PHYSICAL REVIEW B 66, 184303 (2002

Bayes-Turchin approach to x-ray absorption fine structure data analysis
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X-ray absorption fine structureXAFS) data from copper, gold, and germanium are analyzed in the frame-
work of the model-independent Bayes-Turchin approach. Compared to earlier treatments, we also obtain spring
constants, besides shell radii, Debye-WallB\W) parameters, and anharmonicity parameters. The use of
spring constants instead of DW parameters reduces considerably the number of model parameters needed to
achieve a satisfactory fit of the data. Tk initio extended XAFS codeerr7is used in the analysis. The
various sources of uncertainty in the input data and inFitre7 code are carefully assessed and used in the
analysis. It is shown to which degree the model parameters are determined by the data, rather than by the
priori assumptionsA posteriorierrors and error correlations between model parameters are shown.
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I. INTRODUCTION variance matrix can be determined. Below we shall use this
possibility to get the relative weight for several groupsaof
Efficient codes are available to calculate the x-ray absorppriori model parameters independently.

tion cross sectionu(k) approximately as a function of the In Ref. 2 we obtained half length paramet&sfor each
x-ray wave vectok and the following model parameters: the scattering path independently. In order to account for geo-
half length of each single- or multiple-scattering patR;,  metrical constraints between these parameters, we shall take
the Debye-Waller(DW) parametero; for each scattering the radii of the shells surrounding the emitting atom as inde-
path, and the third cumulantSs;.* Data fitting, however, pendent parameters and represent the half lengths of the
requires the solution of the inverse problem of inferring theytiple-scattering paths as functions of these radii, assum-

model parameters from measured absorption coefficients. iy that there are no angular distortions in the lattice. Though
general, there are more model parameters than data, but eVl s not the most general situation, we consider this sim-

if one restricts the number of model parameters to the numE)Iification as appropriate for the applications we will inves-
i

gate.
The DW parameters contain, in general, contributions
m thermal motion of the lattice atoms and their quantum

ber of available data points, the inversion problem turns ou
to be ill posed. A further restriction of the number of model
parameters considered in the fit is therefore necessary. |ntlflr-o
itively guided by the so-called number of independent dat . . . i
points the list of model parameters is often cut down until th Iuctltjhaglogs,a}:‘;’:, Zand from lattice disorderg{**, of
Y2 fitting procedure appears to be numerically stable. Con=(07"")?+ (0*?)%. The thermal part can be represented
sidering the linear spaa@ spanned by all model parameters, more significantly in terms of a few spring constants in the
the implicit assumption is therefore made that its subspacgeighborhood of the emitting atofif, which reduces the
R, which is determined by the data, can be spanned by Bumber of model parameters substantially without deteriorat-
finite subset of the model parameters. However, one shouldg the quality of the fit. If measurements of the same probe
expect that in general the subspédgés spanned by orthogo- €exist at different temperatures, one may separate the two
nal coordinates, which are oblique to the model parametersontributions, assuming that tiae**" are independent of the
spanning the parameter spa@e One would therefore like to temperature. In favorable cases they can be negligible com-
have an algorithm that determines on the basis of the megpared to<r}he”“. Such data can then be analyzed directly in
sured data not only the dimension®f but its orientation in  terms of a few spring constants instead of a DW parameter
Q as well. for each scattering path.

To solve this problem we introduced in Ref. 2 the concept  In some cases third cumular@s; can be extracted from
of an a priori guess of the set of model parameters andhe data. We have therefore always included a search for
reformulated the task of fitting by looking for the shift away these parameters at least for the single-scattering paths. In a
from thea priori model parameters, as required by the datasimple force-field model anharmonicity parameters are also
Invoking the maximum-entropy principle, the ill-posed in- determined from these third cumulants.
version problem can then be regularizetb define the pro- The paper is organized as follows. In the following sec-
cedure completely, one still has to fix the variance matrix oftion the input and output parameters of the fitting procedure
the a priori model parameters, which, in particular, deter-and their probability distributions are defined and the models
mines the weight with which the priori information influ-  are discussed on which the analysis is based. The algorithm
ences the fit relative to the weight of the experimental dataused for the calculation of the DW parameters is presented in
We used in Ref. 2 two alternative optimization conditions,some detail in Sec. lll. The various sources of uncertainty
first proposed by Turchiet al,* to obtain one overall weight affecting the fit are discussed and modeled in Sec. IV. In Sec.
parameter. It turns out that one of Turchin’s conditions ad-V the essential elements of an extenggdfit and its regu-
mits a generalization, such that more details of ahgriori larization bya priori assumptions are summarized, general-
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izing the presentation in Ref. 2. Iterative procedures to solvgarticularly subject to uncertainties connected with the
the resulting nonlinear systems of equations are described muffin-tin approach, we will follow the usual practice and
Sec. VI. Section VII contains the application of the proposedreat these two quantities also as independent model param-
method to the extended x-ray absorption fine structureters.

(EXAFS) analysis ofk-edge copper data, taken at three dif-  The multiplicity numbersN; are, in principle, also model
ferent temperature; L;-edge gold data, measured at 300 parameters. Since we want to analyze data taken on well-
K,® and germaniunK-edge data, taken at 300 KA sum-  qrdered probes, we assume that these parameters have their
mary of the procedure and an outlook on further developjqeq) |attice values, and do not determine them in the fit. In

ments is presented in Sec. VIIl. the case of less well-ordered samples, this would not be ap-
propriate and extra measures are needed to disentangle the
IIl. DEFINITION OF THE PROBLEM very strong correlation between thg and o in Eq. (1).

The following discussion will be based on the multiple- ~ 1h€ absorption coefficient of the free absorbing atom
path expansion for x-ray absorption on a polycrystalline or+o(K) can, in principle, be calculated in the framework of

amorphous sampi&:! the Hartree-Dirac approach. However, we feel that computer
codes available to us at present for that purpose are not yet
w(K) = ppack K) — mo sufficiently fast and, at the same time, not accurate enough to

x(k)= “o treat ug in Eq. (1) as a derived quantity. Since we use in

some cases the EXAFS functigg(k) rather thanu(k) as
input, we will follow the common practice of applying an
empirical background-subtraction procedure to the measured
(k) to obtain the EXAFS signak(k),?'3in cases where
4 3 we start the analysis with the absorption coefficient. The
—OR)) + (k) — §C3Jk , 1) EXAFS signal may be measuredlatata points with wave
numbersk,, =1, ... L. The input of the fitting procedure

with the wave number therefore consists of thie datax(k;).

For each independent model parametewe introduce a
corresponding priori estimatexﬁo), e.g., forR; ana priori
valueR(?, and the differences between the actual parameter
. values and theia priori values x’—x{?, are treated as the
and corrections to the lengths new independent variables to be determined by the fit. It is
1 1 useful to normalize these differences by quantif«p:which
— 4= are of the order of the expected sizexgf-x{”) in the final
Ri A fit, so that the normalized model parametexs= (X,
where the sum in Eq(1) runs over all geometrically in- —x{?)/x, are dimensionless and will always be of a limited
equivalent single- and multiple-scattering paththe multi-  order of magnitude. The,, shall be the components of the
plicity of equivalent paths being counted By, which is the  vector x in the N-dimensional model-parameter space

S5 D Ifi(k,Ry)| 22 .
_ N. e—2k O'j—ZRj /}\(k)SIr1
kg R

2K(R;

, 2m
k :?(hV_Eo)

SR;=207

coordination number for the single-scattering paths. Q. The components shall be arranged according to
The overall amplitudeS;, the mean free path(k), the  the order:S3,Eq,Ri(i=1,...1),ks(s=1,....9), U}dlsor (j
scattering amplitudes;(k,R;), and the phases);(k) for =1,...3),Cs;(i=1,...]), wherel is the number of

each scattering path follow from a solution of the electronicshells,Sthe number of spring constants, ahthe number of
many-body problem as functions kfand the lattice geom- scattering paths considered in the fit; therefdte 21 +J

etry. In the framework of the local-density approximation + S+ 2. To simplify the notation, it is convenient to consider
together with the muffin-tin ansatz for the scattering potenthe dependent quantities which appear on the right-hand side
tial, the FEFF7 codé provides approximate values féyr ¢, of Eq. (1), A (K), fj(K), #;(K), andgfhem(,() as components
and A as functions ofk and R;. The recursion procedure of g vectory(k,«). The number of these components will be
proposed in Ref. 6 similarly allows calculation af“e”“ ap-  designated in the following bl =3J+1.

