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Specific features of a magnetic impurity in a correlated electron model with Ising anisotropy
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We present the Bethe ansatz solution of a magnetic hybridization impurity in a correlated electron host with
Ising-like magnetic anisotropy. On the one hand, the strong correlations between host electrons produce a
mixed-valence behavior of the localized electrons. On the other hand, the spin-gap of the low-lying unbound
electron states caused by the “easy-axis” magnetic anisotropy suppresses the standard Kondo effect. For small
enough magnetic fields the magnetic susceptibility of the impurity is zero. The usual Kondo logarithms,
characteristic of S(2)-symmetric systems with gapless spin-carrying excitations, are replaced by square root
singularities caused by the closing of the spin gap at a critical field. Similar behavior is predicted for the free
edges of an open chain, which again is very different from the isotropic situation. Using the low-lying
excitations in the conformal regime we calculate asymptotics of correlation functions.
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. INTRODUCTION anisotropy (of the Ising type in the one-dimensional-J
model (with J=2t) (Ref. 15 opens a spin-gap in the exci-
The Kondo problerh describes the effect of a local ex- tation spectrum without spoiling the integrability of the
change interaction between the spin of a magnetic impuritynodel’®*’i.e., the supersymmetry is preserved. Of course,
and the spins of itinerant electrons. For a free electron hosine-dimensional models have some non-generic features and
the spins of the conduction electrons screen the impurity spifan only be compared to experimental situations with some
(S=1) into a Fermi-liquid fixed point at low energies, while caution. However, we expect that the main features of our

for large enough energies the impurity spin is asymptoticallyselution, e.g., the gapped behavior of the magnetic suscepti-
free (with logarithmic corrections For S=1% the impurity bility for small magnetic fields, are generic to magnetic im-

spin is undercompensated to an asymptotically free v8lue purities in SP'”'Q?‘pped hosts. .
1 A magnetic anisotropy appears to be necessary to explain

—7 at low energies:’ The crossover energy Is the Kondo the Kondo screening in some systetighe Kondo effect
temper_ature. Local _mo_ment _formatl_on_ and the subsequerﬁith a magnetic anisotropy in the local exchange interaction
screening of the spin is re4aI|zed within the framework thas been studied theoreticall)?°for a free electron host
Andgr_son’s Impurity moqd’, where localized electrqn_s ar® The magnetic anisotropy is an irrelevant parameter f& a
hybridized with conduction states. Due to the hybr|d|zat|on:% impurity interacting with a single channel, while for un-
the valence of the impuritjexpectation value of the number gerscreened impurities it can give rise to non-Fermi-liquid
of localized electronsis in general noninteger, ranging from eftects2’ The behavior of magnetic impurities in the free
close to zerdnonmagnetic situationthrough the crossover ejectron gas is reminiscent of that of magnetic impurities in
region (mixed-valence regime to the magnetic or Kondo spin chaing? It is, however, important to keep in mind that
case(the valence is essentially one correlations between itinerant electrons can affect the prop-

Magnetic impurities in correlated electron hosts, whereerties of a magnetic impurity. Several recent studies derive
the interactions between the itinerant electrons affect the bghe Bethe ansatz equations of impurities in spin-gapped cor-
havior of the impurity, have been studied mostly in one di-related electron host&;?® however, without calculating ac-
mension using a wide range of perturbative metfcatsd tual properties of the impurity.

<13 - : : :

exact approach@s'® (see also Ref. 24 The low-lying exci- The rest of the paper is organized as follows. The model
tations of the host in general simultaneously affect the vaand the Bethe ansatz equations are introduced in Sec. Il. The
lence of the impurity and screen its magnetic moment. Deground state properties of the system are derived in Sec. Ill.
pending on the host, two situations have to be distinguishedrhe finite size corrections to the ground state energy and the
(i) If the excitation spectrum of the correlated electrons is anesoscopic propertiegconformal dimensions and the

multicomponent Luttinger liquid(gapless excitationsthe  Aharonov-Bohm-Casher oscillationsre discussed in Sec.
screening may be analogous to the ordinary Kondo éffect |/ Finally, conclusions follow in Sec. V.

