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We study the two-dimension&l-component Landau-Ginzburg Hamiltonian with cubic anisotropy. We com-
pute and analyze the fixed-dimension perturbative expansion of the renormalization-group functions to four
loops. The relations of these models withcolor Ashkin-Teller models, discrete cubic models, the planar
model with fourth-order anisotropy, and the structural phase transition in adsorbed monolayers are discussed.
Our results folN=2 (XY model with cubic anisotropyare compatible with the existence of a line of fixed
points joining the Ising and th®(2) fixed points. Along this line the exponenthas the constant value 1/4,
while the exponenw runs in a continuous and monotonic way from 1oto[from Ising to O(2)]. In the
four-loop approximation, foN=3 we find a cubic fixed point in the regianv=0.
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[. INTRODUCTION in which the added cubic term breaks explicitly t@€N)
invariance, leaving a residual discrete cubic symmetry given
In the framework of renormalization-groufRG) ap- by the reflections and permutations of the field components.
proach to critical phenomena, the critical behavior at manyThis term favors the spin orientations towards the faces or
continuous phase transitions can be investigated by consithe corners of alN-dimensional hypercube fary<0 or v
ering an effective Landau-Ginzburg Hamiltonian having an>0, respectively.
N-component order parametés; as fundamental field and ~ The Hamiltonian(1) has received much attention also be-
containing up to fourth-order powers of the field compo-cause it describes the two-dimensional order-disorder transi-
nents. The fourt.h-degree polynomial form of the potentiakion in some adsorbed monolayers. In fact, in the original
depends essentially on the symmetry of the system. In faq{|assificatiofl on square and rectangular lattices, all these
according to the universality hypothesis, the critical properansitions belong to the universality class of the lIsing

ties of these systems can be described in terms of quantitiqﬁodd three- or four-state Potts model. 269 model with
that do not depend on the microscopic details of the syste ubic :emisotropy. The Heisenbefty=3) }nodel With cubic

but only on global properties such as the dimensionality an anisotropy describes instead such transitions in non-Bravais
the symmetry of the order parameter and the range of thle - 5 P ;
attices; as the honeycomb and kagomees(e.g., in the

interactions. . i ; .
The critical properties of many magnetic materials areadsorptlon of diatomic molecules on graphit€he full clas-

computed using the O(N)-invariant Landau-Ginzburg sification of continuous phase transitions of magnetic sym-

Hamiltonian. Uniaxial ferromagnets should be described byM€ty In two dimensiorfsreveals the interest of modé)

the Ising universality classN=1), while magnets with /SO for other kind of transitions. . _
easy-plane anisotropy should belong to ¥ universality An important application of theXY model with cubic
class. Ferromagnets are often described in terms D8 ~ @nisotropy is in the oxygen ordering in YBagll "
Hamiltonian. However, this is correct if the nonrotationally Since it is one of the most studied high-temperature super-
invariant interactions that have only the reduced symmetnponductors. Some other applications of Landau-Ginzburg
of the lattice are irrelevant in the renormalization-groupiamiltonian(1) are the buckling instabilities of a confined
sense. In two dimensions the effect of anisotropy is vengolloid crystal layef, some discrete models with competing
important: systems possessing continuous symmetry do n&€arest- la_n_d next-nearest-neighbor njteract’rBrand, very
exhibit conventional long-range order at finite temperaturef€cently,” it is argued that the phase diagram of a lattice-gas
while models with discrete symmetry do undergo phase tranmodel for studying the micellar binary solution of water and

sitions into conventionally ordered phase. ampliphile is partially described by thY model with cubic
For studying the effect of cubic anisotropies one usually2NiSotropy. _ _ _ _
consider thep* theory®? We also mention that, in the limil— 0, the cubic model

(1) describes the Ising model with site-diluted disortfel:*
but we do not consider it here, since in the framework of

1 fixed dimensionrd=2 it was already analyzed in Ref. 15.
H:f ddx{— > [(ﬁﬂ¢i)2+r¢i2] In this paper we present a fiel_d-theore_tic stu_dy based on
2= an expansion performed directly in two dimensions, as pro-
1N posed for theD(N) models by Parist®
il Y008 ) BB, 1 The paper is organized as follows. In Sec. Il we give an
41 i,,z:l (Uo+vodiy) #'¢j @ overview of all known results that we believe necessary for a
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the attraction domain of the fixed points, the flow goes away

ine towards more negative values of and/orv and finally

N ~ reaches the region where the quartic interaction no longer

—w satisfies the stability condition. These trajectories should be
cobie related to first-order phase transitidisSome recent and

. Ganssian . very accurate calculatiotfs*'~* suggest that in three-

Gaussian O(N)-symmetric Iom)-symmemc dimensionaN < 3.
\J e If N>N,, the cubic anisotropy is relevant and therefore

the critical behavior of the system is not described by the
Heisenberg isotropic Hamiltonian. If the cubic interaction
favors the alignment of the spins along the diagonals of the
FIG. 1. Renormalization-group flow in the coupling planey) cube—i.e., for a positive coupling;—the critical behavior
for N<N; andN>N,. is controlled by the cubic fixed point and the cubic symmetry
is retained even at the critical point. On the other hand, if the
full understanding of the two-dimensional cubic mod#l.  system tends to magnetize along the cubic axes—this corre-
In Sec. Ill we derive the perturbative series for thesponds to a negative couplingy—then the system under-
renormalization-group functions at four loops and discuss thgoes a first-order phase transitibif—32
singularities of the Borel transform. The results of the analy- In the limit N—«, keepingNu and v fixed, one can
sis are presented in Sec. IV. The reader who is not interestagkrive exact expressions for the exponents at the cubic fixed
in the details of the calculations can skip Secs. lll and IV andpoint for all dimensions. Indeed, in this limit the model can
read directly Sec. V where we summarize all our results anghe reinterpreted as a constrained Ising mddié&ading to a
point out some questions which we think deserve furtheisher renormalization of the Ising critical exponetft©ne
study. has®33!

