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Resistance of a domain wall in the quasiclassical approach

F. S. Bergeret,1 A. F. Volkov,1,2 and K. B. Efetov1,3

1Theoretische Physik III, Ruhr-Universita¨t Bochum, D-44780 Bochum, Germany
2Institute of Radioengineering and Electronics of the Russian Academy of Sciences, 103907 Moscow, Russia

3L.D. Landau Institute for Theoretical Physics, 117940 Moscow, Russia
~Received 22 May 2002; revised manuscript received 29 July 2002; published 5 November 2002!

Starting from a simple microscopic model, we have derived a kinetic equation for the matrix distribution
function. We employed this equation to calculate the conductanceG in a mesoscopic F8/F/F8 structure with a
domain wall ~DW!. In the limit of a small exchange energyJ and an abrupt DW, the conductance of the
structure is equal toG2d54s↑s↓ /(s↑1s↓)L. Assuming that the scattering times for electrons with up and
down spins are close to each other we show that the account for a finite width of the DW leads to an increase
in this conductance. We have also calculated the spatial distribution of the electric field in the F wire. In the
opposite limit of largeJ ~adiabatic variation of the magnetization in the DW! the conductance coincides in the
main approximation with the conductance of a single-domain structureG1d5(s↑1s↓)/L. The account for
rotation of the magnetization in the DW leads to a negative correction to this conductance. Our results differ
from the results in papers published earlier.
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ec
o
ia
e

g.

r
ta
un
as
e
o

r
is
e
n

ai
n
th
m
he
an
ti
za
re
l
n

i
a

on
tr
to
a

ur

sis-
elf
etic
his
an-

sis-

sid-
p-
d 11
.

of
e ef-
al-

are
sis-
12
pre-
the
c-

ef.
uld
nce

ion
es
ters.
int

tic
ic
We
tions
ch-

trix
I. INTRODUCTION

In ferromagnetic metals not only the charge of the el
tron but also the spin plays an important role in transp
phenomena. A famous example is the observation of g
magnetoresistance in magnetic multilayers, which can be
plained in terms of a spin-dependent electronic scatterin

The presence of a domain wall~DW! in a ferromagnet can
also change transport properties and this has been obse
in a number of experiments. At first glance, experimen
data seem to contradict each other. In Refs. 1–4 it was fo
that the resistance of ferromagnetic wires and films decre
when increasing the external magnetic field, whereas in R
5 and 6 the resistance at zero magnetic field was found t
smaller than the one measured at high magnetic fields.

In order to give a quantitative description of these expe
ments, not only the DW contribution to the magnetores
tance ~MR! should be taken into account, but also oth
mechanisms, such as the anisotropic magnetoresista
which arises due to the spin-orbit scattering,7–9 size effects,
and the Lorentz contribution inside the domains. The m
experimental difficulty in determining the DW contributio
is to exclude the other effects. For example, in Ref. 1
negative MR observed in Co films was interpreted in ter
of DW scattering. However, in Ref. 3 it was claimed that t
predominant contributions to the observed magnetoresist
of Co films can be explained by a specific micromagne
structure, which consists of stripe domains with magneti
tion out-of-the-film plane. In addition, the films show closu
caps at surfaces with magnetization in plane and paralle
the current. Thus, the resistivity anisotropy might play a fu
damental role.

Understanding the details of these experiments is an
teresting task. However, before taking into account
material-specific characteristics of the experiments
should be able to describe the general properties of elec
scattering on domain walls. In this paper, we do not try
give an explanation of all these experiments, but solve
idealized model that may capture the most general feat
0163-1829/2002/66~18!/184403~8!/$20.00 66 1844
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of transport in the presence of a DW. We calculate the re
tance of a ferromagnetic wire with a DW and restrict ours
to the case when the magnetization of the ferromagn
structure remains always perpendicular to the current. T
assumption simplifies the situation because in this case
isotropic effects do not contribute to the change of the re
tance.

The DW contribution to the conductance has been con
ered in several theoretical works, in which different a
proaches have been used. For example, in Refs. 10 an
quantum effects~weak localization! were taken into account
It was shown that a DW contributes to the decoherence
electrons, leading to a decrease of the resistance. Thes
fects may be important at very low temperatures when loc
ization effects start playing a noticeable role.

