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Bayes-Turchin approach to x-ray absorption fine structure data analysis
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X-ray absorption fine structure~XAFS! data from copper, gold, and germanium are analyzed in the frame-
work of the model-independent Bayes-Turchin approach. Compared to earlier treatments, we also obtain spring
constants, besides shell radii, Debye-Waller~DW! parameters, and anharmonicity parameters. The use of
spring constants instead of DW parameters reduces considerably the number of model parameters needed to
achieve a satisfactory fit of the data. Theab initio extended XAFS codeFEFF7 is used in the analysis. The
various sources of uncertainty in the input data and in theFEFF7 code are carefully assessed and used in the
analysis. It is shown to which degree the model parameters are determined by the data, rather than by thea
priori assumptions.A posteriorierrors and error correlations between model parameters are shown.
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I. INTRODUCTION

Efficient codes are available to calculate the x-ray abso
tion cross sectionm(k) approximately as a function of th
x-ray wave vectork and the following model parameters: th
half length of each single- or multiple-scattering pathj, Rj ,
the Debye-Waller~DW! parameters j for each scattering
path, and the third cumulantsC3,j .1 Data fitting, however,
requires the solution of the inverse problem of inferring t
model parameters from measured absorption coefficients
general, there are more model parameters than data, but
if one restricts the number of model parameters to the n
ber of available data points, the inversion problem turns
to be ill posed. A further restriction of the number of mod
parameters considered in the fit is therefore necessary.
itively guided by the so-called number of independent d
points the list of model parameters is often cut down until
x2 fitting procedure appears to be numerically stable. C
sidering the linear spaceQ spanned by all model parameter
the implicit assumption is therefore made that its subsp
R, which is determined by the data, can be spanned b
finite subset of the model parameters. However, one sh
expect that in general the subspaceR is spanned by orthogo
nal coordinates, which are oblique to the model parame
spanning the parameter spaceQ. One would therefore like to
have an algorithm that determines on the basis of the m
sured data not only the dimension ofR, but its orientation in
Q as well.

To solve this problem we introduced in Ref. 2 the conc
of an a priori guess of the set of model parameters a
reformulated the task of fitting by looking for the shift awa
from thea priori model parameters, as required by the da
Invoking the maximum-entropy principle, the ill-posed i
version problem can then be regularized.3 To define the pro-
cedure completely, one still has to fix the variance matrix
the a priori model parameters, which, in particular, dete
mines the weight with which thea priori information influ-
ences the fit relative to the weight of the experimental da
We used in Ref. 2 two alternative optimization condition
first proposed by Turchinet al.,4 to obtain one overall weigh
parameter. It turns out that one of Turchin’s conditions a
mits a generalization, such that more details of thea priori
0163-1829/2002/66~18!/184303~20!/$20.00 66 1843
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variance matrix can be determined. Below we shall use
possibility to get the relative weight for several groups oa
priori model parameters independently.

In Ref. 2 we obtained half length parametersRj for each
scattering path independently. In order to account for g
metrical constraints between these parameters, we shall
the radii of the shells surrounding the emitting atom as in
pendent parameters and represent the half lengths of
multiple-scattering paths as functions of these radii, ass
ing that there are no angular distortions in the lattice. Thou
this is not the most general situation, we consider this s
plification as appropriate for the applications we will inve
tigate.

The DW parameters contain, in general, contributio
from thermal motion of the lattice atoms and their quantu
fluctuations,s j

therm, and from lattice disorder,s j
disor, s j

2

5(s j
therm)21(s j

disor)2. The thermal part can be represent
more significantly in terms of a few spring constants in t
neighborhood of the emitting atom,5,6 which reduces the
number of model parameters substantially without deterio
ing the quality of the fit. If measurements of the same pro
exist at different temperatures, one may separate the
contributions, assuming that thes j

disor are independent of the
temperature. In favorable cases they can be negligible c
pared tos j

therm. Such data can then be analyzed directly
terms of a few spring constants instead of a DW param
for each scattering path.

In some cases third cumulantsC3,j can be extracted from
the data.7 We have therefore always included a search
these parameters at least for the single-scattering paths.
simple force-field model anharmonicity parameters are a
determined from these third cumulants.

The paper is organized as follows. In the following se
tion the input and output parameters of the fitting proced
and their probability distributions are defined and the mod
are discussed on which the analysis is based. The algor
used for the calculation of the DW parameters is presente
some detail in Sec. III. The various sources of uncertai
affecting the fit are discussed and modeled in Sec. IV. In S
V the essential elements of an extendedx2 fit and its regu-
larization bya priori assumptions are summarized, gener
©2002 The American Physical Society03-1
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H. J. KRAPPE AND H. H. ROSSNER PHYSICAL REVIEW B66, 184303 ~2002!
izing the presentation in Ref. 2. Iterative procedures to so
the resulting nonlinear systems of equations are describe
Sec. VI. Section VII contains the application of the propos
method to the extended x-ray absorption fine struct
~EXAFS! analysis ofK-edge copper data, taken at three d
ferent temperatures,8,9 L3-edge gold data, measured at 3
K,8 and germaniumK-edge data, taken at 300 K.8 A sum-
mary of the procedure and an outlook on further devel
ments is presented in Sec. VIII.

II. DEFINITION OF THE PROBLEM

The following discussion will be based on the multipl
path expansion for x-ray absorption on a polycrystalline
amorphous sample:10,11

x~k!5
m~k!2mback~k!2m0

m0

5
S0

2

k (
j

Nj

u f j~k,Rj !u

Rj
2

e22k2s j
2
22Rj /l(k)sinF2k~Rj

2dRj !1f j~k!2
4

3
C3,j k

3G , ~1!

with the wave number

k25
2m

\2
~hn2E0!

and corrections to the lengths

dRj52s j
2S 1

Rj
1

1

l D ,

where the sum in Eq.~1! runs over all geometrically in-
equivalent single- and multiple-scattering pathsj, the multi-
plicity of equivalent paths being counted byNj , which is the
coordination number for the single-scattering paths.

The overall amplitudeS0, the mean free pathl(k), the
scattering amplitudesf j (k,Rj ), and the phasesf j (k) for
each scattering path follow from a solution of the electro
many-body problem as functions ofk and the lattice geom
etry. In the framework of the local-density approximatio
together with the muffin-tin ansatz for the scattering pot
tial, the FEFF7 code1 provides approximate values forf, f,
and l as functions ofk and Rj . The recursion procedur
proposed in Ref. 6 similarly allows calculation ofs j

therm ap-
proximately as functions of the temperature and a few sp
constantsks . Taking into account the reduction of the ha
lengthsRj of the multiple-scattering paths to those of t
single-scattering paths mentioned above, we have the foll
ing as independent model parameters: the shell radiiRj , the
structural disorder contributionss j

disor for all scattering paths
and/or a set of spring constantsks ~whatever applies in a
specific case!, and the third cumulantsC3,j for each single-
scattering path. SinceS0 cannot be obtained reliably from
FEFF and since the convergence of Eq.~1! becomes poor for
energies close to the edge energyE0, which is, in addition,
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particularly subject to uncertainties connected with t
muffin-tin approach, we will follow the usual practice an
treat these two quantities also as independent model pa
eters.

The multiplicity numbersNj are, in principle, also mode
parameters. Since we want to analyze data taken on w
ordered probes, we assume that these parameters have
ideal lattice values, and do not determine them in the fit.
the case of less well-ordered samples, this would not be
propriate and extra measures are needed to disentangl
very strong correlation between theNj ands j in Eq. ~1!.

The absorption coefficient of the free absorbing ato
m0(k) can, in principle, be calculated in the framework
the Hartree-Dirac approach. However, we feel that compu
codes available to us at present for that purpose are no
sufficiently fast and, at the same time, not accurate enoug
treat m0 in Eq. ~1! as a derived quantity. Since we use
some cases the EXAFS functionx(k) rather thanm(k) as
input, we will follow the common practice of applying a
empirical background-subtraction procedure to the measu
m(k) to obtain the EXAFS signalx(k),12,13 in cases where
we start the analysis with the absorption coefficient. T
EXAFS signal may be measured atL data points with wave
numberskl , l 51, . . . ,L. The input of the fitting procedure
therefore consists of theL datax(kl).

For each independent model parameterxn8 we introduce a
correspondinga priori estimatexn

(0) , e.g., forRi an a priori
valueRi

(0) , and the differences between the actual param
values and theira priori values,xn82xn

(0) , are treated as the
new independent variables to be determined by the fit. I
useful to normalize these differences by quantitiesx̂n which
are of the order of the expected size ofxn82xn

(0) in the final
fit, so that the normalized model parametersxn5(xn8

2xn
(0))/ x̂n are dimensionless and will always be of a limite

order of magnitude. Thexn shall be the components of th
vector x in the N-dimensional model-parameter spa
Q. The components shall be arranged according
the order:S0

2 ,E0 ,Ri ( i 51, . . . ,I ),ks (s51, . . . ,S), s j
disor ( j

51, . . . ,J),C3,i ( i 51, . . . ,I ), where I is the number of
shells,S the number of spring constants, andJ the number of
scattering paths considered in the fit; thereforeN52I 1J
1S12. To simplify the notation, it is convenient to consid
the dependent quantities which appear on the right-hand
of Eq. ~1!, l(k), f j (k), f j (k), ands j

therm(k) as components
of a vectory(k,k). The number of these components will b
designated in the following byM53J11.

