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Specific features of a magnetic impurity in a correlated electron model with Ising anisotropy
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We present the Bethe ansatz solution of a magnetic hybridization impurity in a correlated electron host with
Ising-like magnetic anisotropy. On the one hand, the strong correlations between host electrons produce a
mixed-valence behavior of the localized electrons. On the other hand, the spin-gap of the low-lying unbound
electron states caused by the ‘‘easy-axis’’ magnetic anisotropy suppresses the standard Kondo effect. For small
enough magnetic fields the magnetic susceptibility of the impurity is zero. The usual Kondo logarithms,
characteristic of SU~2!-symmetric systems with gapless spin-carrying excitations, are replaced by square root
singularities caused by the closing of the spin gap at a critical field. Similar behavior is predicted for the free
edges of an open chain, which again is very different from the isotropic situation. Using the low-lying
excitations in the conformal regime we calculate asymptotics of correlation functions.
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I. INTRODUCTION

The Kondo problem1 describes the effect of a local ex
change interaction between the spin of a magnetic impu
and the spins of itinerant electrons. For a free electron h
the spins of the conduction electrons screen the impurity s
(S5 1

2 ) into a Fermi-liquid fixed point at low energies, whil
for large enough energies the impurity spin is asymptotica
free ~with logarithmic corrections!. For S> 1

2 the impurity
spin is undercompensated to an asymptotically free valuS
2 1

2 at low energies.2,3 The crossover energy is the Kond
temperature. Local moment formation and the subsequ
screening of the spin is realized within the framework
Anderson’s impurity model,3,4 where localized electrons ar
hybridized with conduction states. Due to the hybridizati
the valence of the impurity~expectation value of the numbe
of localized electrons! is in general noninteger, ranging from
close to zero~nonmagnetic situation!, through the crossove
region ~mixed-valence regime!, to the magnetic or Kondo
case~the valence is essentially one!.

Magnetic impurities in correlated electron hosts, whe
the interactions between the itinerant electrons affect the
havior of the impurity, have been studied mostly in one
mension using a wide range of perturbative methods5 and
exact approaches6–13 ~see also Ref. 14!. The low-lying exci-
tations of the host in general simultaneously affect the
lence of the impurity and screen its magnetic moment. D
pending on the host, two situations have to be distinguish
~i! If the excitation spectrum of the correlated electrons i
multicomponent Luttinger liquid~gapless excitations! the
screening may be analogous to the ordinary Kondo effe13

~sometimes the Kondo effect is hidden by interactions12!. ~ii !
On the other hand, if the spin excitations of the host
gapped, the Kondo effect is absent as in the case of
Hubbard model with attractive interaction.8

All of the abovementioned models assume a local SU~2!
spin symmetry. In this study we present exact results fo
magnetic impurity in a correlated electron host with ma
netic anisotropy. The inclusion of an ‘‘easy-axis’’ magne
0163-1829/2002/66~18!/184422~8!/$20.00 66 1844
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anisotropy ~of the Ising type! in the one-dimensionalt-J
model ~with J52t) ~Ref. 15! opens a spin-gap in the exc
tation spectrum without spoiling the integrability of th
model,16,17 i.e., the supersymmetry is preserved. Of cour
one-dimensional models have some non-generic features
can only be compared to experimental situations with so
caution. However, we expect that the main features of
solution, e.g., the gapped behavior of the magnetic susce
bility for small magnetic fields, are generic to magnetic im
purities in spin-gapped hosts.

A magnetic anisotropy appears to be necessary to exp
the Kondo screening in some systems.18 The Kondo effect
with a magnetic anisotropy in the local exchange interact
has been studied theoretically3,19,20 for a free electron host
The magnetic anisotropy is an irrelevant parameter forS
5 1

2 impurity interacting with a single channel, while for un
derscreened impurities it can give rise to non-Fermi-liqu
effects.20 The behavior of magnetic impurities in the fre
electron gas is reminiscent of that of magnetic impurities
spin chains.21 It is, however, important to keep in mind tha
correlations between itinerant electrons can affect the pr
erties of a magnetic impurity. Several recent studies de
the Bethe ansatz equations of impurities in spin-gapped
related electron hosts,22,23 however, without calculating ac
tual properties of the impurity.