At higher temperatures the weak localization effects
not important and one may try to describe the magnetore
tance in terms of classical motion. In recent works, Refs.
and 13, an increase of the resistance due to a DW was
dicted on the basis of a Boltzmann equation. However,
collision term describing the scattering of conduction ele
trons on impurities was introduced phenomenologically.

The classical DW resistance was calculated also in R
14. In that work, it was shown that the DW resistance co
be both negative and positive depending on the differe
between the momentum relaxation timest↑,↓ for the differ-
ent spin directions. However, the classical Drude express
for the resistivity was used, in which the relaxation tim
t↑,↓ were introduced again as phenomenological parame
In Refs. 15 and 16 the resistance of a DW located in a po
contact was calculated.

The purpose of this paper is to derive a proper kine
equation for the distribution function from a microscop
model and to calculate the DW resistance on its basis.
employ a standard approach based on microscopic equa
for the quasiclassical Green’s functions in the Keldysh te
nique. Assuming that the impurity scattering potentialus is
spin dependent, we derive the kinetic equation for the ma
~in the Nambu and spin space! distribution function. As a
©2002 The American Physical Society03-1
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result we come to the kinetic equation for the distributi
function f that is a 232 matrix in the spin space. The impu
rity scattering potential which enters the collision integral
also a matrix and this makes the equation considerably m
complicated than the standard one that could be written f
spin-independent scattering.

Throughout this article we assume that the magnetiza
always remains perpendicular to the current. First we so
the derived kinetic equation in the two simplest cases
single-domain and two-domain structure with an abrupt D
~i.e., the width of the DW equals zero!. In the case of a finite
DW width we solve the kinetic equation assuming that
potentialsu↑ and u↓ do not differ much from each othe
Even in this limit, it is hard to obtain analytical formulas fo
an arbitrary width of the DW. Two different limiting case
naturally arise and this allows us to obtain a solution for
distribution function. The first limit corresponds to a sha
DW ~to a small exchange energyJ). The second limit cor-
responds to a smooth DW~to a largeJ). We note that only
the second limit was analyzed in Refs. 12, 13, and 17. A
Refs. 12, 13, and 17 we obtain that the DW increases
resistance of the system. However, our formulas for the c
tribution of the DW to the resistance differ essentially fro
those presented in Refs. 12, 13, and 17.

This paper is organized in the following way. In the ne
section we introduce the model and derive the kinetic eq
tion for the distribution function in a ferromagnetic wire n
glecting quantum effects. We start from the microsco
Hamiltonian ~2! with different scattering rates at impuritie
for spin-up and spin-down electrons. In the subsequent
tions we calculate the conductance of the system in the
fusive limit. In Sec. III A we consider the case of a sha
DW whenJ!D/w2, whereD is the diffusion coefficient,w
is the width of the DW, andJ is the exchange field acting o
the electron spin. In Sec. III B we calculate the conducta
of a ‘‘slowly’’ varying DW; i.e., we consider the cas
D/w2!J. It turns out that in the first case the conductance
always smaller than in the adiabatic case. In the last sec
we summarize our results.

II. KINETIC EQUATION

In this section we derive the kinetic equation for the m
trix distribution function f̂ starting from equations for the
quasiclassical Green functions. The functionf̂ is a 232 ma-
trix in spin space. We assume that the impurity scattering
depends on the spin directions but, for simplicity, we negl
such spin-flip processes as the spin-orbit interaction or
scattering by magnetic impurities. So in our model each
purity scattering vertex is a matrix that does not comm
with f̂ and therefore the elastic collision integral has a n
trivial form. This fact has been ignored in Refs. 12 and 1
where the collision integral was written phenomenologica

Using the derived kinetic equation we calculate the c
ductance of a mesoscopic structure which consists of
reservoirs and a ferromagnetic wire~or film! connecting the
reservoirs~see Fig. 1!. A domain wall is assumed to b
present in the ferromagnet. We consider the diffusive lim
18440
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which means that the mean free path is the shortest le
~apart from the Fermi wave length! in the problem. We solve
the kinetic equation assuming the smallness of the param
b, defined as

b5
s↑2s↓
s↑1s↓

, ~1!

wheres↑,↓ are conductivities for different spin directions.
precise relation between the conductivitiess↑,↓ , as well as
the diffusion coefficientsD↓,↑ , and the corresponding sca
tering rates will become clear below.