proximately as functions of the temperature and a few spring  |f one would choose the number of data poihtsqual to
constants«s. Taking into account the reduction of the half the number of model parameteXs it may appear as if Eq.
lengthsR; of the multiple-scattering paths to those of the (1) yields justL algebraic equations for the same number of
single-scattering paths mentioned above, we have the follonanknown model parameters. However, the input does not
ing as independent model parameters: the shell Rdithe  consist ofL numbers, but rathek probability distributions
structural disorder contributioms?'sor for all scattering paths  for the x(k;) since the original data themselves as well as the
and/or a set of spring constanks (whatever applies in a background subtraction involve uncertainties. Therefore the
specific casg and the third cumulant€;; for each single-  output of the fit can also consist only of probabilities for the
scattering path. Sinc&, cannot be obtained reliably from model parameters. This is even more true since the evalua-
FEFFand since the convergence of Eff) becomes poor for tion of y(k;,xs) is only possible in some approximate
energies close to the edge eneffy, which is, in addition, scheme, producing additional uncertainties. Moreover, the
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sum in Eq.(1) has to be truncated at the tefjnrs J, and the whereugA ,A=1,...,4 are thalisplacement vectors of the
number of shells must be limited to those of a finite cluster oy nearest neighbors of the lattice s{;tngA is the direc-
surrounding the absorbing atom. These truncations also CORyna| unit vector from the equilibrium sité to the sitel
tribute to the uncertainties of the fit. Equati¢l) has there- +A, and the inner sum is over the six tetrahedron angles
fore to be seen as defining a stochastic, rather than an alggyhtended by each pair of nearest-neighbor atoms with the
braic problem. atom¢ at the vertex. The contribution of these modes to the

dynamical matrix is given by

Il. LATTICE DYNAMICS
4

therm K3

In order to represent the; " " in terms of a few spring Pom =2 > (5,,-6 re e
i X o ' TN SIS
constants, we use the method proposed by Poiarkova and beitle AVM M pzar=-1 « gerAlienriin
Rehr® For the sake of completeness of the presentation, ang ; d d to Keatina's & and
since we shall slightly extend the method, it may be useful tg”Uf Parameterse, and s correspond to Keatings o an

summarize the main steps of its derivation using the notatioR?: r:esp.ectlvel?/. f th ical sm 1 abm
introduced in Refs. 5 and 6 as far as compatible with the . 1 N€ eigenvalues of the dynamical matdx=@>"+ @
present context. yield the frequencies ., ,y=1, ... ,&, of the normal modes

of the cluster

A. Representation of DW parameters in terms z 3
i i * _ 2
of the projected density of states Z Z €t oDt €01 o1y = W58,
We will consider a cluster of shells surrounding the ab- Lo=lee=
sorbing atom, each containiry; lattice points, so that the wheree is the unitary Zx 3Z matrix which diagonalizes the
total number of lattice points in the cluster is dynamical matrix®. In terms of its eigenvectorg,, the
| displacement vectors are
Z=1+> N;. 3z
=1

Uso= 721 €107y 2

The lattice dynamics of the cluster is determined by the dis-

placement vectorsl;, {=1,...Z of each lattice atom. A gcattering pathj with n; legs is defined as a cyclic
Sce}hng them by the mashl, of the atom at site/, u;  gequence af; lattice points, starting and ending with the site
=u;VM,, the equations of motion, in harmonic approxima- o the absorbing atom¢y, . . . ,én.énju, Whereglzgnjﬂ

tion, become is the absorbing atom. The thermal Debye-Waller parameter

of the scattering patis given in terms of thei; by®
where ¢ runs over the three Cartesian components of the J

2>
vectoru,, and for central forces the dynamical matd™ o )
for the bond-streching modes is given in terms of the sprind"hgri th_edbraf‘:I?]ets ',f‘?]'cats a canonical e(;lsem_ble average
constantse, . and the directional unit vectofg,,{, between and he index ‘therm” has been suppressed. Using &.

lattice sites and ¢’ byG this can be rewritten as

Uz o= _glz, Qs pirrorUsrpr s
@

nj 3
2_ P -
U'_<[E E u§i1¢(r2v5i—1+rgrli+1)/2

A A 2
n; 3 re +r¢
1 A 2 J /1 Gidi-or v 2
sm — ¢ ¢ ag; = T &~  €; : )
D it o MM{/(%{’% Ko gl on P on g ! Ey .Zl Mgigl 2 G 7] (0

o, where(q,q,,)=0 for y# vy’ has been used. A more compact
—Kglg,rzg,rzg,). notation of this expression is obtained by introducing the
3Z-component vectors

In practice, spring constants between distant points are as-
sumed to be zero. In applications to be considered below,
only forces between next and nearest next neighbors argnd |0), whose {,¢ components are given by

kept, which are then labele,,s=1,2. (1/2)\/W(;Z ’gHJr;Z ’§i+l) if ¢ equals one of the,

For lattices of the diamond type, we add bond—bendingn fh . . | h
modes. Following Keatingf' we parametrize their contribu- "0des(; of the scattering pathand is zero else. The mags

|7>:|El,l;y!61,2;y! s ’62,3;y>

tion to the potential energy by is defined by
~ ~ 2
z 4 n re +re
K3 ~ ~ 1 1 !i ~§i71 §i§i+l
Vom=o UL — UL ) par+ (U =Ul )T 15 —=> > (—) ,
bm 8 gzl A<§=1 [( 14 gA) A ( 14 A ) {A] i = Mfi = 2
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so that|0) is normalized to 1. The DW parameter for pgth columns 0. Since all these matrices are tridiagonal, the

becomes, in terms of these vectors, Laplace expansion db, yields the recursion relation
1 sz(z_av )DV _b12/ DV )
of =" [(¥/0)|*(c3). TR T
! with v=—1,0,..., or
Bose-Einstein statistics yields for the canonical ensemble
with temperaturél 1
D,;1/D,= 5 : (4)
s fiw, hw., z—a,.1-b,5D,42/D 4
w7<q7>:<n(w7)+1/2>ﬁw7: 2 coth 2’ In terms of these determinants, the Green'’s function is given
where 18=kgT. The DW parameter is therefore by
1 D
ho(=1  pho <0_0>:_o
2 . _ .
o= ZMJ COth 5 pj(w)dw, 3 7z— P D_,

Repeated application of the recursion relatidn yields a

with the projected density of stafes representation of the Green’s function as a continued fraction

pj(w)deE |<O|y>|25(w—wy)dw 1 | |
v 0 0)= -~ -
z—d lz—ay |z—a;
1
=- ;Im< 0 m’0> dz:=w(z)dz, The polynomialRy andSy of the convergenRy /Sy ,
. 5 which represents the Green’s function when the continued
with z= =, fraction is terminated with the termM,, can be obtained

v
from the recurrence relatidh
B. Recursion relations for the density of states

—(5_ _h2
In order to approximate the Green’s functi¢@|(z—® Vo= (z73,-)Y, 1701V,

+i€)~*/0) in an efficient way, one should take into accountwhereY, may beR, or S,, and the recursion starts with
that the lattice dynamics in the neighborhood of the absorb-

ing atom is predominantly determined by the forces between Ro=0, R;=1,
the atoms in the first few shells and that atoms further away

from the absorbing atom have a decreasing effect. This is So=1, S;=z—ay.
taken into account in the iteration procedure proposed by

Haydocket al® Starting from the vectoj0), a set of ortho- One can show that th®, form a set of orthogonal poly-
normal vectorgv) is generated by the Lanczos iterafibn ~ nomials to the weight functiow(z).'® Therefore they have
simple zeros, which lie in the supportwf{z). TheN, zeros
a,=(v|®|v), of SNV may be calledz,. The residues of the poles of the

convergent yield the weights
|UV+1>:(q)_aV)|V>_bV|V_1>’ g y g
WV: RNV(Zv)/Sl,\lV(ZV)r

whereS/ is the derivative ofS, with respect ta. In terms of

b12/+1:<vv+1|vv+l>1

v, . .
o 1) | +1>’ these weights, the integré®) becomes

V+1 5 N, 5
v=0,1,...,with by=1 and|—1)=0. The iteration can be Uj = 2 VL '8 w”,
continued untib,~0. In the|») representation, the dynami- 2pj 1=1 @, 2
cal matrix @ is easily seen to be tridiagonal with matrix

with w,=1/z,. It can also be showfi that thew, are the

elements weights of theN ,-point Gauss integration to the weight func-
a,, v=v tion w(z).
, In order to give an impression of the convergence of the
(v|®|v')= b1, v'=vil continued fraction representation of the thermal DW param-
b,, v'=v-1 eter, we show in Fig. 1 the DW parameter for the single-
0, otherwise. scattering path to the first shell in the copper lattice at 295 K

with one spring constanty;=27.9 N/m. A cluster withl

The determinanD _; of the matrix €6,, —(v|®|v’)) is =11 shells was used in this calculation. As noticed already
introduced together with the determinaits of the matrices in Ref. 6, theN,=2 approximation underestimates the lim-
obtained from ¢6,, —(v|®|v’)) by removing rows and iting value. In the following, we shall therefore use=6 as
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00080 T T e et e b ed Rehr!® They describe the lattice dynamics by a fictitious
vibrational mode of two massd4, interacting via the anhar-
monic potential

0.0075

o [A%)

Y, (X)ZEK X2+ wex3 (5)
0.0070 E 2°E o
where x=r —r, is the deviation of the bond length for
0.0065 - - single-scattering paths from its equilibrium valug at
zero temperature. In terms of the Einstein frequency
ooosol w§=2KE/M and the Boltzmann _facto_r (M)

0 2 4 6 8 10 12 14 16 18 20 =exp(~fiwg/kgT), three equations are derived in Ref. 19
relating the first three cumulants of the thermal distribution
of x to the thermal expansioa(T)=(r—rg), the Einstein

FIG. 1. Convergence of the continued fraction expansion of théfrequencywg, and the anharmonicitgsg in the potential
thermal Debye-Waller parameter of the first single-scattering patf{5),
for copper at 295 K in a dynamical model with one spring constant.