j Y N<N, j |ON=N, O(N)-symmetric critical exponents are expected. Outside

Tsing

cubic

T~

—) - 3) @
N T 1og N/’

heren,, v;, and«, are the critical exponents of the Ising
odel.
In all dimensions, a simple argument based on the sym-
necessary for a good understanding of the two-dimension&["at_ry _Of the tyvo-component cubic moa%lsh(_)\_/vs that th?
cubic fixed point forN=2 has the same stability properties

case. ) ; .
The model(1) has four fixed points: the trivial Gaussian 9f the Ising one. Indeed, faN=2, a /4 internal rotation,

one, the Ising one in which the components of the field €.,
decouple, and th®©(N)-symmetric and cubic fixed points. 1
The Gaussian fixed point is always unstable and so is the = _
Ising fixed point!® Indeed, in the latter case, it is natural to (61:62)= ﬁ(¢l+¢2'¢l P2). &
interpret Eq.(1) as the Hamiltonian oN Ising-like systems . o
coupled by thed(N)-symmetric term. But this interaction is Maps the cubic Hamiltoniaft) onto a new one of the same
the sum of the products of the energy operators of the differform but with new couplingsu,v) given by
ent Ising systems. Therefore, at the Ising fixed point, the
crossover exponent associated with tG@€N)-symmetric ui=u +§ r_

: : < - 0=Uot 500, Vo="Vo- (4)
guartic term should be given by the specific-heat critical ex- 2
ponente, of the Ising model, independently bf Sinceq, is
positive for alld>2, the Ising fixed point is unstable. Obvi-
ously in two dimensions this argument fails sineg=0.

While the Gaussian and Ising fixed points are unstable fo
any number of components, the stability properties of the
O(N)-symmetric and of the cubic fixed points dependhn
For sufficiently small values of N, N<N., the
O(N)-symmetric fixed point is stable and the cubic one is
unstable. For N>N,, the opposite is true: the
renormalization-group flow is driven towards the cubic fixed
point, which now describes the generic critical behavior of As is already clear from the previous subsection, in two
the system. Th©(N)-symmetric point corresponds to a tri- dimensions several new and interesting features appear. First
critical transition. Figure 1 sketches the flow diagram in theof all we have no general argument to understand the stabil-
two casesN<N. and N>N.. At N=N., the two fixed ity properties of the Ising fixed point; in fact the specific heat
points should coincide, and logarithmic corrections to theof the two-dimensional Ising model has a logarithmic diver-

Il. OVERVIEW OF KNOWN RESULTS

n=n+0 +0

A. Three-dimensional results

We shortly review the most interesting features appearin
in the study of the Hamiltoniafil) in the framework of are
expansiof’! and at fixed dimensiod= 3,8 since they are

This symmetry maps the Ising fixed point onto the cubic one.
So for alld>2, since the Ising point is unstable, the cubic

oint is unstable too, and the stable point is the isotropic one.
n two dimensions, this is no longer true. Indeed, one expects
the cubic interaction to be truly marginal fbi=2 (Refs. 37
and 38 and relevant foN>2, (Ref. 39 soN.=2 in two
dimensions.

B. Two-dimensional case
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gence (i.e., a;=0). The vanishing of this crossover N-component spinsS pointing to the faces of an
exponent—and so the presence of a marginal operator—catdimensional hypercubé&ace-centered-cubic modelThe
bring us to several different scenarios. For example we majdamiltonian may be written as
have that the Ising fixed point is marginally stable or un-
stable because of higher-order corrections to RG equations or
that there exists a line of fixed pointsee Ref. 40 for a
detailed review about the effects of marginal operators ] . ) ] .
When the cubic anisotropy becomes margi@IN=N, Wherea; is a.Potts-Ilke variable tha_t determlnes which com-
=2),% the cubic fixed point is in the region with<0 [cf. ~ Ponent ofS is nonzero ands; an Ising variable that deter-
Eq. (4)], and so it cannot coincide with tf@(N) one, as in  Mines the sign of that component. AR 0 the Hamiltonian

H:<2> (C(Sai ’ajSiSj-FP(Sai ’aj)’ (8)
1)

the case of 3 and -4 e dimensions. (8) reduces to the [4-state Potts model fo€=0 to two
There are several studies on systems related to LandadecoupledN-state Potts models, and féd=2 to the AT
Ginzburg Hamiltoniar(1). In Ref. 37 the model model. The continuous cubic modg) reduces to the dis-

crete ong(8) in the limit of strong anisotropy|¢|>|ul). In
, Ref. 48 it is shown that the iteration of RG transformations
H= 2 JS(r)S(r )+Er hpcospé(r) (5 enforces the continuous model, with<0, to have spins
(e pointing only to the faces of the hypercube, and so, also for
was considered, where the first sum is only over nearedinite anisotropy, the two models are equivalent at criticality.
neighbors and(r) is the angle that the two-component spin The model(8) exhibits four competing possible types of
S(r) forms with some arbitrary axis. This system clearly critical behavior, related to the Ising model, ti and
belongs to the same universality class of ¥ model with  2N-state Potts models, and to a “cubic” fixed point. In Refs.
cubic anisotropy ifp=4 (the “field” h, maps ontaw,). 49 and 50 it was found that the critical behavior of the dis-
The phase diagram found in Ref. 37 consists of threerete face-centered-cubic model @&N) like for N<N,
distinct lines of fixed points showing continuously varying =2, AT-like for N=2, and characterized by a first-order
exponents. The line witlh,=0 is the standard Kosterlitz- phase transition foN>2. This result is not surprising since
Thouless(KT) one?! There are two lines witth,# 0, start-  the model8) is related to(1) in the region withv ;<0 where
ing from the KT transitior(the end point of the KT lineand ~ we expect a first-order phase transition fér-N.=2 and
continuing to infinitely—positive or negative—large values O(N) behavior forN<2.
of hy. They map onto each other with changing the sign of In the region withv,>0 the continuous modél) is re-
h,. The latter are lines of second-order phase transitions withated to the corner-cubic model in whidhcomponent spins
conventional power-law singularities characterized By S point to the corners of aN-dimensional hypercube. This
=1/4. The exponent diverges at the confluence of these model is equivalent to the face-centered oneNer2 [this is
critical lines as the symmetry(4) for the Hamiltonian(1) and the changing
of the sign ofh, for (5)]. For other values oN the critical
_ i 6) behavior of the face-centered- and the corner-cubic model is
A in principle very different.

