^FueS̃CI

†e2S̃eS̃eSuF&5
1

A
^FuCI

†eS̃eSuF& ,

~15!

where the similarity-transformed operatorCI
† can be ex-

panded in the nested commutator series as

CI
†5eS̃CI

†e2S̃5CI
†1

1

1!
@S̃,CI

†#1
1

2!
@S̃,@S̃,CI

†#1••• ,

~16!

and this series is finite asCI
† is finite andS̃ contains only the

destruction operators. By definition,̂FuCI
†50, hence

^FuCI
† can be expressed in a form linear in the destruct

operatorsCJ and finite order polynomial in the coefficien
F̃J . The expectation values of these finite order terms
therefore linear ing̃J and finite order polynomial inF̃J . This
yields a linear relation betweengI and$g̃J%. Hence we write

gI5G~$g̃J%,$F̃J%! , ~17!
18442
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whereG is a function linear ing̃J and finite order polynomial
in F̃J .

In a similar fashion we write, by inserting identityeSe2S

in the expression forg̃I ,

g̃I5
1

A
^FueS̃eSC̄JuF& , ~18!

with the usual commutation series

C̄I5e2SCIe
S5CI1

1

1!
@CI ,S#1

1

2!
@CI ,S#,S] 1••• ,

~19!

and we obtain

g̃I5G~$gJ%,$FJ%! , ~20!

whereG is the same function as in Eq.~17! but now linear in
$gJ% and finite order polynomial in$FJ%. As functionG is
the same in Eqs.~17! and ~20!, only one calculation is nec
essary. Notice that from Eqs.~17! and~20!, gI andFI can be
determined as hermitian conjugate tog̃I and F̃ I correspond-
ingly.

The conjugate Eqs.~17! and ~20! provide two self-
consistent sets of equations forgI and g̃I in terms of the
correlation coefficients$FJ ,F̃J%. We note that for a particu-
lar gI its equation in general contains a higher-order set$g̃J%,
and vice versa, even for a truncated coefficient set$FI ,F̃ I%.
Therefore, in order to make any practical calculation, one
to make two approximations, a truncation on the number
coefficients$FI ,F̃ I%, and a truncation on the number of ba
correlation functions$gI ,g̃I%. After these two truncations
one should be able to solve the self-consistent set of eq
tions to obtaingI and g̃I in terms of FI and F̃ I . This is
contrary to the CCM where one needs only one truncat
~in $FI ,F̃ I%). As we shall see, for a similar truncation in th
coefficients$FI ,F̃ I%, one of our lowest order truncations i
the bare correlation function$gI ,g̃I% will reproduce the full
CCM results. However, it is a simple step to go beyond t
approximation by including some higher-order distributi
functionsgI which has proved to be essential to obtain t
consistent long-range behaviors of the spin correlation fu
tions ~and the low-lying excitation energies! as we shall see
in our spin model calculation.

Since Hamiltonian usually contains terms involving bo
creation operatorsCI

† and destruction operatorsCI , using
the similar argument to the distribution discussed above,
not difficult to obtain that the expectation value of a gene
Hamiltonian can be expressed as a function linear ingI and
g̃I and a finite order polynomial inFI or F̃ I ,

^H&5H~$gI%,$g̃I%,$FI%!5H~$g̃I%,$gI%,$F̃ I%! . ~21!
7-3
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This expression is not unique; using Eqs.~17! or ~20!, one
can express the Hamiltonian expectation as a function lin
in gI and finite-order polynomial inFI only, or as a function
linear in g̃I and finite-order polynomial inF̃ I only,

^H&5H8~$gI%,$FI%!5H8~$g̃I%,$F̃ I%! . ~22!

This expression of the Hamiltonian expectation is use
when we compare with the traditional CCM. Solutions
Eqs.~17! and~20! can be substituted into these equations a
we obtain^H& as a function of$FI ,F̃ I%. Variational calcula-
tion in Eq.~10! can then be carried out. In the following, w
consider a simple application to the spin model as a dem
stration.

IV. TWO-SPIN FLIP APPROXIMATION IN A SPIN MODEL

As a demonstration, we consider a simple truncation
proximation in which the correlation operatorsSandS̃ retain
only the two-spin flip correlations as

uC2&5eS2uF&, ^C̃2u5^FueS̃2, ~23!

where

S25(
i j

f i j

si
2sj

1

2s
, S̃25(

i j
f̃ i j

si
1sj

2

2s
. ~24!