The assumptionb!1 is valid for ferromagnets with ex
change energyJ much smaller than the Fermi energy. W
will consider two limiting cases:~a! J!D↑,↓ /w2 and ~b! J
@D↑,↓ /w2, whereD↑,↓ is the diffusion coefficient for elec-
trons with up and down spins, andw is the width of the DW.
Case~a! corresponds to a sharp DW. The conductance in
case is smaller than the conductance of the structure with
a domain wall. A finite width of the domain wall leads to
positive correction to the conductance. The second case
responds to a smooth~compared to the magnetic lengt
AD/J) DW. In the limit of a largew the conductance of the
structure is close to that of a structure without a DW. W
decreasing the width of the DW, the conductance of
structure decreases. Our results differ significantly from
results obtained in other works, where either the collis
term was oversimplified12,17 or the kinetic equation was no
treated in a correct way.13

We choose the Hamiltonian of the ferromagnet in a sim
standard form

H5(
s,s8

E dr$cs
†~r !@2¹2/2m1eV~r !2Jn•ŝ#cs8~r !%

1H imp , ~2!

FIG. 1. Upper figure: The geometry considered in this artic
The domain wall~DW! is situated in the middle of the ferromag
netic wire. Lower figure: thez component@nz(x)# of the magneti-
zation in the F wire. The solid line corresponds to a Bloch-like w
as calculated by Landau and Lifshitz. The dashed line correspo
to a linear DW.
3-2
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whereV(r ) is a smoothly varying~over the wavelengthlF)
electric potential,J is the exchange energy, andn is the unit
vector directed along the magnetization orientation. The te
H imp(r ) describes the interaction of electrons with impuriti
and we assume that it depends on the spin direction.
origin of this dependence can be either the band structur
the intrinsic spin dependence of the impurity scatter
potential.12 If the magnetization is aligned along thez axis,
this interaction can be written as

H imp5(
i
E dr$c↑

†~r !u↑~r 2r i !c↑~r !

1c↓
†~r !u↓~r 2r i !c↓~r !%. ~3!

As in Ref. 18, we introduce the new operators

cn,s5H cs , n51,

c s̄
† , n52.

~4!

In terms of the operatorscn,s and in the case of an arb
trary anglea between the magnetization vector and thez
axis the Hamiltonian~3! can be written as

Himp5 (
i ,n,s

E drcn,s
† ~r !$t̂3^ ŝ0u1~r 2r i !

1~ t̂0^ ŝ3cosa1 t̂3^ ŝ2sina!u2~r 2r i !%cn,s~r !

5 (
i ,n,s

E drcn,s
† ~r !u1t̂3$11lň%cn,s , ~5!

whereu65(u↑6u↓)/2,l5u2 /u1 and the matrixň is de-
fined asň5 t̂3^ ŝ3exp@2iat̂3^ŝ1#.

Introducing the operatorscn,s , Eq. ~4!, leads to an in-
crease of the size of matrix Green functions written belo
One has to deal not only with spin space, but also with
Nambu one. Actually, this is not necessary if one consid
nonsuperconducting metals only. However, this extension
size would become important if the metal wire we consid
were in contact with a superconductor. Although we do
consider any superconductivity in the present work, we k
at the moment the Nambu space, explicitly having in min
possible generalization for the superconductivity.

Now we define the Green functions in the Keldysh tec
nique,

Gnn8
ss8 ~ t i ,tk8!5~1/i !^TC@cn,s~ t i !cn8s8

†
~ tk8!#&, ~6!

whereTC means time ordering along the Keldysh contourC.
In a standard way we define the retarded~advanced! GR(A)

and Keldysh Green functionG as well as a matrixG com-
posed of the matricesGR(A) andG ~see, e.g., Ref. 19!. One
can obtain an equation for the matrixG in the usual way by
summing the ladder diagrams in the cross technique21 ~we
neglect all crossed diagrams!. This equation has the form

~ i ] t2H2Simp!G51, ~7!
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whereH5@2(1/2m)¹21V(t)#t̂3^ ŝ02Jt̂3ň, and the self-
energy termSimp is given by

Simp5nimpǔ^G&ǔ. ~8!