Recursion Order

a(T)=Ri(T)—Ri(0),
a compromise between computational speed and accuracy

and accept a model uncertainty of 1.3%. Ui2= f ﬂ (6)
In Fig. 2 the dependence of the DW parameters in the Maog; 1§

same copper lattice for the first two scattering paths are plotyq

ted as functions of the spring constants in a model with one

spring constantfull lines) and two spring constaniglash- 482 1+10¢ + &2

dotted lineg. In the relevant region, the DW parameter de- Cyi=-— 2 L (7)

pends only weakly on the spring constants, which shows the ' Miwg, (1-§)? ’

uncertainty connected with the inverse problem of determin- . . . .
ing the spring constant from measuret. Equation(6) can be used to obtain the Einstein frequency

we ;i , which depends in principle on the scattering patBut

one may attempt a best fit with one Einstein temperature

Oe=hwe;/kg for all single-scattering paths, allowing for a

systematic errol @ of the Einstein model. Equatiof¥)
Since the third cumulant€3; are determined with con- yields the anharmonicity parametet: , which we will simi-

siderably less accuracy than the varianegs we do not jarly assume to be independent of the scattering path

attempt to relate them to anharmonic terms in the force-fieldhis discussion we neglected a possible structural contribu-
model which we used in the analysis of the variances. Intjon to Cg;.

stead, we employ a correlated Einstein model, generalized to |n addition, the equation
contain an anharmonic term as proposed by Frenkel and

C. Anharmonicity in the potential of the Einstein model

()

da(T) 10 In& \? wg kg
0.10f% dT N1-&) M2,
is derived in Ref. 19, which relates the thermal expansion
coefficienta;(T) to the anharmonicity parametere ; .

IV. DISCUSSION OF UNCERTAINTIES AFFECTING
THE FIT

0oLt Besides uncertainties of™™ due to the approximate

handling of the lattice dynamics, also the other components
of the vectory, fi(k), ¢;(k;), andr(k;), which are calcu-
lated in theFerrF7code, are connected with uncertainties due
to the approximate treatment of the electronic many-body
problem. Of the probability distribution of, we do not

FIG. 2. Dependence of the Debye-Waller parameters on thé(nOW anyting except the most probable vajuand an esti-

spring constanic; for the first(thick lines and secondthin lineg mate_ for thet varlan_ce_ (I)f tEaCh 'Olfd Its éompo_nené_s.t .-[)he
single-scattering path in copper at 295 K. The full lines refer to anaximum-entropy principié then yields a saussian distribu-

2 .
model with a single spring constant, the dash-dotted lines to 40N Pmodef* X~ XmogelY) /2], With

model with two two spring constanis, and «,, wherex, was set 2 -
to 3 N/m. Xmoder™ (Y—Yo) ' D(Y—Yo),
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whereD is a diagonal matrix containing the variances of theThe integration with respect @@ can be performed analyti-
components of, Dj; =ij25“-, . In order not to deviate too cally using the formula
much from established practices, we use the lightface symbol

x? for the quadratic forms defining Gaussian distributions o (U2 A bTx gLy /(Zﬂ)Le(l/z)bTA—lb 10
and employ the boldface symbg(k) for the EXAFS func- def A) '
tion.

In the applications to be described below, we assume a¥hereb is any vector and\ is a symmetric matrix! Equa-
errorAf;/f;=7%, A¢;=0.07 rad, and\\/\ = 10%, for all tion (10) is most easily proved in the eigenrepresentation of
k.2 O These are rough estimates. In our applications it turnéhe matrixA. One obtains from Ec(9)
out that the uncertainties caused by thg are much smaller
than those from other sources, in particular from the input Peon &E|X)°< f e—(l/Z)Xﬁnerm(g,x,y)dMy, (11)
data x(k,). Therefore these estimates are sufficient for the
present purpose.

Another source of uncertainty in the fit is the truncation of
the multiple-scatteringMS) series(1). To obtain an estimate
for the truncation error, let us cayl (k) the value of the sum

where

X2em=—(d"+9'B)(1+B) " X(g+Bg)+g'Bg+g'g

(1) when it is truncated with théth term, and introduce the +(y—yO)TD(y—y0), (12)
differencesX;(k)) = x;+i(k)) — x;(k)). In Ref. 2 we defined
averages Finally, we need the probabilithos(x@ for the distri-
I max bution of the model parameters onceg is given. This
|)— 2 Xi (k) probability is obtained from Bayes’ theoretf?

max =

and a correlation matrix Ppos(X@Z f Pprior(X) )Pond IX) , (13

P urior(X) Peond 9 X) dx
E”r=X(k|)X(k|r)—X(k|)~X(k|r), prlor( ) conc(g| )
where we usé ,,,=1000. iq _terms of thea priori dis.tributi.on_Pp,ior(x). With our dgfi-
The original observableg(k;) as well as the background nition of x, we know that itsa priori average value vanishes.
subtraction contribute to the uncertainty of the inpuk,), Additional information onP i, can be obtained on the basis
of the fit. We therefore have to associate an efxqs with ~ of the available experimental data, as will be shown in the
each input data point. It is convenient in latter calculations tdollowing section. For practical reasons, however, only a
scalex(k,) by Ay, and use the vector with componemgs  rather limited number of parameters may be calculated in
_X(kl)/AXI as |nput vector. Assummg agam a Gaussian d|5.th|S Way We will therefore assume that only theprlorl

tribution of the input data, the probability thgtis the true  €TOrSay * of the components of are given. The maximum
value wheng' is the measured average value is given by €ntropy pr|nC|pIe then yield$

o _ N 1/2
. ~Li2g—(12)x%,{9.9) 2m 2
Pexd0lg) = (2m) -“e™ M eg 097, Porioi¥) =11 (— e~ (V2anky, (14)

n=1 n

with X§Xp=(g— g')"(g—g') in matrix notation.

As in Ref. 2, the uncertainty ig caused by the truncation
error will be modeled by the Gaussiaf;,,d9,9')
ocexr[—,\/tzrunc(g,g’)IZ], with A. Derivation of the regularized normal equations

V. EXTENDED x? FIT

We will first assume that the errors inandy are suffi-

2 ry — _~'1T A
Xiund 8:97)=L906Y) ~ 9" BL(x.y) — '], ciently small and that the priori guess of the model param-

where the variance matrig is given by eters is close to the solution of the fit, so that the function
g(x,y) may be expanded to linear order,
( 71)”/:—2”’ : . -
AxiAxi- 91(%y) =910y (k) + 2, Ginxat 2 Tim(Ym=Yin),
The total uncertainty due to truncation and model approxi- (15)

mations isPgs(9",Y;9) = PyundPmodel- The conditional prob-
ability for the observablg, once the model parameters have
the valuex, is obtained fromPy,, by folding with Py,

in terms of the rectangular matrices

Ym

n

99
Xy

o
x=0 m=1 (?ym

Gp= (16)

Pcono(ax)zj Psys(g’yy;g(xyynpex;{ag’)dMydLg, x=0,y=y(0) x=0

(99 and
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_d9
Im™— 5, )
Wmly_gy—y©

with y©@=y(k,0). The integral in Eq.(11) can now be
evaluated analytically using EQL0). In terms of theL XL
matrix

C={1-(1+B Y IT[D+TT(1+B H 1T]TT}

X(1+B™H (17
the NX N information matrix
Q=G'CG, (18)
and the vector
b"=(g—go)"CG, (19)
one obtainsP ;o eXP(— $x2ond» With
Xéond=X"Qx—2b"x+ (g 90) "C(g— 0o
=[g(x,y)—g]"C[g(x,y"") —g], (20

wheregy= g(o,y(O)), and Ppost* exp(_% posb with

Xbos= X (Q+A)x—2b"x+(g— o) 'C(g—go), (21

whereA, = apdpy .2
If the model and truncation erro® ! andB~! are small
compared to the input errossy, the brackets in Eq17) can
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The a posteriorivariance matrix is

((Xn=%n) (Xnr = X)) pos= (Q+A) . (24)
If we call g; as the largest andy as the smallest eigen-
value of Q, the ratioq,/qy is an extremly large number,
reflecting the ill-conditioned nature of our inversion prob-
lem. Choosing all eigenvalues, such thag;> «,,>qy, the
matrix A in Eq. (23) is seen to regularize the inversion prob-

lem QYZ b in the sense of Tikhonov and Arseffrsince the
smallest eigenvalug,eq of the matrixQ+ A is given by

Ureg: = MIN[X"(Q+A)X]

=min[x"Qx]+ min[x"Ax]> an;, -
X X

Therefore the smallest eigenvalug,;,, of A may be cho-
sen such that the condition numb®y/q.4 of the matrixQ
+ A does not become dangerously large. The introduction of
the matrixA through thea priori probability P, has there-
fore been called stochastic regularization.