Using the usual angular momentum commutations

@sl
z ,sl 8

6
#56sl

6d l l 8 , @sl
1 ,sl 8

2
#52sl

zd l l 8 , ~25!

and the Ne´el state eigenequations,si
zuF&5suF&,sj

zuF&
52suF&, it is a straightforward calculation to derive expe
tation value of various operators with respect to the state
Eqs. ~23!. In this approximation, for example, the order p
rameter is derived as

Mz5^si
z&5s2(

r
nr , ~26!

wherenr is the full one-body distribution function given b

ni j 5 f i j gi j 5 f i j

^si
2sj

1&
2s

, ~27!

and we have taken the advantage of translational invaria
by writing ni j 5nr with j 5 i 1r ; the usual two-spin correla
tion function is given by

^si
zsj

z&52s21sS (
i 8

ni 8 j1(
j 8

ni j 8D 2S (
i 8 j 8

Gi j 8,i 8 j1ni j D ,

~28!

whereGi j ,i 8 j 8 is the full two-body distribution function

Gi j ,i 8 j 85 f i j f i 8 j 8gi j ,i 8 j 85 f i j f i 8 j 8

^si
2sj

1si 8
2sj 8

1&

~2s!2
; ~29!

and finally, the expectation value of Eq.~1! is then given by
18442
ar

l
f
d

n-

-

of

ce

^Hi j &52Ds21sS g̃i j 1gi j 1D(
i 8

ni 8 j1D(
j 8

ni j 8D
2DS (

i 8 j 8
Gi j 8,i 8 j1ni j D . ~30!

As can be seen, these physical quantities involve up to t
body distribution functions.

The self-consistent set of equations for the bare distri
tion functions are derived as described in Sec. III. In parti
lar, the equation for the one-body functiong̃i j is

g̃i 1 j 1
5 f i 1 j 1

1(
i j

f i j 1
f i 1 jgi j

2
2

2s
f i 1 j 1S (i

f i j 1
gi j 1

1(
j

f i 1 jgi 1 j D
1

1

2s (
i j j 8

f i j 1
f i 1 j f i 1 j 8gi 1 j ,i j 8

1
1

2s (
i i 8 j

f i j 1
f i 8 j 1

f i 1 jgi j 1 ,i 8 j

1
2

~2s!2
f i 1 j 1

2 gi 1 j 1
1

4

~2s!2
f i 1 j 1(i j f i j 1

f i 1 jgi 1 j 1 ,i j

1
1

~2s!2 (
i i 8 j j 8

f i j 1
f i 8 j 1

f i 1 j f i 1 j 8gi 1 j 1 ,i j ,i 8 j 8 . ~31!

The equation for the two-body functiong̃i j ,i 8 j 8 will contain
up to twelve-body functions, etc. The hermitian conjugate
these equations are the self-consistent set of equations
gi j ,gi j ,i 8 j 8 , etc. Clearly, we need to make further truncatio
for any practical calculation.

Consider a simple truncation in which we retain only t
first two terms in Eq.~31!, noticing that all other terms are
higher-order in terms of 1/2s expansion,

g̃i 1 j 1
' f i 1 j 1

1(
i j

f i j 1
f i 1 jgi j , ~32!

and similar equation forgi j . Using the Fourier transforma
tion technique and translational symmetry, it is easy to so
the two equations to obtain

gk5
f k

12 f k f̃ k

, g̃k5
f̃ k

12 f k f̃ k

, ~33!

wheregk and f k are Fourier transformations ofgi j and f i j ,
etc. To the same order in 1/2s, the ground-state energy, Eq
~30!, is

e5
2

zN (
i ,r

^Hi ,i 1r&52Ds21s~g11g̃1!12Ds(
r

nr ,

~34!

wherez is the number of nearest-neighbor sites and
7-4
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g15(
k

gkf k

12 f̃ kf k

, g̃15(
k

gk f̃ k

12 f̃ kf k

,

(
r

nr5(
k

f k f̃ k

12 f̃ kf k

, ~35!

with

gk5
1

z (
r

eik"rr. ~36!

The variational equations,]e/] f k 5 ]e/] f̃ k 50, reduce to a
quadratic equation forf k and f̃ k . The physical solution to
these equations is

f k5 f̃ k5
D

gk
~211A12gk

2/D2!. ~37!

The ground-state energy and order parameter are then
tained as

e52Ds21sD(
k

~211A12gk
2/D2! ~38!

and

Mz5s2
1

2 (
k

S 1

A12gk
2/D2

21D . ~39!

On the surface, one may conclude the energy from Eq.~38!
becomes a complex number asD,1. But asD,1, different
solutions to Eq.~37! may be used and the correspondi
energy from Eq.~34! remains real. We leave further discu
sion and its possible implication of a quantum phase tra
tion to somewhere else.

It is not difficult to include the contribution of higher
order many-body distribution functions within our vari
tional formalism. Consider the two-spin correlation functi
of Eq. ~28!, which contain the important full two-body dis
tribution function. The bare two-body distribution function
gi j ,i 8 j 8 and g̃i j ,i 8 j 8 can be calculated through their se
consistent set of equations by keeping the same order te
in the (1/2s) expansion as we have done for the one-bo
distribution function in Eqs.~31!-~32!. Without going into
details of derivation, to the same approximation, we obt
the following results

gi j ,i 8 j 8'gi j gi 8 j 81gi j 8gi 8 j ~40!

which, in fact, is usually referred as random-phase appr
mation. A simpler way to obtain the same results for t
two-body functions is to employ the following sequent
equation

]

] f i 8 j 8

gi j 5gi j ,i 8 j 82gi j gi 8 j 8 , ~41!

to gi j and g̃i j in Eq. ~32! and its hermitian conjugate.
18442
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Hence, the normalized two-spin correlation function b
comes

cr5^si
zsi 1r

z &2^si
z&^si 1r

z &52grg̃r52gr
2 . ~42!