Here ǔ5u1(11lň), ^G&5n*djp*dV/4p•G, and nimp is
the concentration of impurities. In the quasiclassical a
proach the density of statesn is written in the main approxi-
mation with respect to the parameterJ/eF , whereeF is the
Fermi energy. In this casen is the same for both spin-up an
spin-down electrons. Notice that the right-hand side of E
~8! is a product of matrices, which in the general case do
commute.

In order to obtain an equation for the quasiclassical Gr
functions, we follow the standard way~see, for example,
Ref. 19!: we write the equation conjugate to Eq.~7!, multiply
both equations byt̂3, and subtract from each other. Then, w
integrate the final equation over the variablejp5vF(p
2pF) and obtain

t̂3] tg1] t8gt̂31 i @eV~ t !g2geV~ t8!#1~vF¹!g1 iJ@ ň,g#

52~1/2t!~m̌^g&m̌g2gm̌^g&m̌!. ~9!

We have introduced the quasiclassical Green function
the usual way:

g5~ i /p!t̂3E djpG. ~10!

The matrixm̌ is equal tom̌511lň andt215nnimpuu1u2 is
the mean momentum relaxation rate. The elements of
matrix g are ǧR(A) and ǧ

g5S ǧR ǧ

0 ǧAD . ~11!

Equation~9! is valid in a rather general case. In particula
it can be employed in the case of a superconduc
ferromagnet structure when the superconducting conden
penetrates into the ferromagnet. We use Eq.~9! for a normal
case, i.e., for F/S structures when one can neglect the
etration of the condensate into the ferromagnet F or for F8
structures. In order to obtain the kinetic equation for t
distribution function in the normal case, we represent
Keldysh component in the usual form19

ǧ5ǧR
• f̌ 2 f̌ •ǧA, ~12!

where ǧR(A)56 t̂3^ ŝ0 and f̌ is a 434 matrix, whose ele-
ments are the components of the distribution function
Nambu and spin space. This matrix can be represented in
form

f̌ 5 f̂ 0t̂01 f̂ 3t̂3 . ~13!

The componentsf̂ 0 and f̂ 3 are matrices in spin space. In th
absence of spin-dependent interactions they are diagona
related to the distribution functions for electronsn and holes
3-3
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p as follows: f̂ 05@12(ns1ps̄)#•ŝ0 ; f̂ 352(ns2ps̄)•ŝ0.
Taking into account Eqs.~10!–~13!, one can easily get from
Eq. ~9! the kinetic equation for the matrix distribution func
tion:

t̂3~vF¹! f̌ 1 iJ t̂3@ ň, f̌ #52~1/2t!@m̌2 f̌ 1 f̌ m̌222m̌^ f̌ &m̌#.
~14!

According to all previous definitions we can write

t↑,↓5
t

~16l!2
, ~15!

and hence defines↑,↓ andD↑,↓ without using any phenom
enological approach. In our model the conductivitiess↑,↓ are
equal to s↑,↓5e2nD↑,↓5e2nD(16l)22, where D
5v2t/3. Note that in the absence of superconductivity
distribution function is diagonal in the Nambu- space, a
therefore one can take the component~1,1! of Eq. ~14! and
obtain

~vF¹! f̂ 1 iJ@ n̂, f̂ #52~1/2t!@m̂2 f̂ 1 f̂ m̂222m̂^ f̂ &m̂#,
~16!

where all matrices are now 232 matrices in spin space. I
particular,m̂511ln̂ and n̂5ŝ3exp@2iaŝ1#. Note that the
left-hand side of Eq.~16! coincides with the left-hand side o
the well-known kinetic equation derived for a magnetic m
terial ~see, for example, Ref. 20, where the kinetic equat
is presented for a dynamic case in the absence of scatte
by impurities!. The solutionf̂ of this equation coincides with
the component~1,1! of the distribution functionf̌ , which
satisfies Eq.~14!. Since in this article normal materials~no
superconductors! are considered, we will analyze Eq.~16!.
One can exclude the spatial dependence of the matricn̂

andm̂ by performing unitary transformation defined by

f̂ 5Û• f̂̃ •Û†, Û5ŝ0cosa/21 i ŝ1sina/2.

