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Critical behavior of the two-dimensional N-component Landau-Ginzburg Hamiltonian
with cubic anisotropy
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We study the two-dimensionalN-component Landau-Ginzburg Hamiltonian with cubic anisotropy. We com-
pute and analyze the fixed-dimension perturbative expansion of the renormalization-group functions to four
loops. The relations of these models withN-color Ashkin-Teller models, discrete cubic models, the planar
model with fourth-order anisotropy, and the structural phase transition in adsorbed monolayers are discussed.
Our results forN52 (XY model with cubic anisotropy! are compatible with the existence of a line of fixed
points joining the Ising and theO(2) fixed points. Along this line the exponenth has the constant value 1/4,
while the exponentn runs in a continuous and monotonic way from 1 to` @from Ising to O(2)]. In the
four-loop approximation, forN>3 we find a cubic fixed point in the regionu,v>0.
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I. INTRODUCTION

In the framework of renormalization-group~RG! ap-
proach to critical phenomena, the critical behavior at ma
continuous phase transitions can be investigated by con
ering an effective Landau-Ginzburg Hamiltonian having
N-component order parameterf i as fundamental field and
containing up to fourth-order powers of the field comp
nents. The fourth-degree polynomial form of the poten
depends essentially on the symmetry of the system. In
according to the universality hypothesis, the critical prop
ties of these systems can be described in terms of quan
that do not depend on the microscopic details of the syst
but only on global properties such as the dimensionality
the symmetry of the order parameter and the range of
interactions.

The critical properties of many magnetic materials a
computed using theO(N)-invariant Landau-Ginzburg
Hamiltonian. Uniaxial ferromagnets should be described
the Ising universality class (N51), while magnets with
easy-plane anisotropy should belong to theXY universality
class. Ferromagnets are often described in terms of theO(3)
Hamiltonian. However, this is correct if the nonrotationa
invariant interactions that have only the reduced symme
of the lattice are irrelevant in the renormalization-gro
sense. In two dimensions the effect of anisotropy is v
important: systems possessing continuous symmetry do
exhibit conventional long-range order at finite temperatu
while models with discrete symmetry do undergo phase tr
sitions into conventionally ordered phase.

For studying the effect of cubic anisotropies one usua
consider thef4 theory:1,2

H5E ddxH 1

2 (
i 51

N

@~]mf i !
21rf i

2#

1
1

4! (
i , j 51

N

~u01v0d i j !f i
2f j

2J , ~1!
0163-1829/2002/66~18!/184410~13!/$20.00 66 1844
y
id-

-
l
ct
-
ies

,
d
e

e

y

y

y
ot
,

n-

y

in which the added cubic term breaks explicitly theO(N)
invariance, leaving a residual discrete cubic symmetry giv
by the reflections and permutations of the field componen3

This term favors the spin orientations towards the faces
the corners of anN-dimensional hypercube forv0,0 or v0

.0, respectively.
The Hamiltonian~1! has received much attention also b

cause it describes the two-dimensional order-disorder tra
tion in some adsorbed monolayers. In fact, in the origi
classification4 on square and rectangular lattices, all the
transitions belong to the universality class of the Isi
model, three- or four-state Potts model, andXY model with
cubic anisotropy. The Heisenberg~N53! model with cubic
anisotropy describes instead such transitions in non-Bra
lattices,5 as the honeycomb and kagome´ ones ~e.g., in the
adsorption of diatomic molecules on graphite!. The full clas-
sification of continuous phase transitions of magnetic sy
metry in two dimensions6 reveals the interest of model~1!
also for other kind of transitions.

An important application of theXY model with cubic
anisotropy is in the oxygen ordering in YBaCu3O61x ,7,8

since it is one of the most studied high-temperature sup
conductors. Some other applications of Landau-Ginzb
Hamiltonian ~1! are the buckling instabilities of a confine
colloid crystal layer,9 some discrete models with competin
nearest- and next-nearest-neighbor interactions,10 and, very
recently,11 it is argued that the phase diagram of a lattice-g
model for studying the micellar binary solution of water a
ampliphile is partially described by theXY model with cubic
anisotropy.

We also mention that, in the limitN→0, the cubic model
~1! describes the Ising model with site-diluted disorder,12–14

but we do not consider it here, since in the framework
fixed dimensiond52 it was already analyzed in Ref. 15.

In this paper we present a field-theoretic study based
an expansion performed directly in two dimensions, as p
posed for theO(N) models by Parisi.16

The paper is organized as follows. In Sec. II we give
overview of all known results that we believe necessary fo
©2002 The American Physical Society10-1
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PASQUALE CALABRESE AND ALESSIO CELI PHYSICAL REVIEW B66, 184410 ~2002!
full understanding of the two-dimensional cubic model~1!.
In Sec. III we derive the perturbative series for th
renormalization-group functions at four loops and discuss
singularities of the Borel transform. The results of the ana
sis are presented in Sec. IV. The reader who is not intere
in the details of the calculations can skip Secs. III and IV a
read directly Sec. V where we summarize all our results a
point out some questions which we think deserve furth
study.

II. OVERVIEW OF KNOWN RESULTS

A. Three-dimensional results

We shortly review the most interesting features appear
in the study of the Hamiltonian~1! in the framework of ane
expansion17,1 and at fixed dimensiond53,18 since they are
necessary for a good understanding of the two-dimensio
case.

The model~1! has four fixed points: the trivial Gaussia
one, the Ising one in which theN components of the field
decouple, and theO(N)-symmetric and cubic fixed points
The Gaussian fixed point is always unstable and so is
Ising fixed point.19 Indeed, in the latter case, it is natural
interpret Eq.~1! as the Hamiltonian ofN Ising-like systems
coupled by theO(N)-symmetric term. But this interaction is
the sum of the products of the energy operators of the dif
ent Ising systems. Therefore, at the Ising fixed point,
crossover exponent associated with theO(N)-symmetric
quartic term should be given by the specific-heat critical e
ponenta I of the Ising model, independently ofN. Sincea I is
positive for alld.2, the Ising fixed point is unstable. Obv
ously in two dimensions this argument fails sincea I50.