The rest of the paper is organized as follows. The mo
and the Bethe ansatz equations are introduced in Sec. II.
ground state properties of the system are derived in Sec
The finite size corrections to the ground state energy and
mesoscopic properties~conformal dimensions and th
Aharonov-Bohm-Casher oscillations! are discussed in Sec
IV. Finally, conclusions follow in Sec. V.

II. MODEL AND BETHE ANSATZ EQUATIONS

A. Model

The Hamiltonian consists of host and impurity termsH
5Hhost1Himp . The host is the one-dimensional supersy
metric t-J model with anisotropic magnetic coupling17

Hhost5( jHj , j 11, where
©2002 The American Physical Society22-1
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Hj , j 1152(
s

Pj~cj ,s
† cj 11,s1cj 11,s

† cj ,s!Pj

1~cj ,↓
† cj ,↑cj 11,↑

† cj 11,↓1cj ,↑
† cj ,↓cj 11,↓

† cj 11,↑!

2@exp~h!nj ,↑nj 11,↓1exp~2h!nj ,↓nj 11,↑#. ~1!

Herecj ,s (cj ,s
† ) destroy~create! an electron at the sitej with

spin s, nj ,s5cj ,s
† cj ,s is the number operator of electron

with spin s at the sitej, Pj5(12nj ,2s)(12nj 11,2s) is the
projection operator which excludes the double occupatio
each site, andh is the anisotropy parameter. In spin subspa
h leads to an intersite magnetic anisotropy of the ‘‘ea
axis’’ ~Ising! type. In the limit h50 the isotropic
su(1u2)-supersymmetrict-J model15 is recovered. The firs
term represents the hopping between the neighboring
~with the hopping matrix element set equal to 1!, while the
other two terms define the exchange spin-spin interac
between electrons at neighboring sites with the~transversal!
exchange constant set equal to 2.

We limit ourselves to the case of an ‘‘easy-axis’’ magne
anisotropy~of the Ising type!, because the integrable varia
of the Hamiltonian with an ‘‘easy-plane’’ magnetic aniso
ropy is non-Hermitian16,22 and, hence, difficult to justify.

The integrable impurity is located on a link of the cha
and interacts with electrons on both sites joined by the li
In the simplest case of an impurity of spinS5 1

2 , situated on
the link between sitesm andm11 the HamiltonianHimp is
given by

Himp5
sinh2h

~sin2u1sinh2h!S B̂~Hm, imp1Himp,m11!2Hm,m11

2 i
tanu

sinhh
@Hm,imp ,Himp,m11# D , ~2!

where the square bracket is a commutator,Hm, imp is of the
same form as Eq.~1! but with one site being the impurity,u
determines the impurity-host coupling, and the operatoB̂
modifies the hopping and the transverse interaction am
tudes by a factor cosu. Foru50 the impurity reduces to on
more site of the host.

The expression of the impurity Hamiltonian for arbitra
spinS is similar to Eq.~2!, but withHm, imp being much more
cumbersome.11,13 The impurity is still located on a link and
interacts with the two sites joined by that link. In general, t
Hamiltonian consists of three parts:~a! the hopping and the
interaction between the impurity and the two neighbor
host sites~with renormalized the hopping constants with r
spect to the host!, ~b! the hopping and the coupling betwee
the two host sites adjacent to the impurity are renormali
compared to other host sites, and~c! three-site terms involv-
ing the impurity and the two adjacent sites. All the coupli
constants of the impurity Hamiltonian depend on two para
eters:S, the spin of the impurity, and the off-resonance sh
u, determining the impurity-host coupling, while the integr
bility restrictsh, the anisotropy parameter, to be the same
for the host. The coupling constants of the impurity Ham
tonian, of course, also depend onh. The three-site terms o
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the impurity Hamiltonian violate theT and P symmetries
separately, while their product PT is of course invariant.7,11

These terms are total time derivatives in the classical se
and are only important in quantum mechanical aspects.13 The
form of the impurity Hamiltonian is independent of th
boundary conditions of the chain, i.e., periodic or open~un-
less the impurity is situated at the edge of the chain!.