(sometimes the Kondo effect is hidden by interactténsii)

On the other hand, if the spin excitations of the host are Il. MODEL AND BETHE ANSATZ EQUATIONS
gapped, the Kondo effect is absent as in the case of the
Hubbard model with attractive interactin.

All of the abovementioned models assume a loca(ZU The Hamiltonian consists of host and impurity terfds
spin symmetry. In this study we present exact results for a=H,qs+ Himp. The host is the one-dimensional supersym-
magnetic impurity in a correlated electron host with mag-metric t-J model with anisotropic magnetic couplig
netic anisotropy. The inclusion of an “easy-axis” magnetic =X ;H; i1, Where

A. Model
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the impurity Hamiltonian violate thd and P symmetries

_ t T . . . . -
Hjje1=— 2 Pi(C 4Ci+ 10T Cj+16Cj,0) P separately, while their product PT is of course invariatit.
7 These terms are total time derivatives in the classical sense
t T t + i i i
+(¢] €160 11Cen T 1616 Cany) and are only important in quantum mechanical aspectse

form of the impurity Hamiltonian is independent of the

—[exp(m)n; Njy1, +exp(— )N njy1;]. (1) boundary conditions of the chain, i.e., periodic or ogen-

N o less the impurity is situated at the edge of the chain
Herec; , (c; ,) destroy(create an electron at the siewith The three-site terms ifit;,,, can be avoided*? by plac-
spin o, n; ,=c] ,c; , is the number operator of electrons ing the impurity at an open end of the host chain. In this case
with spino at the sitgj, P;=(1—-n; _,)(1—nj,1,) isthe  the impurity has only one neighboring host site and the im-
projection operator which excludes the double occupation aburity Hamiltonian simplifies considerably, because péis
each site, and; is the anisotropy parameter. In spin subspaceand (c) are now absent. In the limit)—0 the impurity
7 leads to an intersite magnetic anisotropy of the “easy-Hamiltonian reduces to the sy@) supersymmetrict-J
axis” (Ising) type. In the limit »=0 the isotropic model with impurity*® This is seen by rescaling— 76’
su(1|2)-supersymmetri¢-J modef® is recovered. The first (with 6’ being finite before taking the limity— 0.
term represents the hopping between the neighboring sites

(with the hopping matrix element set equal tp While the B. Scattering matrices

other two terms define the exchange spin-spin interaction S )
between electrons at neighboring sites with ttiansversal Below we will distinguish between the effective low-
exchange constant set equal to 2. energy spirS’ (screened spinand the high-energy free spin

We limit ourselves to the case of an “easy-axis” magnetics_: S’ + 3. The two-particle scattering matrix for the host is
anisotropy(of the Ising typg, because the integrable variant 9iven by
of the Hamiltonian with an “easy-plane” magnetic anisot- “ A )
ropy is non-Hermitiat??? and, hence, difficult to justify. K(N) = I'sin(\)cosh 7/2) —iPcog \)sinh(7/2)
The integrable impurity is located on a link of the chain Sin(A —i n/2)
and interacts with electrons on both sites joined by the link. . ) ) . i ,
In the simplest case of an impurity of sg* %, situated on wherel is the.ldent!ty andP t_he two—partlcle permutation
the link between sitem andm-+ 1 the Hamiltoniart,, is operator. The impurity scattering matrix can be written as

given by

)

oo’ Sin(A(srr,(r’ﬁM,M'+B§(r’,(r§M’,M er)
Swimr (M) = , p— =@
' SiIMA+i(2S" +1) 5/2]

