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The structure of the AjPd1Mng surface has been investigated using high-resolution scanning tunneling
microscopy. From two large fivefold terraces on the surface in a short decorated Fibonacci sequence, atomi-
cally resolved surface images have been obtained. One of these terraces carries a rare local configuration in the
form of a ring. The location of the corresponding sequence of terminations in the bulk ibdéicosahedral
i-AlPdMn based on the three-dimensional tilifig *™) of an F phase has been estimated using this ring
configuration and the requirement from low-energy electron diffraction work of Gegral. that the average
atomic density of the terminations is 0.136 atoms pér A termination contains two atomic plane layers
separated by a vertical distance of 0.48 A. The position of the bulk terminations is fixed within the layers of
Bergman polytopes in the modgi: they are 4.08 A in the direction of the bulk from a surface of the most
dense Bergman layers. From the coding windows of the top planes in terminatidriswe conclude that a
PenrosgP1)) tiling is possible on almost all fivefold terraces. The shortest edge of the tiling P1 is either 4.8 or
7.8 A. The experimentally derived tiling of the surface with the ring configuration has an edge length of 8.0
+0.3 A and hence matches the minimal edge length expected from the model.

DOI: 10.1103/PhysRevB.66.184207 PACS nuniber61.44.Br, 68.35.Bs, 68.37.Ef, 61.14.Hg
. INTRODUCTION similar images of the quasicrystalline surf&ce/=°Schaub
et al?>~° produced detailed STM images of the terraces that

More than ten years ago, the discovery that centimetereveal a dense distribution ofark pentagonal holesf edge
sized samples of decagonalAlCuCo and icosahedral length circa 4.8 A oriented parallel to each other, together
i-AlIPdMn could be grown opened up the possibility of sur-with a more random distribution of bright protrusions. They
face studies of these quasicrystalSince then, other quasi- correlated measurements of structural elements both within
crystal samples have been grown to similar dimensions. Tthe terraces and across steps on the surface.
date, most surface studies have been performed on the five- Later, we demonstrated a correspondence of these mea-
fold surface ofi-AlPdMn.2~1*A consensus has emerged from surements with the geometric mod#l (Refs. 19—21 for
these studies that this surface, after fairly standard ultrahighatomic positions of an F pha$éThe modelM is based on
vacuum(UHV) sputtering and annealing procedures, is itselfthe three-dimensional icosahedral tiling* ?7)(Ref. 23
quasicrystalline. In this work, using a combined experimen-decorated essentially by Bergman/Mackay polytofie&?*
tal and theoretical approach, we show that this surface can behe observed terrace structure of the surface was explained
considered to be a termination of the known bulkin terms of the layer structure of the bulk model. The dark
structuret®—2 pentagons observed on the surface corresponded to the Berg-

The dynamical low-energy electron diffractighEED) man polytope® in the bulk layers. The position of a given
analysis carried out by Gierest al’*>'* indicated that the type of terrace was matched to a layer characterized by a
fivefold surface of thé-AlPdMn quasicrystal retained bulk density of certain Bergman polytopes and their distribution
quasicrystallinity>14 X-ray photoelectron diffractioiXPD) pattern. We assumed that the surface termination respects the
studies are also consistent with a quasicrystalline surfacitegrity of the Bergman polytopes as clusters, at least in the
nature!®~12 Large flat terraces may be produced, and scanmost dense layers, and we supposed that such a layer of
ning tunneling microscopySTM) studies have presented Bergman polytopes is exactly below the termination. How-
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ever, under these assumptions it was not possible to explathe fivefold surfaces ofAIPdMn.2*?°In the modelM, the

the observed edge lengttirca 4.8 A of the dark pentagonal F-phasé’ (see Ref. 2Pthree-dimensional tiling™* 2F)(Ref.

holes, as this was bigger by the factormef (\5+1)/2 than  23) is decorated by Bergmatand automatically Mackay

the pentagonal surfaces of the Bergman polytégieca 3 polytopest”*® For details on Bergman and Mackay poly-

R).r® topes, see Ref. 16. The geometric model is based on the
Later Shenet al., using an autocorrelation analysis, Katz-Gratias modéf that is explained by Els&tin a three-

showed that the surface structure is consistent with a bulimensional “parallel spacef, the space in which the

structure based on truncated pseudo-Mackay icosahadta  y,odel projected from th®; lattice?® (see Refs. 29 and 22