In this case one obtains an equation for the distribution fu

tion f̂̃ :

~vF¹! f̂̃ 1 i ~vF/2!a8~x!@ŝ1 , f̂̃ #1 iJ@ŝ3 , f̂̃ #

52~1/t!@ f̂̃ 2^ f̂̃ &1l@ŝ3 , f̂̃ 2^ f̂̃ &#1l2~ f̂̃ 2ŝ3^ f̂̃ &ŝ3!#.

~17!

The left-hand side of this equation differs from the o
derived in Ref. 13. In the latter there is an additional term
the form @a8(x)/4m#@ŝ1 ,(]F/]x)#1 which, as we have
shown, does not appear in the quasiclassical approach. M
over, due to this term the kinetic equation of Ref. 13 viola
particle number conservation and therefore leads to wr
results. Notice, also, that the collision term@right-hand side
of Eq. ~17!# after unitary rotation may not be diagonal in sp
space. This fact was ignored in Refs. 12 and 17. We will
in the next sections that in the case (D/w2)!J, it is conve-
nient to work with Eq.~17!, while in the opposite case it i
easier to solve the kinetic equation in its original form, E
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~16!. We assume that the system is diffusive~this implies the
conditionJt!1). In this case one can expand the distrib
tion function f̂ in spherical harmonics and consider only t
first two of them,

f̂ 5 ŝ1mâ, ~18!

wherem5cosu andu is the angle betweenvF and thex axis.
Using Eqs.~16! and ~18!, one obtains two equations for th
functionsŝ and â:

vF]xŝ1 iJ@ n̂,â#52~1/2t!~m̂2â1âm̂2!, ~19!

~vF/3!]xâ1 iJ@ n̂,ŝ#52~1/2t!~m̂2ŝ1 ŝm̂222m̂ŝm̂!.
~20!

In the second equation we have performed an averaging
the anglem. The boundary conditions at the interfaces w
the reservoirs are given by imposing the continuity of t
symmetric partŝ(x) of the distribution function~we assume
a perfect contact of the F wire with the reservoirs!:

ŝ~L !5tanh
e

2T
ŝ0 ~21!

and

ŝ~0!5tanh
e1eV

2T
ŝ0 . ~22!

Once we determine the distribution functionf̂ , we can cal-
culate the current density using the following expression

j 52
1

4
en

vF

3 E de Tr â. ~23!

In the next sections we determine the resistance of a
main wall with a finite width. Here, on the basis of Eq.~16!,
the conductance of a F8/F/F8 mesoscopic system is calcu
lated in the simplest cases: a single domain in the ferrom
netic wire and a two-domain structure in the F wire with
abrupt domain wall~i.e., w50; see Fig. 1!. In this case~the
magnetization is parallel or antiparallel to thez axis!, both
parts of the distribution functionŝ and â are proportional to
ŝ0,3. Therefore the commutator on the left-hand side is eq
to zero. From Eq.~19! we find

â52m̂22vF]xŝ. ~24!

We substitute this expression into Eq.~20!. Taking into ac-
count that the right-hand side is zero, we obtain after in
gration

ŝ5 ŝ~0!1m̂2Î x/D, ~25!

The integration constant or, in other words, the ‘‘partial cu
rent’’ per unit energyI is found from the boundary condition
~22!,

Î 52
D

L
m̂22F2ŝ0 , ~26!
3-4
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wherem̂225@11l222ln̂#/(12l2) and

F25tanh
e1eV

2T
2tanh

e

2T
.

Substituting this expression into Eq.~23!, we find the current
and the differential conductanceG5dI/dVuV50:

G1d5~2s/L !~11l2!/~12l2!25G↑1G↓ . ~27!

Here G↑,↓5s↑,↓ /L, and s5e2nD. Thus, the conductanc
has the usual form. We note that in terms ofl the conduc-
tivities s↑,↓ are given bys↑,↓5s/(16l)2, and hence the
coefficientb defined in Eq.~1! is related tol via the relation
b522l/(11l2).

Let us consider the same system with two domains in
F wire and with an abrupt DW located in the middle of t
wire. In this casea50 in the interval 0,x,L/2 and a
5p in the intervalL/2,x,L. Equations~19! and ~20! are
solved in the same way as for the single-domain case.
the symmetric part of the distribution function we obtain

ŝ~x!5H ŝ0tanh
e1eV

2T
1m̂2~0! Î x/D, 0,x,L/2,

s~L/2!1m̂2~p! Î ~x2L/2!/D, L/2,x,L,
~28!

where m̂2(0)5m̂2ua50. The integration constant again
found from the boundary condition~22!. We get forÎ

Î 5ŝ0DF2 /~11l2!L ~29!

and for the conductance

G2d5~2s/L !/~11l2!54G↑G↓ /~G↑1G↓!. ~30!