. o . This difference is clarified by the study df-color
when h,—0. For this reason it is often said that e/ oo elier model, first introduced by Grest and Widdh,
model with cubic anisotropy has a nonuniversal behavior

although there is the so-called weak universality of SUZuki which is equivalent to the corner-cubic model. The Hamil-
. : tonian of this model reads
(i.e., » is constant

In a successive work Kadandtfidentifies the two fixed-

14

N N 2
point lines forhﬁo with the dual line of the Ashkin-Teller H=—> 13D s;"‘sjf“‘+ Il > S;’is;fi , (9)
(AT) and the eight-vertex Baxter mod@V) (see the Baxter (i) [ a=1 a=1
book for a review about these modgl©ne remark is nec- a_ -~ . .
essary at this point: the AT and the 8V models are equivalen\fvheresi ==x1fora=1,... NareN Ising variables and the

sum is only over nearest-neighbdithe sign ofJ, is the
opposite ofug in Eq. (1)]. In Ref. 51 it is concluded that the
order J2 in the RG equations makes the decoupled Ising
2—y fixed point stable for perturbations with,<<0 (uy>0) and
V=3 oy (7)  unstable forJ,>0 (ug<0). In the latter case the system
flows away towards more negative valuesi@nd finally the
wherey is a parameter that appears in the Hamiltonians detransition is first order. This has been confirmidaly a Monte
fined in the rang€0,4/3] for the AT (Ref. 45 and[0,2] for ~ Carlo simulation forN=3. This argument was proved ex-
the 8V (Ref. 44. The O(2) multicritical point identified by ~ actly in theN—c limit.>>%3 After, using a mapping of the
Kadanoff is the F-model limit of the 8V that is characterized Hamiltonian(9) onto theO(N) Gross-Neveu mod&l it was
by y=23/2, allowed for the 8V but forbidden for the AT. argued*—>"that the critical behavior of the Ising fixed point
Another class of models related to the Landau-Ginzburgs affected by logarithmic corrections.
Hamiltonian (1) is the discrete-cubic N-component Finally the three couplingsN,2) model of Domany and
model®%46-%0 |t is a short-range interacted system with Riedef® [equivalent forN=23 to theZ(6) mode?®] reduces

on the dual lin&* and they show a continuously varying ex-
ponent of the correlation length:
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to the N-component discrete cubic model, for particular val-They relate the second-moment mass and the zero-
ues of the parameters entering in the Hamiltonian. The modehomentum quartic couplings andv to the corresponding
(3,2 was studied in Refs. 48 and 58 with the Migdal- Hamiltonian parametens ug, andvg:

Kadanoff renormalization-groufMKRG) approach. Unfor- 5 72 5 72

tunately the MKRG approach is expected to give neither Up=MUZZ,", vo=MvZ,Z,". (12
precise values of the exponents nor the correct nature of th|

A additi introd the functiafy defined by th
transition, but only a good description of the phase diagram addition, one introduces the functiafy defined by the

relation
C. Order-disorder transition in adsorbed monolayers Fglb’z)(O)= 5abzt—1' (13

We have already mentioned that the Hamilton{ande- whereT' 1 is the (one-particle-irreducibetwo-point func-
scribes some order-disorder transitions in adsorbed monola)(I—on with an insertion ofs ¢2

ers. The great interest in these models is justified since they
provide a unique possibility to study experimentally a rich
variety of two-dimensional systems.

Several experimental works have confirmed that thes
transitions belong to the universality class of the ISIig?!
the three®?®® and four-state Potts modéts®® and theXY
model with cubic anisotropy,® according to their

From the pertubative expansion of the correlation func-
tionsT'®, T andI'*? and the above relations, one de-
rives the function& 4(u,v), Z,(u,v), Z,(u,v), andZ(u,v)
Bs a double expansion nanduv.

The fixed points of the theory are given by the common
zeros of theB functions

classificatiorf:~® Monte Carlo simulations and other numeri- Ju
cal works confirm this scenarf§-"* Buluv)=m=—ly o
According to the standard classification, the critical be-
havior of the order-disorder transition of diatomic molecules v
on a honeycomb lattice in th®(2x 1) structure is described B,(u,v)= mﬁ“o,vo' (14

by the N=3 cubic modeP*® The experimental

investigatiort? of oxygen on R(001) shows that this transi- The stability properties of the fixed points are controlled by
tion has critical exponents in agreement with the three-statéhe eigenvalues; of the matrix

Potts model within about 10%. Several numerical simula-

tions (after the first ones favoring a first-order phase dBu(u,v)  IBu(u,v)

transitior>"4 confirm this critical behaviof>"®So it may be au v

possible that a fixed point of the Heisenberg model with 0= (15
o - : By(u,v)  dB,(u,v)

cubic anisotropy has the critical behavior of the three-state ,

Potts model. ou dv

We want still to note the possibility for systems having computed at the given fixed point: a fixed point is stable if
exponents close to the four-state Potts model, to belong tgoth eigenvalues are positive. The eigenvalueare related

the universality class of th&Y model with cubic anisotropy to the leading scaling corrections, which vanish &s®i
and residing near the four-state Potts transition characterized |t|i whereA,= vw;.