While the Gaussian and Ising fixed points are unstable
any number of componentsN, the stability properties of the
O(N)-symmetric and of the cubic fixed points depend onN.
For sufficiently small values of N, N,Nc , the
O(N)-symmetric fixed point is stable and the cubic one
unstable. For N.Nc , the opposite is true: the
renormalization-group flow is driven towards the cubic fix
point, which now describes the generic critical behavior
the system. TheO(N)-symmetric point corresponds to a tr
critical transition. Figure 1 sketches the flow diagram in t
two casesN,Nc and N.Nc . At N5Nc , the two fixed
points should coincide, and logarithmic corrections to t

FIG. 1. Renormalization-group flow in the coupling plane (u,v)
for N,Nc andN.Nc .
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O(N)-symmetric critical exponents are expected. Outs
the attraction domain of the fixed points, the flow goes aw
towards more negative values ofu and/or v and finally
reaches the region where the quartic interaction no lon
satisfies the stability condition. These trajectories should
related to first-order phase transitions.20 Some recent and
very accurate calculations18,21–29 suggest that in three
dimensionsNc,3.

If N.Nc , the cubic anisotropy is relevant and therefo
the critical behavior of the system is not described by
Heisenberg isotropic Hamiltonian. If the cubic interactio
favors the alignment of the spins along the diagonals of
cube—i.e., for a positive couplingv0—the critical behavior
is controlled by the cubic fixed point and the cubic symme
is retained even at the critical point. On the other hand, if
system tends to magnetize along the cubic axes—this co
sponds to a negative couplingv0—then the system under
goes a first-order phase transition.1,30–32

In the limit N→`, keepingNu and v fixed, one can
derive exact expressions for the exponents at the cubic fi
point for all dimensions. Indeed, in this limit the model ca
be reinterpreted as a constrained Ising model,33 leading to a
Fisher renormalization of the Ising critical exponents.34 One
has35,33,1

h5h I1OS 1

ND , n5
n I

12a I
1OS 1

ND , ~2!

whereh I , n I , anda I are the critical exponents of the Isin
model.

In all dimensions, a simple argument based on the sy
metry of the two-component cubic model36 shows that the
cubic fixed point forN52 has the same stability propertie
of the Ising one. Indeed, forN52, a p/4 internal rotation,
i.e.,

~f1 ,f2!→ 1

A2
~f11f2 ,f12f2!, ~3!

maps the cubic Hamiltonian~1! onto a new one of the sam
form but with new couplings (u08 ,v08) given by

u085u01
3

2
v0 , v0852v0 . ~4!

This symmetry maps the Ising fixed point onto the cubic o
So for all d.2, since the Ising point is unstable, the cub
point is unstable too, and the stable point is the isotropic o
In two dimensions, this is no longer true. Indeed, one expe
the cubic interaction to be truly marginal forN52 ~Refs. 37
and 38! and relevant forN.2, ~Ref. 39! so Nc52 in two
dimensions.

B. Two-dimensional case

As is already clear from the previous subsection, in t
dimensions several new and interesting features appear.
of all we have no general argument to understand the sta
ity properties of the Ising fixed point; in fact the specific he
of the two-dimensional Ising model has a logarithmic dive
0-2
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CRITICAL BEHAVIOR OF THE TWO-DIMENSIONAL N- . . . PHYSICAL REVIEW B 66, 184410 ~2002!
gence ~i.e., a I50). The vanishing of this crossove
exponent—and so the presence of a marginal operator—
bring us to several different scenarios. For example we m
have that the Ising fixed point is marginally stable or u
stable because of higher-order corrections to RG equation
that there exists a line of fixed points~see Ref. 40 for a
detailed review about the effects of marginal operators!.

When the cubic anisotropy becomes marginal~at N5Nc
52),39 the cubic fixed point is in the region withv,0 @cf.
Eq. ~4!#, and so it cannot coincide with theO(N) one, as in
the case of 3 and 42e dimensions.

There are several studies on systems related to Lan
Ginzburg Hamiltonian~1!. In Ref. 37 the model

H5 (
^r ,r8&

JS~r !S~r 8!1(
r

hpcospu~r ! ~5!

was considered, where the first sum is only over nea
neighbors andu(r ) is the angle that the two-component sp
S(r ) forms with some arbitrary axis. This system clea
belongs to the same universality class of theXY model with
cubic anisotropy ifp54 ~the ‘‘field’’ h4 maps ontov0).

The phase diagram found in Ref. 37 consists of th
distinct lines of fixed points showing continuously varyin
exponents. The line withh450 is the standard Kosterlitz
Thouless~KT! one.41 There are two lines withh4Þ0, start-
ing from the KT transition~the end point of the KT line! and
continuing to infinitely—positive or negative—large valu
of h4. They map onto each other with changing the sign
h4. The latter are lines of second-order phase transitions w
conventional power-law singularities characterized byh
51/4. The exponentn diverges at the confluence of the
critical lines as

n;
1

uh4u
~6!

when h4→0. For this reason it is often said that theXY
model with cubic anisotropy has a nonuniversal behav
although there is the so-called weak universality of Suzu42

~i.e., h is constant!.
In a successive work Kadanoff43 identifies the two fixed-

point lines forh4Þ0 with the dual line of the Ashkin-Telle
~AT! and the eight-vertex Baxter model~8V! ~see the Baxter
book44 for a review about these models!. One remark is nec-
essary at this point: the AT and the 8V models are equiva
on the dual line44 and they show a continuously varying e
ponent of the correlation length:

n5
22y

322y
, ~7!

wherey is a parameter that appears in the Hamiltonians
fined in the range@0,4/3# for the AT ~Ref. 45! and@0,2# for
the 8V ~Ref. 44!. The O(2) multicritical point identified by
Kadanoff is the F-model limit of the 8V that is characteriz
by y53/2, allowed for the 8V but forbidden for the AT.

Another class of models related to the Landau-Ginzb
Hamiltonian ~1! is the discrete-cubic N-component
model.30,46–50 It is a short-range interacted system wi
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N-component spinsSi pointing to the faces of an
N-dimensional hypercube~face-centered-cubic model!. The
Hamiltonian may be written as

H5(
^ i , j &

~Cdai ,aj
sisj1Pdai ,aj

!, ~8!

whereai is a Potts-like variable that determines which co
ponent ofSi is nonzero andsi an Ising variable that deter
mines the sign of that component. ForP50 the Hamiltonian
~8! reduces to the 2N-state Potts model forC50 to two
decoupledN-state Potts models, and forN52 to the AT
model. The continuous cubic model~1! reduces to the dis-
crete one~8! in the limit of strong anisotropy (uvu@uuu). In
Ref. 48 it is shown that the iteration of RG transformatio
enforces the continuous model, withv0,0, to have spins
pointing only to the faces of the hypercube, and so, also
finite anisotropy, the two models are equivalent at critical
The model ~8! exhibits four competing possible types o
critical behavior, related to the Ising model, theN and
2N-state Potts models, and to a ‘‘cubic’’ fixed point. In Ref
49 and 50 it was found that the critical behavior of the d
crete face-centered-cubic model isO(N) like for N,Nc
52, AT-like for N52, and characterized by a first-orde
phase transition forN.2. This result is not surprising sinc
the model~8! is related to~1! in the region withv0,0 where
we expect a first-order phase transition forN.Nc52 and
O(N) behavior forN,2.