If one would choose the number of data pointsL equal to
the number of model parametersN, it may appear as if Eq
~1! yields justL algebraic equations for the same number
unknown model parameters. However, the input does
consist ofL numbers, but ratherL probability distributions
for thex(kl) since the original data themselves as well as
background subtraction involve uncertainties. Therefore
output of the fit can also consist only of probabilities for t
model parameters. This is even more true since the eva
tion of y(kl ,ks) is only possible in some approximat
scheme, producing additional uncertainties. Moreover, thj
3-2
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sum in Eq.~1! has to be truncated at the termj 5J, and the
number of shellsI must be limited to those of a finite cluste
surrounding the absorbing atom. These truncations also
tribute to the uncertainties of the fit. Equation~1! has there-
fore to be seen as defining a stochastic, rather than an a
braic problem.

III. LATTICE DYNAMICS

In order to represent thes j
therm in terms of a few spring

constants, we use the method proposed by Poiarkova
Rehr.6 For the sake of completeness of the presentation,
since we shall slightly extend the method, it may be usefu
summarize the main steps of its derivation using the nota
introduced in Refs. 5 and 6 as far as compatible with
present context.

A. Representation of DW parameters in terms
of the projected density of states

We will consider a cluster ofI shells surrounding the ab
sorbing atom, each containingNi lattice points, so that the
total number of lattice points in the cluster is

Z511(
i 51

I

Ni .

The lattice dynamics of the cluster is determined by the d
placement vectorsuz8 , z51, . . . ,Z of each lattice atom.
Scaling them by the massM z of the atom at sitez, uz

5uz8AM z, the equations of motion, in harmonic approxim
tion, become

üz,w52 (
z8,w8

Fz,w;z8,w8uz8,w8 ,

where w runs over the three Cartesian components of
vectoruz , and for central forces the dynamical matrixFsm

for the bond-streching modes is given in terms of the spr
constantskz,z8 and the directional unit vectorsr̂ z,z8 between
lattice sitesz andz8 by6

Fz,w;z8,w8
sm

5
1

AM zM z8
S dz,z8(

z9
kz9,z r̂ z9,z

w r̂ z9,z
w8

2kz,z8r̂ z,z8
w r̂ z,z8

w8 D .

In practice, spring constants between distant points are
sumed to be zero. In applications to be considered be
only forces between next and nearest next neighbors
kept, which are then labeledks ,s51,2.

For lattices of the diamond type, we add bond-bend
modes. Following Keating,14 we parametrize their contribu
tion to the potential energy by

Vbm5
k3

8 (
z51

Z

(
D,D851

4

@~uz82uzD8 ! r̂ zD81~uz82uzD8
8 ! r̂ zD#2,
18430
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whereuzD8 ,D51, . . . ,4 are thedisplacement vectors of th

four nearest neighbors of the lattice sitez, r̂ zD is the direc-
tional unit vector from the equilibrium sitez to the sitez
1D, and the inner sum is over the six tetrahedron ang
subtended by each pair of nearest-neighbor atoms with
atomz at the vertex. The contribution of these modes to
dynamical matrix is given by

Fz,w;z8,w8
bm

5
k3

4AM zM z8
(

DÞD851

4

~dzz82dz8z1D! r̂ zD8
w r̂ zD8

w8 .

Our parametersk1 and k3 correspond to Keating’s 6a and
6b, respectively.

The eigenvalues of the dynamical matrixF5Fsm1Fbm

yield the frequenciesvg ,g51, . . . ,3Z, of the normal modes
of the cluster

(
z,z851

Z

(
w,w851

3

eg;z,w* Fz,w;z8,w8ez8,w8;g85vg
2dgg8 ,

wheree is the unitary 3Z33Z matrix which diagonalizes the
dynamical matrixF. In terms of its eigenvectorsqg , the
displacement vectors are

uz,w5 (
g51

3Z

ez,w;gqg . ~2!

A scattering pathj with nj legs is defined as a cyclic
sequence ofnj lattice points, starting and ending with the si
of the absorbing atom:z1 , . . . ,znj

,znj 11, wherez1[znj 11

is the absorbing atom. The thermal Debye-Waller param
of the scattering pathj is given in terms of theuz8 by5

s j
25K F(

i 51

nj

(
w51

3

uz i ,w8 ~ r̂ z i ,z i 21

w 1 r̂ z i ,z i 11

w !/2G2L ,

where the brackets indicate a canonical ensemble ave
and the index ‘‘therm’’ has been suppressed. Using Eq.~2!,
this can be rewritten as

s j
25(

g
U(

i 51

nj A 1

M z i

(
w51

3 r̂ z i ,z i 21

w 1 r̂ z i ,z i 11

w

2
ez i ,w;gU2

^qg
2&,

where^qgqg8&50 for gÞg8 has been used. A more compa
notation of this expression is obtained by introducing t
3Z-component vectors

ug&5ue1,1;g ,e1,2;g , . . . ,eZ,3;g&

and u0&, whose z,w components are given b
(1/2)Am j /M z i

( r̂ z i ,z i 21

w 1 r̂ z i ,z i 11

w ) if z equals one of thenj

nodesz i of the scattering pathj and is zero else. The massm j
is defined by

1

m j
5(

i 51

nj 1

M z i

(
w51

3 S r̂ z i ,z i 21

w 1 r̂ z iz i 11

w

2
D 2

,

3-3
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H. J. KRAPPE AND H. H. ROSSNER PHYSICAL REVIEW B66, 184303 ~2002!
so thatu0& is normalized to 1. The DW parameter for pathj
becomes, in terms of these vectors,

s j
25

1

m j
(
g51

3Z

u^gu0&u2^qg
2&.

Bose-Einstein statistics yields for the canonical ensem
with temperatureT

vg
2^qg

2&5^n~vg!11/2&\vg5
\vg

2
coth

\vgb

2
,

where 1/b5kBT. The DW parameter is therefore

s j
25

\

2m j
E

0

` 1

v
coth

b\v

2
r j~v!dv, ~3!

with the projected density of states5

r j~v!dv5(
g

u^0ug&u2d~v2vg!dv

52
1

p
ImK 0U 1

z2F1 i e U0L dzªw~z!dz,

with z5v2.

B. Recursion relations for the density of states

In order to approximate the Green’s function^0u(z2F
1 i e)21u0& in an efficient way, one should take into accou
that the lattice dynamics in the neighborhood of the abso
ing atom is predominantly determined by the forces betw
the atoms in the first few shells and that atoms further aw
from the absorbing atom have a decreasing effect. Thi
taken into account in the iteration procedure proposed
Haydocket al.15 Starting from the vectoru0&, a set of ortho-
normal vectorsun& is generated by the Lanczos iteration16

an5^nuFun&,

uvn11&5~F2an!un&2bnun21&,

bn11
2 5^vn11uvn11&,

un11&5
uvn11&
bn11

,

n50,1, . . . , with b051 andu21&50. The iteration can be
continued untilbn'0. In theun& representation, the dynam
cal matrix F is easily seen to be tridiagonal with matr
elements

^nuFun8&55
an , n85n

bn11 , n85n11

bn , n85n21

0, otherwise.

The determinantD21 of the matrix (zdnn82^nuFun8&) is
introduced together with the determinantsDn of the matrices
obtained from (zdnn82^nuFun8&) by removing rows and
18430
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t
-
n
y
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columns 0 –n. Since all these matrices are tridiagonal, t
Laplace expansion ofDn yields the recursion relation

Dn5~z2an11!Dn112bn12
2 Dn12 ,

with n521,0, . . . , or

Dn11 /Dn5
1

z2an112bn12
2 Dn12 /Dn11

. ~4!

In terms of these determinants, the Green’s function is gi
by

K 0U 1

z2F U0L 5
D0

D21
.

Repeated application of the recursion relation~4! yields a
representation of the Green’s function as a continued frac

K 0U 1

z2F U0L 5
b0

2u
uz2a0

2
b1

2u
uz2a1

2•••.

The polynomialsRNn
andSNn

of the convergentRNn
/SNn

,
which represents the Green’s function when the contin
fraction is terminated with the termNn , can be obtained
from the recurrence relation17

Yn5~z2an21!Yn212bn21
2 Yn22 ,

whereYn may beRn or Sn , and the recursion starts with

R050, R151,

S051, S15z2a0 .

One can show that theSn form a set of orthogonal poly-
nomials to the weight functionw(z).18 Therefore they have
simple zeros, which lie in the support ofw(z). TheNn zeros
of SNn

may be calledzn . The residues of the poles of th
convergent yield the weights

wn5RNn
~zn!/SNn

8 ~zn!,

whereSn8 is the derivative ofSn with respect toz. In terms of
these weights, the integral~3! becomes

s j
25

\

2m j
(
n51

Nn wn

vn
coth

b\vn

2
,

with vn5Azn. It can also be shown18 that thewn are the
weights of theNn-point Gauss integration to the weight fun
tion w(z).

In order to give an impression of the convergence of
continued fraction representation of the thermal DW para
eter, we show in Fig. 1 the DW parameter for the sing
scattering path to the first shell in the copper lattice at 295
with one spring constant,k1527.9 N/m. A cluster withI
511 shells was used in this calculation. As noticed alrea
in Ref. 6, theNn52 approximation underestimates the lim
iting value. In the following, we shall therefore useNn56 as
3-4
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a compromise between computational speed and accu
and accept a model uncertainty of 1.3%.

In Fig. 2 the dependence of the DW parameters in
same copper lattice for the first two scattering paths are p
ted as functions of the spring constants in a model with
spring constant~full lines! and two spring constants~dash-
dotted lines!. In the relevant region, the DW parameter d
pends only weakly on the spring constants, which shows
uncertainty connected with the inverse problem of determ
ing the spring constant from measureds ’s.