by y=0. One also introduces the functions
I1l. FIXED-DIMENSION PERTURBATIVE EXPANSION dinZ dinZ dlnz
IN TWO DIMENSIONS ng(Uv)= - =B °+B 2 (16)
¢ ginm| T4 4u v v
0“0
A. Renormalization of the theory
The fixed-dimension field-theoretical approdthepre- _dInz, _, 9InZ N dInZ, 1
. . i m(U0)=—; By By (17)
sents an effective procedure in the study of the critical prop- dlnm o v au dv

erties of systems belonging to tl&(N) universality class

(see, e.g., Ref. 37 The idea is to extend this procedure to Finally, the critical exponents are obtained from
models where there are twg* couplings with different _ . %

symmetry?>18 One performs an expansion in powers of ap- 7= ng(U7 V%), (18

propriately defined zero-momentum quartic couplings and —[2— U* o)+ (U o*)] L 19
renormalizes the theory by a set of zero-momentum condi- v=[27my(Umvt) (Um0t (19
tions for the (one-particle irreducibletwo-point and four- y=v(2—7), (20)
point correlation functions: ) N ] )
where U*,v*) is the position of the stable fixed point.
TR(p) = 8apZ; ' m*+p?+0(ph)], (10
B. Four-loop series
u _ . . .
Fg:))Cd(O):Z(ﬁzmz[g(&abﬁCd—i_ 8acObdt 02dObc) In this section we present the perturbative expansion of
the RG functiong14), (16), and(17) up to four loops. The
diagrams contributing to the two-point and four-point func-
+v5ab5a05ad}. (11  tions are reported in Ref. 78. We do not calculate the inte-
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TABLE I. The coefficientsb{}’ ; cf. Eq. (22). TABLE II. The coefficientsb{” ; cf. Eq. (23).
i (N+8)'bf" i (N+8)b")
2,0 —(10.3350N+47.675) 2,0 —(92.6834+5.834 1N)
1,1 —8.390 29 1,1 —17.392
0,2 —0.21608 0,2 —-0.716174
3,0 524.37% 149.15N -+ 5.000 28> 3,0 1228.63 118.504 — 1.831 56\
2.1 144.813 7.277 5% 2,1 358.882 2.847 58\
1,2 10.0109-0.058 3278! 1,2 31.4235
0,3 0.231566 0,3 0.930 766
4,0 —(7591.108 2611.13 + 179.69 N>+ 0.088 842 W) 4.0 —(20723.12692.0N+ 25.48542+ 0.824 6551°)
3,1 —(2872.09+291.255 — 0.126 8147?) 3,1 —(8273.28+233.78\ — 0.574 75N?)
2,2 —(330.599+ 5.970 86\) 2,2 —(1134.8+1.914 0N)
1,3 —(16.0559+0.057 895 5l) 1,3 —68.4022
4,0 —0.311 695 0,4 —1.58239

grals associated with each diagram, but we use the numerical (ji) g~(0y), ,7(/)(010_), and 5,(0p) reproduce the corre-

results compiled in Ref. 78. Summing all contributions with sponding functions of the Ising-likeN(=1) #* theory.
the right symmetry and group factaisee Ref. 18we obtain (iii ) The following relations hold foN=1:
all RG functions.

The results are written in terms of the rescaled couplings

ﬁu,x—u)%—ﬁ;(u,x—u):E;(O,x), (27)

8 — 8m—
u=—2-Ryu, v=—7, (21 76(UX—U)=74(0X),
whereRy=9/(8+ N). We adopt this rescaling to have finite (U, x—u)=7(0X).

fixed-point values in the limitN— oo,

The resulting series are (iv) ForN=2, using the symmetr{8) and(4), and taking

into account the rescaling21), one can easily obtain the

_ N . . "
Bo=—u+u?+ Juvtu > b{u'vl, (22) lidentities
i+7=2
Bl wt 20,0 + 2B b 20— 0] = Baturo)
. o 12 . ulutsv,—v =B, utsv,—v | =p6uv),
By,=—v+uv’+ uv+v 2 bi(-”)u'vj, (23 3 3 3
8+N ifj=2 Y
Bl wrgn o] =~ Bww)
_ Jutsv,—v|=—p06,uuv),
ny= 2 ePul, (24) 3
i+j=2
TABLE IIl. The coefficientse(” ; cf. Eq. (24).
2(2+N)— 2 —
—__ = ()1, - ial®)
+ (
UL BIN) u—3v i+jE>2 ejj’u'v’, (25 i (N+8)'e
2,0 0.917 086N +2)
where 1,1 0.611391
3 3 0,2 0.033 966
Bi=——RoiBy, Bo=rrRoiB,. 26 39 —0.054 609 [+ 2)(N+8
167 167
2,1 —0.054 609 N+8)
The coefficientsb|”, b{"), (), ande( are reported in 1,2 —0.054 609
Tables 1, 11, lll, and 1V. Note that due to the rescalif@®f), 0,3 —0.002023
the matrlx_elem(ins df are 2 times the derivative ¢ with 40 (N+2)(26.7676-4.241 78— 0.092 684?)
respect tau andv. _ 31 27.690% 5.655N —0.12357%2
We have verified the exactness of our series by the fol
: . y 2,2 5.404 243 0.132 800
Iowmg_relgtlons. B B 13 0.410 151
(i) By(u,0), 14(u,0), and 7(u,0) reproduce the corre- ¢4 0.011 393

sponding functions of th®(N)-symmetric modef®8°
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TABLE IV. The coefficientse{) ; cf. Eq. (25). (a large-order behavior related to the singulaggy of the
- Borel transform closest to the originone can perform the
i (N+8)'ef! mapping®
2,0 6.751 258K+ 2)
11 4500839 y(g)= 9%~ 1 (31)
0,2 0.250 047 V1-g/gy+1
3,0 —(96.7105+65.1686 + 8.406 68\?) to extend the Borel transform &f(g) to all positive values
2,1 —(48.3553+8.406 6&\) of g. The singularityg, depends only on the considered
1,2 —(6.190 23+ 0.116658) model and can be obtained from a steepest-descent calcula-
0,3 —0.233588 tion in which the relevant saddle point is a finite-energy so-
2 3 lution (instanton of the classical field equations with nega-
4,0 1135.05-844.5\ +139.658°+0.583 37N tive coupling®® Instead the coefficiertt depends on which
31 756.697% 184.65N+0.777 830(” Green’s function is considered.
2,2 149.467 584 7.553 459 Note that the functiorF(g) can be Borel summable only
13 11.51539#0.115 79N if there are no singularities of the Borel transform on the
0,4 0.323089 positive real axis.