In the region withv0.0 the continuous model~1! is re-
lated to the corner-cubic model in whichN-component spins
Si point to the corners of anN-dimensional hypercube. Thi
model is equivalent to the face-centered one forN52 @this is
the symmetry~4! for the Hamiltonian~1! and the changing
of the sign ofh4 for ~5!#. For other values ofN the critical
behavior of the face-centered- and the corner-cubic mode
in principle very different.

This difference is clarified by the study ofN-color
Ashkin-Teller model, first introduced by Grest and Widom51

which is equivalent to the corner-cubic model. The Ham
tonian of this model reads

H52(
^ i , j &

FJ(
a51

N

si
asj

a1J4S (
a51

N

si
asj

aD 2G , ~9!

wheresi
a561 for a51, . . . ,N areN Ising variables and the

sum is only over nearest-neighbors@the sign ofJ4 is the
opposite ofu0 in Eq. ~1!#. In Ref. 51 it is concluded that the
order J4

2 in the RG equations makes the decoupled Is
fixed point stable for perturbations withJ4,0 (u0.0) and
unstable forJ4.0 (u0,0). In the latter case the system
flows away towards more negative values ofu and finally the
transition is first order. This has been confirmed51 by a Monte
Carlo simulation forN53. This argument was proved ex
actly in theN→` limit.52,53 After, using a mapping of the
Hamiltonian~9! onto theO(N) Gross-Neveu model54 it was
argued54–57 that the critical behavior of the Ising fixed poin
is affected by logarithmic corrections.

Finally the three couplings (N,2) model of Domany and
Riedel48 @equivalent forN53 to theZ(6) model58# reduces
0-3
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PASQUALE CALABRESE AND ALESSIO CELI PHYSICAL REVIEW B66, 184410 ~2002!
to theN-component discrete cubic model, for particular v
ues of the parameters entering in the Hamiltonian. The mo
~3,2! was studied in Refs. 48 and 58 with the Migda
Kadanoff renormalization-group~MKRG! approach. Unfor-
tunately the MKRG approach is expected to give neit
precise values of the exponents nor the correct nature o
transition, but only a good description of the phase diagr

C. Order-disorder transition in adsorbed monolayers

We have already mentioned that the Hamiltonian~1! de-
scribes some order-disorder transitions in adsorbed mono
ers. The great interest in these models is justified since
provide a unique possibility to study experimentally a ri
variety of two-dimensional systems.

Several experimental works have confirmed that th
transitions belong to the universality class of the Ising,59–61

the three-62,63 and four-state Potts models,64,63 and theXY
model with cubic anisotropy,65–68 according to their
classification.4–6 Monte Carlo simulations and other nume
cal works confirm this scenario.69–71

According to the standard classification, the critical b
havior of the order-disorder transition of diatomic molecu
on a honeycomb lattice in thep(231) structure is described
by the N53 cubic model.5,48 The experimental
investigation72 of oxygen on Ru~001! shows that this transi
tion has critical exponents in agreement with the three-s
Potts model within about 10%. Several numerical simu
tions ~after the first ones favoring a first-order pha
transition73,74! confirm this critical behavior.75,76So it may be
possible that a fixed point of the Heisenberg model w
cubic anisotropy has the critical behavior of the three-s
Potts model.

We want still to note the possibility for systems havin
exponents close to the four-state Potts model, to belon
the universality class of theXY model with cubic anisotropy
and residing near the four-state Potts transition character
by y50.

III. FIXED-DIMENSION PERTURBATIVE EXPANSION
IN TWO DIMENSIONS

A. Renormalization of the theory

The fixed-dimension field-theoretical approach16 repre-
sents an effective procedure in the study of the critical pr
erties of systems belonging to theO(N) universality class
~see, e.g., Ref. 77!. The idea is to extend this procedure
models where there are twof4 couplings with different
symmetry.22,18 One performs an expansion in powers of a
propriately defined zero-momentum quartic couplings a
renormalizes the theory by a set of zero-momentum co
tions for the ~one-particle irreducible! two-point and four-
point correlation functions:

Gab
(2)~p!5dabZf

21@m21p21O~p4!#, ~10!

Gabcd
(4) ~0!5Zf

22m2Fu

3
~dabdcd1dacdbd1daddbc!

1vdabdacdadG . ~11!
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They relate the second-moment massm and the zero-
momentum quartic couplingsu and v to the corresponding
Hamiltonian parametersr, u0, andv0:

u05m2uZuZf
22 , v05m2vZvZf

22 . ~12!

In addition, one introduces the functionZt defined by the
relation

Gab
(1,2)~0!5dabZt

21 , ~13!

whereG (1,2) is the ~one-particle-irreducible! two-point func-
tion with an insertion of12 f2.

From the pertubative expansion of the correlation fun
tions G (2), G (4), andG (1,2) and the above relations, one d
rives the functionsZf(u,v), Zu(u,v), Zv(u,v), andZt(u,v)
as a double expansion inu andv.

The fixed points of the theory are given by the comm
zeros of theb functions

bu~u,v !5m
]u

]m
uu0 ,v0

,

bv~u,v !5m
]v
]m

uu0 ,v0
. ~14!

The stability properties of the fixed points are controlled
the eigenvaluesv i of the matrix

V5S ]bu~u,v !

]u

]bu~u,v !

]v

]bv~u,v !

]u

]bv~u,v !

]v
,
D ~15!

computed at the given fixed point: a fixed point is stable
both eigenvalues are positive. The eigenvaluesv i are related
to the leading scaling corrections, which vanish asj2v i

;utuD i whereD i5nv i .
One also introduces the functions

hf~u,v !5
] ln Zf

] lnm U
u0 ,v0

5bu

] ln Zf

]u
1bv

] ln Zf

]v
, ~16!

h t~u,v !5
] ln Zt

] ln m U
u0 ,v0

5bu

] ln Zt

]u
1bv

] ln Zt

]v
. ~17!