The three-site terms inHimp can be avoided11,12 by plac-
ing the impurity at an open end of the host chain. In this c
the impurity has only one neighboring host site and the
purity Hamiltonian simplifies considerably, because parts~b!
and ~c! are now absent. In the limith→0 the impurity
Hamiltonian reduces to the su(1u2) supersymmetrict-J
model with impurity.13 This is seen by rescalingu→hu8
~with u8 being finite! before taking the limith→0.

B. Scattering matrices

Below we will distinguish between the effective low
energy spinS8 ~screened spin! and the high-energy free spi
S5S81 1

2 . The two-particle scattering matrix for the host
given by

X̂~l!5
Îsin~l!cosh~h/2!2 i P̂cos~l!sinh~h/2!

sin~l2 ih/2!
, ~3!

where Î is the identity andP̂ the two-particle permutation
operator. The impurity scattering matrix can be written as

SM ,M8
s,s8 ~l!5

sin~Ads,s8dM ,M81Bds8,sdM8,M12s!

sin@l1 i ~2S811!h/2#
, ~4!

where s (s8) and M (M 8) are the electron and impurity
spin S8 components of the before~after! scattering, and

A5l1 i ~2S811!~h/2!@122~sM uM1s!

3~s8M 8uM 81s8!#,

B52 i ~2S811!h~sM uM1s!~s8M 8uM 81s8!. ~5!

Here (sM uM1s) denotes the Clebsch-Gordan coefficie

( 1
2 s,S8M u 1

2 S8SM1s) with S5S81 1
2 .

The condition of integrability requires that theX̂ matrices
satisfy the Yang-Baxter~triangular! relations among them
selvesandwith the impurityŜ matrix for all values ofSand
u, i.e.,

X̂12~u!Ŷ13~u1v !Ŷ23~v !5Ŷ23~v !Ŷ13~u1v !X̂12~u!, ~6!

whereu andv are spectral parameters andŶ is eitherX̂ or Ŝ.
For a given host the choice of impurity is then not arbitra
and the anisotropyh must be the same forX̂ andŜ. For open
boundary conditions in addition reflection matricesK̂(u) ~for
the anisotropic system they also depend onh) are intro-
duced, which satisfy the reflection equations24

X̂12~u2v !K̂1~u!X̂21~u1v !K̂2~v !

5K̂2~v !X̂12~u1v !K̂1~u!X̂21~u2v !. ~7!
2-2
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SPECIFIC FEATURES OF A MAGNETIC IMPURITY . . . PHYSICAL REVIEW B66, 184422 ~2002!
The trace over the auxiliary subspace of the direct prod
of X̂ matrices for each electron andŜ for the impurity deter-
mines the transfer matrix of the problem. Transfer matri
for different spectral parameters commute and can be dia
nalized simultaneously. It is well known that there are tw
different~independent! approaches to the algebraic Bethe a
satz for systems of particles with internal degrees of fr
dom: ~i! The one mentioned above, which for impurity mo
els has been extensively reviewed in Refs. 2–4~for periodic
boundary conditions the number of operators in the mo
dromy is given by the number of electrons and the impur!
and ~ii ! the graded approach, in which the charge secto
treated as one more degree of freedom25 ~the number of op-
erators in the monodromy is given by the number of si
plus impurity!. For magnetic impurities in a correlated ele
tron host this approach was used in Refs. 11–13. Both
proaches, however, yield identical results.

C. Bethe ansatz equations

The Bethe equations are derived using the standard q
tum inverse scattering method25,16 and we present here th
results for periodic boundary conditions

sinFv j2u1 i ~2S811!
h

2G
sinFv j2u2 i ~2S811!

h

2G F sinS v j1 i
h

2 D
sinS v j2 i

h

2 D G
Na

5 )
a51

M sinS v j2La1 i
h

2 D
sinS v j2La2 i

h

2 D , j 51, . . . ,N,

sin~La2u1 iS8h!

sin~La2u2 iS8h!
)
j 51

N sinS La2v j1 i
h

2 D
sinS La2v j2 i

h

2 D
52 )

b51

M
sin~La2Lb1 ih!

sin~La2Lb2 ih!
, a51, . . . ,M ,

~8!

where M is the number of down-spin electrons,Na is the
number of host sites, andN is the total number of electron
in the chain. The eigenfunctions and eigenvalues of the t
Hamiltonian are parametrized by the charge rapiditiesv j , j
51, . . . ,N, and the spin rapidities,La , a51, . . . ,M . The
energy of the system is given by

E522(
j 51

N
12cos~2v j !cosh~h!

cosh~h!2cos~2v j !
. ~9!