This result was obtained earlier~see Ref. 2 and reference
therein!. In the next section we calculateG for the case when
the magnetization~or the vectorn) rotates in they-z plane
over a finite lengthw.

III. CONDUCTANCE OF A DOMAIN WALL

The problem of calculating the conductance for a syst
with a finite width of a DW is rather complicated. In order
simplify it, we make an assumption that the scattering tim
t↑,↓ are close to each other, i.e.,

l!1. ~31!

This condition is met in ferromagnets with an exchange
ergy J smaller than the Fermi energy. We consider again
system shown in Fig. 1. The total length of the ferromagne
wire is L. A Bloch-like DW is situated in the region (L
2w)/2,x,(L1w)/2 and separates two domains with o
posite magnetizations. Thus, the effective width of the DW
w. It is not easy to obtain an exact solution of Eqs.~19! and
~20!. However, one can assume that condition~31! is satis-
fied and expand the functionsŝ and â up to terms propor-
tional to l2. We distinguish two cases:~a! J!D/w2, which
corresponds to a sharp DW, and~b! J@D/w2.
18440
e
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A. Small exchange energy

If the exchange field is weak (J!D/w2) or the DW wall
is very sharp, one can easily solve Eqs.~19! and~20! for an
arbitrary form of the DW. We assume that the DW wid
exceeds the mean free path but is smaller than the mag
length jJ5AD/J. In this case, we expand the solution
Eqs.~19! and~20! in the small parametersJw2/D andl. In
the zero-order approximation, we get

â052 l ]xŝ0 ~32!

and

D]xŝ05 Î 0 , ŝ05ŝ0tanh
e1eV

2T
1 Î 0x/D, ~33!

where the ‘‘partial current’’ is found from the boundary co
dition ~22! and is equal to

Î 052ŝ0DF2 /L. ~34!

In the first approximation we find from Eq.~19!

â152 l ]xŝ122ln̂~x!â0 . ~35!

The solution of Eq.~20! for the symmetric partŝ1 has the
form

ŝ15 Î 1x/D12l Î 0E
0

x

dx1n̂~x1!/D. ~36!

This and the next corrections should satisfy zero-bound
conditions. Therefore we find forÎ 1

Î 1522l Î 0^n̂&L , ~37!

where^•••&L51/L*0
L(•••)dx. As follows from Eq.~23!, the

first correction does not contribute to the current. The ze
order correction leads to an expression for the conducta
given by Eq.~30! if we expand it in the small parameterl
~the case of an abrupt DW!. In order to find a correction to
the conductance due to a finite width of the DW, one has
find the second-order corrections. One can see from Eq.~23!

that only components ofâ2 or ŝ2 proportional toŝ0 contrib-
ute to the current. Therefore we take the trace in spin sp
from Eqs.~19! and ~20! and find easily

Tr â252~ l /D !Tr Î 2 ~38!

and

Tr ŝ252~2l!2Tr Î 0^n̂&LF E
0

x

dx1n̂~x1!2^ň&xG Y D,

~39!

where

Tr Î 252~1/2!Trŝ Î 0l2@124^n̂&L
2#. ~40!

Using Eqs.~34! and ~40! we obtain the expression for th
conductance which can be represented in the form
3-5
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G5G2dF11~2l!2
1

2
Tr^n̂&L

2G . ~41!

This formula determines the conductance of the system
der consideration for the case when the precession frequ
J is smaller than the inverse time of diffusion of an electr
through the DW. One can see that in the case of a DW w
a finite width the conductance is larger than in the case
sharp DW@cf. Eq. ~30!#, but smaller than the conductance
the single domain case@cf. Eq. ~27!#. Note that Eq.~41! has
been obtained in the limit of smalll. Therefore the conduc
tanceG2d should be expanded inl @see Eq.~30!# and terms
of order higher thanl2 should be neglected. There is a
interesting consequence from the result of Eq.~41!. Let us
consider the case of two DW’s separating three regions
lengthd with homogeneous magnetization. For simplicity w
assume that the shapes of the DWs are described by a p
wise linear function, which is characterized by a wave vec
Q5(w/p,0,0). If one defines the chirality vector asdvch
5n(x)3n(x1dx), wheren(x) is the unit vector directed
along the local magnetization, two cases should be dis
guished:~a! the DW’s have different chirality. In this cas
Tr^n̂&L

