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Starting from a simple microscopic model, we have derived a kinetic equation for the matrix distribution
function. We employed this equation to calculate the conduct@nicea mesoscopic FF/F' structure with a
domain wall (DW). In the limit of a small exchange energyand an abrupt DW, the conductance of the
structure is equal t&,3=40,0/(o;+0|)L. Assuming that the scattering times for electrons with up and
down spins are close to each other we show that the account for a finite width of the DW leads to an increase
in this conductance. We have also calculated the spatial distribution of the electric field in the F wire. In the
opposite limit of largel (adiabatic variation of the magnetization in the DWe conductance coincides in the
main approximation with the conductance of a single-domain stru@yge- (o + o )/L. The account for
rotation of the magnetization in the DW leads to a negative correction to this conductance. Our results differ
from the results in papers published earlier.
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[. INTRODUCTION of transport in the presence of a DW. We calculate the resis-
tance of a ferromagnetic wire with a DW and restrict ourself

In ferromagnetic metals not only the charge of the electo the case when the magnetization of the ferromagnetic
tron but also the spin plays an important role in transporistructure remains always perpendicular to the current. This
phenomena. A famous example is the observation of giarassumption simplifies the situation because in this case an-
magnetoresistance in magnetic multilayers, which can be exsotropic effects do not contribute to the change of the resis-
plained in terms of a spin-dependent electronic scattering. tance.

The presence of a domain wabW) in a ferromagnet can The DW contribution to the conductance has been consid-
also change transport properties and this has been observered in several theoretical works, in which different ap-
in a number of experiments. At first glance, experimentalproaches have been used. For example, in Refs. 10 and 11
data seem to contradict each other. In Refs. 1-4 it was founquantum effect$weak localizatiopwere taken into account.
that the resistance of ferromagnetic wires and films decreasdiswas shown that a DW contributes to the decoherence of
when increasing the external magnetic field, whereas in Ref®lectrons, leading to a decrease of the resistance. These ef-
5 and 6 the resistance at zero magnetic field was found to biects may be important at very low temperatures when local-
smaller than the one measured at high magnetic fields. ization effects start playing a noticeable role.

In order to give a quantitative description of these experi- At higher temperatures the weak localization effects are
ments, not only the DW contribution to the magnetoresis-not important and one may try to describe the magnetoresis-
tance (MR) should be taken into account, but also othertance in terms of classical motion. In recent works, Refs. 12
mechanisms, such as the anisotropic magnetoresistana)d 13, an increase of the resistance due to a DW was pre-
which arises due to the spin-orbit scatteringsize effects, dicted on the basis of a Boltzmann equation. However, the
and the Lorentz contribution inside the domains. The maircollision term describing the scattering of conduction elec-
experimental difficulty in determining the DW contribution trons on impurities was introduced phenomenologically.
is to exclude the other effects. For example, in Ref. 1 the The classical DW resistance was calculated also in Ref.
negative MR observed in Co films was interpreted in termsl4. In that work, it was shown that the DW resistance could
of DW scattering. However, in Ref. 3 it was claimed that thebe both negative and positive depending on the difference
predominant contributions to the observed magnetoresistandéetween the momentum relaxation times, for the differ-
of Co films can be explained by a specific micromagneticent spin directions. However, the classical Drude expression
structure, which consists of stripe domains with magnetizafor the resistivity was used, in which the relaxation times
tion out-of-the-film plane. In addition, the films show closure 7, | were introduced again as phenomenological parameters.
caps at surfaces with magnetization in plane and parallel tth Refs. 15 and 16 the resistance of a DW located in a point
the current. Thus, the resistivity anisotropy might play a fun-contact was calculated.
damental role. The purpose of this paper is to derive a proper kinetic