The z projection of the magnetic moment of the system
Sz5S81N/22M . Only the first factor on the left-hand side
of Eqs.~8! corresponds to the impurity, while the energy, E
~9!, depends only implicitly on the impurity. The Bethe equ
tions are independent of the position of the impurity on
18442
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chain. Recall thatS85S21/2 represents the effective spin o
the low-temperature fixed point.

Similar Bethe equations can be derived for open bound
conditions.Both, the Yang-Baxter relations and the reflectio
equations, have to be satisfied for the integrablity of an o
chain. Choosing diagonal reflection matrices~with local
boundary potentialsm6 acting only on the edges of the ope
chain!, we rewrite the Bethe equations Eqs.~8! for open
boundary conditions11–13

)
6

sinS v j6u1 i ~2S811!
h

2 D
sinS v j6u2 i ~2S811!

h

2 D
sinS v j1 i

h

2
j6D

sinS v j2 i
h

2
j6D

3F sinS v j1 i
h

2 D
sinS v j2 i

h

2 D G
2Na

5)
6

)
a51

M sinS v j6La1 i
h

2 D
sinS v j6La2 i

h

2 D ,

)
6

sin~La6u1 iS8h!

sin~La6u2 iS8h!
)
j 51

N sinS La6v j1 i
h

2 D
sinS La6v j2 i

h

2 D
5)

6
)
b51

M
sin~La6Lb1 ih!

sin~La6Lb2 ih!
. ~10!

where j 51, . . . ,N, a51, . . . ,M , andj6 are related to the
boundary potentialsm6. We emphasize again that thes
equations do not depend on the position of the impurity
the chain, i.e., they are the same for the impurity situated
any link in the bulk or at an edge. The choice of one ofj6

being equal to zero and the other one equal to22iu1S8
1 1

2 reproduces the Bethe equations of Geet al.23 The equa-
tions formally coincide with the Bethe equations for period
boundary conditions, Eqs.~8!, with only few modifications:
The reflection at open edges gives rise to the formal repla
mentNa→2Na , N→2N, M→2M andtwo impurity factors
~instead of one! in each of the Bethe equations~the ‘‘period’’
is now twice as large!. Otherwise the Bethe equations fo
periodic and open boundary conditions are equivalent.
low we perform calculations for periodic boundary cond
tions and then point out the differences with respect to
open chain case.

III. GROUND STATE PROPERTIES

A. Integral equations

The ground state of the one-dimensional correlated e
tron system is given byN22M unbound electron state
~with real charge rapiditiesv j ) and M singlet Cooper-like
2-3
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bound states of for which the charge rapidities are comp
conjugated pairs.17 It follows from Eqs.~8! that the latter are
related to spin rapiditiesLb , such that~to exponential accu-
racy e2Na)

va
65Lb6 i

h

2
. ~11!

Inserting the real charge rapiditiesv j and the pair solutions
~characterized by theLa) into Eq. ~8! and taking the loga-
rithm of the resulting equations we have

Q@v j ,h/2#1
1

Na
Q@v j2u,~2S811!h/2#

5
2p

Na
I j1

1

Na
(
a51

M

Q@v j2La ,h/2#,

j 51, . . . ,N22M ,

Q@La ,h#1
1

Na
Q@La2u,~S811!h#

5
2p

Na
Ja1

1

Na
(
j 51

N22M

Q@La2v j ,h/2#

1
1

Na
(
b51

M

Q@La2Lb ,h#,

a51, . . . ,M , ~12!

where Q@v,h#52 tan21(tanv cothh), and the quantum
numbersI j andJa arise because the logarithm is a multiva
ued function. The quantum numbers completely determ
the solutions for the ground state and the elementary ex
tions. The energy of the system is

E522 (
j 51

N22M
12cos~2v j !cosh~h!

cosh~h!2cos~2v j !