C. Anharmonicity in the potential of the Einstein model

Since the third cumulantsC3,i are determined with con
siderably less accuracy than the variancess i

2 , we do not
attempt to relate them to anharmonic terms in the force-fi
model which we used in the analysis of the variances.
stead, we employ a correlated Einstein model, generalize
contain an anharmonic term as proposed by Frenkel

FIG. 1. Convergence of the continued fraction expansion of
thermal Debye-Waller parameter of the first single-scattering p
for copper at 295 K in a dynamical model with one spring consta

FIG. 2. Dependence of the Debye-Waller parameters on
spring constantk1 for the first ~thick lines! and second~thin lines!
single-scattering path in copper at 295 K. The full lines refer t
model with a single spring constant, the dash-dotted lines t
model with two two spring constantsk1 andk2, wherek2 was set
to 3 N/m.
18430
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Rehr.19 They describe the lattice dynamics by a fictitio
vibrational mode of two massesM, interacting via the anhar
monic potential

VE~x!5
1

2
kEx21ÃEx3, ~5!

where x5r 2r 0 is the deviation of the bond lengthr for
single-scattering paths from its equilibrium valuer 0 at
zero temperature. In terms of the Einstein frequen
vE

252kE /M and the Boltzmann factor j(T)
5exp(2\vE /kBT), three equations are derived in Ref. 1
relating the first three cumulants of the thermal distributi
of x to the thermal expansiona(T)5^r 2r 0&, the Einstein
frequencyvE , and the anharmonicityÃE in the potential
~5!,

ai~T!5Ri~T!2Ri~0!,

s i
25

\

MvE,i

11j i

12j i
, ~6!

and

C3,i52
4\2

M3vE,i
4

1110j i1j i
2

~12j i !
2

ÃE,i . ~7!

Equation~6! can be used to obtain the Einstein frequen
vE,i , which depends in principle on the scattering pathi. But
one may attempt a best fit with one Einstein temperat
QE5\vE,i /kB for all single-scattering paths, allowing for
systematic errorD QE of the Einstein model. Equation~7!
yields the anharmonicity parameterÃE , which we will simi-
larly assume to be independent of the scattering pathi. In
this discussion we neglected a possible structural contr
tion to C3,i .

In addition, the equation

dai~T!

dT
5212j i S ln j i

12j i
D 2 ÃE,ikB

M2vE,i
4

~8!

is derived in Ref. 19, which relates the thermal expans
coefficientai(T) to the anharmonicity parameterÃE,i .

IV. DISCUSSION OF UNCERTAINTIES AFFECTING
THE FIT

Besides uncertainties ofs therm due to the approximate
handling of the lattice dynamics, also the other compone
of the vectory, f j (kl), f j (kl), andl(kl), which are calcu-
lated in theFEFF7code, are connected with uncertainties d
to the approximate treatment of the electronic many-bo
problem. Of the probability distribution ofy, we do not
know anyting except the most probable valuey and an esti-
mate for the variance of each of its components. T
maximum-entropy principle then yields a Gaussian distrib
tion Pmodel}exp@2xmodel

2 (y)/2#, with

xmodel
2 5~y2y0!TD~y2y0!,

e
th
t.

e

a
a

3-5
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H. J. KRAPPE AND H. H. ROSSNER PHYSICAL REVIEW B66, 184303 ~2002!
whereD is a diagonal matrix containing the variances of t
components ofy, D j j 85Dyj

2d j j 8 . In order not to deviate too
much from established practices, we use the lightface sym
x2 for the quadratic forms defining Gaussian distributio
and employ the boldface symbolx(k) for the EXAFS func-
tion.

In the applications to be described below, we assume
errorD f j / f j57%, Df j50.07 rad, andDl/l510%, for all
kj .20 These are rough estimates. In our applications it tu
out that the uncertainties caused by theDyj are much smaller
than those from other sources, in particular from the in
data x(kl). Therefore these estimates are sufficient for
present purpose.

Another source of uncertainty in the fit is the truncation
the multiple-scattering~MS! series~1!. To obtain an estimate
for the truncation error, let us callxI(k) the value of the sum
~1! when it is truncated with theI th term, and introduce the
differencesXi(kl)5xI 1 i(kl)2xI(kl). In Ref. 2 we defined
averages

X~kl !̄5
1

I max
(
i 51

I max

Xi~kl !

and a correlation matrix

S l l 85X~kl !X~kl 8 !̄2X~kl !̄•X~kl 8 !̄,

where we useI max51000.
The original observablesm(kl) as well as the backgroun

subtraction contribute to the uncertainty of the inputx(kl),
of the fit. We therefore have to associate an errorDxl with
each input data point. It is convenient in latter calculations
scalex(kl) by Dxl and use the vector with componentsgl
5x(kl)/Dxl as input vector. Assuming again a Gaussian d
tribution of the input data, the probability thatḡ is the true
value wheng8 is the measured average value is given by

Pexp~ ḡug8!5~2p!2L/2e2~1/2!xexp
2

~ ḡ,g8!,

with xexp
2 5(ḡ2g8)T(ḡ2g8) in matrix notation.

As in Ref. 2, the uncertainty ing caused by the truncatio
error will be modeled by the GaussianPtrunc(g,g8)
}exp@2xtrunc

2 (g,g8)/2#, with

x trunc
2 ~g,g8!5@g~x,y!2g8#TB@g~x,y!2g8#,

where the variance matrixB is given by

~B21! l l 85
S l l 8

DxlDxl 8

.

The total uncertainty due to truncation and model appro
mations isPsyst(g8,y;g)5PtruncPmodel. The conditional prob-
ability for the observableg, once the model parameters ha
the valuex, is obtained fromPexp by folding with Psyst,

Pcond~ ḡux!5E Psyst„g8,y;g~x,y!…Pexp~ ḡug8!dMydLg8.

~9!
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The integration with respect tog8 can be performed analyti
cally using the formula

E e2(1/2)xTAx1bTxdLx5A~2p!L

det~A!
e(1/2)bTA21b, ~10!

whereb is any vector andA is a symmetric matrix.21 Equa-
tion ~10! is most easily proved in the eigenrepresentation
the matrixA. One obtains from Eq.~9!

Pcond~ ḡux!}E e2(1/2)x interm
2 (ḡ,x,y)dMy, ~11!

where

x interm
2 52~ ḡT1gTB!~11B!21~ ḡ1Bg!1gTBg1ḡTḡ

1~y2y(0)!TD~y2y(0)!. ~12!

Finally, we need the probabilityPpost(xuḡ) for the distri-
bution of the model parametersx, once ḡ is given. This
probability is obtained from Bayes’ theorem,3,22

Ppost~xuḡ!5
Pprior~x!Pcond~ ḡux!

E Pprior~x!Pcond~ ḡux!dx
, ~13!

in terms of thea priori distributionPprior(x). With our defi-
nition of x, we know that itsa priori average value vanishes
Additional information onPprior can be obtained on the bas
of the available experimental data, as will be shown in
following section. For practical reasons, however, only
rather limited number of parameters may be calculated
this way. We will therefore assume that only thea priori
errorsan

21 of the components ofx are given. The maximum
entropy principle then yields23

Pprior~x!5 )
n51

N S 2p

an
D 1/2

e2(1/2)anxn
2
. ~14!

V. EXTENDED x2 FIT

A. Derivation of the regularized normal equations

We will first assume that the errors inx and y are suffi-
ciently small and that thea priori guess of the model param
eters is close to the solution of the fit, so that the funct
g(x,y) may be expanded to linear order,

gl~x,y!5gl„0,y(0)~kl !…1 (
n51

N

Glnxn1 (
m51

M

Tlm~ym2ym
(0)!,

~15!

in terms of the rectangular matrices

Gln5
]gl

]xn
U

x50

1 (
m51

M
]gl

]ym
U

x50,y5y(0)

]ym

]xn
U

x50

~16!

and
3-6
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Tlm5
]gl

]ym
U

x50,y5y(0)

,

with y(0)5y(k,0). The integral in Eq.~11! can now be
evaluated analytically using Eq.~10!. In terms of theL3L
matrix

C5$12~11B21!21T@D1TT~11B21!21T#21TT%

3~11B21!21, ~17!

the N3N information matrix

Q5GTCG, ~18!

and the vector

bT5~ ḡ2g0!TCG, ~19!

one obtainsPcond}exp(21
2xcond

2 ), with

xcond
2 5xTQx22bTx1~ ḡ2g0!TC~ ḡ2g0!

5@g~x,y(0)!2ḡ#TC@g~x,y(0)!2ḡ#, ~20!

whereg05g(0,y(0)), andPpost}exp(21
2xpost

2 ) with

xpost
2 5xT~Q1A!x22bTx1~ ḡ2g0!TC~ ḡ2g0!, ~21!

whereAnn85andnn8 .2

If the model and truncation errorsD21 andB21 are small
compared to the input errorsDx, the brackets in Eq.~17! can
be expanded to linear order in these matrices. One obt
the simpler expression

C5~11B211TD21TT!21. ~22!

If one neglects the off-diagonal matrix elementsCll 8 in Eq.
~22!, Eq. ~20! can be rewritten in the particularly transpare
form,

xcond
2 5(

l 51

L F ḡl2g~kl ;x,y(0)!

Dgl
eff G 2

,

with

~Dgl
eff!2511 (

m51

M F]g~kl ;0,y!