B. Determination of the regularization parameters

In order to obtain estimates for the eigenvalugs we
slightly generalize a procedure introduced by Turchin and
Nozik.?! We start with the assumption that there is a prob-
ability distribution for the vectore. The conditional prob-

be expanded to linear order in these matrices. One obtaingility for the inhomogeneous termin Eq. (23), oncea is

the simpler expression
C=(1+B '+TD T L (22

If one neglects the off-diagonal matrix elemefts: in Eq.

(22), EQ.(20) can be rewritten in the particularly transparent

form,

P—g(kl ;x,y(o))l2

L
2 _
Xcond™ IZ A gleff

1
with

2

wo(ki0y) g

Ym

i.e., in this approximation the experimental erroshich are
equal to unity with our normalization @), the model errors,
and the truncation erro8 Y2 add quadratically to the ef-
fective errorAg®".

The a posteriori expectation value of the model param-
eters,

Ym

M
(AgihH2=1+ >
m=1

;:<X>post:f XPpos(X)dNX

follows from solving the normal equations

N
> (Qpu+ Ao )X =bp . (23
n'=1

given, is taken to be

P cond b| a)= f Pcono(ax) Pprior( x)d Nx

detA

(1/2)bT(Q+A) b
detQ+A) © . (29

=cons

where the normalization constant is independenwofWe
assume that tha priori probability P, (a) for e is con-
stant in a sufficiently large ared in a space?® defined by,
say, dmax=01>a,>10 8q;:=an,,, Whereq, is the largest
eigenvalue of the information matriQ. Bayes’ theorem then
yields Pps( a|b) < Pon{ bl @) on A, and O otherwise. If the
function Pp.s( a|b) is sharply peaked as a function affor
fixed b, one may use the,, of this maximum in Eq.(23)
instead of the distribution im. Differentiating Eq.(25) with
respect toa,, ,

9 IN Peond bl @) = %aan[ln(dem) —In(def{Q+A))]

1
- EbTo’?an(QJrA)’lb,
and using the relation

0 (Q+A) 0 =—(Q+A)H(Q+A) 1

yields theN nonlinear equations
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2 C. Interpretation of a posteriorimodel parameters and errors
-1 -1 -1 —
Ann —(Q+A)ns — ( ngl (Q+A)nn’bn’> =0, (20 As in Ref. 2, we callR the space spanned by the eigen-
vectors of those eigenvalues for whigh> o* . Its orthogo-
wheren=1,... N for the extremum ofP.,.{b|a). Those nal complement in the total model spa@eshall beP. The

componentsy,, of the solutiona of Eq. (26) which are larger  structure of Eq(28) shows that i space the solution of the
than a ., Or which are negative, i.e., lie outside the avéa  normal equations is predominantly determined by aheri-
are replaced byr,,y, those between 0 ang,, are replaced ori assumptions, whereas iR space the result is—as in
by amin- ordinary y? fitting—determined by the data. For the interpre-

The geometric mean of the components @fmay be tation of the result of the fit, it is therefore convenient to
called a*. We then introduce scaling factots,= Ja,/a*  define an approximate projectiay of the model parameter
and rescale the model parameters Xn into the spacer by

Xn= &pXp, - (27
Equation(16) shows that, using instead ofx, the vectorb
and the matricess, Q, andA scale likeb,=b,/a,, G,
—Gm/(ln, an/ anr /(anan ) andA nn' — & 5nnr . It iS
easily seen that the rescaled quantities are independent of the 5
somewhat arbitrary choice of the original scaling parametersvhere U, is the unitary matrix that transform@ to its

X, . SinceA commutes withQ, the equations diagonal form. If the ordered sequence of eigenvaiggs
decreases very rapidly, one has

Qm(Q+A%N ElQm(Q+a|%n

n=1

?MziMz

An’
nn!~

U, ——
1 an-l-a

N

2 (bnn’+a* 5nn’)’;(n’:’6n 'R
n=1 Sﬁ% E Uﬁn’ ,
~ r=1
decouple in the eigenrepresentation of the ma@ixIf the !
components of the vectorsandb in this representation are
called&, and 3, respectively, and the eigenvalues@fare ir~trQ(Q+A)~ L.

calledq,, the normal equation€3) become

whereiy is the dimension ofR space, for which one finds

The quantitiesy,, i, andsﬁ depend not only on the data

(an+ a*)é=Bn, n=1,...N. (28) and their errors and on the type of model on which the analy-
sis is basedin our caseFEFF7 for the electronic and the
In terms of these quantities, E(6) becomes force-field model of Sec. Il for the vibrational properties
but also very essentially on the choice of theriori vector
1 1 Bﬁ x(©_ According to the logic of the Bayesian analysis the

information that goes into the determination of alposte-

riori quantities is first taken from the priori assumptions.
valid for any n because of our special scaling, except for The experimental information is only brought in to the extent
thosen where the solution of Eq26) has been replaced by that the data require a modification of these assumptions, i.e.,
the boundary valuesy, Of am.. This equation can be something “new” has been learned from the experiment. If,
solved for a*. Using Eqs.(28) and (24) formally for «  for instance, a set of data is analyzed withaapriori that is

a* an+a* - (an+a*)2_

=0, one obtains taken to be the result of a previous analysis of the same data,
then nothing new can be learned and therefere would
1 now be equal tay; andiz=0.
*= > X The dimensioniy is expected to be smaller than the
(€n(@=0))"—(Aéy(a=0)) “number of mdependent data pointsNy= (2/7) (Kmax

—kmin)AR+2,2° where AR=R,— R, becausé\, represents
the maximal amount of information that can be accommo-

= - dated on the intervad,.— Knin if it were optimally arranged.
¢n(@=0) approaches é,(a=0), and would even become The dimensiori, however, represents the amount of infor-

tnegtﬁtlve forf;{(aTO)Tth(F do)’ ?ati we not “?S”'C(‘je‘]l” mation obtained by the experiment beyond theriori in-
0 the areaA. n(o)o er words, It thea priorl model- ormation, taking all error sources into account. It is not pos-
parameter vectok'”’ approaches the area of one standar

deviati d the(hvootheti | . tal ible to define the information content of a given set of
eviation aroun e(hypothetical purely experimenta experimental data completely independent of the choice of

mean valueX', the regularization parameter becomes equapriori model parameters. Quantities which characterize
to q;, the Iargest eigenvalue of the matx On the other rather closely what one naively means by the quality of a set
hand, if thea priori parameter(®) are far away fromx’, of experimental datéawithout referring toa priori assump-
a* becomes very small. tions) are obtained by choosind® far away from the final

where(A&,(a=0))?=11q,,.
This equation shows that* becomes very large when

184303-8
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fit and considering the projectiorﬁ% into the R space, re- and

sulting from this choice of tha priori data. In the numerical 2

examples to be discussed later, it turned out that by shifting b[]ed: b,— E Qn,P,, /b,

thea priori value of each single model parameter sufficiently v' =

far away from its final fit value, its projectio%ﬁ can always andP,,  is the inverse of the 2 matrix Q,,, with v,v’
be brought close to unity. =1,2. The mean values, follow from the reduced normal

For many model parameters, tegturn out to be signifi- equations
cantly different from 1, but not 0. The spa&g where the
data determine the fit, is therefonet spanned by jusi; of N red — g
the model parameters, . It is rather spanned by the firsg 2 (Qnm+andun)Xy=b%, n=3,... N, (29
of the &,. This has important consequences for the proper n'=3
interpretation of the posteriorierrors and error correlations and the reduced variance matrix '@;ﬁf, +a,6,y) "L, with
(24). Only for those model parameters for whis?nzl thea nn=3...N.
posteriori error has the usual meaning, accounting for ex-
perimental errors, uncertainties in the model, and various p_ajternative strategy for the determination of the overall

truncation errors. For the othay,, only a fraction is deter- regularization parameter a*
mined in this way. To associate an error with the total pa- _
rameterx,, , not just its projection int& space, it is unavoid- In the space of the scaled model parametessthe

able to rely ona priori information and its estimated strength parameter* is the most probable regularization in
uncertainty. Therefore, also the parameters that are poorlie Bayesian sense. For certain purposes it is useful to deter-
determined by the data have a findeposteriorierror. mine instead the largest regularization parameatecompat-

It is also seen that it may be misleading to restrict theible with the data. The condition for this parameter,
model-parameter space from the very beginning to a suffi- B
ciently small dimension, so that the normal equati@8 do <X§om(x)>post= L, (30)
not require any regularization. Some of the parameters kept

in this approach may in reality be only partly determined bywas first proposed by Turchffi.In the ill-posed case we are

the data. Nevertheless, they appear to follow from the datgonsidering here, this equation generalizes a known result for
with reasonable “experimental” errors since they tend tc)well-posed problem& If all errors are properly estimated,

. - 2 . -
mock up some of the model parameters that are left out anH]e minimum ofx~ with respect to the model parameters Is
become distorted in this way. equal to the number of degrees of freedom. Condit&D) is