This resummation procedure has worked successfully for
the O(N)-symmetric theory, for which accurate estimates for
T E— ol =m0y the critical exponents and other physical quantities have been
utzv, v = ny(U0), obtained?>:86:57

For this reason we want to extend the resummation pro-
_ cedure cited above to multicoupling models, as has been
= m(u,v). (28)  done for the three-dimensional cubic mddéP and for the
frustrated system with noncollinear order in two
These relations are exactly satisfied by our four-loop serieglimension<® Considering a double expansionimnd;at

Note that, since the Ising fixed point is ¢f) and g is  fixed z=0/u and studying the large-order behaviéollow-
known with very high precision from Ref. 81, ing the same procedure used in Refs. 18 ando8dhe new

expansion in powers ai to calculate the singularity of the

Borel transform closest to the origﬁ, we have
the above symmetry gives us the location of the cubic fixed

e

5 _)
u+—-v,—v

T 3

gF =1.754363725), (29)

point (39 ,—grf). _i:—a(RN+z) for 0<z,
(v) In the largeN limit the critical exponents of the cubic Up
fixed point are related to those of the Ising modg# 7, and
v=v,. One can easily see that, faN—o, 75,4(u,v) 1 1 2NRy
=n(v), where ,(v) is the perturbative series that deter- :b: —a| Ryt yz| for 0>z>-—r——= (32

mines the exponeny of the Ising model. Therefore, the first
relation is trivially true. On the other hand, the second relawherea=0.238659 27 . . . .
tion »=w, is not identically satisfied by the series and is
verified only at the critical point®

(vi) For N=0 the series reproduce the results of Ref. 15.

Note that the series in powers Efkeepingz fixed is not

Borel summable fou>0 andz< — Ry - This fact will not be
a real limitation for us, since we will only consider values of

zsuch thau,<<0. It should be noted that these results do not
apply to the cas&=0. Indeed, in this case, additional sin-
The field-theoretic perturbative expansion generategularities in the Borel transform are expectéd®
asymptotic series that must be resummed to extract the The exponenb in Eq. (30) is related to the number of
physical information about the critical behavior of the realsymmetries broken by the classical solutfdrit depends on
systems. the quantity considered. In the cubic model, for0, we
Exploiting the property that these series are Borel sumhaveb=2 for the functionz,,, andb=3 for the 8 functions
mable for¢* theories in two and three dimensidifgne can  and ».. For v=0, we recover the results of the
resum these perturbative expressions considering the BoreJ(N)-symmetric model—that ish=(3-+N)/2 for 7 4 and
transform combined with a method for its analytical exten-pb=(5+ N)/2 for the 8 function andz, .23
sion. In the case of th®(N), symmetric model with only a Good estimates of the critical exponent could be obtained
coupling g, all perturbative series are of the forf(g)  also using a PadBorel analysis of the series, as shown in
=3 f,g*. Exploiting the knowledge of the large order behav-the case of the two-dimension@l(N) model€°%° and the
ior of the coefficients, (Ref. 77, random Ising mode'®
An important issue in the fixed-dimension approach to
fi~kl(—a)k’[1+0(k™ ] with a=-1/g, (30 critical phenomengand in general of all the field-theoretical

C. Resummations of the series
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methods concerns the analytic properties of tBdunctions.  condition that the expansion &(R)(L,M ,b;U,z) in powers
As shown in Ref. 91 for th®©(N) model, the presence of ongive R(Uz) to orderL + M.

confluent singularities in the zero of the perturbatB/&unc- In this manner we have several approximants of the func-

tion causes a slow convergence of the resummation of the
ton R(u v) with varying the three parametebsL, andM.
erturbative series to the correct fixed point value. O{&
P P DE8)  As usual in this cadd the best estimates of the resummed

two-dimensional field-theory estimates of physical ) ) ; .
quantitie§®® are less accurate than the three- dimensionajunction are given by the diagonal and near-diagonal ap-

ones, due to the stronger nonanalyticities at the ﬂxe(prommants(l e., for our four-loop series we have three rea-
point®*~%%In Ref. 91 it is shown that the nonanalytic terms sonable choicef2,2], [3,1], and[2,1]). Then we search for

may cause large imprecisions in the estimate of the exponetr'ltEe }[’ﬁlug f(?fo (Ca”edt?oft) mtet\ﬁer or ha:]IIf mtdeger m|n|m|z:[
related to the leading correction to the scalinginstead the Ing the diflerences between the considered approximants, a

result for the fixed point value is a rather good approxima reaslclma?le estﬂl_matgl\\;lwll be t:e rge"f‘r?] valugh,, |td|j[ w)th
tion of the correct ondif one compare the field-theoretical on all vaiues oL andvl considere en we could taxe the

results for the four-point renormalized coupling in tige error bar proportlpnal to th_e deviations from the mean value

expansiof’ and in thee expansiofi*® with the estimates of of all the approximants withbo,—1<b<Dbo,+1 (always

other nonperturbative methots%7one finds that the sys- Cconsidering integer and half-integer valuesbyf

tematic error is always less than 1% he nonanalyticities In the analysis using the conformal-mapping method we

also have a strong influence in the resummation of the criti€SSentially follow the procedure used in Ref. 18. We exploit
cal exponents of th@(N) models(compare the five-loop the knowledge of the value of the singularity of the Borel

results of Ref. 80 with the exact ori8s We think that this transform closest to the origi@ value given in the previous
scenario holds also for the cubic models section, and we generate a set of approximants to our

asymptotic series, varying the two parametersnd b ap-

pearing in
IV. FOUR-LOOP EXPANSION ANALYSIS
|

A. Analysis method E(R) (a, b,u,z 2 By(a,b:2)
In order to study the critical properties of the continuous -
anisotropic cubic mod€ll), we use two different resumma- ut:2)k
tion procedures: the Padorel method and the conformal f dtte t—2 77 y(ut:z) (36)
mapping of the Borel-transformed series. [1- y(ut z)]“