Finally, the critical exponents are obtained from

h5hf~u* ,v* !, ~18!

n5@22hf~u* ,v* !1h t~u* ,v* !#21, ~19!

g5n~22h!, ~20!

where (u* ,v* ) is the position of the stable fixed point.

B. Four-loop series

In this section we present the perturbative expansion
the RG functions~14!, ~16!, and ~17! up to four loops. The
diagrams contributing to the two-point and four-point fun
tions are reported in Ref. 78. We do not calculate the in
0-4
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grals associated with each diagram, but we use the nume
results compiled in Ref. 78. Summing all contributions w
the right symmetry and group factors~see Ref. 18! we obtain
all RG functions.

The results are written in terms of the rescaled coupli

u[
8p

3
RNū, v[

8p

3
v̄, ~21!

whereRN59/(81N). We adopt this rescaling to have finit
fixed-point values in the limitN→`.

The resulting series are

b̄ ū52ū1ū21
2

3
ūv̄1ū (

i 1 j >2
bi j

(u)ūi v̄ j , ~22!

b̄ v̄52 v̄1 v̄21
12

81N
ūv̄1 v̄ (

i 1 j >2
bi j

(v)ūi v̄ j , ~23!

hf5 (
i 1 j >2

ei j
(f)ūi v̄ j , ~24!

h t52
2~21N!

~81N!
ū2

2

3
v̄1 (

i 1 j >2
ei j

(t)ūi v̄ j , ~25!

where

b̄ ū5
3

16p
R2N

21bu , b̄ v̄5
3

16p
R2N

21bv . ~26!

The coefficientsbi j
(u) , bi j

(v) , ei j
(f) , and ei j

(t) are reported in
Tables I, II, III, and IV. Note that due to the rescaling~26!,
the matrix elements ofV are 2 times the derivative ofb̄ with
respect toū and v̄.

We have verified the exactness of our series by the
lowing relations.

~i! b̄ ū(ū,0), hf(ū,0), andh t(ū,0) reproduce the corre
sponding functions of theO(N)-symmetric model.79,80

TABLE I. The coefficientsbi j
(u) ; cf. Eq. ~22!.

i , j (N18)ibi j
(u)

2,0 2(10.3350N147.675)
1,1 28.390 29
0,2 20.216 08

3,0 524.3771149.152N15.000 28N2

2,1 144.81317.277 55N
1,2 10.010910.058 3278N
0,3 0.231 566

4,0 2(7591.10812611.15N1179.697N210.088 842 7N3)
3,1 2(2872.091291.255N20.126 814N2)
2,2 2(330.59915.970 86N)
1,3 2(16.055910.057 895 5N)
4,0 20.311 695
18441
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~ii ! b̄ v̄(0,v̄), hf(0,v̄), andh t(0,v̄) reproduce the corre
sponding functions of the Ising-like (N51) f4 theory.

~iii ! The following relations hold forN51:

b̄ ū~u,x2u!1b̄ v̄~u,x2u!5b̄ v̄~0,x!, ~27!

hf~u,x2u!5hf~0,x!,

h t~u,x2u!5h t~0,x!.

~iv! For N52, using the symmetry~3! and~4!, and taking
into account the rescalings~21!, one can easily obtain the
identities

b̄ ūS ū1
5

3
v̄,2 v̄ D1

5

3
b̄ v̄S ū1

5

3
v̄,2 v̄ D5b̄ ū~ ū,v̄ !,

b̄ v̄S ū1
5

3
v̄,2 v̄ D52b̄ v̄~ ū,v̄ !,

TABLE III. The coefficientsei j
(f) ; cf. Eq. ~24!.

i , j (N18)iei j
(f)

2,0 0.917 086 (N12)
1,1 0.611 391
0,2 0.033 966

3,0 20.054 609 (N12)(N18)
2,1 20.054 609 (N18)
1,2 20.054 609
0,3 20.002 023

4,0 (N12)(26.767614.241 78N20.092 684N2)
3,1 27.690115.6557N20.123579N2

2,2 5.404 24310.132 800N
1,3 0.410 151
0,4 0.011 393

TABLE II. The coefficientsbi j
(v) ; cf. Eq. ~23!.

i , j (N18)ibi j
(v)

2,0 2(92.683415.834 17N)
1,1 217.392
0,2 20.7161 74

3,0 1228.631118.504N21.831 56N2

2,1 358.88212.847 58N
1,2 31.4235
0,3 0.930 766

4,0 2(20 723.112692.0N125.4854N210.824 655N3)
3,1 2(8273.281233.78N20.574 757N2)
2,2 2(1134.811.914 02N)
1,3 268.4022
0,4 21.582 39
0-5
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hfS ū1
5

3
v̄,2 v̄ D5hf~ ū,v̄ !,

h tS ū1
5

3
v̄,2 v̄ D5h t~ ū,v̄ !. ~28!

These relations are exactly satisfied by our four-loop ser
Note that, since the Ising fixed point is (0,gI* ) and gI* is
known with very high precision from Ref. 81,

gI* 51.7543637~25!, ~29!

the above symmetry gives us the location of the cubic fix

point (5
3 gI* ,2gI* ).

~v! In the large-N limit the critical exponents of the cubi
fixed point are related to those of the Ising model:h5h I and
n5n I . One can easily see that, forN→`, hf(u,v)
5h I(v), whereh I(v) is the perturbative series that dete
mines the exponenth of the Ising model. Therefore, the firs
relation is trivially true. On the other hand, the second re
tion n5n I is not identically satisfied by the series and
verified only at the critical point.18

~vi! For N50 the series reproduce the results of Ref.

C. Resummations of the series

The field-theoretic perturbative expansion genera
asymptotic series that must be resummed to extract
physical information about the critical behavior of the re
systems.

Exploiting the property that these series are Borel su
mable forf4 theories in two and three dimensions,82 one can
resum these perturbative expressions considering the B
transform combined with a method for its analytical exte
sion. In the case of theO(N), symmetric model with only a
coupling g, all perturbative series are of the formF(g)
5( f kg

k. Exploiting the knowledge of the large order beha
ior of the coefficientsf k ~Ref. 77!,

f k;k! ~2a!kkb@11O~k21!# with a521/gb ~30!