Understanding the details of these experiments is an inequation for the distribution function from a microscopic
teresting task. However, before taking into account allmodel and to calculate the DW resistance on its basis. We
material-specific characteristics of the experiments onemploy a standard approach based on microscopic equations
should be able to describe the general properties of electrdior the quasiclassical Green’s functions in the Keldysh tech-
scattering on domain walls. In this paper, we do not try tonique. Assuming that the impurity scattering potentialis
give an explanation of all these experiments, but solve aispin dependent, we derive the kinetic equation for the matrix
idealized model that may capture the most general featurgén the Nambu and spin spacdistribution function. As a
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result we come to the kinetic equation for the distribution
functionf that is a 2<2 matrix in the spin space. The impu-

rity scattering potential which enters the collision integral is DW
also a matrix and this makes the equation considerably mor

complicated than the standard one that could be written for W
spin-independent scattering. . . .
Throughout this article we assume that the magnetizatior % =0 L2 L

always remains perpendicular to the current. First we solve
the derived kinetic equation in the two simplest cases: a
single-domain and two-domain structure with an abrupt DW
(i.e., the width of the DW equals zerdn the case of a finite
DW width we solve the kinetic equation assuming that the
potentialsu; and u; do not differ much from each other.
Even in this limit, it is hard to obtain analytical formulas for
an arbitrary width of the DW. Two different limiting cases
naturally arise and this allows us to obtain a solution for the
distribution function. The first limit corresponds to a sharp
DW (to a small exchange energy. The second limit cor- FIG. 1. Upper figure: The geometry considered in this article
[ﬁ:psoerzstj)sn(tjoli%;r\?vzztgrll:;\sgea(‘jI%rgl'\?é]f)s. V1V2e ri%teatr:](?tlgnks irThe domain wall(DW) is situated in the middle of the ferromag-

. PO ) netic wire. Lower figure: the componen{n,(x)] of the magneti-
Refs' 12, 13, and 17 we obtain that the DW increases th?ation in the F wire. The solid line corresponds to a Bloch-like wall
re_S|St_ance of the system. However, our_ formulas fqr the CONzs calculated by Landau and Lifshitz. The dashed line corresponds
tribution of the DW to the resistance differ essentially from., 4 jinear DW.
those presented in Refs. 12, 13, and 17.

This paper is organized in the following way. In the next which means that the mean free path is the shortest length
section we introduce the model and derive the kinetic equatapart from the Fermi wave lengtm the problem. We solve
tion for the distribution function in a ferromagnetic wire ne- the kinetic equation assuming the smallness of the parameter
glecting quantum effects. We start from the microscopicgB, defined as
Hamiltonian (2) with different scattering rates at impurities
for spin-up and spin-down electrons. In the subsequent sec- _o79o (1)
tions we calculate the conductance of the system in the dif- o to)’
fusive limit. In Sec. Ill A we consider the case of a sharp
DW whenJ<D/w?, whereD is the diffusion coefficienty
is the width of the DW, and is the exchange field acting on
the electron spin. In Sec. Il B we calculate .the conductanc?ering rates will become clear below
of a2 slowly” varying D\.N’ 1.€., we consider the Case " The assumptiorB<1 is valid for ferromagnets with ex-
D/w<<J. It turns out that in the first case the conductance 'Schange energy much smaller than the Fermi energy. We
always smaller than in the adiabatic case. In the last section. ; o P '
We summarize our results. will consider two Ilmltlng case_s(a) _J<DM/_W_ and (b) J
>D,;  /w? whereD,  is the diffusion coefficient for elec-
trons with up and down spins, amdis the width of the DW.
Case(a) corresponds to a sharp DW. The conductance in this
case is smaller than the conductance of the structure without