Explicitly, let us consider af+loop series inu andv of  \here
the form

Do | o 1—x/up(z)—
RU0)=3, 3 Rudo =3 R(F (33 T i@t

The coefficientdB, are determined by the condition that the
expansmn ofE(R)p(a,b;u, z) in powers ofu and v give

R(u v) to orderl.
The procedure to choose the range of the parameters

(37

whereR is one of the RG functions armis the ratiov/u that
we will consider always fixed to the same value. In this

manner we have an asymptotic series of only one variaple

depending on the additional parametemwhich has to run . .
fro?n 0 togoo in order to repr(E)duce azl? the quadrants with andb used to find good estimates and reasonable error bars
of the various quantities is the same of Ref. 18.

u,v=0. In order to use a variable defined in a finite range

we set B. Stability properties of the O(N) and the Ising fixed points
v - T k First of all, we analyze the stability properties of the
z= ==tanzx=tanz , (34  O(N)-symmetric fixed point. Since
u 2 2 Nmax
wherexe[0,1] andk is an integer running from O tdl,, .« (7'8_'7 u, (39
(we will fix Npa,=25).
In the PadeBorel method we consider the P'Edpproxi- the eigenvalues are simply
mants[L/M] of the Borel-Leroy transform oR(u,z). Ex-
plicitly the approximants oR are 3} _ (9} _
W= wy= (39
N (ut,z)

e | T sbat L _
E(R)(L,M,biu,z)= fo dtte Dy whereu* is the fixed-point value of th&®(N) vector model

of which accurate estimates are available from the five-loop
whereN, andD,, are two polynomials of degrele and M, analysis of Ref. 80. The exponeaf is the usual exponent of
respectively, withL + M<I, which are determined by the the O(N)-symmetric theor{/ that gives the first correction

(ut,z)’
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TABLE V. Half of the exponentv, at theO(N) fixed point. CM B e s T
is the value obtained using conformal mapping technique and PB r 1

RS i

N

2 1.803) 0.03(3) 0.06(4) sLer ]

3 1.752) —0.08(3) —0.07(3) 1.4+ .

4 1.702) —0.18(4) —0.17(5) I 1

8 1.521) —0.45(5) —0.44(6) L2r ]
95 10 15 20 25

to the scaling. For alN>2 it is known thatw; assumes the k

constant value 2see Ref. 91 and references thejeinstead FIG. 2. Sum of the coordinates of the zeros of fhéunctions

w, is the eigenvalue that determines the stability of the fixedor N=2 vsk using the Pad®orel method. The diamonds corre-

point respect to an anisotropic cubic perturbation. spond toBy and the circle tg3,. The results with the conformal-

In Table V we report the results fas, for several values mapping method are substantially equivalent.
of N. It is quite evident that th©(N) fixed point is unstable
for N=3 (we note that for smalN these values are very
close to zerd In the limit N— it holds w,=—2. ForN . =
=2 our result is compatible with the presence of a marginalnote that, at fixeck, uf andv{ are not independentThis
operator, i.e.w,=0. figure clearly shows that the two lines of zeros are indistin-

Then we focus our attention on the stability properties ofguishable within their error bars. So our result is consistent
the Ising fixed point. Also in this case the eigenvalues arewith the presence of the line of fixed points conjectured by
simply Kadanoff?® joining the decoupled Ising and th@(2) fixed
points. In the Kadanoff identification this line of fixed points
is the dual line of the 8V model in the region that goes from
the F-model limitf O(2) multicritical point withy=3/2] to

- the decoupled Ising poinyy& 1). This line of fixed points is
wherev* is the fixed-point value of the Ising modé&9).  identifiable with the one of Ref. 37 with,<0.
The exponentw; gives the correction to the scaling of the  For the symmetry(4) the fixed-point line continues for
Ising model and it should be equal to 74while w, is the  negativev and reaches the “cubic” fixed poirttvhich in this
eigenvalue determining the Stablllty of this fixed pOint. We case is a standard |sihg)cated at (5/@7‘ ,_g'l")_ This sec-
find that the series,(v) is independent oN (we already ond line is the one of Ref. 37 with,>0, which is isomor-
know that its fixed-point value must be equal g phic to the other one with,<0. We do not know if the line

for all N): continues in the region with negative which may be a
|(—) ) region of second-order phase transitions, having the critical
wrV) 5 > -3 52 exponent of the 8V model withi<<1 (only for v > —u, from
2 1+ 37 0.21617+0.23150°-0.31169" the stability condition We tried to perform the resummation

(41) also for these values af,v but we obtained strongly oscil-
lating results.

For N>2 the two curves of zeros seem to intersect. For
example, the results of the conformal-mapping analysis for

tities g;=u?+v?, with their error bars, as a function &f

By By

9 _ _
w1=2—_v(0,v*), w2:2 _(O,U*), (40)
Jv Ju

The fixed-point value of this exponent iso,/2
=-0.105), using the conformal-mapping method, and
—Qt-0&|5), l:smg t_hS.PadaBt?r%I ?ntarllYS'S' Tn?e values atre N=3 are shown in Fig. 3the error bars are not shown to
quite close 1o~ e, =0, we allrioute this smail diSCrepancy 1o . ave the figure more readahlell the results about the

the presence of nonanalyticities at the zero of fle To  cypjc fixed points are summarized in Table VI. We note that,

support this thesis we note that the valuewgf2 is approxi-  ithin the error bar, there is full agreement between the two
mately the same of the resummation of the exponemy method<®

= —0.081 found in Ref. 80. In the limit N—c the seriesB;(u,v) and B;(u,v) sim-

plify to
C. Evaluation of nontrivial fixed points

Since the Ising fixed point has always a marginal operator -
and theO(N) is unstable foN=3, we search for the pres- By(U,v) = Bising(v), (42

ence of nontrivial fixed points in the regioT]v_>0.
Let us consider first the cadé=2. The curves of the -
zeros of B, and 3, are parallel and very close. Named Bu(u,v)—=u[Py(v)—uPy(v)], (43

(ui,v?) the location of the zero g8y at fixedk [cf. Eq.(34)]
and (U3,v3%) the same foiB,, we report in Fig. 2 the quan- with

184410-8
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0.5 1 1.5 2

FIG. 3. Zeros of the;Efunctions forN=3 in the (Uv_) plane
using the conformal-mapping method. The straight line correspond

to the zeros of3(u,v) and the dashed one to the zero®3gtu,v).