TABLE IV. The coefficientsei j
(t) ; cf. Eq. ~25!.

i , j (N18)iei j
(t)

2,0 6.751 258 (N12)
1,1 4.500 839
0,2 0.250 047

3,0 2(96.7105165.1686N18.406 68N2)
2,1 2(48.355318.406 68N)
1,2 2(6.190 2310.116656N)
0,3 20.233 588

4,0 1135.051844.5N1139.656N210.583 377N3

3,1 756.6971184.652N10.777 836N2

2,2 149.467 58417.553 459N
1,3 11.515 39710.115 791N
0,4 0.323 089
18441
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~a large-order behavior related to the singularitygb of the
Borel transform closest to the origin!, one can perform the
mapping83

y~g!5
A12g/gb21

A12g/gb11
~31!

to extend the Borel transform ofF(g) to all positive values
of g. The singularitygb depends only on the considere
model and can be obtained from a steepest-descent cal
tion in which the relevant saddle point is a finite-energy s
lution ~instanton! of the classical field equations with neg
tive coupling.84,85 Instead the coefficientb depends on which
Green’s function is considered.

Note that the functionF(g) can be Borel summable onl
if there are no singularities of the Borel transform on t
positive real axis.

This resummation procedure has worked successfully
theO(N)-symmetric theory, for which accurate estimates
the critical exponents and other physical quantities have b
obtained.83,86,87

For this reason we want to extend the resummation p
cedure cited above to multicoupling models, as has b
done for the three-dimensional cubic model18,80 and for the
frustrated system with noncollinear order in tw
dimensions.88 Considering a double expansion inū and v̄ at
fixed z5 v̄/ū and studying the large-order behavior~follow-
ing the same procedure used in Refs. 18 and 88! of the new
expansion in powers ofū to calculate the singularity of the
Borel transform closest to the originūb we have

1

ūb

52a~RN1z! for 0,z,

1

ūb

52aS RN1
1

N
zD for 0.z.2

2NRN

N11
, ~32!

wherea50.238 659 217 . . . .
Note that the series in powers ofū keepingz fixed is not

Borel summable forū.0 andz,2RN . This fact will not be
a real limitation for us, since we will only consider values
z such thatūb,0. It should be noted that these results do n
apply to the caseN50. Indeed, in this case, additional sin
gularities in the Borel transform are expected.89,90

The exponentb in Eq. ~30! is related to the number o
symmetries broken by the classical solution.85 It depends on
the quantity considered. In the cubic model, forvÞ0, we
haveb52 for the functionhf , andb53 for theb functions
and h t . For v50, we recover the results of th
O(N)-symmetric model—that is,b5(31N)/2 for hf and
b5(51N)/2 for theb function andh t .83

Good estimates of the critical exponent could be obtain
also using a Pade´ Borel analysis of the series, as shown
the case of the two-dimensionalO(N) models79,80 and the
random Ising model.15

An important issue in the fixed-dimension approach
critical phenomena~and in general of all the field-theoretica
0-6
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CRITICAL BEHAVIOR OF THE TWO-DIMENSIONAL N- . . . PHYSICAL REVIEW B 66, 184410 ~2002!
methods! concerns the analytic properties of theb functions.
As shown in Ref. 91 for theO(N) model, the presence o
confluent singularities in the zero of the perturbativeb func-
tion causes a slow convergence of the resummation of
perturbative series to the correct fixed point value. TheO(N)
two-dimensional field-theory estimates of physic
quantities83,80 are less accurate than the three-dimensio
ones, due to the stronger nonanalyticities at the fix
point.91–94 In Ref. 91 it is shown that the nonanalytic term
may cause large imprecisions in the estimate of the expo
related to the leading correction to the scalingv; instead the
result for the fixed point value is a rather good approxim
tion of the correct one~if one compare the field-theoretica
results for the four-point renormalized coupling in theg
expansion80 and in thee expansion94,95 with the estimates of
other nonperturbative methods,81,96,97one finds that the sys
tematic error is always less than 10%!. The nonanalyticities
also have a strong influence in the resummation of the c
cal exponents of theO(N) models~compare the five-loop
results of Ref. 80 with the exact ones98!. We think that this
scenario holds also for the cubic models.

IV. FOUR-LOOP EXPANSION ANALYSIS

A. Analysis method

In order to study the critical properties of the continuo
anisotropic cubic model~1!, we use two different resumma
tion procedures: the Pade´-Borel method and the conforma
mapping of the Borel-transformed series.

Explicitly, let us consider anl-loop series inū and v̄ of
the form

R~ ū,v̄ !5 (
k50

l

(
h50

l 2k

Rhkū
hv̄k5 (

k50

l

Rk~z!ūk, ~33!

whereR is one of the RG functions andz is the ratiov̄/ū that
we will consider always fixed to the same value. In th
manner we have an asymptotic series of only one variablū,
depending on the additional parameterz, which has to run
from 0 to ` in order to reproduce all the quadrants wi
ū,v̄>0. In order to use a variable defined in a finite ran
we set

z5
v̄

ū
5tan

p

2
x5tan

p

2

k

Nmax
, ~34!

wherexP@0,1# andk is an integer running from 0 toNmax
~we will fix Nmax525).

In the Pade´-Borel method we consider the Pade´ approxi-
mants@L/M # of the Borel-Leroy transform ofR(ū,z). Ex-
plicitly the approximants ofR are

E~R!~L,M ,b;ū,z!5E
0

`

dt tbe2t
NL~ ūt,z!

DM~ ūt,z!
, ~35!

whereNL andDM are two polynomials of degreeL andM,
respectively, withL1M< l , which are determined by th
18441
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condition that the expansion ofE(R)(L,M ,b;ū,z) in powers
of ū give R(ū,z) to orderL1M .

In this manner we have several approximants of the fu
tion R(ū,v̄) with varying the three parametersb,L, andM.
As usual in this case80 the best estimates of the resumm
function are given by the diagonal and near-diagonal
proximants~i.e., for our four-loop series we have three re
sonable choices@2,2#, @3,1#, and@2,1#). Then we search for
the value ofb ~calledbopt), integer or half-integer, minimiz-
ing the differences between the considered approximant
reasonable estimate will be the mean value ofE(bopt ,L,M )
on all values ofL andM considered. Then we could take th
error bar proportional to the deviations from the mean va
of all the approximants withbopt21<b<bopt11 ~always
considering integer and half-integer values ofb).