22 cosh~h! (
a51

M S 22
sinh2~h!

sin2~La!1sinh2~h!
D . ~13!

In the thermodynamic limit~i.e., Na ,N,M→` with the
ratiosN/Na andM /Na remaining fixed! we introduce densi-
ties for the rapiditiesr(v) and s(L), and their ‘‘holes’’
rh(v) andsh(L). The Bethe equations satisfied by the de
sities are

Q8@v,h/2#1
1

Na
X~v !5E dLQ8@v2L,h/2#s~L!

12p@r~v !1rh~v !#,
18442
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Q8@L,h#1
1

Na
Y~L!5E dvQ8@L2v,h/2#r~v !

1E dzQ8@L2z,h#s~z!

12p@s~L!1sh~L!#, ~14!

where the prime denotes derivative with respect to the fi
argument. The driving terms for periodic boundary con
tions are

X~v !5Q8@v2u,~2S811!h/2#,

Y~L!5Q8@L2u,~S811!h# ~15!

and for open boundary conditions

X~v !5
1

2 H Q8@v,h/2#1(
6

Q8@v6u,~2S811!h/2#J ,

Y~L!5
1

2 H Q8@L,h/2#2Q8@L,h#

1(
6

Q8@L6u,~S811!h#J . ~16!

In the thermodynamic limit the energy of the system is

E522E r~v !F12cos~2v !cosh~h!

cosh~h!2cos~2v ! Gdv

22 cosh~h!E s~L!F22
sinh2~h!

sin2~L!1sinh2~h!GdL.

~17!

The second terms on the left-hand side of Eqs.~12! and~14!
are the driving terms due to the impurity. The energy on
depends implicitly on the parameters of the impurity. T
number of electrons and thez projection of the magnetization
per site are given byN/Na52*dLs(L)1*dvr(v) and
Mz5(S8/Na)1(1/2)*dvr(v), respectively.

We introduce the usual ‘‘dressed’’ energies,«(v) for the
unbound electron states andC(L) for the singlet pairs,
which satisfy the following integral equations:

Q8@v,h/2#2m2
H

2
5

1

2pE dLQ8@v2L,h/2#C~L!

1«~v !,

Q8@L,h#22m5
1

2pE dvQ8@L2v,h/2#«~v !

1
1

2pE dzQ8@L2z,h#C~z!1C~L!,

~18!

whereH is the external magnetic field andm is the chemical
potential of the electrons.H and m are introduced as the
Lagrange multipliers for the conservation of the magneti
2-4
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SPECIFIC FEATURES OF A MAGNETIC IMPURITY . . . PHYSICAL REVIEW B66, 184422 ~2002!
tion and the total number of electrons, respectively. All sta
with negative ~positive! dressed energy are populate
~empty!. The bands«(v) and C(L) can form Dirac seas
with the filling beginning at the edges of the interva
@2p,p#, where the dressed energies have their minimu
The integral equations for ‘‘dressed energies’’ do not dep
on the impurity.

The driving terms in Eqs.~14!, i.e. the terms that do no
explicitly depend onr and s, are either of order 1 or o
order 1/Na . The terms of order 1 determine the behavior
the host, while the ones of order 1/Na drive the impurity.
Eqs. ~14! are linear integral equations, such that we m
write r5rhost1(1/Na)r imp and s5shost1(1/Na)s imp , and
obtain separate integral equations for the rapidity dens
for the host and the impurity.

B. Properties

The energy of the unbound electron states are gapped
an external magnetic field less than a critical valueHc , given
by

Hc522m12Q8@p,h/2#2
1

pE dLQ8@p2L,h/2#C~L!.

~19!