25(2/L2)@d2116(w2/p2)#. Thus we see that an add
tional DW will decreases the conductance of the system.~b!
The chirality vectors have different signs. In this ca
Tr^n̂&L

25(2/L2)d2, and hence the contributions of bo
DW’s to the conductance cancel each other. This result
be generalized easily for an arbitrary number of DW’s

Now we calculate the spatial distribution of the elect
field in the ferromagnetic wire shown in Fig. 1. The elect
potentialV(x) is given by the expression~see, for example
Ref. 19!

V~x!5~1/4!Tr ŝ0E de ŝ. ~42!

According to Eqs.~33! and ~39! the electric fieldE(x)
52]xV(x) in the ferromagnetic wire is given by

E~x!5~V/L !$11~2l!2@^cosa&L~^cosa&L2cosa!

1^sina&L~^sina&L2sina!#%. ~43!

For example, if we consider the structure of the Blo
wall which has been calculated by Landau and Lifshitz,22

cosa5tanh@~x2L/2!/w#, sina5cosh21@~x2L/2!/w#,
~44!

we obtain

E~x!2E05E0~2l!2~pw/L !$~pw/L !

2cosh21@~x2L/2!/w#%, ~45!

whereE05(V/L). In Fig. 2 we plot the dependenceE(x)
given by Eq.~45!. One can see that in the region of the D
the electric field decreases; this means an increase in
local conductivity.

In the next section we consider the case of a strong
change field or of a wide wall, i.e., the casew@jJ .
18440
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B. Large exchange energy

Now we consider the case with a large exchange ene
or a slow variation of the direction of the magnetizatio
within the DW (w@AD/J). In this case, the problem be
comes more complicated because we cannot neglect
commutator on the left-hand side in Eqs.~19! and ~20! and
cannot find a solution of these equations even for the cas
small l. Therefore we simplify the problem assuming th
the shape of the DW is described by a piecewise linear fu
tion ~see Fig. 1!

n̂5H ŝ3 in region I,

ŝ3exp@2 i ~p/w!@x2~L2w!/2#ŝ1# within the DW,

2ŝ3 in region III.
~46!

Obviously the results for other shapes of the DW like th
given by Eq.~44! will differ from ours only by a numerical
factor. We again expand the solution in the small parame
l, i.e., â5â01â11â21••• . The zeroth-order terms can b
obtained easily as before and they are given by Eqs.~32! and
~33!. The first correctionâ1 is given again by Eq.~35! and
the first correction for the symmetric partŝ1 obeys the equa-
tion

D]xx
2 ŝ12 iJ@ n̂~x!,s1#52l Î 0]xn̂. ~47!

This equation can be solved for the case ofn̂(x) given by
Eq. ~46! with the help of a unitary transformation~a rotation
in spin space!. We do not need to find the second ord
correctionsâ2 andŝ2, since the sought-after correction to th
conductance can be expressed in terms ofŝ1. Indeed, let us
write the equation for Trŝ2 which follows from Eq.~20!,

Tr$D]xŝ21~vF/3!@l2â012ln̂â1#2 Î 2%50, ~48!

where Î 2 is the integration constant which is related toâ2 :
Tr ŝ0â252 l Î 2 /D. We integrate this equation from 0 toL,
taking into account the boundary conditions atx50 andx

5L: ŝ250. After simple transformations we obtain

Tr $ Î 223l2Î 0%/D52lTr ŝ0H E
0

L

dxŝ1~x!n̂~x!J . ~49!

FIG. 2. The spatial distribution of the electrical field in the

wire for different values ofw/L. HereDẼ5@E(x)2E0#/(2l)2.
3-6
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As before, the correction to the conductance is determi
by Î 2. We see that in order to find this correction, one has
solve Eq.~47! for ŝ1. This equation can be solved with th
help of the unitary transformation

ŝ15Û•Ŝ•Û†, Û5ŝ0cosa/21 i ŝ1sina/2. ~50!