In the analysis using the conformal-mapping method
essentially follow the procedure used in Ref. 18. We exp
the knowledge of the value of the singularity of the Bor
transform closest to the origin~a value given in the previous
section!, and we generate a set of approximants to o
asymptotic series, varying the two parametersa and b ap-
pearing in

E~R!p~a,b;ū,z!5 (
k50

l

Bk~a,b;z!

3E
0

`

dt tbe2t
y~ ūt;z!k

@12y~ ūt;z!#a
, ~36!

where

y~x;z!5
A12x/ūb~z!21

A12x/ūb~z!11
. ~37!

The coefficientsBk are determined by the condition that th
expansion ofE(R)p(a,b;ū,z) in powers of ū and v̄ give
R(ū,v̄) to orderl.

The procedure to choose the range of the parametea
andb used to find good estimates and reasonable error
of the various quantities is the same of Ref. 18.

B. Stability properties of the O„N… and the Ising fixed points

First of all, we analyze the stability properties of th
O(N)-symmetric fixed point. Since

]b v̄

]ū
~ ū,0!50, ~38!

the eigenvalues are simply

v152
]b̄ ū

]ū
~ ū* ,0!, v252

]b̄ v̄

] v̄
~ ū* ,0!, ~39!

whereū* is the fixed-point value of theO(N) vector model
of which accurate estimates are available from the five-lo
analysis of Ref. 80. The exponentv1 is the usual exponent o
the O(N)-symmetric theory77 that gives the first correction
0-7
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PASQUALE CALABRESE AND ALESSIO CELI PHYSICAL REVIEW B66, 184410 ~2002!
to the scaling. For allN.2 it is known thatv1 assumes the
constant value 2~see Ref. 91 and references therein!. Instead
v2 is the eigenvalue that determines the stability of the fix
point respect to an anisotropic cubic perturbation.

In Table V we report the results forv2 for several values
of N. It is quite evident that theO(N) fixed point is unstable
for N>3 ~we note that for smallN these values are ver
close to zero!. In the limit N→` it holds v2522. For N
52 our result is compatible with the presence of a margi
operator, i.e.,v250.

Then we focus our attention on the stability properties
the Ising fixed point. Also in this case the eigenvalues
simply

v152
]b̄ v̄

] v̄
~0,v̄* !, v252

]b̄ ū

]ū
~0,v̄* !, ~40!

where v̄* is the fixed-point value of the Ising model~29!.
The exponentv1 gives the correction to the scaling of th
Ising model and it should be equal to 7/4,91 while v2 is the
eigenvalue determining the stability of this fixed point. W
find that the seriesv2( v̄) is independent ofN ~we already
know that its fixed-point value must be equal toa I
for all N):

v2
I ~ v̄ !

2
5211

2

3
v̄20.2161v̄210.23157v̄320.31169v̄4.

~41!

The fixed-point value of this exponent isv2
I /2

520.10(5), using the conformal-mapping method, an
20.08(5), using the Pade´-Borel analysis. These values a
quite close to2a I50; we attribute this small discrepancy
the presence of nonanalyticities at the zero of theb̄ v̄ . To
support this thesis we note that the value ofv2/2 is approxi-
mately the same of the resummation of the exponent2a I
520.081 found in Ref. 80.

C. Evaluation of nontrivial fixed points

Since the Ising fixed point has always a marginal opera
and theO(N) is unstable forN>3, we search for the pres
ence of nontrivial fixed points in the regionū,v̄.0.

Let us consider first the caseN52. The curves of the
zeros of b ū and b v̄ are parallel and very close. Name
(ū1

z ,v̄1
z) the location of the zero ofb ū at fixedk @cf. Eq.~34!#

and (ū2
z ,v̄2

z) the same forb v̄ , we report in Fig. 2 the quan

TABLE V. Half of the exponentv2 at theO(N) fixed point. CM
is the value obtained using conformal mapping technique and
the one using the Pade´-Borel method.

N uO(N)* CM PB

2 1.80~3! 0.03(3) 0.06(4)
3 1.75~2! 20.08(3) 20.07(3)
4 1.70~2! 20.18(4) 20.17(5)
8 1.52~1! 20.45(5) 20.44(6)
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z1 v̄ i

z , with their error bars, as a function ofk

~note that, at fixedk, ūi
z and v̄ i

z are not independent!. This
figure clearly shows that the two lines of zeros are indist
guishable within their error bars. So our result is consist
with the presence of the line of fixed points conjectured
Kadanoff,43 joining the decoupled Ising and theO(2) fixed
points. In the Kadanoff identification this line of fixed poin
is the dual line of the 8V model in the region that goes fro
the F-model limit@O(2) multicritical point withy53/2] to
the decoupled Ising point (y51). This line of fixed points is
identifiable with the one of Ref. 37 withh4,0.

For the symmetry~4! the fixed-point line continues fo
negativev̄ and reaches the ‘‘cubic’’ fixed point~which in this
case is a standard Ising! located at (5/3gI* ,2gI* ). This sec-
ond line is the one of Ref. 37 withh4.0, which is isomor-
phic to the other one withh4,0. We do not know if the line
continues in the region with negativeū, which may be a
region of second-order phase transitions, having the crit
exponent of the 8V model withy,1 ~only for v.2u, from
the stability condition!. We tried to perform the resummatio
also for these values ofū,v̄ but we obtained strongly oscil
lating results.

For N.2 the two curves of zeros seem to intersect. F
example, the results of the conformal-mapping analysis
N53 are shown in Fig. 3~the error bars are not shown t
make the figure more readable!. All the results about the
cubic fixed points are summarized in Table VI. We note th
within the error bar, there is full agreement between the t
methods.99

In the limit N→` the seriesb̄ ū(ū,v̄) and b̄ v̄(ū,v̄) sim-
plify to

b̄ v̄~ ū,v̄ !→b̄ Ising~ v̄ !, ~42!

b̄ ū~ ū,v̄ !→ū@P1~ v̄ !2ūP2~ v̄ !#, ~43!

with

B

FIG. 2. Sum of the coordinates of the zeros of theb functions
for N52 vs k using the Pade´-Borel method. The diamonds corre
spond tob ū and the circle tob v̄ . The results with the conformal
mapping method are substantially equivalent.
0-8
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CRITICAL BEHAVIOR OF THE TWO-DIMENSIONAL N- . . . PHYSICAL REVIEW B 66, 184410 ~2002!
P1~ v̄ !5211
2

3
v̄20.216 08v̄210.231 57v̄320.311 68v̄4,

~44!

P2~ v̄ !5110.058 328v̄220.057 896v̄3.