_ 2 _ _ _
Pi(v)=—1+ 3 —0.216 08°+0.23157°-0.31168%,

(44) FIG. 4. Renormalization-group flow in presence of two “mar-
ginal” fixed points.

P,(v)=1+0.0583282—0.057 896 °. functions is well approximated by this. Within the precision
of our calculation we confirm that one marginal operator
exists on this line.

The zero of3,(u,v) is constant with varyingu at the The results for the smallest eigenvalue of fhematrix at
valuev* =gy Eq.(29), and so thau coordinate of the cubic the cubic fixed point foN=3 are summarized in Table VI.
fixed point is simply This is positive for all considered values Nf but it is very

close to zero. Since the Ising fixed point is stable against
— perturbations with positive, the cubic fixed point should be
*  _ P.(97) ~0.094) (45) unstable for “left” perturbations. A possible scenario com-
N=e Pz(a*) ' ' patible with this result is that both cubic and Ising fixed
points have a marginal operator, so the resulting RG flow
We note that the small value off for N— does not ex- Might be the one sketched in Fig'®.Foru,u <0 we expect
clude that the Ising and the cubic fixed points coalesce in thig first-order phase transition, and for@/u=v*/u* the
limit. transition is second order and its critical behavior might be
We want to stress that this cubic fixed point is obtained incharacterized by the cubic fixed point, while far/u
the four-loop approximation and so it could also be an arti-=v*/u* the transition is governed by the Ising fixed point.
fact of the re|ative|y low number of terms Considered_ObViOUS|y if the cubic fixed pOint is an artifact of the four-
Knowledge of higher-loop terms is needed in order to clarifylo0p approximation, this has to coalesce with the Ising one.
this point. Nevertheless, we analyze its stability and critical N order to have more precise estimates we also consider
exponents in the next paragraphs. the pseudce expansion using substantially the same proce-
dure of Ref. 27. By using this trick we have a smallest error
bar since we avoid the uncertainty of the fixed pdiiotr a
detailed discussion see Ref.)83he results are equivalent to
For N=2 we check that one eigenvalue of the stability the ones presented abo(sze Table V).
matrix () vanishes on the whole line of fixed points. We N
evaluate the) matrix on the straight line joining the Ising E. Critical exponents

fixed point[at (0gy)] and theO(2) [at (1.80(3),0) from The direct evaluation of the critical exponents for the two-
Ref. 80 since the real curve of the common zeros of the dimensionalO(N) model leads to erroneous values because

D. Stability properties of the cubic fixed point

TABLE VI. Critical properties of cubic fixed poini=3.

N (u*,v*) (u*,v*) wy/2 n 7=

CcM PB CcM PB pseuda CcM PB CcM PB
8  (0.248),1.72(10)  (0.159),1.72(12) 0.076)  0.084)  0.262) 0252 1.2015  1.1515)
4 (0.54(10),1.43(8)  (0.38(11),1.51(9) 0.1X6) 0.066)  0.064)  0.234) 0.206) 1.2215  1.1820

3 (0.83(12),1.12(9) (0.71(12),1.17(9) 0.096) 0.045  0.055  0.178 0.159)  1.3920)  1.2320)
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of the strong effect of nonanalytic terms. In fact from the
analysis of the four- and five-loop series of tRe=1 model 0
is found 7~0.131 (Ref. 80 and »=0.13(7) (Ref. 83 in-
stead of the exactly knowm=1/4. The value ofv for the
Ising universality class is quite good{0.96 (Refs. 80 and
83). Our unpublished analysis of th@(N) series(already
cited in Ref. 83 shows that for higher values df the effect 0.15
of nonanalyticities is very dangerous. In fact, studying four-

loop series, we findg=0.11(6) both for theXY and Heisen- 0.1

berg models instead of 1/4 and 0. In the same wayfor 0.05

—n, we find 1.18(5) and 1.3@), for N=2,3, instead of 2. 3 3 G 3 =
This latter systematic error brings to a finite valuerofThe ) ) ) )

above standard analysis applied to ¥¥ model with cubic FIG. 5. Values ofyp with varying the parameteg, Eq. (34). The

anisotropy givesy~0.11 along the fixed-point line and val- straight line represents CM results and the dashed the PB ones.
ues ranging from 1.18 to 0.97 foj— ;.

In order to reduce the effect of nonanalytic terms in theUsing this assumption the exponemnt- , could be written
estimates of the critical exponents of the cubic model wen terms ofx as
adopt a new strategy. We use a constrained analysis on the

two variables serieg and n— #,, fixing the values assumed _ :i (49)
at the fixed point on the axes=0 andv=0. Explicitly, let TS
us consider a generitloop series inu and v without a  Thjs curve is shown in Fig. 6 together with the numerical
constant term, values obtained from the resummation of the perturbative
l1-k | series: all curves are very close. This result strongly supports
Thok_ Tk both Kadanoff's conjecture about the nature of the line of
R(u,v) Z Z Rt _kzl Ru(2)u’, (46) fixed points and the relatio®8) between the parametgrof
_ _ the 8V model and of the XY model with cubic anisotropy.
of which we know the valueRR(u*,0)=a and R(0v*) The exponents at the cubic fixed point obtained using this
=b. We can rewrite the previous function in the form constrained analysis for soré=3 are reported in Table VI.
- _ - We find an# exponent varying very slowly witiN. Our
R(u,v)=R(u,00+R(0v) +uvAg(u,v), (47)  estimates are also compatible with anconstant and equal

where UoA (Uv_) is the difference between the original to 1/4 for allN. The estimates ofy— #; are instead affected
R by a big error bar, mainly due to the uncertainty of the loca-

function R(u,v) and the value that it assumes on the axestion of the fixed point. We could reduce the last error using