]ym
DymG2

1~B21! l l ,

i.e., in this approximation the experimental errors~which are
equal to unity with our normalization ofg), the model errors,
and the truncation errorsB21/2 add quadratically to the ef
fective errorDgl

eff .
The a posteriori expectation value of the model param

eters,

x̄ª^x&post5E xPpost~x!dNx

follows from solving the normal equations

(
n851

N

~Qnn81andnn8!x̄n85bn . ~23!
18430
ns
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The a posteriorivariance matrix is

^~xn2 x̄n!~xn82 x̄n8!&post5~Q1A!nn8
21 . ~24!

If we call q1 as the largest andqN as the smallest eigen
value of Q, the ratioq1 /qN is an extremly large number
reflecting the ill-conditioned nature of our inversion pro
lem. Choosing all eigenvaluesan such thatq1@an@qN , the
matrix A in Eq. ~23! is seen to regularize the inversion pro
lem Qx̄5b in the sense of Tikhonov and Arsenin24 since the
smallest eigenvalueqreg of the matrixQ1A is given by

qreg:5min
x

@xT~Q1A!x#

5min
x

@xTQx#1min
x

@xTAx#.amin .

Therefore the smallest eigenvalueamin of A may be cho-
sen such that the condition numberq1 /qreg of the matrixQ
1A does not become dangerously large. The introduction
the matrixA through thea priori probabilityPprior has there-
fore been called stochastic regularization.4

B. Determination of the regularization parameters

In order to obtain estimates for the eigenvaluesan , we
slightly generalize a procedure introduced by Turchin a
Nozik.21 We start with the assumption that there is a pro
ability distribution for the vectora. The conditional prob-
ability for the inhomogeneous termb in Eq. ~23!, oncea is
given, is taken to be

Pcond~bua!5E Pcond~ ḡux!Pprior~x!dNx

5constA detA

det~Q1A!
e(1/2)bT(Q1A)21b, ~25!

where the normalization constant is independent ofa. We
assume that thea priori probability Pprior(a) for a is con-
stant in a sufficiently large areaA in a space,25 defined by,
say, amaxªq1.an.1028q1ªamin , whereq1 is the largest
eigenvalue of the information matrixQ. Bayes’ theorem then
yields Ppost(aub)}Pcond(bua) on A, and 0 otherwise. If the
function Ppost(aub) is sharply peaked as a function ofa for
fixed b, one may use thean of this maximum in Eq.~23!
instead of the distribution ina. Differentiating Eq.~25! with
respect toan ,

]an
ln Pcond~bua!5

1

2
]an

@ ln~detA!2 ln„det~Q1A!…#

1
1

2
bT]an

~Q1A!21b,

and using the relation

]am
~Q1A!nn8

21
52~Q1A!nm

21~Q1A!n8m
21

yields theN nonlinear equations
3-7
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Ann
212~Q1A!nn

212S (
n851

N

~Q1A!nn8
21 bn8D 2

50, ~26!

wheren51, . . . ,N for the extremum ofPcond(bua). Those
componentsan of the solutiona of Eq. ~26! which are larger
thanamax or which are negative, i.e., lie outside the areaA,
are replaced byamax, those between 0 andamin are replaced
by amin .

The geometric mean of the components ofa may be
called a* . We then introduce scaling factorsãn5Aan /a*
and rescale the model parameters

x̃n5ãnxn . ~27!

Equation~16! shows that, usingx̃ instead ofx, the vectorb
and the matricesG, Q, and A scale like b̃n5bn /ãn , G̃ln

5Gln /ãn , Q̃nn85Qnn8 /(ãnãn8), and Ãnn85a* dnn8 . It is
easily seen that the rescaled quantities are independent o
somewhat arbitrary choice of the original scaling parame
x̂n . SinceÃ commutes withQ̃, the equations

(
n851

N

~Q̃nn81a* dnn8!x̃n85b̃n

decouple in the eigenrepresentation of the matrixQ̃. If the
components of the vectorsx̃ and b̃ in this representation ar
calledjn andbn , respectively, and the eigenvalues ofQ̃ are
called q̃n , the normal equations~23! become

~ q̃n1a* !jn5bn , n51, . . . ,N. ~28!

In terms of these quantities, Eq.~26! becomes

1

a*
2

1

q̃n1a*
2

bn
2

~ q̃n1a* !2
50,

valid for any n because of our special scaling, except
thosen where the solution of Eq.~26! has been replaced b
the boundary valuesamin or amax. This equation can be
solved for a* . Using Eqs.~28! and ~24! formally for a
50, one obtains

a* 5
1

„jn~a50!…22„Djn~a50!…2
,

where„Djn(a50)…251/q̃n .
This equation shows thata* becomes very large whe

jn(a50) approachesDjn(a50), and would even becom
negative forjn(a50),Djn(a50), had we not restricteda
to the areaA. In other words, if thea priori model-
parameter vectorx(0) approaches the area of one stand
deviation around the~hypothetical! purely experimental
mean valuex̄8, the regularization parameter becomes eq
to q1, the largest eigenvalue of the matrixQ. On the other
hand, if thea priori parametersx(0) are far away fromx̄8,
a* becomes very small.
18430
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C. Interpretation of a posteriorimodel parameters and errors

As in Ref. 2, we callR the space spanned by the eige
vectors of those eigenvalues for whichq̃n.a* . Its orthogo-
nal complement in the total model spaceQ shall beP. The
structure of Eq.~28! shows that inP space the solution of the
normal equations is predominantly determined by thea pri-
ori assumptions, whereas inR space the result is—as i
ordinaryx2 fitting—determined by the data. For the interpr
tation of the result of the fit, it is therefore convenient
define an approximate projectionsn of the model paramete
xn into the spaceR by

sn
2
ª (

n851

N

Qnn8~Q1A!nn8
21

5 (
n851

N

Q̃nn8~Q̃1a* I !n8n
21

5 (
n851

N

Unn8
2 q̃n8

q̃n81a*
,

where Unn8 is the unitary matrix that transformsQ̃ to its
diagonal form. If the ordered sequence of eigenvaluesq̃n
decreases very rapidly, one has

sn
2' (

n851

iR
Unn8

2 ,

wherei R is the dimension ofR space, for which one finds

i R'tr Q~Q1A!21.

The quantitiesan , i R , andsn
2 depend not only on the dat

and their errors and on the type of model on which the ana
sis is based~in our case,FEFF7 for the electronic and the
force-field model of Sec. III for the vibrational properties!,
but also very essentially on the choice of thea priori vector
x(0). According to the logic of the Bayesian analysis t
information that goes into the determination of alla poste-
riori quantities is first taken from thea priori assumptions.
The experimental information is only brought in to the exte
that the data require a modification of these assumptions,
something ‘‘new’’ has been learned from the experiment.
for instance, a set of data is analyzed with ana priori that is
taken to be the result of a previous analysis of the same d
then nothing new can be learned and thereforea* would
now be equal toq1 and i R50.

The dimensioni R is expected to be smaller than th
‘‘number of independent data points’’Nd5(2/p)(kmax
2kmin)DR12,26 whereDR5RI2R1, becauseNd represents
the maximal amount of information that can be accomm
dated on the intervalkmax2kmin if it were optimally arranged.
The dimensioni R , however, represents the amount of info
mation obtained by the experiment beyond thea priori in-
formation, taking all error sources into account. It is not po
sible to define the information content of a given set
experimental data completely independent of the choice oa
priori model parameters. Quantities which character
rather closely what one naively means by the quality of a
of experimental data~without referring toa priori assump-
tions! are obtained by choosingx(0) far away from the final
3-8
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fit and considering the projectionsŝn
2 into the R space, re-

sulting from this choice of thea priori data. In the numerica
examples to be discussed later, it turned out that by shif
thea priori value of each single model parameter sufficien
far away from its final fit value, its projectionŝn

2 can always
be brought close to unity.

For many model parameters, thesn
2 turn out to be signifi-

cantly different from 1, but not 0. The spaceR, where the
data determine the fit, is thereforenot spanned by justi R of
the model parametersxn . It is rather spanned by the firsti R
of the jn . This has important consequences for the pro
interpretation of thea posteriorierrors and error correlation
~24!. Only for those model parameters for whichsn

2'1 thea
posteriori error has the usual meaning, accounting for e
perimental errors, uncertainties in the model, and vari
truncation errors. For the otherxn , only a fraction is deter-
mined in this way. To associate an error with the total p
rameterxn , not just its projection intoR space, it is unavoid-
able to rely on a priori information and its estimated
uncertainty. Therefore, also the parameters that are po
determined by the data have a finitea posteriorierror.

It is also seen that it may be misleading to restrict
model-parameter space from the very beginning to a su
ciently small dimension, so that the normal equations~23! do
not require any regularization. Some of the parameters k
in this approach may in reality be only partly determined
the data. Nevertheless, they appear to follow from the d
with reasonable ‘‘experimental’’ errors since they tend
mock up some of the model parameters that are left out
become distorted in this way.

Sometimes the quality of a fit is discussed in terms of
expressionR̃ similar to xcond

2 , Eq. ~20!, but with the matrix
C proportional to the unit matrix.27 It must be stressed tha
our solution of the normal equations~23! minimizes xpost

2

andnot R̃. Apart from an attraction of our solution toward
thea priori solution because of the matrixA in Eq. ~21!, our
matrix C weighs input ink space more strongly in the direc
tion of those of its eigenvectors that belong to the lar
eigenvalues, whereas inR̃ all data points have been given th
same weight.