whereo (') and M (M') are the electron and impurity

sint? .
Himp:m B(Hm,imp+ Himp,m+ 1) - Hm,m+1

tano spin S’ components of the befor@fter scattering, and
=i =——[Hm.imp, Hi ) 2
sinhy L fmimp PHimp.m--2] @ A=N+i(2S +1)(72)[1—2(eM|M + o)
where the square bracket is a commutaty, i, is of the X(a'M'|M"+a")],
same form as Eq1) but with one site being the impurity, _
determines the impurity-host coupling, and the oper&or B=—i(28'+1)n(cM|M+0)(a'M'|[M"+a"). (5

modifies the hopping and the transvers_e interaction ampligere (@M|M+¢) denotes the Clebsch-Gordan coefficient
tudes by a factor coé For §=0 the impurity reduces to one (10,S'M|LS'SM+ ) with S=S' + 1.

more site of the host. .
The expression of the impurity Hamiltonian for arbitrary ~ The condition of integrability requires that tematrices

spinSis similar to Eq.(2), but with My, i, being much more = satisfy the Yang-Baxte(triangulaj relations among them-

cumbersomé!*® The impurity is still located on a link and selvesandwith the impurity S matrix for all values ofS and

interacts with the two sites joined by that link. In general, the, i.e.,

Hamiltonian consists of three part&) the hopping and the R R A R R A

interaction between the impurity and the two neighboring  Xi5(U)Y13(Uu+v)Yas(v)=Yo3(v)Y3(u+v)Xi5(U), (6)

host sitegwith renormalized the hopping constants with re- R . " oA

spect to the hokt(b) the hopping and the coupling between whereu_andv are spectra! parameters aY_ids eitherX or S

the two host sites adjacent to the impurity are renormalizedor @ given host the choice of impurity is then not arbitrary

compared to other host sites, afwl three-site terms involv- and the anisotropy; must be the same fo¢ andS. For open

ing the impurity and the two adjacent sites. All the couplingboundary conditions in addition reflection matri¢e&u) (for
constants of the impurity Hamiltonian depend on two paramthe anisotropic system they also depend gnare intro-

eters:§ the spin of the impurity, and the off-resonance shiftquced, which satisfy the reflection equatiths
0, determining the impurity-host coupling, while the integra-

bility restricts %, the anisotropy parameter, to be the same as X1 (U= 0)K1(U)Xoy(U+0)Ko(v)
for the host. The coupling constants of the impurity Hamil- . . . )
tonian, of course, also depend @n The three-site terms of =Ky(v) XU+ v)Kq(Uu)Xp(U—v). )
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The trace over the auxiliary subspace of the direct producthain. Recall tha8’ = S— 1/2 represents the effective spin of
of X matrices for each electron affor the impurity deter-  the low-temperature fixed point. _
mines the transfer matrix of the problem. Transfer matrices Similar Bethe equations can be derived for open boundary

for different spectral parameters commute and can be diag&onditions.Both the Yang-Baxter relations and the reflection
nalized simultaneously. It is well known that there are twoeduations, have to be satisfied for the integrablity of an open

different (independentapproaches to the algebraic Bethe an-chain. Choosing diagonal reflection matricésith local
satz for systems of particles with internal degrees of freeboundary potentialg.™ acting only on the edges of the open
dom: (i) The one mentioned above, which for impurity mod- chain, we rewrite the Bethe equations Eq8) for open
els has been extensively reviewed in Refs. Zfo# periodic ~ boundary conditions—*3

boundary conditions the number of operators in the mono-
dromy is given by the number of electrons and the impurity
and (ii) the graded approach, in which the charge sector is
treated as one more degree of freeddtthe number of op-
erators in the monodromy is given by the number of sites
plus impurity. For magnetic impurities in a correlated elec-