In other words,Hc is one half of the minimal external mag
netic field necessary to depair a singlet bound state. If
value of the external magnetic field is larger thanHs , given
by

Hs522m12Q8@p,h/2#, ~20!

the magnetization is maximal, i.e., saturated. At this satu
tion field the system undergoes a second order phase tr
tion into the ferromagnetic spin-polarized state, in whi
there are no pairs because the ‘‘dressed’’ energy of bo
electrons is gapped. This behavior is similar to a type-II
perconductor in a magnetic field: ForH<Hc there are only
Cooper-pairs, while forHc<H<Hs pairs and unbound elec
trons coexist, which is reminiscent of the Meissner effe
Note, however, that in an one-dimensional electron gas th
is no true superconducting order with off-diagonal lo
range order, but the correlation functions of the singlet pa
and/or unbound electrons fall off with power-laws for lon
times and/or distances. ForH>Hs it is straightforward to
obtain the ground state energy. In the intermediate ph
Hc<H<Hs , however, the ground state energy depends
the filling of both Dirac seas.

We first study the caseH,Hc , where the ground stat
consists only of singlet pairs (2M5N).17 In this case the
Bethe equations reduce to only one set of equations

Q@La ,h#1
1

Na
Q@La2u,~S811!h#

5
2p

Na
Ja1

1

Na
(
b51

M

Q@La2Lb ,h#,

a51, . . . ,M , ~21!
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where theJa are integers~half-integers! for odd ~even! M
11, limited byJmax, i.e.,

uJau<~Na2M21!/25Jmax. ~22!

The ground state corresponds to two sequences of quan
numbersJa belonging to the interval@2Jmax,Jmax#, begin-
ning at the edges of the interval, i.e.,2Jmax,2Jmax
11, . . . and . . . ,Jmax21,Jmax with both sequences bein
equally long. In the thermodynamic limit we have

Q8@L,h#1
1

Na
Y~L!

52p@s~L!1sh~L!#

1F E
2p

2L0
1E

L0

p GdzQ8@L2z,h#s~z!. ~23!

Here L0 plays the role of a Fermi point, because in t
ground state only states withLP@2p,2L0#ø@L0 ,p# are
filled. The wave functions of pairs are symmetric~pairs of
electrons form bosons!, but these bosons are hard-core on
satisfying an anyonlike exclusion statistics, as a conseque
of the interactions among the pairs. Because they are h
core bosons the Cooper-pairs form a Dirac sea. The par
eterL0 is related to the chemical potentialm via C(6L0)
50. The energy and the total number of electrons are n
given by Eq.~17! with only the s density term integrated
over the occupied states.

The magnetization of the impurity is exactlyS8 for H
<Hc for both, open or periodic, boundary conditions. Th
implies that the Kondo effect is absent in the present mo
due to the spin-gap induced by the Ising-like~‘‘easy-axis’’!
magnetic anisotropy. The low-lying excitations do not ca
spin, and, consequently, cannot couple to the spinS8 to form
a magnetic moment of spinS for H<Hc . The valence, i.e.,
the number of localized electrons at the impurity, varies w
L0 ~or m), from one atL050 ~i.e., for a filled band or the
maximal number of conduction electrons! to zero for L0
5p, i.e. for an empty band of conduction electrons.

Next we consider the situationHc<H<Hs , where both,
unbound electrons and singlet pairs, have gapless low-ly
excitations, i.e., form Dirac seas. The valence of the impu
again depends on the density of electrons, and, interestin
also on the external magnetic field. Due to the van Ho
singularity of the empty band of unpaired electron states,
magnetization of the host is proportional toAH2Hc for
fieldsH slightly larger thanHc . This feature is characteristi
of a Pokrovskii-Talapov level-crossing transition, which
the analog of a second order phase transitions in o
dimension. The magnetization of the impurity is driven
the host,

M imp
z 5S81 f S~u,h!AH2Hc, ~24!

where f S(u,h) is also a function of the band filling. The
magnetic susceptibility of the impurity has a square root s
gularity asHc is approached from above. This is also ve
2-5



ll

ilit
e

l
ec
a-
g

ac

ds

f

o
to
e
e

ity

se

lity
of

e

th
-

ur

e
th
m
ow
r

c-

the

i-
ac
si-
f

o-
a-

es

eti-

ed
un-

d to

pen

pe-
ter-

y
ar

in
n a

ent

n
ge

of

A. A. ZVYAGIN AND P. SCHLOTTMANN PHYSICAL REVIEW B 66, 184422 ~2002!
different from the standard Kondo effect, where for spin1
2

the magnetic susceptibility of the impurity is finite for sma
magnetic fields.7

For open boundary conditions the magnetic susceptib
of the impurity diverges as strongly as the magnetic susc
tibility of the open edges themselves~all inversely propor-
tional toAH2Hc). This is also very different from the usua
behavior of a magnetic impurity in an open correlated el
tron chain with SU~2! spin symmetry and gapless excit
tions, where the magnetic susceptibility of the edges diver
~though logarithmically!, while the one for an impurity of
spin S5 1