The zero ofb̄ v̄(ū,v̄) is constant with varyingū at the
value v̄* 5ḡI* Eq. ~29!, and so theū coordinate of the cubic
fixed point is simply

uN→`* 5
P1~ ḡI* !

P2~ ḡI* !
50.09~4!. ~45!

We note that the small value ofu* for N→` does not ex-
clude that the Ising and the cubic fixed points coalesce in
limit.

We want to stress that this cubic fixed point is obtained
the four-loop approximation and so it could also be an a
fact of the relatively low number of terms considere
Knowledge of higher-loop terms is needed in order to clar
this point. Nevertheless, we analyze its stability and criti
exponents in the next paragraphs.

D. Stability properties of the cubic fixed point

For N52 we check that one eigenvalue of the stabil
matrix V vanishes on the whole line of fixed points. W
evaluate theV matrix on the straight line joining the Isin
fixed point @at (0,gI* )] and theO(2) @at „1.80(3),0… from
Ref. 80# since the real curve of the common zeros of theb

FIG. 3. Zeros of theb̄ functions forN53 in the (ū,v̄) plane
using the conformal-mapping method. The straight line corresp

to the zeros ofb̄ ū(ū,v̄) and the dashed one to the zeros ofb̄ v̄(ū,v̄).
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functions is well approximated by this. Within the precisio
of our calculation we confirm that one marginal opera
exists on this line.

The results for the smallest eigenvalue of theV matrix at
the cubic fixed point forN>3 are summarized in Table VI
This is positive for all considered values ofN, but it is very
close to zero. Since the Ising fixed point is stable aga
perturbations with positiveu, the cubic fixed point should be
unstable for ‘‘left’’ perturbations. A possible scenario com
patible with this result is that both cubic and Ising fixe
points have a marginal operator, so the resulting RG fl
might be the one sketched in Fig. 4.100 For u,v,0 we expect
a first-order phase transition, and for 0,v/u<v* /u* the
transition is second order and its critical behavior might
characterized by the cubic fixed point, while forv/u
>v* /u* the transition is governed by the Ising fixed poin
Obviously if the cubic fixed point is an artifact of the fou
loop approximation, this has to coalesce with the Ising o

In order to have more precise estimates we also cons
the pseudo-e expansion using substantially the same pro
dure of Ref. 27. By using this trick we have a smallest er
bar since we avoid the uncertainty of the fixed point~for a
detailed discussion see Ref. 83!. The results are equivalent t
the ones presented above~see Table VI!.

E. Critical exponents

The direct evaluation of the critical exponents for the tw
dimensionalO(N) model leads to erroneous values becau

d

FIG. 4. Renormalization-group flow in presence of two ‘‘ma
ginal’’ fixed points.
TABLE VI. Critical properties of cubic fixed pointN>3.

N (ū* ,v̄* ) (ū* ,v̄* ) v1/2 h h2h t

CM PB CM PB pseudo-e CM PB CM PB

8 „0.24(8),1.72(10)… „0.15(9),1.72(12)… 0.07~6! 0.08~4! 0.26~2! 0.25~2! 1.20~15! 1.15~15!

4 „0.54(10),1.43(8)… „0.38(11),1.51(9)… 0.11~6! 0.06~6! 0.06~4! 0.23~4! 0.20~6! 1.22~15! 1.18~20!

3 „0.83(12),1.12(9)… „0.71(12),1.17(9)… 0.09~6! 0.04~5! 0.05~5! 0.17~8! 0.15~9! 1.39~20! 1.23~20!
0-9



he

ur

r

l-

he
w

d

al
es

of
m
th
is

in

al
e

us

re
h

al
tive
orts
of

this

l

a-
ng
n
on-

-
the

the
d

s.

-

PASQUALE CALABRESE AND ALESSIO CELI PHYSICAL REVIEW B66, 184410 ~2002!
of the strong effect of nonanalytic terms. In fact from t
analysis of the four- and five-loop series of theN51 model
is found h;0.131 ~Ref. 80! and h50.13(7) ~Ref. 83! in-
stead of the exactly knownh51/4. The value ofn for the
Ising universality class is quite good (n;0.96 ~Refs. 80 and
83!. Our unpublished analysis of theO(N) series~already
cited in Ref. 88! shows that for higher values ofN the effect
of nonanalyticities is very dangerous. In fact, studying fo
loop series, we findh50.11(6) both for theXY and Heisen-
berg models instead of 1/4 and 0. In the same way foh
2h t we find 1.18(5) and 1.36(4), for N52,3, instead of 2.
This latter systematic error brings to a finite value ofn. The
above standard analysis applied to theXY model with cubic
anisotropy givesh;0.11 along the fixed-point line and va
ues ranging from 1.18 to 0.97 forh2h t .

In order to reduce the effect of nonanalytic terms in t
estimates of the critical exponents of the cubic model
adopt a new strategy. We use a constrained analysis on
two variables seriesh andh2h t , fixing the values assume
at the fixed point on the axesū50 andv̄50. Explicitly, let
us consider a genericl-loop series inū and v̄ without a
constant term,

R~ ū,v̄ !5 (
k50

l

(
h50

l 2k

Rhkū
hv̄k5 (

k51

l

Rk~z!ūk, ~46!

of which we know the valuesR(ū* ,0)5a and R(0,v̄* )
5b. We can rewrite the previous function in the form

R~ ū,v̄ !5R~ ū,0!1R~0,v̄ !1ūv̄AR~ ū,v̄ !, ~47!

where ū v̄AR(ū,v̄) is the difference between the origin
function R(ū,v̄) and the value that it assumes on the ax
We resum the three functionsR(ū,0), R(0,v̄), andAR(ū,v̄),
appearing in Eq.~47!, in an independent way. In the case
R(ū,0) andR(0,v̄) we adopt the standard method to resu
one variable function with some constraints, as done for
e expansion in Refs. 86, 94, and 18. A full description of th
method may be found in Ref. 94.

First of all we consider the peculiar caseN52. We evalu-
ate the critical exponents on the straight line joining the Is
and the O~2! fixed points~as in the case of theV matrix!.
The results for the exponentsh andh2h t are presented in
Figs. 5 and 6, respectively. Within the precision of our c
culation we find an exponenth assuming the constant valu
1/4 along the line as predicted in Ref. 37~the uncertainty is
about 0.05 forx;0.5 and decreases near the borders!. The
exponenth2h t interpolates in a monotonic and continuo
way from 1 at the Ising fixed point to 2 at theO(2) fixed
point and so it is compatible with the Kadanoff’s conjectu
identifying this line with the dual line of the 8V model wit
the continuous varying exponent given by Eq.~7!.