/-
Uj+|§§_)

sin(vji 0+i(2S + 1)%) sin

sin(vjie—i(28’+1)g) sin(vj—iggi)

tron host this approach was used in Refs. 11-13. Both ap- _ 7y Na
proaches, however, yield identical results. sinfvj+1 2
C. Bethe ansatz equations X ) 7
The Bethe equations are derived using the standard quan- sm( v~ 5)
tum inverse scattering meth@d® and we present here the
results for periodic boundary conditions " sm(vj A Fi n
2
. T 7| TN =11 11 :
sinv;j—6+i(2S +1)§ sin vj+|§ = alsm(vj_Aa 'g)
sifv;— 6—1(28 +1)~|| sinl v,~i—
J 2 b2 N sin| Ao+
sin(A,* 6+iS'n) 1 «a=7 T2
. .7
sinfvi—A,tis i gl ) i
v (v' 13 SIN(A+ 6=1S" 7)) 1sin(Aa¢uj—i2)
=11 CJ=1.. N, 2
s v~ Ag—i y
s v;=Aa=15 o SINA L= A g+i ) 10
= p=1 SINAEAg—in)’
. .
Sin(A,— 6+iS' ) N Sln(Aa_Uj+| 2 wherej=1, ... ,N., a=+1, oM, andgli are rglated to the
- — H boundary potentialsu™. We emphasize again that these
SiN(Ag=0—iS"m)i=t [\ 2) equations do not depend on the position of the impurity in
* 72 the chain, i.e., they are the same for the impurity situated at
M any link in the bulk or at an edge. The choice of one£éf

qp S At
s SinA,—Ag—i7)’ AR

8

being equal to zero and the other one equaki 6+ S’

+ 1 reproduces the Bethe equations of &al? The equa-
tions formally coincide with the Bethe equations for periodic
boundary conditions, Eq$8), with only few modifications:

where M is the number of down-spin electrond, is the  The reflection at open edges gives rise to the formal replace-
number of host sites, ar is the total number of electrons mentN,—2N,, N—2N, M—2M andtwo impurity factors
in the chain. The eigenfunctions and eigenvalues of the totdinstead of ongin each of the Bethe equatiofthie “period”

Hamiltonian are parametrized by the charge rapiditips]

is now twice as large Otherwise the Bethe equations for

=1,... N, and the spin rapidities\ ,, a=1,... M. The periodic and open boundary conditions are equivalent. Be-
energy of the system is given by low we perform calculations for periodic boundary condi-

tions and then point out the differences with respect to the

El 2% 1—cog2v;)cosh 7) open chain case.

~ “f54 coshi)—coq2v))

€)

Ill. GROUND STATE PROPERTIES
The z projection of the magnetic moment of the system is
S*=S'+N/2— M. Only the first factor on the left-hand sides
of Egs.(8) corresponds to the impurity, while the energy, Eq.  The ground state of the one-dimensional correlated elec-
(9), depends only implicitly on the impurity. The Bethe equa-tron system is given byN—2M unbound electron states
tions are independent of the position of the impurity on the(with real charge rapidities;) and M singlet Cooper-like

A. Integral equations
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bound states of for which the charge rapidities are complex 1
conjugated pair§’ It follows from Eqgs.(8) that the latter are O'[A, 7]+ N_Y(A):f dv®'[A—v,n/2]p(v)
related to spin rapiditied 5, such thafto exponential accu- a

racy e Na) +f dz®'[A-2z,7]o(2)

+2a[o(A)+on(A)], (14

where the prime denotes derivative with respect to the first
argument. The driving terms for periodic boundary condi-
Inserting the real charge rapidities and the pair solutions tions are
(characterized by thd ,) into Eg. (8) and taking the loga-

a=Agxi (1)

v

N3

rithm of the resulting equations we have X(v)=0"[v—106,(25"+1) /2],
Y(A)=0'[A—6,(S +1)7] (15
1
Olvj,n/2]+ N_®[vi_ 6,(2S' +1) 5/2] and for open boundary conditions
a
27 1M X(v)=E 0'[v,7/2]+ > O'[v=6,(2S +1)5/2]
=—1+—2> O[v;—A,,7/2], 2 ’ e o ’
Ng ' Nya=i !
. 1
J=1,... N=2M, Y(A)=§|’[A,n/2]—®’[/\.77]
1 ! !
O[A 7]+ T OLA,~ 6,(S' +1)7] +Z O'[A£6,(S +1)77]]- (16)
R T
o 1 N-2m In the thermodynamic limit the energy of the system is
=—J,t— O[A,—v;, 752
Ny ¢ N, ,—Zl [Aa—vj,7/2] £ Zf 1—cogq2v)cosh 7)
B p(v) cosh 7) —cog2v)