In this section we derive the kinetic equation for the ma-a domain wall. A finite width of the domain wall leads to a
trix distribution functionf starting from equations for the POSitive correction to the conductance. The second case cor-
responds to a smootfcompared to the magnetic length
trix in spin space. We assume that the impurity scattering ratétlrgu/gt)urDeV}g Icr:()tgs t'g‘;;]:: gflzrgﬁﬁ;&(iecwg%cl}tagcg\?\; t\?V?th
depends on the spin directions but, for simplicity, we neglecgecreasing the width of the DW. the conductance .of the

such spin-flip processes as the spin-orbit interaction or th : U
scattering by magnetic impurities. So in our model each im Structure decreases. Our results differ significantly from the

purity scattering vertex is a matrix that does not commutJeSUItS obtamec_i n _o_theLworks, v_vhe_re elther_ the collision
A ) . term was oversimplified’ or the kinetic equation was not
with f and therefore the elastic collision integral has a non

treated in a correct way.

trivial form. This_, fa<_:t has been ign_ored in Refs. 12 an_d 17," \We choose the Hamiltonian of the ferromagnet in a simple
where the collision integral was written phenomenolog|caIIy.standard form

Using the derived kinetic equation we calculate the con-
ductance of a mesoscopic structure which consists of two + ) -
reservoirs and a ferromagnetic wier film) connecting the ~ H :2 J dr{gl(n[—VZ2m+eV(r)—JIn- o]e (r)}
reservoirs(see Fig. L A domain wall is assumed to be 3
present in the ferromagnet. We consider the diffusive limit, +Himp, 2

whereo; | are conductivities for different spin directions. A
precise relation between the conductivities |, as well as
the diffusion coefficient® | ;, and the corresponding scat-

II. KINETIC EQUATION

quasiclassical Green functions. The functiois a 2x 2 ma-
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whereV(r) is a smoothly varyingover the wavelength () whereH =[—(1/2n)V2+V(t)]}3® (}O_J}aﬁ, and the self-

electric potential)) is the exchange energy, ands the unit  energy term;y,, is given by

vector directed along the magnetization orientation. The term

Himp(r) describes the interaction of eIectrons_ Witi_i impurities Siimp= nimpﬂ<G>ﬁ. (8)

and we assume that it depends on the spin direction. The 5

origin of this dependence can be either the band structure ddere u=u,(1+\n), (G)=v[d{,[dQ/4m-G, andniy, is

the intrinsic spin dependence of the impurity scatteringthe concentration of impurities. In the quasiclassical ap-

potential? If the magnetization is aligned along teaxis,  proach the density of statesis written in the main approxi-

this interaction can be written as mation with respect to the paramet®fer, whereeg is the
Fermi energy. In this caseis the same for both spin-up and

. + spin-down electrons. Notice that the right-hand side of Eq.
HimP_Z f dr{y(rus(r=ri) ¢y (r) (8) is a product of matrices, which in the general case do not
commute.
+ wI(r)uL(r =)y (n}. 3 In order to obtain an equation for the quasiclassical Green
functions, we follow the standard wajsee, for example,
As in Ref. 18, we introduce the new operators Ref. 19: we write the equation conjugate to E@), multiply
both equations bys, and subtract from each other. Then, we
s, n=1, integrate the final equation over the variabfg=ve(p
n,s= l& n=2. 4 _pg) and obtain

In terms of the operatorg, s and in the case of an arbi- 7399+ dv g3 Ti[eV()g—geV(t) ]+ (veV)g+id[n.g]

trary anglea between the magnetization vector and the

axis the Hamiltoniar(3) can be written as =~ (12r)(m{gymg—gm(g)m). ©)
We have introduced the quasiclassical Green function in
Himp:;n:S f drlﬁl,s(r){;s@(}ouﬂr_ri) the usual way.
+(7o® 03C0Sa+ T3® apSiNa)U_(r = 1)}y o) g=(i/w)r3f dépG. (10
~ v i o e -1_ 2
_ drot (u 14\n ’ 5 The matrixm is equal tom=1+\n and 7™ *=vny,|u, | is
i;s Un s+ 73} Vs © the mean momentum relaxation rate. The elements of the

. matrix g aregR™® andg
whereu. =(u;£u )/2x=u_/u, and the matrixn is de-
fined asn=7,® oyexd —iam®04]. gR g
Introducing the operatorg, o, Eq. (4), leads to an in- g= 0 Al
crease of the size of matrix Green functions written below. 9
One has to deal not only with spin space, but also with the
Nambu one. Actually, this is not necessary if one consider;1

) . . i
nonsuperconducting metals only. However, this extension o !