Sometimes the quality of a fit is discussed in terms of arfduivalent to the nonlinear equation
expressiorR similar to Xgond, Eq. (20), but with the matrix 2 (RNl D k-1
X ( 1 X X(a*))=L—trQ(Q+a*l)™ "
C proportional to the unit matriX’ It must be stressed that cond _ _ -
our solution of the normal equatior(®3) mi”imizesXﬁost Since the largest possible weight of the regularization is

andnot R Apart from an attraction of our solution towards larger than the most probabAIe weight, one fings=a*.
thea priori solution because of the matriin Eq.(21), our ~ Solutionsx corresponding tax* are useful to decide be-
matrix C weighs input ink space more strongly in the direc- tween two competing models on the basis of a given
tion of those of its eigenvectors that belong to the Iargermeasuremer?ﬁ
eigenvalues, whereas Rall data points have been given the
same weight. VI. ITERATIVE SOLUTIONS

Since the two formal model paramet&$ andE, are in
general not of interest in themselves, we integrate the pro
ability Peondb|X) over these two variables. Using EG.0),
one obtains the Gaussian distributioRed (b"™dx"d
o eXp(xad2), with

The expansion of(x,y) to linear order used in E¢15) is
Bsnly justified if thea priori guessx(® is sufficiently close to

the solutionx of the normal equation&3). In general, this
will not be true. In such a case we expag(x,y‘®)) around

x(") supposed to be sufficiently close toto allow a linear

N N expansion. From Eq$14) and(20), one obtains
2 _ red
Xad= 2 . annn,xn,—ZnZ3 b, Xost % @) = XT(Q)+ A)x— 2b() Tx— 2XMT QX
n,n’ = = !
L B +XOITQWX(M 4 2pM T 4y 2 (X)),
+ - 0 C ! P ! O y . . . .
|’|/2:1 [a=a0)]Cu [ =91(0)] The information matrixQ( and the inhomogeneous term
b are given by Eqs(18) and(19), where
where forn,n’=3,... N,
2 ow=29 99 WY
Q;ler?'Zan'_ 2 QnVPVv’QV/nr 9Xn x=x( Mm=1 %Ym x=x(v),y=y(K Xx() o X:X((gl)
v’ =1
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Ns

and

1 _ _
hs(a(red)) ’=§ E {(A(V))nnl_(Q(V)+A(V))nnl
a9, n=ng_;+1
TR =y 2( fred)
Ym x=x(V),y=y(k, ,X(V)) —An(a )}:0, S= 1, “a ,7, (35)
are to be used. Minimizing . with respect tox yields the ~ and the Hessian is
equations L ne ne
N Hss’zi nan 1 E {_(agv))_25nn’
> 1Y (x=xM) + AV X, 1=, (32) SNt
n=t +H(QW+AM) L QW)+ AM) 2
n=1,... N, which are used to obtain an improved solution red) red)
x(**N=x, thus constructing a sequence of approximants +28,(a*) Ay (a*N)]}, (36)

x| starting withx(®)=0.

In the first few iteration steps, the mati™ is just used
to regularize the matrix inversion needed to solve B§) in
each iteration step. Here one can choose a regularization
matrix proportional to the unit matri'", = a5, . This
scheme is the iteratively regularized Gauss-Newton Vet D= ored) ) 4 n() A gfr),
proceduré?’ a stabilized version of the Levenberg-Marquardt
algorithm®° A strategy is needed to choose the sequeri¢e  to the solution, where*) is an underrelaxation factor and

in the iteration. The starting value(® is chosen such that the Newton steph a/#) follows from solving the linear equa-
tions

wheres,s’=1, ...,7 and thaipper index ¢) on o{"% has
been dropped.

To solve Eqs(35) for a{™¥, the quasi-Newton algorithm
is used®! It yields the sequence of approximationSed®),

(0 (0 (0) 7~
MQTENQTHATII=L. H(aD®) A of) = — h( aleD®)

We then decrease in each step by a factor of 10.

As in Ref. 2, we simplify the calculation of The iteration is started with the lagt=«a* obtained in the
Yl IXn|x—x» in Eq. (31): For the components of, which ~ preceding iteration cycle
correspond t&,, Eg, and to the half lengthR; , the deriva- (red)(0)_ %
tive is taken to be independent of for the Debye-Waller ag " =ar, s=1,....7.
parametersrj2 and the third cumulant€g; it is taken equal
to zero, and only for the spring constamdsit is recalculated
in each iteration step.

Comparison of Eq(23) with Eq. (32) shows that the ana-
log of Eq.(26) in the nonlinear case is obtained by replacingd /) by solving the equations
b in Eq. (26) by b® +Q™x(" With the abbreviation

To determine the under-relaxation factqe§”, we use a
strategy proposed in Ref. 16. One first chooged’
=min(l,2p(a”_1)) and determines the auxiliary quantity

H(a(red)(,u))Ka(#) =—h(al®V® + p(a,u)A o).

N N
A= D (Q(V)’LA(V));nl' bg7)+ > fo/)nuxfﬁ) , If the affine invariant condition
n'=1 n’=1
! (w2 7
%9 > (Kag”)zs(l—i) 2 (Aalh?  (37)
one obtains s=1 2 ) &

is fulfilled, p is kept. Otherwise it is reduced by a factor of
2 and the tes(37) is repeated. Alternatively, one may deter-

It turns out that the trace of this equation is negative in thenine the minimum of

first few iteration steps. After this quantity has changed its ;

sign, we start to solve Eqé32) and (34) simultaneously. To (rec) = 3 2

reduce the necessary computational effort somewhat, we as- Fla )_S:l s

sumed that there are only up to seven different coefficients

a,. TWO, a; and a,, for the parameterS, andE,, respec- by a standard gradient proceddfeOnce a solutiora{"™® of
tively, a third one, for the half radR; , a fourth and fifth one  Egs. (35) is found, thosex{® that are larger tham,, or
for the Debye-Waller parameters; of the single- and the negative were set equal tg,,, and Eqs(32) are solved.
multiple-scattering paths, respectively, or for the two spring When Eqs.(35) are solved for the first time, the compo-
constantsg, and ag and a5 for the first and for the rest of nents of the solution vectorge“) are generally very different
the third cumulantCs;. If the model parameters from  from «* of the previous iteration. To stabilize the itera-
=ng_;+1 to n=ng correspond taxg, we obtain the gradi- tion, we again employ here an iteratively regularized Gauss-
ent hy(al™) of InPyg(blai™) as function of el  Newton procedure. For that purpose we introduce @niori
=(ay, ...,a7) by summing over Eq934), probability

(AD) gy = (QW+AM) 7 AR(al)=0. (34
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7 ng

_ >

s=1n=ng_;+1

(an_a'*)2 )

Pprior( a')“exr{
peaked at ther* of the preceding iteration, instead of the
rectangular distribution between,,;, and a4, Used so far to
obtain Pyes( @ b) from P, {b|a) in Bayes’ theorem. Equa-
tion (35) is then to be replaced by

Ns

>

n=ng_,+1

hs(a’(red))_f(a) (an—a*)=0,

and the Hessian becomes

Ns Ns’

> >

n=ns_1+1n'=ny_,+1

HIS9=H g, — (@

ss’

S -

In the first iteration, we choose!® equal to the absolute
value of the largest negative eigenvalueHbfy and reduce

PHYSICAL REVIEW B6, 184303 (2002

the final fit is very insensitive to the relative weights with
which the experimental data and theoriori data enter into

the procedure. Even though the position of the maximum of
PpostiS then not a good approximation for the average value
of @, we use it nevertheless because of the considerable nu-
merical effort necessary to perform seven-dimensional aver-
aging integrals ovet space. This procedure does not affect

the x, but the projection$ﬁ depend strongly orw. Their
values are therefore rather meaningless in our calculations
for those model parameters whose fitted value is very close
to the corresponding priori value.

WhenP (@) is represented by a broad mountain with a
small maximum whose position is rather sensitive to small
changes ofx, we found poor convergence of our iteration
procedure where we determine a new satisfying P o
=max in each step of the iteration with respectxtoEq.
(32), instead of solving Eq932) and (35) simultaneously.
We therefore keptr fixed when Xfm(x,a) appeared to in-

this value in each step by a factor of 3. If one of the eigencrease, rather than decrease, in successive iterations

values ofH ; changes its signe(*) is increased by a factor

of 2. The optimization ofa{™® is done at most for three
cycles of thev iteration.

It is sometimes necessary to use an under-relaxation str

egy also for the cycle defined by E(2). One therefore
calculates a provisional

XD =x"+ pAx,, (38)

with
N
-1 v v
M= 3 (QUIAM) b= AL X
n'—

and p{")=min(1,20{" 7)), starting with »'=1,p?"=1.
One also calculates

N
Axp= 2 (QU+AM) by (D)= AT X1,

n'=1

If the monotony condition

N p(\ 2 N
> (Axn>2s(1— - ) > (Ax)® (39
n=1 2 n=1

is not fulfilled, one setp” *V=p{*)/2 and the test39) is

repeated. Otherwise, the new approximatitt) from Eq.
(38) is kept and rescaled " V=x{"* Y, . With

e
v =1
one obtains Q7 M=Qu (xX"*V)/(al Pali™)  and
b(**N=p (x"*V)/al""Y) and repeats the iteration cycle
with Egs.(35) and(33). The iteration is terminated when the
norm EnAxﬁ becomes sufficiently small.

To determine the quantities,, Egs.(35) and (33) are
solved with the las@, b, andx, but with onea priori value
xgo) at a time shifted by a sufficiently large multiple of its

&tandard deviation away from its fit value to ensure 8fat

gets close to 1.