1 M
NG 2 Ol gl

sink(7)
B sinz(A)+sinhz(77)}dA'

17

where O[v,7]=2 tan }(tanv coth7), and the quantum The second terms on the left-hand side of E¢&) and(14)
numbers; andJ, arise because the logarithm is a multival- are the driving terms due to the impurity. The energy only
ued function. The quantum numbers completely determinglepends implicitly on the parameters of the impurity. The
the solutions for the ground state and the elementary excitd:umber of electrons and tlzgprojection of the magnetization
tions. The energy of the system is per site are given byN/N,=2[dAo(A)+ [dvp(v) and
MZ?=(S'/N,) +(1/2)fdvp(v), respectively.
We introduce the usual “dressed” energiegp) for the

—Zcosmn)J' o(AN)|2
a=1,... M, (12

El_o 1—cog2vj)cosh 7) unbound electron states anM(A) for the singlet pairs,
- /=1 coshn)—coq2v;) which satisfy the following integral equations:
M i H 1
sint?( ) 0o ol F_ -
—2cos 2— . (13 [v,7/2]—pu— 5==5—| dAO®'[v—A,7/2]¥(A)
m”)az SiF(A ) + sint?( 7) 13 2 2m
+e(v),

In the thermodynamic limifi.e., N,,N,M —o with the 1
ratiosN/N, andM/N, remaining fixedl we introduce densi- @'[A,n]_zﬂz_f dv®'[A—v,5/2]e(v)
ties for the rapiditiesp(v) and o(A), and their “holes” 2
pn(v) andoy(A). The Bethe equations satisfied by the den-

B 1
sities are + Zf dzO'[A—z,7]¥(2)+W(A),
L (18)
0'[v, 2]+ N—X(U)If dA®'[v—A,7/2]a(A) whereH is the external magnetic field andis the chemical
é potential of the electrondd and p are introduced as the
+2a[p(v)+pn(v)], Lagrange multipliers for the conservation of the magnetiza-

184422-4



SPECIFIC FEATURES OF A MAGNETIC IMPURITY ... PHYSICAL REVIEW B6, 184422 (2002

tion and the total number of electrons, respectively. All statesvhere theJ, are integerghalf-integers for odd (even M

with negative (positive dressed energy are populated +1, limited by J,.x, i.€.,

(empty. The bandss(v) and W(A) can form Dirac seas

with the filling beginning at the edges of the interval [Jol<(Ng—M—=1)/2=J - (22
[—,7], where the dressed energies have their minimum.

The integral equations for “dressed energies” do not dependhe ground state corresponds to two sequences of quantum

on the impurity. numbers],, belonging to the interval — Jmax, Imaxl, P€QIN-
The driving terms in Egs(14), i.e. the terms that do not ning at the edges of the interval, i.e5Jmax = JImax
explicitly depend onp and o, are either of order 1 or of +1,... and ...Jna— 1.Jmax With both sequences being

order 1N, . The terms of order 1 determine the behavior ofequally long. In the thermodynamic limit we have
the host, while the ones of orderNy drive the impurity.