2 remains finite.11,13

With increasing magnetic field the population of the Dir
sea of singlet pairs gradually decreases untilHs is reached,
which is the field at which the band is empty. For fiel
larger than the saturation fieldHs the magnetization of the
impurity is equal toM imp

z 5S81(nimp/2), wherenimp is the
valence of the impurity.

For imaginary u, the Hamiltonian of the impurity if
placed in the bulk, i.e., not at the edge, is non-Hermitian~the
energy eigenvalues are real, though!. This is independent o
the boundary conditions~open or periodic!. In this case the
incoming and reflecting waves of the electrons ‘‘see’’ tw
different effective spins of the impurity corresponding
S86uuu.12 However, the Ising magnetic anisotropy of th
model again suppresses any manifestation of the Kondo
fect, since only the spin-singlet pairs are gapless forH
<Hc , but cannot screen the effective spins of the impur
For fields slightly larger thanHc the van Hove singularity of
the empty band of unbound electron states manifests it
rather than the weaker logarithmic Kondo singularities.

At finite but low temperatures the magnetic susceptibi
of the impurity ~as well as the susceptibility of the edges
an open chain! is exponentially small forH,Hc and H
.Hs . At H5Hc or Hs the magnetic susceptibility and th
Sommerfeld coefficient of the specific heat display theT1/2

features corresponding to the van Hove singularities of
empty bands. ForHc,H,Hs , on the other hand, the mag
netic susceptibility is finite forS5 1

2 asT→0 and Curie-like
for S> 1

2 . The specific heat is proportional to the temperat
everywhere away from the van Hove singularities.

IV. MESOSCOPIC PROPERTIES

The mesoscopic~finite size! effects reveal the differenc
between periodic and open boundaries conditions. In
gapless region, the correlation functions of operators asy
totically decay algebraically as a consequence of the l
lying excitations. For periodic boundary conditions they a
proportional to26,27

~x2 ivrt !22Dr
1

~x1 ivrt !22Dr
2

~x2 ivst !22Ds
1

3~x1 ivst !22Ds
2

, ~25!

wherevr5«8/2pruv5v0
@v0 is the Fermi point for unbound

electron states, defined by«(6v0)50 for H>Hc], and vs

5C8/2psuL5L0
are the Fermi velocities of unbound ele

trons and spin-singlet pairs, respectively. Here«8 andC8 are
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the derivatives of the dressed energies with respect to
rapidity at the Fermi point. The conformal dimensionsD i

6 of
primary operators are

2D i
652ni

61Fzr,i~DNs2ds!2zs,i~DNr2dr!

detẑ

6@zi ,s
T ~DDs2ds!1zi ,r

T ~DDr2dr!#G 2

, ~26!

where i 5r,s andni
6 are the number of particle-hole exc

tations at the right and left Fermi points of each of the Dir
seas. HereDNi denotes the change in the number of qua
particles in the Dirac sea andDDi represents the number o
backscattering excitations~particle transfer from the left to
the right Fermi points!.

The dressed charge matrixẑ5 ĵuv5v0 ,L5L0
measures cor-

relations between the bands. The quantitiesj i ,k are defined
as j i ,k52]ek /]m i , whereer5«, es5C, mr5m1(H/2)
andms52m. The integral equations satisfied by the comp
nents ofĵ are obtained by differentiating the integral equ
tions for the dressed energies, Eqs.~18!, with respect to
m i .17,27

The quantitiesd i and di renormalizeDNi and DDi be-
cause of the impurity and the free edges of an open chain~in
the case of periodic boundary conditions external flux
through the ring also contribute to these quantities!. The im-
purity contributions are related to the valence and magn
zation of the impurity and of the free edges of the chain~in
the case of open boundary conditions! via the Friedel’s sum
rule. Neither the Fermi velocities nor the matrix of dress
charges depend on the boundary conditions. Since the
bound electrons are gapped forH<Hc , the Fermi velocity
vr and the elements of the dressed charge matrix relate
the unbound electrons vanish.