VIl. ANALYSIS OF GERMANIUM, GOLD, AND COPPER
DATA

The data from Refs. 8 and 9 consisted mostly of the
EXAFS functiony(k;). In two cases absorption coefficients
n(k)) were given. We analyzed them by standard procedures
to obtain x(k;). We then treat the EXAFS function in all
cases as the input of our fitting procedure. Conventional
methods to obtairy from the raw data make it very difficult
to determine “experimental” errors, let alone cross correla-
tions for these data. We therefore associated, admittedly
somewhatad hog the following distribution function with
the uncertainty ofy(k):

(40)

There are several reasons why the data for very sinall
should not be included in the fit: Standard procedures to
extract the EXAFS functiory(k) from the measured absorp-
tion coefficientw (k) [without firm knowledge ofuy(k)] re-

sult in particularly large uncertainties for smkllin addition,

our expression for the truncation erf®rtends to underesti-
mate the actual truncation error for sméll since conver-
gence of the MS serigd) may not be reached with the one
thousand terms, which we included in the construction of
3, and because of the restriction of the scattering to a given
finite cluster size. The reason is the increase of the mean free
path A (k) with decreasingk, allowing increasingly longer
scattering paths to contribute with a non-negligible ampli-
tude to the sunfl). One also has to keep in mind the roughly
exponential increase of the number of possible MS paths

Axi=A10 (K= ke + Azexpik [Keyp)-

When thea priori estimate for a model parameter is very with the number of shells included in the cluster, compensat-

close to its final fit value, the probability .. a|b) is no

ing partly their smaller amplitude. We therefore chadsg

longer sharply peaked i space. This expresses the fact that= 10, which is sufficiently large to completely cut off the
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TABLE I. Input and output parameters for the fit of germanium data taken at 300 K.

Data points L=393 k;=02,...k =198 A’?
Les=331 Keur= 3.3 A1 Keyy=28.56 A1, A,=0.002
Cluster size for scattering =7 R =7.349 A
Cluster size for vibrations 1=21 A=417, R,=12.89 A
Number of paths J=20 5% Amplitude threshold
Number of legs ;) max=4
Model parameters N=18 Sz Eo R, K1,K3 Cs;
or N=36 s? Eo R; of Cs;
their a priori values x(© 1.0 11104 eV a(fcc) 100 N/m 0.0
K edge =5.6574 A 14 N/m
or 0p=360 K

data fork<k.,. We choosek., between 3 and 3.5 A

since it turned out that smalldér would lead to serious de-
viations between the experimentg{k) and the one calcu-
lated with our choice of the priori model parameters. In
particular, retaining smalldg; in the fit would lead to unac-

ceptably large deviations between fitted scattering half path
radii and their values obtained from the well-known lattice

with respect tawg, where the prime on the sum means that
the summations are restricted to those valuasaridn’ that
correspond to the Debye-Waller parametersof single-
scattering paths and

(o)
~ Ay,
n

0=

constants. The number of input data points is therefore re-

duced to the ¢ points withk,=k.;. A lower bound on the
parameterA, follows from the requirement that Eq30)
should still have a solution. The parametek;, is finally
obtained from taking\ x, /x(k, )=0.1%.

The result of the fit is represented inspace for each
scattering patfy by a functiond;(r) whose first three cumu-
lants are given byR;, crjz, andC3;, and the area under
which is proportional to the coordination numiéy. Maxi-
mum entropy yields the expressfdn

di(r)= iﬁ ex;{—i(r—Rj)k— ?’kz—i%k‘?’}dk

N. o) C .
=—JJ e<Uf’2>k2cos{(r—Rj)k+ ﬁk?*}dk. (41)
mJo 6

The integration is done numerically. @;; is zero, the inte-
gral is of course trivial and yields a Gaussian of width,
peaked at =R;, and with aredN; . The total fit inr space is
given by

J
d(r)=j§l d;(r). (42)

To find the Einstein frequencﬁE that fits the Debye-
Waller parameters; of Eq. (6) optimally, we minimize the
expression

ro~ ~ = = ~ ~(0) =
Xo(we)= 2" ot X =Xe) (Qt A)py (X + X1 = Xe)

~ _ @ 1+ &(wg)
F wg 1-é(wg)’
where wozﬁa4/(M§<n) and with the Boltzmann factog

=exp(—fiwg/kgT). Fromdxildszo, one finds the nonlin-
ear equation

ﬁwE} ) o~ o~ ~ ~
1_ 2 2 A ’ ’ (9)
—wgu—g)z[ 4285 7| 2" (QF Ajnw Yo+,
wqo 1+§ _
Toe1-g] " 3

for the optimal Einstein frequencEE. Expandingﬁ to
quadratic order in the vicinity ofog, one obtains

L0000 7~
i Ge 300K

0.1000 -

Ay (k)

00100} !}

0.0010

it .
Wil
! "‘hﬁl-z

00001 . . . oW
0 2 4 6 8 10 12 14 16 18 20

k [A]

FIG. 3. Errors affecting the input of the fit of Ge data. Full line
represents diagonal part of the total erfoy.s; dashed line repre-
sents assumed experimental erfoy,, Eq. (40); dot-dashed line
represents diagonal part of the truncation eBgf.
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o 1.0 '
— Ge 300K o=
b, 80 1 “
0.5
» | bl
% wl | 0 i ||‘II‘ 1]
E sl ! R ‘+++ o | Coe |
_ L i £ o« 4
: “ ot
TR Td s 6 7 o
R [A] 0 10 20 30 40

Parameter Number n
FIG. 4. Fit of the Ge data with freely variable Debye-Waller o )
parameters result in space as sum of Gaussians. Dotted line rep- FIG. 6. In the lower frame, the deviations of the fitted model

resents contribution of the single-scattering paths; for the first twg?@rameters from theia priori values witha posteriori error bars
peaks the two lines coincide. are shown in dimensionless units for tindit of the Ge data. Scaled

projections intoR space,sﬁ, are in the upper frame. Ordering of
— the model parameters from left to right$,Eq,R; ,ajz ,Caj -
2 2, (wE_wE)
Xolwg)=x5(wg) + ————,
Awg error Ax*=Ag?A y, are shown in Fig. 3. AIACMASTER
correction of 4. 10" 4 A% was used.
We performed two analyses of the input data: First,dhe
- 2 of the 20 single- and multiple-scattering paths were used as
dXE) S (©+A) (44) independent model parameters, besideRhendCs; ; then
dog/ & nn’ > a force-field model with one bond-streching parameter
and one bond-bending parametey was employed. In view
where of the covalent binding of the germanium lattice, a restriction
of the interaction to neighboring pairs and triples of atoms
5 appears to be a reasonable ansatz.
(1_§2+2§“’E>(1_§)2_ Our a priori assumptions for the model parameters are
kgT also shown in Table I. The value f&, was here and in the
following cases obtained from the codeowms, version
2.46% and the values for the half path lengtR$” were
calculated from the lattice constamtassuming an ideal lat-
The input for the analysis of the germanium data of Ref. &ice. Values for the lattice constants were taken here and in
is collected in Table I, together with the parameters defininghe following cases from Ref. 32\ priori values for the DW
the dimensions of the fit problem. In this case we Stafte(barametersajz(o) were derived from the correlated Debye

from w(k;), from which we obtaineg (k) with theAUTOBK  model with the Debye temperatuig, =360 K (from Ref.
routine, version 2.#2 The error function(40), the square

with the model uncertainty of the Einstein model,

(Awg) 2=

dXE wo
T2

d(l)E We

A. Analysis of germanium data

root of the diagonal matrix element&,,, and the effective — 006 : .
o<t y Ge 300K
—  0.03- .
0.30 o 0_7L747477+7777T717‘
Ge 300K —0.03F * 4
— 015 1 — 006 : ; :
o<t H o<t (0.007+ | .
- : . P R S S, S
< oot 3 0007t .
= -0.014 , , ,
~  —0.15 i gz 0.0003 - -
U Sh ek T i it St B
© —0.0003 .
_0.30 1 1 1 1 1 1 2 _O.()()()6 . | L
8 10 12 14 16 18 20 0 2 4 6 8
Q-
k [A7] SS Path Number i
FIG. 5. Fit of the Ge data ik space is shown by a thick full FIG. 7. Deviation of the fitted model parameters from their
line. A priori assumptions yield the thin line. Points with error bars priori values in absolute units for the single-scattering paths after
are the input data. The vertical dotted line iska;. the parameter§, andE, have been integrated out.
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Y BN
2 ‘\‘::::;S::‘:‘:):‘;-g‘.‘w,‘ Parameter Number n
© Q — < axorne® ® FIG. 9. In the lower frame, the deviations of the fitted model