Egs. (14) are linear integral equations, such that we may 1

Write p= phost (1Ng) pimp @nd o= aposet (1Ng) o, and O'TA, 7]+ Y(A)
obtain separate integral equations for the rapidity densities é

for the host and the impurity. =27m[o(A)+on(A)]

B. Properties + dz®'[A—2z,7]o(2). (23

*Ao m
J.]
The energy of the unbound electron states are gapped for o Ro

an eXtema| magnetic f|e|d IeSS than aCI’itical Va‘l‘l{e giVen Here AO p|ays the ro|e Of a Fermi point’ because in the
by ground state only states withe [ —7,— Ag]U[Ag, 7] are
1 filled. The wave functions of pairs are symmetfairs of
Ho=—2u+20"[m 7/2]— _f dA® ' [m—A, 2] (A). electrons form bosonsbut these bosons are hard-core ones,
™ satisfying an anyonlike exclusion statistics, as a consequence
(19 of the interactions among the pairs. Because they are hard-
In other wordsH, is one half of the minimal external mag- COré bosons the Cooper-pairs form a Dirac sea. 'Lhe param-
netic field necessary to depair a singlet bound state. If th&€" Ao IS related to the chemical potential via W (= Ao)

value of the external magnetic field is larger thdp, given ~ —0- The energy and the total number of electrons are now
by given by Eq.(17) with only the o density term integrated
over the occupied states.
He=—2u+20 [, 7/2], (20) The magnetization of the impurity is exacty for H

<H, for both, open or periodic, boundary conditions. This
the magnetization is maximal, i.e., saturated. At this Saturai-rnp"es that the Kondo effect is absent in the present model,
tion field the system undergoes a second order phase trangjye to the spin-gap induced by the Ising-likeasy-axis”)
tion into the ferromagnetic spin-polarized state, in whichmagnetic anisotropy. The low-lying excitations do not carry
there are no pairs because the “dressed” energy of boungpin, and, consequently, cannot couple to the §ito form
electrons is gapped. This behavior is similar to a type-Il suz magnetic moment of spi for H<H,. The valence, i.e.,
perconductor in a magnetic field: Fbr<H, there are only  the number of localized electrons at the impurity, varies with

Cooper-pairs, while foH.<H<Hj pairs and unbound elec- A (or ), from one atA,=0 (i.e., for a filled band or the
trons coexist, which is reminiscent of the Meissner effectmaximal number of conduction electron® zero for A,

Note, however, that in an one-dimensional electron gas there e, for an empty band of conduction electrons.
is no true superconducting order with off-diagonal long  Next we consider the situatidd,<H=H,, where both,
range order, but the correlation functions of the singlet pairginpound electrons and singlet pairs, have gapless low-lying
and/or unbound electrons fall off with power-laws for long excitations, i.e., form Dirac seas. The valence of the impurity
times and/or distances. Fét=H; it is straightforward to  again depends on the density of electrons, and, interestingly,
obtain the ground state energy. In the intermediate phasgyso on the external magnetic field. Due to the van Hove
Hc<H=<Hs, however, the ground state energy depends oRjngularity of the empty band of unpaired electron states, the
the filling of both Dirac seas. magnetization of the host is proportional tH—H, for

We first study the casel<H., wherls the ground state fie|dsH slightly larger tharH ... This feature is characteristic
consists only of singlet pairs (2=N)." In this case the f 5 Pokrovskii-Talapov level-crossing transition, which is

Bethe equations reduce to only one set of equations the analog of a second order phase transitions in one-
dimension. The magnetization of the impurity is driven by
1 the host
O[Aq 7]+ -OLA,— 0.(S +1)7] '
a
. LM Minp=S"+fs(6,7)VH—H,, (24)
=S dat g 2 O[A~Ag, 7], . _ .
Na Na 4=1 where fg(6,7n) is also a function of the band filling. The
magnetic susceptibility of the impurity has a square root sin-
a=1,... M, (21 gularity asH, is approached from above. This is also very
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different from the standard Kondo effect, where for spin the derivatives of the dressed energies with respect to the
the magnetic susceptibility of the impurity is finite for small rapidity at the Fermi point. The conformal dimensians of
magnetic fields. primary operators are