Since the two formal model parametersS0
2 andE0 are in

general not of interest in themselves, we integrate the p
ability Pcond(bux) over these two variables. Using Eq.~10!,
one obtains the Gaussian distributionPcond

red (breduxred)
}exp(xred

2 /2), with

x red
2 5 (

n,n853

N

xnQnn8
red xn822(

n53

N

bn
redxn

1 (
l ,l 851

L

@ ḡl2gl~0!#Cll 8@ ḡl 82gl 8~0!#,

where forn,n853, . . . ,N,

Qnn8
red

5Qnn82 (
n,n851

2

QnnPnn8Qn8n8
18430
g

r

-
s

-

rly

e
-

pt

ta

d

n

r

b-

and

bn
red5bn2 (

n,n851

2

QnnPnn8bn8 ,

and Pnn8 is the inverse of the 232 matrix Qnn8 with n,n8

51,2. The mean valuesx̄n follow from the reduced norma
equations

(
n853

N

~Qnn8
red

1andnn8!x̄n85bn
red, n53, . . . ,N, ~29!

and the reduced variance matrix is (Qnn8
red

1andnn8)
21, with

n,n853 . . . ,N.

D. Alternative strategy for the determination of the overall
regularization parameter a*

In the space of the scaled model parametersx̃, the
strength parametera* is the most probable regularization i
the Bayesian sense. For certain purposes it is useful to d
mine instead the largest regularization parameterâ* compat-
ible with the data. The condition for this parameter,

^xcond
2 ~ x̃!&post5L, ~30!

was first proposed by Turchin.25 In the ill-posed case we ar
considering here, this equation generalizes a known resul
well-posed problems:28 If all errors are properly estimated
the minimum ofx2 with respect to the model parameters
equal to the number of degrees of freedom. Condition~30! is
equivalent to the nonlinear equation

xcond
2

„x̄~ â* !…5L2trQ̃~Q̃1â* I !21.

Since the largest possible weight of the regularization
larger than the most probable weight, one findsâ* >a* .
Solutions x̄ corresponding toâ* are useful to decide be
tween two competing models on the basis of a giv
measurement.28

VI. ITERATIVE SOLUTIONS

The expansion ofg(x,y) to linear order used in Eq.~15! is
only justified if thea priori guessx(0) is sufficiently close to
the solutionx̄ of the normal equations~23!. In general, this
will not be true. In such a case we expandg(x,y(0)) around
x(n) supposed to be sufficiently close tox̄ to allow a linear
expansion. From Eqs.~14! and ~20!, one obtains

xpost
2 ~x,a!5xT~Q(n)1A!x22b(n)Tx22x(n)TQ(n)x

1x(n)TQ(n)x(n)12b(n)Tx(n)1xcond
2 ~x(n)!.

The information matrixQ(n) and the inhomogeneous term
b(n) are given by Eqs.~18! and ~19!, where

Gln
(n)5

]gl

]xn
U

x5x(n)

1 (
m51

M
]gl

]ym
U

x5x(n),y5y(kl ,x(n))

]ym

]xn
U

x5x(n)

~31!
3-9
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and

Tlm
(n)5

]gl

]ym
U

x5x(n),y5y(kl ,x(n))

are to be used. Minimizingxpost
2 with respect tox yields the

equations

(
n851

N

@Qnn8
(n)

~x2x(n)!n81Ann8
(n) xn8#5bn

(n) , ~32!

n51, . . . ,N, which are used to obtain an improved soluti
x(n11)5x, thus constructing a sequence of approxima
x(n), starting withx(0)50.

In the first few iteration steps, the matrixA(n) is just used
to regularize the matrix inversion needed to solve Eq.~32! in
each iteration stepn. Here one can choose a regularizati
matrix proportional to the unit matrix,Ann8

(n)
5a (n)dnn8 . This

scheme is the iteratively regularized Gauss-New
procedure,29 a stabilized version of the Levenberg-Marqua
algorithm.30 A strategy is needed to choose the sequencea (n)

in the iteration. The starting valuea (0) is chosen such that

tr@Q(0)/~Q(0)1A(0)!#'1.

We then decreasea in each step by a factor of 10.
As in Ref. 2, we simplify the calculation o

]ym /]xnux5x(n) in Eq. ~31!: For the components ofx, which
correspond toS0 , E0, and to the half lengthsRi , the deriva-
tive is taken to be independent ofn, for the Debye-Waller
parameterss j

2 and the third cumulantsC3,j it is taken equal
to zero, and only for the spring constantsks it is recalculated
in each iteration step.

Comparison of Eq.~23! with Eq. ~32! shows that the ana
log of Eq.~26! in the nonlinear case is obtained by replaci
b in Eq. ~26! by b(n)1Q(n)x(n). With the abbreviation

Dn~a(n)!5 (
n851

N

~Q(n)1A(n)!nn8
21 S bn8

(n)
1 (

n951

N

Qn8n9
(n) xn9

(n)D ,

~33!

one obtains

~A(n)!nn
212~Q(n)1A(n)!nn

212Dn
2~a(n)!50. ~34!

It turns out that the trace of this equation is negative in
first few iteration steps. After this quantity has changed
sign, we start to solve Eqs.~32! and~34! simultaneously. To
reduce the necessary computational effort somewhat, we
sumed that there are only up to seven different coefficie
an . Two, a1 anda2, for the parametersS0 andE0, respec-
tively, a third one, for the half radiiRi , a fourth and fifth one
for the Debye-Waller parameterss j of the single- and the
multiple-scattering paths, respectively, or for the two spr
constantsks , anda6 anda7 for the first and for the rest o
the third cumulantsC3,i . If the model parameters fromn
5ns2111 to n5ns correspond toas , we obtain the gradi-
ent hs(a(red)) of ln Ppost(bua(red)) as function of a(red)

5(a1 , . . . ,a7) by summing over Eqs.~34!,
18430
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hs~a(red)!ª
1

2 (
n5ns2111

ns

$~A(n)!nn
212~Q(n)1A(n)!nn

21

2Dn
2~a(red)!%50, s51, . . . ,7; ~35!

and the Hessian is

Hss85
1

2 (
n5ns2111

ns

(
n85ns82111

ns8

$2~an
(n)!22dnn8

1~Q(n)1A(n)!nn8
21

@~Q(n)1A(n)!nn8
21

12Dn~a(red)!Dn8~a(red)!#%, ~36!

wheres,s851, . . . ,7 and theupper index (n) on a(red) has
been dropped.

To solve Eqs.~35! for a(red), the quasi-Newton algorithm
is used.31 It yields the sequence of approximationsa(red)(m),

a(red)(m11)5a(red)(m)1pa
(m)Da(m),

to the solution, wherepa
(m) is an underrelaxation factor an

the Newton stepDa(m) follows from solving the linear equa
tions

H~a(red)(m)!Da(m)52h~a(red)(m)!.

The iteration is started with the lasta5a* obtained in the
preceding iteration cycle

as
(red)(0)5a* , s51, . . . ,7.

To determine the under-relaxation factorspa
(m) , we use a

strategy proposed in Ref. 16. One first choosespa
(m)

5min(1,2pa
(m21)) and determines the auxiliary quantit

D̄a(m) by solving the equations

H~a(red)(m)!D̄a(m)52h~a(red)(m)1pa
(m)Da(m)!.

If the affine invariant condition

(
s51

7

~D̄as
(m)!2<S 12

pa
(m)

2 D 2

(
s51

7

~Das
(m)!2 ~37!

is fulfilled, pa
(m) is kept. Otherwise it is reduced by a factor

2 and the test~37! is repeated. Alternatively, one may dete
mine the minimum of

F~a(red)!5(
s51

7

hs
2

by a standard gradient procedure.31 Once a solutiona(red) of
Eqs. ~35! is found, thoseas

(red) that are larger thanamax or
negative were set equal toamax, and Eqs.~32! are solved.

When Eqs.~35! are solved for the first time, the compo
nents of the solution vectoras

(red) are generally very differen
from a* of the previous iteration. To stabilize them itera-
tion, we again employ here an iteratively regularized Gau
Newton procedure. For that purpose we introduce ana priori
probability
3-10
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Pprior~a!}expF2e (a)(
s51

7

(
n5ns2111

ns

~an2a* !2G ,

peaked at thea* of the precedingn iteration, instead of the
rectangular distribution betweenamin andamax used so far to
obtainPpost(aub) from Pcond(bua) in Bayes’ theorem. Equa
tion ~35! is then to be replaced by

hs~a(red)!2e (a) (
n5ns2111

ns

~an2a* !50,

and the Hessian becomes

Hss8
(reg)

5Hss82e (a) (
n5ns2111

ns

(
n85ns82111

ns8

dnn8 .

In the first iteration, we choosee (a) equal to the absolute
value of the largest negative eigenvalue ofHss8 and reduce
this value in each step by a factor of 3. If one of the eige
values ofHss8

reg changes its sign,e (a) is increased by a facto
of 2. The optimization ofa(red) is done at most for three
cycles of then iteration.

It is sometimes necessary to use an under-relaxation s
egy also for the cycle defined by Eq.~32!. One therefore
calculates a provisional

xn
(n11)5 x̄n

(n)1px
(n8)Dxn , ~38!

with

Dxn5 (
n851

N

~Q(n)1A(n)!nn8
21

@bn8
(n)

2An8n8
(n) xn8

(n)
#

and px
(n8)5min(1,2px

(n821)), starting with n851,px
(0)51.

One also calculates

D̄xn5 (
n851

N

~Q(n)1A(n)!nn8
21

@bn8~x(n11)!2An8n8
(n) xn8

(n11)
#.