. ) parameters from theia priori values witha posteriori error bars
FIG. 8. Modulus of_tlhe nondiagonal matrix elements of the cor-are shown in dimensionless units for thdit of the Ge data. Scaled
relation matrix Q+A) "~ for the o fit of Ge data. projections intoR spaces2, are in the upper frame. Ordering of

the model parameters from left to right$s,Eq,R; ,«5,Ca3;j .
34). Thea priori spring constants were obtained from plots

like the one of Fig. 2, using the first tv\m]? of the preceding If the a priori values for theR; were artificially moved away
fit to determinex!” and «{’. from their actual fit values by 8 standard deviations, the re-
The result of the fit with the free DW parameters is shownsulting %ﬁ become larger than 0.9, which shows that the radii
in r space in Fig. 4 in terms of a sum of Gaussians. Theare indeed well determined by the data. fdr, . . . .o al-
dashed line gives the contribution of the single-scatteringeady a shift of 12 standard deviations is needed to bring the
paths only. The fit irk space is presented in Fig. 5 togethercorrespondin@ﬁ above 0.9.
with thea priori EXAFS f“nCti?anPfior' Also shown are the 15 dimensiori,, of R space is shown in Table II. Also
input data with the2|r errord . We emphasize again that given for comparison is the number of independent data
our fit minimizes ;. and not theR function of Ref. 8. We  points, N4 (calculated withk g, instead ofky;). It is seen to
do not only associate different weights with different datape much larger than the dimension®fspace. The condition
points k;, but also take cross correlations into accountnumber z.,=q,/qy of the information matrixQ,, in
which cannot be represented in this figure. Table Il shows the ill-conditioned character of the 36-
More detailed information on this fit is presented in Figs. gimensional fit problem. In Fig. 7 the shift of the model
6—8. The deviation of the fitted model parameters from theilarameters away from their priori values is presented in
a priori values is shown in Fig. 6 in terms of the dimension- ahsolute units for the single-scattering paths after the param-
less quantitiex,, together with theia posteriorierrors. It is eterssg and E, have been integrated out, ER9). The
seen that the_(n, which correspond t(sg, Eo, R, andCg; modulus of the nondiagonal matrix elements of the variance
remain zero within their error bars. Only thrf have been matrix (Q+A);nl, is plotted in Fig. 8. It shows strong corre-
shifted away from theia priori values. Therefore something lations between th&; and the muItipIe-scatteringj2 as well
“new” has been learned from the data only for the DW pa- as theCs; . The optimal fit of theo? to a correlated Einstein
rameters. Thes; are therefore close to 1 for all single- model yields the Einstein temperature shown in Table I,
scattering paths. But even the very small shifts of the raditogether with its uncertainty 6 .
compared to theia priori values lead to fairly Iargsﬁ val- The result of the second fit, involving the spring constants
ues in most cases. That they are not all equal to 1 does nat; andk5 instead of the DW parameters, isrispace as well
mean that the measurement would not be very sensitive tas ink space almost indistinguishable from Figs. 4 and 5,
the half path radii. It only means that the assunaegriori respectively. The details of the differences between the two
values for the radii were perfectly compatible with the data.fits can be seen in Fig. 9. The smaller number of available fit

TABLE Il. Dimension of the model-parameter spage number of independent data poig; condi-
tion numberz,,q Of Q; fitted force-field parameters, , kx5 for Ge andx,«, for Au; Einstein temperature
0c ; and anharmonicity parameterg of Eq. (5).

iR Ny Zeond k1 [N/m] K23 [N/m] 0 [K] weleV A3

Ge o 20 55 6x10° 272.2+2.7 0.43+1.15
K 3 55 1x 10 99.9+0.4 14.0-0.3

Au o 18 41 8x 10° 127.8:1.9 —1.56+-0.28
K 9 41 2x10*  31.0+0.7 —11.5:2.0
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FIG. 11. Same as Fig. 3, for the Au data.

FIG. 10. Same as Fig. 8, but for thefit of the Ge data.

error-correlation matrix are shown in Fig. 10. There are now

strong correlations only betwed®) andCg; for all i.
parameters has the consequence Ryais now shifted away
from its a priori value. Consequently, also the corresponding
sg is now close to 1 since the data appear to have shifted it.
If one insists that at least the first half path lenghshould The input data ana priori values of the model param-
not deviate from itsa priori value, calculated with the well- eters for the fit of theL;-edge gold data from Ref. 8 are
known lattice constant for germanium, one has to concludgummarized in Table Ill. This time we started the analysis
that the model used for the fit was not quite appropriate. livith the EXAFS functiony(k;) with which we associated
may, for instance, not be allowed to disregaftf* as we did  the error functions shown in Fig. 11. MACMASTER COrTec-
implicitly when we identifieds; with o"*™in the second fit. ~ tion of 4x10™* A2 was used.

We find x,;=99.9 N/m andx;=14.0 N/m in disagree- Again, the input was analyzed once with all Debye-Waller
ment with Keating's result ofk; =228 N/mx3=77 N/m!*  parameters as freely varying model parameters and in a sec-
However, Keating fitted to the elastic parameters, i.e., to thend run with two bond-streching spring constarisand k.
acoustic modes, whereas EXAFS is predominantly sensitivghough for a metal such a two-body force-field model is not
to the optical-phonon spectrum. This may explain some obbvious, we follow a practice often used in the literatifre,
the discrepancy. In Ref. 6, where the same EXAFS data wergonsidering it as an effective dynamical model. Enpriori
fitted with a force-field model involving three bond- values of the model parameters were determined as in the
stretching ~ constants x;=120 N/mx,=4 N/mx$™"  previous case and are collected in Table III.
=-—1.1 N/m, besides a bond-bending mode, reasonable The result of the fits im space ank space is shown in
agreement with ouk, is found. In summary, we conclude Figs. 12 and 13, respectively. The difference between the two
that the data of Ref. 8 may require some contribution offits is not visible in either of these plots. A more detailed
cr?'sorto the DW parameters. TH&;; vanish in both analyses picture of the fits is presented in Fig. 14, which shows the
within their error bars. Anharmonicities are therefore notshift of the(dimensionlessmodel parameters with respect to
clearly seen in these data. their a priori values in thes fit and in Fig. 15, in which the

The modulus of the nondiagonal matrix elements of theshifts are given in absolute units for tkefit. In both cases,

B. Analysis of gold data

TABLE Ill. Input and output parameters for the fit of gold data taken at 300 K.

Data points L=305 k;=02 A1 .. k=154 A"
Ley=249 Keu= 3.0 A1 Key=22.22 A1, A,=0.002
Cluster size for scattering =7 R =7.63 A
Cluster size for vibrations =18 A=500R,=12.57 A
Number of paths J=25 5% Amplitude threshold
Number of legs ;) max=4
Model parameters N=18 S5 Eo R; K1,Kp Cs;
or N=41 S5 Eo R; of Csj
their a priori values x© 1.0 11918 eV a(fcc) 30.7 N/m, 0.0
L, edge =4.078 A —12 N/m
or 0p,=180 K
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FIG. 12. Fit of the Au data with freely variable Debye-Waller
parameters result in space as sum of Gaussians. Dotted line rep- FIG. 14. Same as Fig. 6, but for the Au data.

resents the contribution of the single-scattering paths, for the first i . .
two peaks the dotted line and the full line coincide. Dashed lineti0 between the sizes of the anharmonic and the harmonic

represents the inclusion of an anharmonicity according to(&1.  term of the Einstein potentigh) at the average amplitude
for the first peak. og, Eg. (6), for the given temperature: Rg
=4|we|og/(wEM)=0.1. This quantity is more significant

R, is shifted upwards by slightly more than 1 standard defor the anharmonicity than the tiny effect of the latter on the

viation. This is surprising since the lattice constant shoulddistribution function of Fig. 12.

yield a reliable nearest-neighbor distance. Howe®yr,is Again the spring constante,; =(31.0-0.7) N/m andx,

also contained in the half path lengths of several multiple-=(—11.5+2.0) N/m come out considerably smaller than in

scattering paths. The truncation erf®y, connected with a fit to the elastic constants. From the fitted Debye-Waller

these paths may not be properly accounted for. Also th@arameters, an effective Einstein temperatdgewas cal-

Debye-Waller parameter? of the first single-scattering path culated. It is shown together with its uncertainyg in

is significantly shifted away from the correlated Debye esti-Table Il.

mate. The anharmonicity parameter of this path is different The modulus of the error correlation matrix elements

from 0 in both fits. |(Q+A)nn,| n#n’, is shown in Figs. 16 and 17 for the two
The values of these shifts in absolute units are, howevefits. In the o fit, there are correlations between all model

rather small. In both fitsR, is shifted only by some 17 A. parameters; in particular, betwe®&y and C3;, and among

The anharmonicity is barely visible in the first peak of Fig. the o’s. For thek fit, there are strong correlations between

12, indicated by the long-dashed line, though the curve waR; andCj; for all i and between the twa,’s.

obtained from the full expressig@dl). FromCs,, an anhar- '

monicity termw g in the force field was calculated with Eq. C. Analysis of copper data

(13). It is shown in the last column of Table II. For compari-

son, one can roughly determineg within the Einstein

model from the empirical, macroscopic, thermal expansio

coefficienta=d Inr/dT using Eq.(8). To provide the neces-

We use data taken on copper at three different tempera-
dures: EXAFS functionsy(k;) at 10 K and 300 K from

sary microscopic length scale, we divide E8) by the dis- o< 8282_ ' ' Au 300K |
tance of the nearest neighbBy. Using Table 4f-1 of Ref. o ot ¢ ,k,ffirf _—
36, we obtainwg=—1.32 eVA 3. We also consider the ra- < —0.03- t ki i
— -0.06 t } }
—— g I |
~ 2
Au 300K = ob—4— Tl _____________
. 2”' 2 -
< —4 : : :
| &, 00004 .
R S T o+
& —0.0004f by .
_ a4 -0.0008 . . .
0 2 4 6 8
SS Path Number i