For open boundary conditions the magnetic susceptibility
of the impurity diverges as strongly as the magnetic suscep- . e N_ .
tibility of the open edges themselvéall inversely propor- AT =2t 4 Z,i(AN,—6,) f(r,l(ANp p)
tional to VyH—H_). This is also very different from the usual detz
behavior of a magnetic impurity in an open correlated elec- 2
tron chain with SW2) spin symmetry and gapless excita- S . T _
tions, where the magnetic susceptibility of the edges diverges #1215(AD=dy) +7 (AD, = dy)] |, (26)
(though logarithmically, while the one for an impurity of

spin S=; remains finite"** _ _wherei=p,o andn;" are the number of particle-hole exci-

With increasing magnetic field the population of the DiraCations at the right and left Fermi points of each of the Dirac
sea of singlet pairs gradually decreases unfilis reached, geas Here\N; denotes the change in the number of quasi-
which is the field at which the band is empty. For fields y5ticles in the Dirac sea antiD; represents the number of
larger than the saturation fields the magnetization of the packscattering excitation@article transfer from the left to
impurity is equal toM{,,=S' + (Njnp/2), Wherenin, is the  the right Fermi points
valence of the impurity.

For imaginary #, the Hamiltonian of the impurity if . . i
placed in thge bu|)|/<, i.e., not at the edge, is non-He?mi(t)i;e relations between the bands. The quantifigg are defined
energy eigenvalues are real, tholghhis is independent of S éix= —dex/dui, wheree,=e, e,=V, p,=p+(H/2)
the boundary conditionéopen or periodig In this case the @nNdus=2p. The integral equations satisfied by the compo-
incoming and reflecting waves of the electrons “see” two nents of¢ are obtained by differentiating the integral equa-
different effective spins of the impurity corresponding totions for the dressed energies, E@$8), with respect to
S'+16|.22 However, the Ising magnetic anisotropy of the .
model again suppresses any manifestation of the Kondo ef- The quantitiess; and d; renormalizeAN; and AD; be-
fect, since only the spin-singlet pairs are gapless Hor cause of the impurity and the free edges of an open dfirain
<H,, but cannot screen the effective spins of the impurity.the case of periodic boundary conditions external fluxes
For fields slightly larger thahi . the van Hove singularity of ~through the ring also contribute to these quantti&&e im-
the empty band of unbound electron states manifests itselpurity contributions are related to the valence and magneti-
rather than the weaker logarithmic Kondo singularities. ~ zation of the impurity and of the free edges of the chi@n

At finite but low temperatures the magnetic susceptibilitythe case of open boundary conditipnga the Friedel's sum
of the impurity (as well as the susceptibility of the edges of rule. Neither the Fermi velocities nor the matrix of dressed
an open chainis exponentially small forH<H, and H charges depend on the boundary conditions. Since the un-
>H,. At H=H, or Hg the magnetic susceptibility and the bound electrons are gapped fd<H., the Fermi velocity
Sommerfeld coefficient of the specific heat display TH€¢ v, and the elements of the dressed charge matrix related to
features corresponding to the van Hove singularities of théhe unbound electrons vanish.
empty bands. FoH,<H<H,, on the other hand, the mag-  Clearly, backscattering processes are absent for open
netic susceptibility is finite foS=% asT—0 and Curie-like boundary conditions and hen&;=d;=0, such that only
for S=1. The specific heat is proportional to the temperaturechiral excitations determine the physics in this case. For pe-

everywhere away from the van Hove singularities. riodic bound_ary conditions_ the phase shifts caused by exter-
nal magnetic and electric fluxe§Aharonov-Bohm and

Aharonov-Casher effef are taken into account withD;
—AD+ ¢; (¢,={{20/Do}},  and ¢, ={{P/Do}}
The mesoscopi¢finite sizg effects reveal the difference +{{F/Fy}}, where® is the magnetic flux¢y=hc/e is the
between periodic and open boundaries conditions. In thenit magnetic fluxF =47 is the electric flux generated by
gapless region, the correlation functions of operators asympa string passing through the center of the ring with linear
totically decay algebraically as a consequence of the loweharge densityr, Fo=hc/ ug is the unit electric flux,ug is
lying excitations. For periodic boundary conditions they arethe Bohr magneton, afda}} denotes the fractional part af