If the monotony condition

(
n51

N

~D̄xn!2<S 12
px

(n8)

2
D 2

(
n51

N

~Dxn!2 ~39!

is not fulfilled, one setspx
(n811)5px

(n8)/2 and the test~39! is
repeated. Otherwise, the new approximantx(n11) from Eq.
~38! is kept and rescaled:x̄n

(n11)5xn
(n11)ãn . With

ân
(n)5 )

n851

n

ãn
(n8) ,

one obtains Qnn8
(n11)

5Qnn8(x
(n11))/(ân

(n11)ân8
(n11)) and

bn
(n11)5bn(x(n11))/ân

(n11) and repeats the iteration cyc
with Eqs.~35! and~33!. The iteration is terminated when th
norm (nDxn

2 becomes sufficiently small.
When thea priori estimate for a model parameter is ve

close to its final fit value, the probabilityPpost(aub) is no
longer sharply peaked ina space. This expresses the fact th
18430
-

at-

t

the final fit is very insensitive to the relative weights wi
which the experimental data and thea priori data enter into
the procedure. Even though the position of the maximum
Ppost is then not a good approximation for the average va
of a, we use it nevertheless because of the considerable
merical effort necessary to perform seven-dimensional a
aging integrals overa space. This procedure does not affe
the x̄, but the projectionssn

2 depend strongly ona. Their
values are therefore rather meaningless in our calculat
for those model parameters whose fitted value is very cl
to the correspondinga priori value.

WhenPpost(a) is represented by a broad mountain with
small maximum whose position is rather sensitive to sm
changes ofx, we found poor convergence of our iteratio
procedure where we determine a newa satisfying Ppost
5max in each step of the iteration with respect tox, Eq.
~32!, instead of solving Eqs.~32! and ~35! simultaneously.
We therefore kepta fixed whenxpost

2 (x,a) appeared to in-
crease, rather than decrease, in successive iterationsn.

To determine the quantitiesŝn , Eqs. ~35! and ~33! are
solved with the lastQ, b, andx, but with onea priori value
xn

(0) at a time shifted by a sufficiently large multiple of it

standard deviation away from its fit value to ensure thatŝn
2

gets close to 1.

VII. ANALYSIS OF GERMANIUM, GOLD, AND COPPER
DATA

The data from Refs. 8 and 9 consisted mostly of t
EXAFS functionx(kl). In two cases absorption coefficien
m(kl) were given. We analyzed them by standard procedu
to obtain x(kl). We then treat the EXAFS function in a
cases as the input of our fitting procedure. Conventio
methods to obtainx from the raw data make it very difficul
to determine ‘‘experimental’’ errors, let alone cross corre
tions for these data. We therefore associated, admitte
somewhatad hoc, the following distribution function with
the uncertainty ofx(k):

Dxl5A1Q~kl2kcut!1A2exp~kl /kexp!. ~40!

There are several reasons why the data for very smak
should not be included in the fit: Standard procedures
extract the EXAFS functionx(k) from the measured absorp
tion coefficientm(k) @without firm knowledge ofm0(k)] re-
sult in particularly large uncertainties for smallk. In addition,
our expression for the truncation errorS tends to underesti-
mate the actual truncation error for smallk, since conver-
gence of the MS series~1! may not be reached with the on
thousand terms, which we included in the construction
S l l 8 and because of the restriction of the scattering to a gi
finite cluster size. The reason is the increase of the mean
path l(k) with decreasingk, allowing increasingly longer
scattering paths to contribute with a non-negligible amp
tude to the sum~1!. One also has to keep in mind the rough
exponential increase of the number of possible MS pa
with the number of shells included in the cluster, compens
ing partly their smaller amplitude. We therefore choseA1
510, which is sufficiently large to completely cut off th
3-11
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TABLE I. Input and output parameters for the fit of germanium data taken at 300 K.

Data points L5393 k150.2, . . . ,kL519.8 Å21

Leff5331 kcut53.3 Å21,kexp528.56 Å21,A250.002

Cluster size for scattering I 57 RI57.349 Å
Cluster size for vibrations I 521 A5417, RI512.89 Å
Number of paths J520 5% Amplitude threshold
Number of legs (nj )max54
Model parameters N518 S0

2 E0 Ri k1 ,k3 C3,i

or N536 S0
2 E0 Ri s j

2 C3,i

their a priori values x(0) 1.0 11104 eV a(fcc) 100 N/m 0.0
K edge 55.6574 Å 14 N/m

or uD5360 K
-
-

a
ce
r

-
r
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e

data for k,kcut. We choosekcut between 3 and 3.5 Å21

since it turned out that smallerk would lead to serious de
viations between the experimentalx(k) and the one calcu
lated with our choice of thea priori model parameters. In
particular, retaining smallerkl in the fit would lead to unac-
ceptably large deviations between fitted scattering half p
radii and their values obtained from the well-known latti
constants. The number of input data points is therefore
duced to theLeff points withkl>kcut. A lower bound on the
parameterA2 follows from the requirement that Eq.~30!
should still have a solution. The parameterkexp is finally
obtained from takingDxL /x(kL)50.1%.

The result of the fit is represented inr space for each
scattering pathj by a functiondj (r ) whose first three cumu
lants are given byRj , s j

2 , and C3,j , and the area unde
which is proportional to the coordination numberNj . Maxi-
mum entropy yields the expression23

dj~r !5
Nj

2pE2`

`

expF2 i ~r 2Rj !k2
s j

2

2
k22 i

C3,j

6
k3Gdk

5
Nj

p E
0

`

e2(s j
2/2)k2

cosF ~r 2Rj !k1
C3,j

6
k3Gdk. ~41!

The integration is done numerically. IfC3,j is zero, the inte-
gral is of course trivial and yields a Gaussian of widths j ,
peaked atr 5Rj , and with areaNj . The total fit inr space is
given by

d~r !5(
j 51

J

dj~r !. ~42!

To find the Einstein frequencyv̄E that fits the Debye-
Waller parameterss i of Eq. ~6! optimally, we minimize the
expression

xs
2~vE!5( 8

n,n
~ x̃n1 x̃n

(0)2 x̃E!~Q̃1Ã!nn8~ x̃n81 x̃n8
(0)

2 x̃E!
18430
th

e-

with respect tovE , where the prime on the sum means th
the summations are restricted to those values ofn andn8 that
correspond to the Debye-Waller parameterss i of single-
scattering paths and

x̃n
(0)5

~sn
2!(0)

x̂n

ã4 ,

x̃E5
v0

vE

11j~vE!

12j~vE!
,

where v05\ã4 /(Mx̂n) and with the Boltzmann factorj
5exp(2\vE /kBT). Fromdxs

2/dvE50, one finds the nonlin-
ear equation

1

vE
2~12j!2 F12j212j

\vE

kBT G( 8
nn8

~Q̃1Ã!nn8F x̃n81 x̃n8
(0)

2
v0

vE

11j

12jG50 ~43!

for the optimal Einstein frequencyv̄E . Expandingxs
2 to

quadratic order in the vicinity ofv̄E , one obtains

FIG. 3. Errors affecting the input of the fit of Ge data. Full lin
represents diagonal part of the total errorDxeff ; dashed line repre-
sents assumed experimental errorDxl , Eq. ~40!; dot-dashed line
represents diagonal part of the truncation errorS l l

1/2.
3-12
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xs
2~vE!5xs

2~v̄E!1
~vE2v̄E!2

DvE
2

,

with the model uncertainty of the Einstein model,

~DvE!225S dx̃E

dvE
D 2

( 8
nn8

~Q̃1Ã!nn8 , ~44!

where

dx̃E

dvE
52

v0

vE
2 S 12j212j

\vE

kBT D ~12j!22.

A. Analysis of germanium data

The input for the analysis of the germanium data of Re
is collected in Table I, together with the parameters defin
the dimensions of the fit problem. In this case we star
from m(kl), from which we obtainedx(kl) with theAUTOBK

routine, version 2.1.32 The error function~40!, the square
root of the diagonal matrix elementsAS l l , and the effective

FIG. 4. Fit of the Ge data with freely variable Debye-Wall
parameters result inr space as sum of Gaussians. Dotted line r
resents contribution of the single-scattering paths; for the first
peaks the two lines coincide.

FIG. 5. Fit of the Ge data ink space is shown by a thick ful
line. A priori assumptions yield the thin line. Points with error ba
are the input data. The vertical dotted line is atkcut .
18430
8
g
d

error Dxl
eff5Dgl

effDxl are shown in Fig. 3. AMACMASTER

correction of 4.131024 Å2 was used.
We performed two analyses of the input data: First, thes j

of the 20 single- and multiple-scattering paths were used
independent model parameters, besides theRi andC3,i ; then
a force-field model with one bond-streching parameterk1
and one bond-bending parameterk3 was employed. In view
of the covalent binding of the germanium lattice, a restricti
of the interaction to neighboring pairs and triples of ato
appears to be a reasonable ansatz.

Our a priori assumptions for the model parameters a
also shown in Table I. The value forE0 was here and in the
following cases obtained from the codeATOMS, version
2.46,32 and the values for the half path lengthsRj

(0) were
calculated from the lattice constanta, assuming an ideal lat
tice. Values for the lattice constants were taken here an
the following cases from Ref. 33.A priori values for the DW
parameterss j

2(0) were derived from the correlated Deby
model with the Debye temperatureuD5360 K ~from Ref.

-
o

FIG. 6. In the lower frame, the deviations of the fitted mod
parameters from theira priori values witha posteriori error bars
are shown in dimensionless units for thes fit of the Ge data. Scaled
projections intoR space,sn

2 , are in the upper frame. Ordering o
the model parameters from left to right isS0 ,E0 ,Ri ,s j

2 ,C3,i .