. . . : . _ferromagnet structure when the superconducting condensate
size would become important if the metal wire we consider

were in contact with a superconductor. Although we do notoenetrates into the ferromagnet. We use [@gfor a normal

. o case, i.e., for F/S structures when one can neglect the pen-
consider any superconductivity in the present work, we keel%tration of the condensate into the ferromagnet F or fof F/F
at the moment the Nambu space, explicitly having in mind %tructures. In order to obtain the kinetic ?a uation for the
possible generalization for the superconductivity. ) q

Now we define the Green functions in the Keldysh tech_distribution function in the normal case, we represent the
nique Keldysh component in the usual fott

(11)

Equation(9) is valid in a rather general case. In particular,
can be employed in the case of a superconductor-

N , g=g~-f-f.g", (12
G (1,10 = (U Tel thn s(t) U, (10T, (6) . o

_ _ whereg"® =+ ;@0 andf is a 4<4 matrix, whose ele-
whereT¢ means time ordering along the Keldysh contGur  ments are the components of the distribution function in

In a standard way we define the retardedvanced G*®  Nambu and spin space. This matrix can be represented in the
and Keldysh Green functio® as well as a matrixG com-  form

posed of the matrice6R® andG (see, e.g., Ref. 190ne
can obtain an equation for the mat&in the usual way by f=Fyro+fa7s. (13
summing the ladder diagrams in the cross techriijiee A A
neglect all crossed diagramg his equation has the form The component$, andf; are matrices in spin space. In the
absence of spin-dependent interactions they are diagonal and
(idi—H—2pp)G=1, (7)  related to the distribution functions for electromand holes
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p as follows: fo=[1— (ng+p9)]-00; fa=—(Ns—pg)-0p.  (16). We assume that the system is diffusitteis implies the
Taking into account Eqg10)—(13), one can easily get from conditionJ7<1). In this case one can expand the distribu-
Eq. (9) the kinetic equation for the matrix distribution func- tion functionf in spherical harmonics and consider only the
tion: first two of them,

73(veV)F+id73[n,F1= — (1/27)[m?f + fm2—2m(f)m]. f=s+pua, (18

14 . .
_ _ o _ (14 whereu =cos¢@ andé is the angle betweer: and thex axis.
According to all previous definitions we can write Using Egs.(16) and (18), one obtains two equations for the

functionss anda:
.

=, 15 A A IO

T )2 (159 vedS+iJ[n,a]=— (L/2r)(MPa+am?), (19
and hence define; | andD; | without using any phenom- A AT o Sy SRR
enological approach. In our model the conductivides are (ve/3)datiln,s] (1/2r)(m°s+sm stm).(ZO)

equal to o, =e’wD; =e’»D(1=\) 2, where D _ _
=v27/3. Note that in the absence of superconductivity theln the second equation we have performed an averaging over
distribution function is diagonal in the Nambu- space, andthe anglex. The boundary conditions at the interfaces with
therefore one can take the componéhtl) of Eq. (14) and  the reservoirs are given by imposing the continuity of the
obtain symmetric pars(x) of the distribution functioniwe assume
. L o A a perfect contact of the F wire with the reserviirs
(veV)T+id[n,f]=—(1/2r)[m?f + fm?—2m(f)m],
(16)
where all matrices are nhow>22 matrices in spin space. In
particular,m=1+\n and n= ozexd —iac,]. Note that the and
left-hand side of Eq(16) coincides with the left-hand side of
the well-known kinetic equation derived for a magnetic ma- §(0)=tanh6+ev
terial (see, for example, Ref. 20, where the kinetic equation 2T
is presented for a dynamic case in the absence of scattering

by impurities. The solutionf of this equation coincides with ONce We determine the distribution functién we can cal-
C o . culate the current density using the following expression:
the componen{1,1) of the distribution functionf, which