We resum the three functio{u,0), R(0p), andAg(u,v), the pseudce expansion, but in this way we will find again

appearing in Eq(47), in an independent way. In the case of the systematic error of nonanalyticities that we cannot con-

R(u,0) andR(0v) we adopt the standard method to resumtrol.

one variable function with some constraints, as done for the From Table VI it is clear that wheN increases the expo-

€ expansion in Refs. 86, 94, and 18. A full description of thisnents get closer to the ones of the Ising model—that is, the

method may be found in Ref. 94. limit for N—o0; cf. Eq.(2). In this limit the seriesy,, repro-
First of all we consider the peculiar calde=2. We evalu- duces order by order the one of the Ising model. For the

ate the critical exponents on the straight line joining the Isingdifference 7— »; the equality of the exponent is expected

and the @2) fixed points(as in the case of th& matrix.  only at the fixed point. In fact it holds that

The results for the exponentg and »— », are presented in

Figs. 5 and 6, respectively. Within the precision of our cal- 2

culation we find an exponen assuming the constant value -,

1/4 along the line as predicted in Ref. @Ae uncertainty is 1.8

about 0.05 forx~0.5 and decreases near the borflefhe

exponenty— #; interpolates in a monotonic and continuous 1.6

way from 1 at the Ising fixed point to 2 at th@(2) fixed

point and so it is compatible with the Kadanoff’'s conjecture 1.4

identifying this line with the dual line of the 8V model with

the continuous varying exponent given by Eg). 1.2
The parametey in Eqg. (7) belongs to the ranggl,3/2],

respectively, from Ising t®(2); insteadx ranges between 0

and 1 fromO(2) to Ising. So we try to identify

FIG. 6. Values ofp— 7, (straight line CM and pointed line PB
with varying the parameter, Eq. (34). The dashed line is our con-
jecture(49).

_3x 48
y=—— (48)
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lim 7,(u,v)=—2u+ 7i(v) — Uv?A(v), (50)  Fig. 6. In this manner we relate the measurel(glexponents to
N0 the strength of the anisotrofgthe parametex).* The XY
. ) ) — model with cubic anisotropy fan<<O could display the criti-
where 7(v) is the series of the Ising model, a#{v) a  ¢a| hehavior of the Askin-Teller model with<1, i.e., the
function that at four loops reads(v) =0.1166-0.115%. At region on the dual line from the decoupled Ising fixed point
the cubic fixed point we obtain (y=1) to the four-state Pottsy&0). We tried to check if
the line of fixed points continues for negative valuesidfut

— = .
m— 7 =0.1310), (5D the results of the resummation for these values of the renor-
which is compatible with zero. malized couplings are strongly oscillating.
For N=3 the result forp— 7, via scaling law leads t@ For all other values oN we found one fixed point in the

=1.3(3), sothere are no fixed pointéstable or unstable  region withu,u >0, which seems marginally stable and un-
with the three-state Potts exponent5/6. In Sec. Il C we  gtaple for perturbations with/u<v*/u* anduv/u>v*/u*

have stressed thgggxpenmental investigafibamd Monte  espectively. A possible RG flow diagram is sketched in Fig.
Carlo simulations™™ in the adsorption of diatomic mol- 4 The estimates of this fixed point and of the critical expo-

elcwet?\ on i_holnsyﬁomb Iat]fifﬁ in thteztx é) tftrucrttére diﬁ' nents for several values dfare reported in Table VI. For the
play the critical behavior of three-state Fots, although, achyica|ly relevant case di=3 at the cubic fixed point we

cording to the standard classificatidthis system should be found 7=0.17(8) andv=1.3(3). This value of» is differ-

described by thé&y=3 cubic modgl. It may be possible 'that ent from the three-state Potts model. This fact deserves fur-
the system undergoes a weak first-order phase transition %n

the face-cubic region withy<0, with effective exponents her studies about the order-disorder transitions of some ad-

close to the ones of the three-state Potts model, which a&_orbed monolqyers that Sh,OUId belong to the uni'versality
pears in the discrete face-centered model. This point neediass of the Heisenberg cubic model, but that experimentally
further studies for a full understanding of the phenomenon.dispPlay the exponents of the three-state Potts model. One
possible scenario is that the system undergoes a very weak
V. CONCLUSIONS first-order phase transition with effective exponents close to
the ones of three-state Potts model.

In the present paper we have studied the critical behavior Finally we mention that in Ref. 56, using an argument
of N-component spin models with cubic anisotropy by apply-based on conformal field theory, it is argued that the cubic
ing the field-theoretic renormalization-group IEChnique di'fixed point and the |Sing one merge for arbitraﬂy>2, and
rectly in two dimensions. so the critical behavior will be Ising like in the whole

We have first focused our attention on tK& model N y;,1,>0 plane. Our analysis seems to contradict this pic-
=2) with cubic anisotropy. We found that this model has atyre. However, we cannot exclude that the existence of a
line of fixed points joining the decoupled Ising and the marginal cubic fixed point is just an artifact of the relatively
O(2). Along this line the critical exponent assumes the short series that we have analyzed. It would be important to
constant value 1/4. The exponentuns from 1, at Ising, to  get further confirmation, either by extending the perturbative

%, atO(2), according to the standard expression of the 8Vseries or by alternative analyses, such as Monte Carlo simu-
model (7). This argument is based on a mapping of the |ations.

parameter of the 8V model onto the parameter of the
Hamiltonian(1):
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