FIG. 7. Deviation of the fitted model parameters from theira
priori values in absolute units for the single-scattering paths a
the parametersS0 andE0 have been integrated out.
3-13
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34!. The a priori spring constants were obtained from plo
like the one of Fig. 2, using the first twos j

2 of the preceding
fit to determinek1

(0) andk3
(0) .

The result of the fit with the free DW parameters is sho
in r space in Fig. 4 in terms of a sum of Gaussians. T
dashed line gives the contribution of the single-scatter
paths only. The fit ink space is presented in Fig. 5 togeth
with thea priori EXAFS functionxprior . Also shown are the
input data with their errorsDxl

eff . We emphasize again tha
our fit minimizesxpost

2 and not theR function of Ref. 8. We
do not only associate different weights with different da
points kl , but also take cross correlations into accou
which cannot be represented in this figure.

More detailed information on this fit is presented in Fig
6–8. The deviation of the fitted model parameters from th
a priori values is shown in Fig. 6 in terms of the dimensio
less quantitiesx̄n together with theira posteriorierrors. It is
seen that thex̄n , which correspond toS0

2, E0 , Ri , andC3,i

remain zero within their error bars. Only thes j
2 have been

shifted away from theira priori values. Therefore somethin
‘‘new’’ has been learned from the data only for the DW p
rameters. Thesn

2 are therefore close to 1 for all single
scattering paths. But even the very small shifts of the ra
compared to theira priori values lead to fairly largesn

2 val-
ues in most cases. That they are not all equal to 1 does
mean that the measurement would not be very sensitiv
the half path radii. It only means that the assumeda priori
values for the radii were perfectly compatible with the da

FIG. 8. Modulus of the nondiagonal matrix elements of the c
relation matrix (Q1A)21 for the s fit of Ge data.
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e
g
r

,

.
ir
-

ii

ot
to

.

If the a priori values for theRi were artificially moved away
from their actual fit values by 8 standard deviations, the
sulting ŝn

2 become larger than 0.9, which shows that the ra
are indeed well determined by the data. Fors1

2 , . . . ,s7
2 al-

ready a shift of 12 standard deviations is needed to bring
correspondingŝn

2 above 0.9.
The dimensioni R of R space is shown in Table II. Also

given for comparison is the number of independent d
points,Nd ~calculated withkcut instead ofkmin). It is seen to
be much larger than the dimension ofR space. The condition
number zcond5q1 /qN of the information matrixQnn8 in
Table II shows the ill-conditioned character of the 3
dimensional fit problem. In Fig. 7 the shift of the mod
parameters away from theira priori values is presented in
absolute units for the single-scattering paths after the par
eters S0

2 and E0 have been integrated out, Eq.~29!. The
modulus of the nondiagonal matrix elements of the varia
matrix (Q1A)nn8

21 is plotted in Fig. 8. It shows strong corre
lations between theRi and the multiple-scatterings j

2 as well
as theC3,i . The optimal fit of thes j

2 to a correlated Einstein
model yields the Einstein temperature shown in Table
together with its uncertaintyDuE .

The result of the second fit, involving the spring consta
k1 andk3 instead of the DW parameters, is inr space as well
as in k space almost indistinguishable from Figs. 4 and
respectively. The details of the differences between the
fits can be seen in Fig. 9. The smaller number of available

-

FIG. 9. In the lower frame, the deviations of the fitted mod
parameters from theira priori values witha posteriori error bars
are shown in dimensionless units for thek fit of the Ge data. Scaled
projections intoR space,sn

2 , are in the upper frame. Ordering o
the model parameters from left to right isS0 ,E0 ,Ri ,ks ,C3,i .
TABLE II. Dimension of the model-parameter spacei R ; number of independent data pointsNd ; condi-
tion numberzcond of Q; fitted force-field parametersk1 ,k3 for Ge andk1 ,k2 for Au; Einstein temperature
uE ; and anharmonicity parameterÃE of Eq. ~5!.

i R Nd zcond k1 @N/m# k2,3 @N/m# uE @K# ÃE@eV Å23#

Ge s 20 55 63106 272.262.7 0.4361.15
k 3 55 13104 99.960.4 14.060.3

Au s 18 41 83106 127.861.9 21.5660.28
k 9 41 23104 31.060.7 211.562.0
3-14
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parameters has the consequence thatR6 is now shifted away
from its a priori value. Consequently, also the correspond
s8

2 is now close to 1 since the data appear to have shifte
If one insists that at least the first half path lengthR1 should
not deviate from itsa priori value, calculated with the well
known lattice constant for germanium, one has to concl
that the model used for the fit was not quite appropriate
may, for instance, not be allowed to disregards j

disor as we did
implicitly when we identifieds j with s j

therm in the second fit.
We find k1599.9 N/m andk3514.0 N/m in disagree-

ment with Keating’s result ofk15228 N/m,k3577 N/m.14

However, Keating fitted to the elastic parameters, i.e., to
acoustic modes, whereas EXAFS is predominantly sens
to the optical-phonon spectrum. This may explain some
the discrepancy. In Ref. 6, where the same EXAFS data w
fitted with a force-field model involving three bond
stretching constants k15120 N/m,k254 N/m,k3

stretching

521.1 N/m, besides a bond-bending mode, reasona
agreement with ourk1 is found. In summary, we conclud
that the data of Ref. 8 may require some contribution
s j

disor to the DW parameters. TheC3,i vanish in both analyse
within their error bars. Anharmonicities are therefore n
clearly seen in these data.

The modulus of the nondiagonal matrix elements of

FIG. 10. Same as Fig. 8, but for thek fit of the Ge data.
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error-correlation matrix are shown in Fig. 10. There are n
strong correlations only betweenRi andC3,i for all i.

B. Analysis of gold data

The input data anda priori values of the model param
eters for the fit of theL3-edge gold data from Ref. 8 ar
summarized in Table III. This time we started the analy
with the EXAFS functionx(kl) with which we associated
the error functions shown in Fig. 11. AMACMASTER correc-
tion of 431024 Å2 was used.

Again, the input was analyzed once with all Debye-Wal
parameters as freely varying model parameters and in a
ond run with two bond-streching spring constantsk1 andk2.
Though for a metal such a two-body force-field model is n
obvious, we follow a practice often used in the literature35

considering it as an effective dynamical model. Thea priori
values of the model parameters were determined as in
previous case and are collected in Table III.

The result of the fits inr space andk space is shown in
Figs. 12 and 13, respectively. The difference between the
fits is not visible in either of these plots. A more detaile
picture of the fits is presented in Fig. 14, which shows
shift of the~dimensionless! model parameters with respect
their a priori values in thes fit and in Fig. 15, in which the
shifts are given in absolute units for thek fit. In both cases,

FIG. 11. Same as Fig. 3, for the Au data.
TABLE III. Input and output parameters for the fit of gold data taken at 300 K.

Data points L5305 k150.2 Å21, . . . ,kL515.4 Å21

Leff5249 kcut53.0 Å21,kexp522.22 Å21,A250.002

Cluster size for scattering I 57 RI57.63 Å
Cluster size for vibrations I 518 A5500,RI512.57 Å
Number of paths J525 5% Amplitude threshold
Number of legs (nj )max54
Model parameters N518 S0

2 E0 Ri k1 ,k2 C3,i

or N541 S0
2 E0 Ri s j

2 C3,i

their a priori values x(0) 1.0 11918 eV a(fcc) 30.7 N/m, 0.0
L3 edge 54.078 Å 212 N/m

or uD5180 K
3-15
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R1 is shifted upwards by slightly more than 1 standard
viation. This is surprising since the lattice constant sho
yield a reliable nearest-neighbor distance. However,R1 is
also contained in the half path lengths of several multip
scattering paths. The truncation errorS l l 8 connected with
these paths may not be properly accounted for. Also
Debye-Waller parameters1

2 of the first single-scattering pat
is significantly shifted away from the correlated Debye e
mate. The anharmonicity parameter of this path is differ
from 0 in both fits.

The values of these shifts in absolute units are, howe
rather small. In both fits,R1 is shifted only by some 1022 Å.
The anharmonicity is barely visible in the first peak of F
12, indicated by the long-dashed line, though the curve
obtained from the full expression~41!. FromC3,1, an anhar-
monicity termÃE in the force field was calculated with Eq
~13!. It is shown in the last column of Table II. For compa
son, one can roughly determineÃE within the Einstein
model from the empirical, macroscopic, thermal expans
coefficienta5d ln r/dT using Eq.~8!. To provide the neces
sary microscopic length scale, we divide Eq.~8! by the dis-
tance of the nearest neighborR1. Using Table 4f-1 of Ref.
36, we obtainÃE521.32 eVÅ23. We also consider the ra

FIG. 12. Fit of the Au data with freely variable Debye-Wall
parameters result inr space as sum of Gaussians. Dotted line r
resents the contribution of the single-scattering paths, for the
two peaks the dotted line and the full line coincide. Dashed l
represents the inclusion of an anharmonicity according to Eq.~41!
for the first peak.

FIG. 13. Same as Fig. 5, but for the Au data.
18430
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n

tio between the sizes of the anharmonic and the harmo
term of the Einstein potential~5! at the average amplitud
sE , Eq. ~6!, for the given temperature: RE

54uÃEusE /(vE
2M )50.1. This quantity is more significan

for the anharmonicity than the tiny effect of the latter on t
distribution function of Fig. 12.