A € .
s(L)=tanhﬁ oo (21

oy (22)

satisfies Eq(14). Since in this article normal materialeo 1 ve R
superconductojsare considered, we will analyze E(6). j=- ZeV§J deTra. (23
One can exclude the spatial dependence of the matrices
andm by performing unitary transformation defined by In the next sections we determine the resistance of a do-
main wall with a finite width. Here, on the basis of Ea6),
f:lj.?.o‘r, U= gycosal2+io;sinal2. the conductance of a’'H/F mesoscopic system is calcu-

] ) ] o lated in the simplest cases: a single domain in the ferromag-
In this case one obtains an equation for the distribution funcpetic wire and a two-domain structure in the F wire with an

tion f: abrupt domain walli.e., w=0; see Fig. L In this casdthe
R R R magnetization is parallel or antiparallel to theaxis), both
(e T+i(vel2)a' (X)[oq,f]+id[o3,T] parts of the distribution functios anda are proportional to

PN PPN 2R A A &0,3. Therefore the commutator on the left-hand side is equal
== (Un[f=(H)+Nos, T =(H]+N(F-0o5(f)os)]. g zer0. From Eq(19) we find

)

The left-hand side of this equation differs from the one ) , L o
derived in Ref. 13. In the latter there is an additional term of/Ve Substitute this expression into EO). Taking into ac-

the form [a'(x)/4m][&y,(9F/ax)], which, as we have count that the right-hand side is zero, we obtain after inte-

shown, does not appear in the quasiclassical approach. Morgfatlon

over, due to this term the kinetic equation of Ref. 13 violates $=5(0)+ mM2ix/D, (25)
particle number conservation and therefore leads to wrong

results. Notice, also, that the collision tefmight-hand side The integration constant or, in other words, the “partial cur-
of Eq. (17)] after unitary rotation may not be diagonal in spin rent” per unit energy is found from the boundary condition
space. This fact was ignored in Refs. 12 and 17. We will se€¢22),

in the next sections that in the cad®/(v?)<J, it is conve-

nient to work with Eq.(17), while in the opposite case it is D ~

- b..,
easier to solve the kinetic equation in its original form, Eq. I LM F-oo, (26)

a=—m 2vpdss. (24)
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Whereﬁ1’2=[1+)\2— 2)\6]/(1_)\2) and A. Small exchange energy
If the exchange field is weakl&D/w?) or the DW wall
= =tanh6+ev—tanhi. is very sharp, one can easily solve E(9) and(20) for an
N 2T 2T arbitrary form of the DW. We assume that the DW width
Substituting this expression into E@3), we find the current exceeds the mean freg path but is smaller than the magnetlc
and the differential conductan@=d1/dV]y_o: length &£;=+/D/J. In this case, we expand the solution of

Egs.(19) and(20) in the small parametedw?/D and\. In
Gig=(20/L)(1+7\?)/(1-7\?)?=G +G,. (27)  the zero-order approximation, we get

Here G, =0, /L, and c=e?vD. Thus, the conductance 9= — 13,0 (32)

has the usual form. We note that in termshothe conduc-

tivities o | are given byo, | =a/(1*\)?, and hence the and

coefficientg defined in Eq(1) is related to\ via the relation

B=—2\(1+\3). Dado=To, S=ogantoos +i/D, (33
Let us consider the same system with two domains in the X207 T0r 200 2T o

F wire and with an abrupt DW located in the middle of the

wire. In this casea=0 in the interval G<x<L/2 and «

=1 in the intervalL/2<x<L. Equations(19) and (20) are

solved in the same way as for the single-domain case. For

the symmetric part of the distribution function we obtain

where the “partial current” is found from the boundary con-
dition (22) and is equal to