4 6 8 10 12 14 16 FIG. 15. For thex fit of the Au data; deviation of the fitted
Kk [K-'] model parameters from therpriori values in absolute units for the
single-scattering paths after the parame®ysand E, have been
FIG. 13. Same as Fig. 5, but for the Au data. integrated out.
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FIG. 16. Modulus of the nondiagonal matrix elements of the FIG. 17. Same as Fig. 16, but for thefit of the Au data.
correlation matrix Q+A) ~* for the ¢ fit of Au data. '

Newville8 and for an intermediate temperature of 80 K we Constantsx; and «,. A Debye temperature of 315 K was
extracted the EXAFS function from Fig. 1 of Ref. 9. In the used” to generatea priori values ).

latter case, larger experimental uncertainties had to be asso- The result of the fit irk space is shown only for the fit
ciated with the input data than in other cases in order t®f the 300-K data in Fig. 18. In Fig. 19, the fit mspace is
obtain reasonable fits at all. In particulg,~=4.4 A~* was  shown for thex fits of the 10-K and 300-K data. The tem-
required. Detailed information on the input parameters, thgerature broadening of the peaks is clearly seen. A more
internal size parameters, and the choica gfiori values for  detailed analysis of the fits shows that for 10 K, all model
the model parameters for the three sets of data is collected parameters remain at theirpriori values in theo fit and in
Table IV. TheMACMASTER correction used in all three cases the « fit, as expected. Only two of theri2 and C3, are
was 5.2 104 A2, Again, in each case two analyses areslightly shifted, indicating a very small structural disorder.
performed, one with all Debye-Waller parameters variedThe analysis of the 80-K data shows the same picture, except
freely and a second in a model with two bond-stretchingthat the anharmonicity paramet€g ; is now larger and in

TABLE IV. Input and output parameters for the fit of copper data taken at 10, 80, and 300 K.

Data points 10 K L=397 k;=01 A% ... k=199A1
Les=328 Keu=3.5 A1 Keyy=6.643 A1,A,=0.02
80 K L=288 k;=1.9A% ... k=1625A"1
Ley=238 Keu=4.4 A1 Key,;=8.566 A'1,A,=0.03
300 K L=330 k;=1.0 A%, ..., k,=17.45 A1
Leg=279 Keu=3.5 A1 Keyy=12.59 A1, A,=0.004
Cluster size for scattering I=9 R=7.67 A
Cluster size for vibrations =18 A=500R,=11.11 A
Number of paths for 10 K J=54
80 K J=53 5% Amplitude threshold
300 K J=53
Number of legs K;) max—=6
Model parameters N=22 S3 Eo R; K1,Kp Cs;
or for 10 K N=74
80 K N=73 S Eo R; of Cs;
300 K N=73
a priori values for 10 K x(© 1.0 8979 eV &cc) 28.5 N/m, 0.0
(K edge =3.6032 A —7.5 N/m
80 K 1.0 8979 eV 3.6032 A 20.0 N/m, 0.0
1.0 N/m
300 K 1.0 8979 eV 3.6150 A 27.5 N/m, 0.0
—3,7 N/m
or 0p=315 K
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FIG. 18. Same as Fig. 5, but for the Cu data at 300 K. FIG. 19. Result of the fit of Cu data in space; 300-K data

represented by dashed line and 10-K data by full line.

the « fit also R; is significanly shifted, which may either be
due to structural disorder or an underestimate of the assumed(1.4+0.1)x10 % A% at 300 K compares well with 1.36
experimental error. For the 300-K data all radii are un-x10"* A3, reported in Table Il of Ref. 37. The ratRg is
changed, there are some deviations of the Debye-Waller p#.046 and the thermal expansion coefficient for copper from
rameters from their predictions in the correlated DebyeRef. 36 yieldswe=—1.19 eVA 3, again usingR, as the
model, and in both fit€; ; is shifted upwards. To appreciate length scale.
the apparently irregular temperature dependence of the
spring constants, the rather different origin of the data at 80
K compared to the two other sets has to be taken into ac-
count. Furthermore, there is a rather large error correlation A careful analysis of the problem of fitting EXAFS data to
betweenx; and k,. However, our results show that consid- structural model parameters shows that one is dealing with a
erable caution is necessary when force-field parameters astochastic, usually ill-posed, inverse problem. Its solution re-
extracted from a single set of data without corroborating eviquires the use of Bayes’ theorem, which needs the introduc-
dence from other independent measurements. tion of a priori information into the fitting procedure. The
The dimension ofR space, for comparison the number of fine tuning of the relative weights,, with which the experi-
independent data pointd,, the two spring constants, the mental data and the priori data enter into the fit is achieved
Einstein temperature and its uncertainty, and the anharmonity slightly generalizing a procedure first proposed by
ity parametero g are given in Table V for the three tempera- Turchin and Nozik. Since the relation between the observ-
tures. The spring constant;=27.4+0.6 N/m for 300 K ables x(k;) and the model parameters, is nonlinear, an
may be compared with the value 27.9 N/m, obtained in Refalgorithm is described for its reduction to solving a sequence
37 with a one-spring-constant model for 295-K copper dataof linear, well-posed equations. This nonlinear problem is
As one might have expected, the effective Einstein temperacoupled to an additional set of nonlinear equations to deter-
ture is not independent of the temperature of the measurenine the «,. The convergence of our global iteration
ment. The result for the Einstein temperature of the 300-Kscheme is discussed and its convergence is tested. Special
data is in agreement withg=218 K, found in Ref. 37 for attention was given to the limiting case where theriori
copper at 295-K. The anharmonicity parameter is obviouslydata are very close to the final fit. For the iteration with
most affected by noise. At low temperatuf®; ; should not  respect to the model parametars we typically found con-
be visible. In fact, our value at 10 K is only slightly more vergence after 10—20 iteration steps in our applications.
than 1 standard deviation away from zero. For 80 K, our These applications involve data from monoatomic sys-
result appears to be spurious. However, our vaflie, tems, where the radii should be well described by their lattice

VIIl. CONCLUDING REMARKS

TABLE V. Dimension of the model parameter spage number of independent data poimMg, condi-
tion numberz,,q of Q, fitted force-field parameters,,«,, Einstein temperaturédg, and anharmonicity
parameters of Eq. (5) for copper at three different temperatures.

iz Ng Zcond K1 [N/m] Ko [N/m] e [K] we [eV A3
10 K o 17 58  2x10%? 184.7+5.2 1.951.2
K 8 58 2% 10° 28.3+1.4 —8.3+0.5
80 K o 16 43 2x10%° 187.9+6.2 4.051.5
K 10 43 2x10"  19.3+25 0.9+3.7
300 K o 13 50 2x 10" 215.5+1.5 —0.6+0.2
K 3 50 2x10"  27.4+06 —4.0+0.3
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constants. The emphasis of the analysis was therefore on tvgructure parameters in which one is primarily interested.
questions(i) How well can the Debye-Waller parameterfs For the application of our Bayes-Turchin approach, we
be described either by the correlated Debye model or a forceshose data of high quality, taken on systems with a simple,
field model with two harmonic coupling parameters; dingd  rather undisturbed structure. This is useful to check our
how reliable is the determination of anharmonicity param-method of data analysis, but it is not necessarily typical for
eters in these fits. investigations involving EXAFS measurements. Often the
The main limitation of the present analysis comes fromdata are “dirtier,” and one would therefore not expect to
the poor convergence of the multiple-scattering sefl¢sn  derive more model parameters from the measurement than,
the x-ray absorption near-edge structure region, which resay, a nearest-neighbor distarRe and the average coordi-
quired the elimination of all data witk<k., from the fit.  nation numbem, of the first shell. Of course, our method
Use of alternative representations of the EXAFS functioncan be applied also to such data, only the size and relative
now available®®*°should lead to a more complete utilization weight of the uncertainties will be different from the ex-
of the experimental data. A second severe drawback of angmples considered above. The dimension of the model-
error analysis is the considerable uncertainty in associatingarameter space can be chosen much smaller, which reduces
an “experimental” error with the input EXAFS function the numerical effort considerably and brings it closer to the
x(k)). An important contribution to the uncertainty comes numerical needs of typical nonlinear least-squares-fitting
from the fact that the zero-order contributigry(k) to the  procedures.
multiple scattering signal cannot be obtained fremrF with
sgfﬁment accuracy. Klementi&¥proposed to det.ermme the ACKNOWLEDGMENTS
difference between the true and therrF expression forug
from the data, introducing some smoothness requirement as We thank J. Rehr for valuable discussions and his con-
a priori assumption. This increases the number of modetinuing encouragement of this investigation, M. Newville for
parameters and it remains to be seen what the cross correladowing us to use partly unpublished data, and R. Lipper-
tions are between these additional parameters and thoseide for a careful reading of the manuscript.
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