Again the spring constantsk15(31.060.7) N/m andk2
5(211.562.0) N/m come out considerably smaller than
a fit to the elastic constants. From the fitted Debye-Wa
parameters, an effective Einstein temperatureuE was cal-
culated. It is shown together with its uncertaintyDuE in
Table II.

The modulus of the error correlation matrix elemen
u(Q1A)nn8

21 u,nÞn8, is shown in Figs. 16 and 17 for the tw
fits. In the s fit, there are correlations between all mod
parameters; in particular, betweenRi and C3,i , and among
the s ’s. For thek fit, there are strong correlations betwee
Ri andC3,i for all i and between the twoks’s.

C. Analysis of copper data

We use data taken on copper at three different temp
tures: EXAFS functionsx(kl) at 10 K and 300 K from

-
st
e

FIG. 14. Same as Fig. 6, but for the Au data.

FIG. 15. For thek fit of the Au data; deviation of the fitted
model parameters from theira priori values in absolute units for the
single-scattering paths after the parametersS0 and E0 have been
integrated out.
3-16
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Newville,8 and for an intermediate temperature of 80 K w
extracted the EXAFS function from Fig. 1 of Ref. 9. In th
latter case, larger experimental uncertainties had to be a
ciated with the input data than in other cases in order
obtain reasonable fits at all. In particular,kcut54.4 Å21 was
required. Detailed information on the input parameters,
internal size parameters, and the choice ofa priori values for
the model parameters for the three sets of data is collecte
Table IV. TheMACMASTER correction used in all three case
was 5.231024 Å2. Again, in each case two analyses a
performed, one with all Debye-Waller parameters var
freely and a second in a model with two bond-stretch

FIG. 16. Modulus of the nondiagonal matrix elements of t
correlation matrix (Q1A)21 for the s fit of Au data.
18430
so-
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constantsk1 and k2. A Debye temperature of 315 K wa
used34 to generatea priori values (s j

2)(0).
The result of the fit ink space is shown only for thes fit

of the 300-K data in Fig. 18. In Fig. 19, the fit inr space is
shown for thek fits of the 10-K and 300-K data. The tem
perature broadening of the peaks is clearly seen. A m
detailed analysis of the fits shows that for 10 K, all mod
parameters remain at theira priori values in thes fit and in
the k fit, as expected. Only two of thes i

2 and C3,1 are
slightly shifted, indicating a very small structural disorde
The analysis of the 80-K data shows the same picture, ex
that the anharmonicity parameterC3,1 is now larger and in

FIG. 17. Same as Fig. 16, but for thek fit of the Au data.
TABLE IV. Input and output parameters for the fit of copper data taken at 10, 80, and 300 K.

Data points 10 K L5397 k150.1 Å21, . . . ,kL519.9 Å21

Leff5328 kcut53.5 Å21,kexp56.643 Å21,A250.02
80 K L5288 k151.9 Å21, . . . ,kL516.25 Å21

Leff5238 kcut54.4 Å21,kexp58.566 Å21,A250.03
300 K L5330 k151.0 Å21, . . . ,kL517.45 Å21

Leff5279 kcut53.5 Å21,kexp512.59 Å21,A250.004

Cluster size for scattering I 59 RI57.67 Å
Cluster size for vibrations I 518 A5500,RI511.11 Å
Number of paths for 10 K J554

80 K J553 5% Amplitude threshold
300 K J553

Number of legs (nj )max56

Model parameters N522 S0
2 E0 Ri k1 ,k2 C3,i

or for 10 K N574
80 K N573 S0

2 E0 Ri s j
2 C3,i

300 K N573
a priori values for 10 K x(0) 1.0 8979 eV a~fcc) 28.5 N/m, 0.0

(K edge! 53.6032 Å 27.5 N/m
80 K 1.0 8979 eV 3.6032 Å 20.0 N/m, 0.0

1.0 N/m
300 K 1.0 8979 eV 3.6150 Å 27.5 N/m, 0.0

23,7 N/m
or uD5315 K
3-17
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the k fit also R1 is significanly shifted, which may either b
due to structural disorder or an underestimate of the assu
experimental error. For the 300-K data all radii are u
changed, there are some deviations of the Debye-Waller
rameters from their predictions in the correlated Deb
model, and in both fitsC3,1 is shifted upwards. To appreciat
the apparently irregular temperature dependence of
spring constants, the rather different origin of the data at
K compared to the two other sets has to be taken into
count. Furthermore, there is a rather large error correla
betweenk1 andk2. However, our results show that consi
erable caution is necessary when force-field parameters
extracted from a single set of data without corroborating e
dence from other independent measurements.

The dimension ofR space, for comparison the number
independent data pointsNd , the two spring constants, th
Einstein temperature and its uncertainty, and the anharmo
ity parameterÃE are given in Table V for the three temper
tures. The spring constantk1527.460.6 N/m for 300 K
may be compared with the value 27.9 N/m, obtained in R
37 with a one-spring-constant model for 295-K copper da
As one might have expected, the effective Einstein temp
ture is not independent of the temperature of the meas
ment. The result for the Einstein temperature of the 300
data is in agreement withuE5218 K, found in Ref. 37 for
copper at 295-K. The anharmonicity parameter is obviou
most affected by noise. At low temperature,C3,1 should not
be visible. In fact, our value at 10 K is only slightly mor
than 1 standard deviation away from zero. For 80 K, o
result appears to be spurious. However, our valueC3,1

FIG. 18. Same as Fig. 5, but for the Cu data at 300 K.
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5(1.460.1)31024 Å3 at 300 K compares well with 1.36
31024 Å3, reported in Table II of Ref. 37. The ratioRE is
0.046 and the thermal expansion coefficient for copper fr
Ref. 36 yieldsÃE521.19 eV Å23, again usingR1 as the
length scale.

VIII. CONCLUDING REMARKS

A careful analysis of the problem of fitting EXAFS data
structural model parameters shows that one is dealing wi
stochastic, usually ill-posed, inverse problem. Its solution
quires the use of Bayes’ theorem, which needs the introd
tion of a priori information into the fitting procedure. Th
fine tuning of the relative weightsan with which the experi-
mental data and thea priori data enter into the fit is achieve
by slightly generalizing a procedure first proposed
Turchin and Nozik. Since the relation between the obse
ables x(kl) and the model parametersxn is nonlinear, an
algorithm is described for its reduction to solving a seque
of linear, well-posed equations. This nonlinear problem
coupled to an additional set of nonlinear equations to de
mine the an . The convergence of our global iteratio
scheme is discussed and its convergence is tested. Sp
attention was given to the limiting case where thea priori
data are very close to the final fit. For the iteration w
respect to the model parametersxn , we typically found con-
vergence after 10–20 iteration steps in our applications.

These applications involve data from monoatomic s
tems, where the radii should be well described by their latt

FIG. 19. Result of the fit of Cu data inr space; 300-K data
represented by dashed line and 10-K data by full line.
TABLE V. Dimension of the model parameter spacei R , number of independent data pointsNd , condi-
tion numberzcond of Q, fitted force-field parametersk1 ,k2, Einstein temperatureuE , and anharmonicity
parameterÃE of Eq. ~5! for copper at three different temperatures.

i R Nd zcond k1 @N/m# k2 @N/m# uE @K# ÃE @eV Å23#

10 K s 17 58 231012 184.765.2 1.961.2
k 8 58 23106 28.361.4 28.360.5

80 K s 16 43 231013 187.966.2 4.061.5
k 10 43 23104 19.362.5 0.963.7

300 K s 13 50 231013 215.561.5 20.660.2
k 3 50 23107 27.460.6 24.060.3
3-18
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constants. The emphasis of the analysis was therefore on
questions:~i! How well can the Debye-Waller parameterss j

2

be described either by the correlated Debye model or a fo
field model with two harmonic coupling parameters; and~ii !
how reliable is the determination of anharmonicity para
eters in these fits.

The main limitation of the present analysis comes fro
the poor convergence of the multiple-scattering series~1! in
the x-ray absorption near-edge structure region, which
quired the elimination of all data withk,kcut from the fit.
Use of alternative representations of the EXAFS functi
now available,38,39should lead to a more complete utilizatio
of the experimental data. A second severe drawback of
error analysis is the considerable uncertainty in associa
an ‘‘experimental’’ error with the input EXAFS function
x(kl). An important contribution to the uncertainty com
from the fact that the zero-order contributionm0(k) to the
multiple scattering signal cannot be obtained fromFEFFwith
sufficient accuracy. Klementiev40 proposed to determine th
difference between the true and theFEFF expression form0
from the data, introducing some smoothness requiremen
a priori assumption. This increases the number of mo
parameters and it remains to be seen what the cross cor
tions are between these additional parameters and t
er

k

in

r

n,

18430
wo

e-

-

e-

,

ny
g

as
l
la-
se

structure parameters in which one is primarily interested
For the application of our Bayes-Turchin approach,

chose data of high quality, taken on systems with a sim
rather undisturbed structure. This is useful to check
method of data analysis, but it is not necessarily typical
investigations involving EXAFS measurements. Often t
data are ‘‘dirtier,’’ and one would therefore not expect
derive more model parameters from the measurement t
say, a nearest-neighbor distanceR1 and the average coordi
nation numberN1 of the first shell. Of course, our metho
can be applied also to such data, only the size and rela
weight of the uncertainties will be different from the e
amples considered above. The dimension of the mo
parameter space can be chosen much smaller, which red
the numerical effort considerably and brings it closer to
numerical needs of typical nonlinear least-squares-fitt
procedures.
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