To=—0¢DF_IL. (34)

In the first approximation we find from E@19)

“ e+eV . ~
. ootanh +m?(0)Ix/D, 0<x<L/2, . . S
S(x) = 2T a;=—194,8,—2\n(x)ay. (35
s(L/2)+m*(m)l(x—=L/2)/D, LI2<x<L, The solution of Eq(20) for the symmetric pars, has the
(28) form
where m?(0)=m?|,_o. The integration constant again is §
found from the boundary conditiof22). We get forl §1=|A1X/D+2)\’|\Oj dx;n(x,)/D. (36)
0
1=0oDF_/(1+\*)L (29 This and the next corrections should satisfy zero-boundary
and for the conductance conditions. Therefore we find fdr,
G24=(20/L)/(1+\?)=4G,G /(G;+G)). (30 Ti=—2\(n), , (37)

This result was obtained earli¢see Ref. 2 and references where( - - '>L:1/|-ch)(' ..)dx. As follows from Eq.(23), the
therein. In the next section we calcula@for the case when first correction does not contribute to the current. The zero-
the magnetizatiorfor the vectom) rotates in they-z plane  order correction leads to an expression for the conductance

over a finite lengthw. given by Eq.(30) if we expand it in the small parametar
(the case of an abrupt DWIn order to find a correction to
I1l. CONDUCTANCE OF A DOMAIN WALL the conductance due to a finite width of the DW, one has to

. find the second-order corrections. One can see fro .
The problem of calculating the conductance for a system My

with a finite width of a DW is rather complicated. In order to that only components d, or s, proportional too, contrib-

simplify it, we make an assumption that the scattering time te toEthe clgrren;tj. ngerefgr]g v(\j/e takle the trace in spin space
7., are close to each other, i.e., rom Egs.(19) and(20) and find easily

A<l (31) Trap=—(1/D)Tri, (39)
This condition is met in ferromagnets with an exchange enand
ergy J smaller than the Fermi energy. We consider again the .
system shown in Fig_. 1. The t_otal_length qf the ferromagnetic Trs,= —(2>\)2Tr70<ﬁ>L f dxlﬁ(xl)—(ﬁ>x / D,
wire is L. A Bloch-like DW is situated in the regionL( 0

—w)/2<x<(L+w)/2 and separates two domains with op- (39
posite magnetizations. Thus, the effective width of the DW isWhere
w. It is not easy to obtain an exact solution of E¢k9) and

(20). However, one can assume that conditi@d) is satis-

fied and expand the functiorssand a up to terms propor-

tional to A%. We distinguish two case$a) J<D/w?, which  Using Egs.(34) and (40) we obtain the expression for the
corresponds to a sharp DW, affg) J>D/w?. conductance which can be represented in the form

Triy=— (12 Tri N[ 1—4(n)?]. (40)
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G:GZd . (41)

1 .
1+(2A)2§Tr<n>f

This formula determines the conductance of the system un-
der consideration for the case when the precession frequency
Jis smaller than the inverse time of diffusion of an electron
through the DW. One can see that in the case of a DW with
a finite width the conductance is larger than in the case of a 0 77
sharp DW[cf. Eq.(30)], but smaller than the conductance in X
the single domain cadef. Eq. (27)]. Note that Eq(41) has
been obtained in the limit of small. Therefore the conduc-
tanceG,4 should be expanded ix [see Eq(30)] and terms
of order higher thar\? should be neglected. There is an
interesting consequence from the result of ). Let us
consider the case of two DW'’s separating three regions of Now we consider the case with a large exchange energy
lengthd with homogeneous magnetization. For simplicity weor a slow variation of the direction of the magnetization
assume that the shapes of the DWs are described by a piessithin the DW (w>\/D/J). In this case, the problem be-
wise linear function, which is characterized by a wave vectoicomes more complicated because we cannot neglect the
Q=(w/m,0,0). If one defines the chirality vector a,, commutator on the left-hand side in Eq$9) and (20) and
=n(x) X n(x+ 8x), wheren(x) is the unit vector directed cannot find a solution of these equations even for the case of
along the local magnetization, two cases should be distinsmall . Therefore we simplify the problem assuming that
guished:(a) the DW's have different chirality. In this case the shape of the DW is described by a piecewise linear func-