In fact, our above results of the ground-state energy, or
parameter and the correlation function are the same as th
the spin-wave theory10,11. In particular, the long-range behav
ior of the correlation functioncr}1/r 2 asr→` for a square
lattice system atD51 can not be obtained without the con
tribution of the two-body distribution function. Using itera
tion method for solving the equations ofgi j and g̃i j , it is
straightforward to include higher-order contribution for oth
physical quantities. But we refrain ourselves from more d
tailed calculation in this article as our main purpose here is
introduce the new variational formalism and its comparis
with the traditional CCM.

V. COMPARISON WITH THE CCM

In order to make a more detailed comparison with t
traditional CCM, we first summarize our variational exte
sion. We apply the HHC representation of Eqs.~8!-~9! for the
ground state wave function of a quantum many-body sys
to both the ket and bra states with two independent, herm
ian conjugate correlation coefficients$FI ,F̃ I% which are de-
termined by the variational equations as

]^H&
]FI

5
]^H&

]F̃ I

50.

The difficult task of expressing the Hamiltonian expectati

^H&5H($FI ,F̃ I%) can be done by introducing the bare di
tribution functionsgI5^CI

†& and g̃I5^CI& and solving their
self-consistency equations

gI5G~$g̃J%,$F̃J%!, g̃I5G~$gJ%,$FJ%!.

Using the expression of Eq.~22! for the Hamiltonian ex-
pectation

^H&5H8~$gI%,$FI%!,

we see that the traditional CCM is equivalent to thelinear
approximation in the self-consistensy equation forgI ,
namely

gI'F̃ I , ~43!

for all possible values ofI; the Hamiltonian expectation is
then reduced to a simple form

^H&'HCCM~$F̃ I%;$FI%!, ~44!

where functionHCCM is linear inF̃ I and finite order inFI . In
our spin model calculation of Sec. IV, within the simila
truncation involving only up to two-spin flip correlations~the
so-called SUB2 approximation!, the corresponding CCM
calculation is to ignore all two-body and higher-order man
body distribution functions in Eq.~31!. The two-spin corre-
lation function thus calculated has unphysical behaviors
7-5
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discussed in Ref. 8. Furthermore,FI and F̃ I are not longer
hermitian conjugate to one another and the energy thus
culated can not be guaranteed to be real, as is well know

In Arponen’s extension of the CCM5, while keeping the
ket state in the traditional CCM form, the bra state, also
manifestly hermitian to ket state, is parametrized by a n
linear factor as

^C̃u5^CueS̃e2S, ~45!

where correlation operatorsS and S̃ are give as in Eqs.~8!-
~9!. Within our variational formalism, as can be demo
strated, this representation of the bra state is equivalen
applying the random-phase approximation to thegI equation
to obtaingI as finite-order polynormial of$ f̃ J%,

gI'gI~$ f̃ J%!. ~46!

A detailed calculation in our spin model revealed that in
similar SUB2 truncation in Arponen’s approach, the rando
phase results of Eq.~40! for the two-body distribution func-
tion is reproduced. While it is clearly an improvement ov
the traditional CCM, Arponen’s extension is also known
be poor for the strongly correlated systems~e.g., quantum
Helium-4 fluid! even when high-order many-body contrib
tions are considered. This may be related to the rand
phase approximation of Eq.~46!.

In conclusion, our variational extension of the CCM pr
vides a general many-body theory in which the traditio
CCM represents a simple linear approximation and
ponen’s extension represents a random-phase approxima
The traditional CCM is well known to be efficient in obtain
ing accurate ground state energy for a finite system wit
,
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large energy gap separating the ground and excited stat12;
but, as pointed out earlier, it is poor when long-range cor
lations in the system are important; and Arponen’s extens
provides a remedy in producing the physical long range
haviors. But both these two methods are known to be poo
dealing with strongly correlated systems which demand c
rect description at short-range, in most cases, strongly re
sive. We believe the variational formalism represented h
may provide an effective approach to the strongly correla
systems. Furthermore, its strong overlap with other w
known many-body theories such as the method of correla
basis functionals can provide useful clues in making suita
approximations in practical calculations. As the necess
further truncation in our technique is flexible, different tru
cation approximations may be required for different physi
systems and we hope to gain experience by applying
technique to a variety of systems. In this regard, we are
couraged to read a recent preprint13 in which a fully varia-
tional approach has been employed to study several we
interacting boson systems using the so-called indepen
pair correlation functions, which, in fact, is the correspon
ing SUB2 truncation of the Eq.~23! but writing in the real
space. We like to point out that a clear advantage of
algebraic approach presented here is that it is straight
wardly extendible to include higher-order many-body cor
lations beyond the SUB2 level and as well as to other s
tems as electrons.
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