Clearly, backscattering processes are absent for o
boundary conditions and henceDDi5di50, such that only
chiral excitations determine the physics in this case. For
riodic boundary conditions the phase shifts caused by ex
nal magnetic and electric fluxes~Aharonov-Bohm and
Aharonov-Casher effect!28 are taken into account withDDi
→DDi1f i (fs5$$2F/F0%%, and fr5$$F/F0%%
1$$F/F0%%, whereF is the magnetic flux,F05hc/e is the
unit magnetic flux,F54pt is the electric flux generated b
a string passing through the center of the ring with line
charge densityt, F05hc/mB is the unit electric flux,mB is
the Bohr magneton, and$$a%% denotes the fractional part ofa
to the nearest integer!. The fluxes give rise to charge and sp
persistent currents of the Aharonov-Bohm-Casher type i
closed ring configuration. ForH<Hc there is no Aharonov-
Casher effect, but only oscillations of the charge persist
current of periodF0/2 due to the spin-singlet pairs~charge
22e). For Hc<H<Hs , on the other hand, there is a
interference of Aharonov-Bohm oscillations in the char
persistent current with periodF0 andF0/2 and the spin per-
sistent current displays Aharonov-Casher oscillations
periodF0.
2-6
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V. CONCLUSIONS

In summary, we have studied the behavior of a magn
hybridization impurity in a strongly correlated electron ho
with a magnetic anisotropy of the ‘‘easy-axis’’ type~i.e.,
Ising-like!. The magnetic anisotropy of the Ising type giv
rise to a gap for low-energy unbound electron states at s
external magnetic fields.

The behavior of the magnetic impurity is determined
the properties of the host. The valence of the impurity var
with the electron density from zero to one~for the half-filled
case!, similar to the situation of an impurity in thet-J model
with SU~2! spin symmetry. Also, similarly to the isotropic
exchange case, the effective spin of the impurity at very h
fields dynamically yieldsS81(nimp/2) ~cf. Refs. 7,11–13!,
i.e., the interaction changes the effective spin of the impur

However, due to the spin-gap of the host the impurity h
no Kondo effect in the usual sense. For fields smaller t
the field necessary to close the spin-gap, the spin of the
purity is S8, independent of the field and the valence. F
H.Hc the impurity magnetization increases with field, ind
cating that there is partial screening of the impurity sp
however, without the usual Kondo logarithms, characteri
of asymptotic freedom in the SU~2!-symmetric gapless situ
ation. In the present case, the van Hove singularity of
empty band of unbound electrons gives rise to a square
discontinuity in the properties and the weaker Kondo lo
rithms are suppressed. In other words, the impurity beha
is dominated by the gap.
Ap
h

r
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For open boundary conditions the edges in general a
contribute to the magnetic susceptibility, e.g., for SU~2! spin
symmetry this contribution diverges, i.e., in zero field it
larger than the susceptibility of a magnetic impurity of sp
S5 1

2 ~which is finite due to the Kondo effect!. However, the
spin gap caused by the magnetic anisotropy suppresse
magnetic susceptibility of edges forH,Hc . The van Hove
singularity of the empty band of unpaired electrons gives r
to a square root-divergent susceptibility of the edges and
impurity for H slightly aboveHc , without revealing Kondo
logarithms.

Of course, some of the features of this one-dimensio
model are not realistic to an experimental situation. For
ample, the square root van Hove singularity is a on
dimensional property, but also appears in BCS-like den
of states. However, we expect that the main properties of
solution, namely, the behavior of the magnetic susceptibi
of the impurity in a host with spin gap at small extern
magnetic fields, are generic features for magnetic impuri
in correlated electron hosts with the Ising-like~‘‘easy-axis’’!
magnetic anisotropy.
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