Tr(n)2 = (2/L)[d2+ 16(w?/ %) ]. Thus we see that an addi- tion (see Fig. 1

tional DW will decreases the conductance of the systgn. . ) )

The chirality vectors have different signs. In this case o3 inregion |,

T(n)f=(2/L?)d? and hence the contributions of both f={ G.exd —i(m/w)[x—(L—w)/2]e,] Within the DW,

DW's to the conductance cancel each other. This result can . , )

be generalized easily for an arbitrary number of DW'’s —03 in region lI.
Now we calculate the spatial distribution of the electric (46)

field in the ferromagnetic wire shown in Fig. 1. The electric

potential V(x) is given by the expressiofsee, for example,

Ref. 19

FIG. 2. The spatial distribution of the electrical field in the F
wire for different values ofv/L. Here AE=[E(x) — Eol/(2)\)2.

B. Large exchange energy

Obviously the results for other shapes of the DW like that
given by Eq.(44) will differ from ours only by a numerical
factor. We again expand the solution in the small parameter

. . \, i.e,a=ag+a;+a,+--- . The zeroth-order terms can be
V(X)=(1/4Tr Uof des. (42)  obtained easily as before and they are given by B®.and
(33). The first correctiora, is given again by Eq(35) and
the first correction for the symmetric part obeys the equa-
tion

According to Egs.(33) and (39) the electric field E(x)
=—9,V(x) in the ferromagnetic wire is given by

E(x)=(V/L){1+(2\)?[(cosa), ({cosa), —cosa)
+(sina) ({sina)_ —sina)]}. (43

D 32,5, —iJ[N(X),51]= 2\ gdyN. (47)

_ _ This equation can be solved for the caseﬁ())k) given by
For example, if we consider the structure of the BlochEq. (46) with the help of a unitary transformatida rotation
wall which has been calculated by Landau and LifS?’ﬁtZ, in spin spac:e We do not need to find the second order

cosa—tanf (x—L/2)/w], sina=cosh [ (x—L/2)/w], correctionsa, ands,, since the so_ught-affer correction to the
(44) conductance can be expressed in terms;ofindeed, let us
write the equation for Ts, which follows from Eq.(20),

we obtain
< 22 A T1—
E(X)—EOZ EO(Z)\)Z(’ITW/L){(’ITW/L) TI’{D(?XSZ'F(UF/:g)[)\ ao+2)\na1]—lz}—0, (48
—cosh [ (x—L/2)/w]}, (45 wherel, is the integration constant which is relatedag:
Tr &052= —If2/D. We integrate this equation from 0 tg

where Eq=(V/L). In Fig. 2 we plot the dependend&(x)
given by Eq.(45). One can see that in the region of the DW 2 . - ]
the electric field decreases: this means an increase in thel: S2=0. After simple transformations we obtain
local conductivity.