The parametery in Eq. ~7! belongs to the range@1,3/2#,
respectively, from Ising toO(2); insteadx ranges between 0
and 1 fromO(2) to Ising. So we try to identify

y5
32x

2
. ~48!
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Using this assumption the exponenth2h t could be written
in terms ofx as

h2h t5
2

11x
. ~49!

This curve is shown in Fig. 6 together with the numeric
values obtained from the resummation of the perturba
series: all curves are very close. This result strongly supp
both Kadanoff’s conjecture about the nature of the line
fixed points and the relation~48! between the parametery of
the 8V model andx of the XY model with cubic anisotropy.

The exponents at the cubic fixed point obtained using
constrained analysis for someN>3 are reported in Table VI.
We find anh exponent varying very slowly withN. Our
estimates are also compatible with anh constant and equa
to 1/4 for all N. The estimates ofh2h t are instead affected
by a big error bar, mainly due to the uncertainty of the loc
tion of the fixed point. We could reduce the last error usi
the pseudo-e expansion, but in this way we will find agai
the systematic error of nonanalyticities that we cannot c
trol.

From Table VI it is clear that whenN increases the expo
nents get closer to the ones of the Ising model—that is,
limit for N→`; cf. Eq. ~2!. In this limit the serieshf repro-
duces order by order the one of the Ising model. For
differenceh2h t the equality of the exponent is expecte
only at the fixed point. In fact it holds that

FIG. 5. Values ofh with varying the parameterx, Eq. ~34!. The
straight line represents CM results and the dashed the PB one

FIG. 6. Values ofh2h t ~straight line CM and pointed line PB!
with varying the parameterx, Eq. ~34!. The dashed line is our con
jecture~49!.
0-10
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CRITICAL BEHAVIOR OF THE TWO-DIMENSIONAL N- . . . PHYSICAL REVIEW B 66, 184410 ~2002!
lim
N→`

h t~ ū,v̄ !522ū1h t
I~ v̄ !2ūv̄2A~ v̄ !, ~50!

where h t
I( v̄) is the series of the Ising model, andA( v̄) a

function that at four loops readsA( v̄)50.116620.1157v̄. At
the cubic fixed point we obtain

h t2h t
I50.13~10!, ~51!

which is compatible with zero.
For N53 the result forh2h t via scaling law leads ton

51.3(3), sothere are no fixed points~stable or unstable!
with the three-state Potts exponentn55/6. In Sec. II C we
have stressed that experimental investigations72 and Monte
Carlo simulations75,76 in the adsorption of diatomic mol
ecules on a honeycomb lattice in thep(231) structure dis-
play the critical behavior of three-state Potts, although,
cording to the standard classification,5 this system should be
described by theN53 cubic model. It may be possible tha
the system undergoes a weak first-order phase transitio
the face-cubic region withv,0, with effective exponents
close to the ones of the three-state Potts model, which
pears in the discrete face-centered model. This point ne
further studies for a full understanding of the phenomeno

V. CONCLUSIONS

In the present paper we have studied the critical beha
of N-component spin models with cubic anisotropy by app
ing the field-theoretic renormalization-group technique
rectly in two dimensions.

We have first focused our attention on theXY model (N
52) with cubic anisotropy. We found that this model has
line of fixed points joining the decoupled Ising and t
O(2). Along this line the critical exponenth assumes the
constant value 1/4. The exponentn runs from 1, at Ising, to
`, at O(2), according to the standard expression of the
model ~7!. This argument is based on a mapping of they
parameter of the 8V model onto thex parameter of the
Hamiltonian~1!:

x5322y5
2

p
arctan

v̄*

ū*
. ~52!

The predicted expression forn @Eq. ~49!# is in very good
agreement with the resummation of perturbative series~see

*Electronic mail: calabres@df.unipi.it
†Electronic mail: celi@mi.infn.it
1A. Aharony, inPhase Transitions and Critical Phenomena, edited

by C. Domb and J. Lebowitz~Academic Press, New York
1976!, Vol. 6, p. 357.

2A. Pelissetto and E. Vicari, Phys. Rep.368, 549 ~2002!.
3In this work we do not consider the quadratic term with cub

symmetry that may exist forN52, (m51
2 (]mfm)2 ~Refs. 1 and

102–105!. As we shall see, the quartic term in the Hamiltoni
~1! already introduces significant changes in the critical beh
ior.

4E. Domany, M. Schick, and J.S. Walker, Phys. Rev. Lett.38, 1148
18441
-

in

p-
ds
.

or
-
-

Fig. 6!. In this manner we relate the measured exponent
the strength of the anisotropy~the parameterx).101 The XY
model with cubic anisotropy foru,0 could display the criti-
cal behavior of the Askin-Teller model withy,1, i.e., the
region on the dual line from the decoupled Ising fixed po
(y51) to the four-state Potts (y50). We tried to check if
the line of fixed points continues for negative values ofu, but
the results of the resummation for these values of the re
malized couplings are strongly oscillating.

For all other values ofN we found one fixed point in the

region with ū,v̄.0, which seems marginally stable and u
stable for perturbations withv/u,v* /u* and v/u.v* /u*
respectively. A possible RG flow diagram is sketched in F
4. The estimates of this fixed point and of the critical exp
nents for several values ofN are reported in Table VI. For the
physically relevant case ofN53 at the cubic fixed point we
found h50.17(8) andn51.3(3). This value ofn is differ-
ent from the three-state Potts model. This fact deserves
ther studies about the order-disorder transitions of some
sorbed monolayers that should belong to the universa
class of the Heisenberg cubic model, but that experiment
display the exponents of the three-state Potts model.
possible scenario is that the system undergoes a very w
first-order phase transition with effective exponents close
the ones of three-state Potts model.

Finally we mention that in Ref. 56, using an argume
based on conformal field theory, it is argued that the cu
fixed point and the Ising one merge for arbitraryN.2, and
so the critical behavior will be Ising like in the whol
u0 ,v0.0 plane. Our analysis seems to contradict this p
ture. However, we cannot exclude that the existence o
marginal cubic fixed point is just an artifact of the relative
short series that we have analyzed. It would be importan
get further confirmation, either by extending the perturbat
series or by alternative analyses, such as Monte Carlo si
lations.
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