This rotation transforms the vectorn̂ into N̂5ŝ3. Per-
forming theU transformation, we obtain instead of Eq.~49!

Tr ŝ0$ Î 223l2Î 0%/D52l]xaTrŝŝ2^Ŝ~x!&. ~51!

After theU transformation, Eq.~47! acquires the form~in the
region of the DW!

]xx
2 Ŝ2~Q2/2!~Ŝ2ŝ1Ŝŝ1!1 iQ~ ŝ1]xŜ2]xŜŝ1!2 iJ@N̂,Ŝ#

52lŝ2Î 0Q/D, ~52!

where Q5]xa and N̂5ŝ3. This equation is valid in the
region of the DW, whereas in regions I and III we have to
Q50 and to take into account that, in region III,N̂52ŝ3.
The matrix Ŝ should be represented as a sumŜ5S1ŝ1

1S2ŝ21S3ŝ3. The componentsSk are given by a linear
combination of the eigenfunctions of Eq.~52!. They obey
zero-boundary conditions atx50 andx5L and should be
matched atx5L15(L2w)/2 andx5L25(L1w)/2. The ei-
genvalues of Eq.~52! @Sk;exp(kx)# are determined by the
equation

k2~k21Q2!25~k22Q2!/jJ
2 , ~53!

wherejJ
2252J/D. In a general case a solution of Eq.~52!

has a cumbersome form. We represent here the form
solution for Trŝ2Ŝ(x) in the region of the DW which we are
interested in:

Tr ŝ2Ŝ~x!>22lTrŝ Î 0~jJ
2Q/D !Im$exp@2~11 i !~x

2L1!/jJA2#1exp@~11 i !~x2L2!/jJA2#%.

~54!

We dropped terms of higher order in the parameterQjJ
;jJ /w. Using this expression and Eq.~51!, we readily get
an expression for the current and conductanceG,

G5G1dS 12
p2jJ

3

Lw2
l2D , ~55!

whereG1d is the conductance for a homogenous magneti
wire @see Eq.~27!#. Again terms of order higher thanl2

should be neglected. Note thatG1d is always larger than the
conductance in the case of a two-domain wireG2d @see Eq.
~30!#. Equation~55! shows that the DW decreases the co
ductance compared to the conductanceG1d of a single-
domain F wire. Our result is sketched in Fig. 3. We see t
within our approach a DW with a finite width is always
source of resistance.
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IV. CONCLUSION

Using a simple microscopic model~equal density of states
but different impurity scattering timest↑,↓ for electrons with
spin up and down!, we have derived the kinetic equation fo
the matrix distribution function. The derivation has been p
formed by a standard method on the basis of microsco
equations for the quasiclassical Green functions in
Keldysh technique. This equation can be applied to the s
ies of transport in, for example, ferromagnets with a non
mogeneous magnetization.

We have employed this equation to calculate the cond
tanceG in a mesoscopic F8/F/F8 structure. We have assume
that the parameterl5(t↓2t↑)/2(t↓1t↑) is small and the
length of the F wireL is shorter than the spin energy rela
ation length. Two different limits appear which are dete
mined by the product of the exchange energyJ and the dif-
fusion timetw5w2/D of electrons through the DW. In the
limit twJ!1 and a very thin DW the conductance of th
structure~per the unit cross-sectional area! is equal toG2d

54s↑s↓(s↑1s↓)/L. The account for a finite width of the
DW leads to an increase in the conductance by a normal
amount of order (lw/L)2. We have also calculated in thi
limit the spatial distribution of the electric field in the F wire
The electric field has a minimum in the center of the D
which corresponds to an enhanced local conductivity. In
other limit twJ@1 ~adiabatic variation of the magnetizatio
in the DW! the conductance coincides in the main appro
mation with that of a single-domain structure,G1d5(s↑
1s↓)/L. The account for rotation of the magnetization
the DW leads to a negative correction to the conductanc
order 2l2(twJ)23/2(w/L). Our results differ from those
published earlier12,13,17because in the latter works the coll
sion term was written phenomenologically. In particular t
matrix character of the impurity vertex was not taken in
account.
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FIG. 3. Schematical representation of the conductance as a f
tion of the widthw of the DW. In the intermediate region~dashed
line! the curve is extrapolated from our results.
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