In the next section we consider the case of a strong ex- Tr{Tz—B)\ZTO}/D=2)\Tr (;O dexél(x)ﬁ(x) . (49
change field or of a wide wall, i.e., the case>¢;. 0

taking into account the boundary conditionsxat 0 andx
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As before, the correction to the conductance is determined Gy
by 1,. We see that in order to find this correction, one has to

solve Eq.(47) for s;. This equation can be solved with the yé
help of the unitary transformation ’

5,=0-8.07, U=gqcosal2+icsinal2. (50

This rotation transforms the vectar into N=o5. Per- sz/ _
forming theU transformation, we obtain instead of E49)

wi&;
o R o (in arbitrary units)
Troo{l,— 3N /D =2N\dyaTr,o(S(x)). (51
FIG. 3. Schematical representation of the conductance as a func-
After theU transformation, Eq(47) acquires the forniin the  tion of the widthw of the DW. In the intermediate regioidashed

region of the DW line) the curve is extrapolated from our results.
=2\, ,QID, (52

P ) o o Using a simple microscopic mode@qual density of states
where Q=d, and N=o3. This equation is valid in the ¢ gifferent impurity scattering times, | for electrons with
region of the DW, whereas in regions | and Ill we have o selyyin 1y and down we have derived the kinetic equation for
Q=0 and to take into account that, in region IN=—05.  the matrix distribution function. The derivation has been per-
The matrix S should be represented as a sWB®S;0;  formed by a standard method on the basis of microscopic
+Szfr2+ 83&3. The componentsS, are given by a linear equations for the quasiclassical Green functions in the
combination of the eigenfunctions of E¢62). They obey Keldysh technique. This equation can be applied to the stud-
zero-boundary conditions at=0 andx=L and should be ies of transport in, for example, ferromagnets with a nonho-
matched ak=L,=(L—w)/2 andx=L,=(L+w)/2. The ei- mogeneous magnetization.
genvalues of Eq(52) [ S,~exp(kX)] are determined by the We have employed this equation to calculate the conduc-
equation tanceG in a mesoscopic FF/F structure. We have assumed
that the parametex=(7,— 7,)/2(7,+ 7;) is small and the
KZ(K2+Q2)2:(K2_Q2)/§§7 (53 length of the F wirel is lsho;ter th;n trge spin energy relax-
where§32=2J/D. In a general case a solution of E&2) at?on length. Two different limits appear which are dgter-
has a cumbersome form. We represent here the form of gnned by the product of the exchange enedggnd the dif-

. Ao, o . . fusion time r,,=w?/D of electrons through the DW. In the
?nothrtéoS?eE)ri;rUZS(x) in the region of the DW which we are limt 7,J<1 and a very thin DW the conductance of the

structure(per the unit cross-sectional ajaa equal toG,g
=400 (0;+0))/L. The account for a finite width of the
DW leads to an increase in the conductance by a normalized
—Ll)IEJ\/§]+exr[(1+i)(X—L2)/§J\/§]}. amount of order Xw/L)?. We have also calculated in this
limit the spatial distribution of the electric field in the F wire.
(54) The electric field has a minimum in the center of the DW
which corresponds to an enhanced local conductivity. In the
other limit 7,,J>1 (adiabatic variation of the magnetization
in the DW) the conductance coincides in the main approxi-
mation with that of a single-domain structur€,y= (o

Tr o,S(x)=— 2\ Tr;1 o(£5Q/D) Im{exy — (1+i)(x

We dropped terms of higher order in the param&er
~¢&5/w. Using this expression and E¢1), we readily get
an expression for the current and conducta@ece

2 +o0)/L. The account for rotation of the magnetization in
G=Gqq4|l 1—- > A2, (55) the DW leads to a negative correction to the conductance of
Lw order —\?(7,J) ¥4 w/L). Our results differ from those

whereG, is the conductance for a homogenous magnetize®tPlished earlief>"because in the latter works the colli
wire [see Eq.(27)]. Again terms of order higher than? sion _term was written phenomenologmally. In parucular_the
should be neglected. Note tha@t, is always larger than the matrix character of the impurity vertex was not taken into
conductance in the case of a two-domain wirg, [see Eq. account.

(30)]. Equation(55) shows that the DW decreases the con-

ductance compared to the conductar@g; of a single-

domain F wire. Our result is sketched in Fig. 3. We see that ACKNOWLEDGMENT
within our approach a DW with a finite width is always a
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