The dressed charge matx Elu=vO,A:A0 measures cor-

IV. MESOSCOPIC PROPERTIES

proportional t%2 to the nearest integefThe fluxes give rise to charge and spin
. - . persistent currents of the Aharonov-Bohm-Casher type in a
(X—=iv,t) "2 (X+iv,t) "2 (x—iv,t) 2o closed ring configuration. Fdd <H, there is no Aharonov-
- Casher effect, but only oscillations of the charge persistent
X (x+iv,t) e, (25  current of period®/2 due to the spin-singlet paifgharge

, : L —2e). For H.<H=<H,, on the other hand, there is an
wherev,=e'/2mp|,~,, [vo is the Fermi point for unbound 0 ference of Aharonov-Bohm oscillations in the charge
electron states, defined yf(*vo)=0 for H=H], andv,  persistent current with period#, and®,/2 and the spin per-
=W'/2ma|y -, are the Fermi velocities of unbound elec- sistent current displays Aharonov-Casher oscillations of
trons and spin-singlet pairs, respectively. HeteandW' are  periodF.
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V. CONCLUSIONS For open boundary conditions the edges in general also

In summary, we have studied the behavior of a magnetic?OntrIbUte to the magnetic susceptibility, e.g., for(@lspin

hybridization impurity in a strongly correlated electron hostSymmetry this contnbut_pn diverges, €., I zero.ﬁeld I IS
with a magnetic anisotropy of the “easy-axis” typee., larger than the susceptibility of a magnetic impurity of spin

Ising-like). The magnetic anisotropy of the Ising type gives S=3 (which is finite due to the Kondo effectHowever, the
rise to a gap for low-energy unbound electron states at smafiPin 9ap caused by the magnetic anisotropy suppresses the
external magnetic fields. magnetic susceptibility of edges fet<H.. The van Hove
The behavior of the magnetic impurity is determined bysingularity of the empty band of unpaired electrons gives rise
the properties of the host. The valence of the impurity varied0 a square root-divergent susceptibility of the edges and the
with the electron density from zero to offer the half-filled  impurity for H slightly aboveH., without revealing Kondo
case, similar to the situation of an impurity in theJ model  logarithms.
with SU(2) spin symmetry. Also, similarly to the isotropic- Of course, some of the features of this one-dimensional
exchange case, the effective spin of the impurity at very highmodel are not realistic to an experimental situation. For ex-
fields dynamically yieldsS' +(nj,/2) (cf. Refs. 7,11-18  ample, the square root van Hove singularity is a one-
i.e., the interaction changes the effective spin of the impuritydimensional property, but also appears in BCS-like density
However, due to the spin-gap of the host the impurity hasf states. However, we expect that the main properties of our
no Kondo effect in the usual sense. For fields smaller thagoe|ution, namely, the behavior of the magnetic susceptibility
the field necessary to close the spin-gap, the spin of the imsf the impurity in a host with spin gap at small external
purity is S', independent of the field and the valence. Formagnetic fields, are generic features for magnetic impurities

H>H, the impurity magnetization increases with field, indi- jn correlated electron hosts with the Ising-likeasy-axis”)
cating that there is partial screening of the impurity spin,magnetic anisotropy.

however, without the usual Kondo logarithms, characteristic
of asymptotic freedom in the SB)-symmetric gapless situ-
ation. In the present case, the van Hove singularity of the
empty band of unbound electrons gives rise to a square root
discontinuity in the properties and the weaker Kondo loga- P.S. acknowledges the support by the National Science
rithms are suppressed. In other words, the impurity behavioFoundation under Grant No. DMR01-05431 and the Depart-
is dominated by the gap. ment of Energy under Grant No. DE-FG02-98ER45797.
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