(thereforg Bergman clusters. A fundamental limit of those oyists. The atoms of-AlPdMn (Ref. 30 or of i-AICuFe

previogs STM studiesRefs. 2-10), was that the resplution (Ref. 24 can be placed on three translational classes of
of the images, while subnanometer, was not atomic. There:

fore direct comparison with bulk models was not strai htfor-atomic positions with respect o tHfds lattice and are de-
comp . raighttor-, nted byqgp. (=0q), b, anda; see Table | in Sec. 11 C and
ward. Additionally, the presence of bright protrusions dis- 6 i -
rupted any attempted tiling, and so comparison with tilingRef. 20. These atomic positions If) are coded by the cor-
models was not possible. In a previous paper, we reported d§sponding “windows” or “acceptance domains” in the
improved sample preparation technique. This led to a moréree-dimensional “perpendicular spack} . Note that the
perfect surface devoid of protrusioiSec. Il), and this in  six-dimensionaDy lattice, which models an F pha&eacts
turn led to improved resolution in the STM images. Thein the six-dimensional space that is a sumlgfand I, .
better resolution, together with the structural perfection, al-These windows intl, are denoted byV,, W,, and Wy,
lowed us to demonstrate that the surface structure is consigespectively. The windows of the mod&t were constructed
tent with a bulk terminatior® using the bulk model of Bou- in Refs. 17, 18, and 20. The tiling* *) defines the quasi-
dardet al® periodic structure. More accurately, the model is sup-
In this paper we try to find the position of terminations in ported by 77* (27), the tiling 7* (*F)scaled by the factor
the bulk modelM demanding(i) that the terminations be =(\/5+1)/2. The quasilattice points of7*?Pare in the
ordered in a decorated Fibonacci sequeffdecs. Il A and class ofqe Dg.
II C) as in Refs. 19-21 an(i) that the average density of All points of the quasilattice which contains the vertices
terminations be 0.136 atoms pef,fas determined by Gierer of the tiling 7* (?F) can be embedded in a sequence of planes
et al®*(Sec. 11 D\. The atomically resolved images of the orthogonal to the fivefold symmetry axis of an icosahedron
surface that allow us to map the local patterns of the STM*“fivefold direction”). The planes orthogonal to the axis are
images(Secs. Il and IV A to the local atomic configura- the “fivefold planes.” The planes appear in a sequence and
tions in the terminations in\1 (Sec. IV A) also prove our have been classifigthy particular coding regions in the win-
ansatz from Sec. Il D which fixes the position of the bulk dow W«2F) into five types,+1, £2, +3, =4, £5; see
termination to be 4.08 A deeper within the layer of BergmanRef. 19. The planes of types 1-4 are ordered in the Fi-
polytopes than we expected in Refs. 19-21. With this newbonacci sequence with intervatsandl. If the planes of type
position of the termination, the edge length of the dark pen5 are included, the sequence of planes forms a “decorated
tagonal holes observed by Schaebal. in Refs. 2-5(and  Fibonacci sequence” with separatiosisshor), m (medium),
already considered in Ref. 19s now understoodSec. and! (long), wherel = rm=7°s; see Fig. 13 in Sec. IV A.
IV A). Moreover, we conclude that the termination is highly How is the decorated Fibonacci sequence defined? Let us
dense in dark pentagonal holes that we can now interpret ansider the Fibonacci sequence of intervills=1 and L
dissectedBergman(cB) polytopes(Sec. IV A). For the im-  =7l. If we renameM by | and “decorate” the interval by
aged surface terraces the densities of single atomic planes iWo points, such that =muUsUm, the decorated Fibonacci
corresponding terminations are given and their positions witlsequence appears. For thélPdMn that has the standard
respect to the Bergman layers are discugSat. IV A). distance parallel to the fivefold direction® =4.56 A and
From the general knowledge of possible tilings and covis modeled byz7*?F) s=[2/(r+2)] G =252 A m
erings in fivefold planes in the modgH developed in Sec. =72/(r+2)] & =4.08A, and I=7[2/(+2)] ®
Il B, we analyze in Sec. Il D the possibility of the existence =6.60 A.
of the P1 tiling on model terminations. From the predicted |n the planes of typ 1 a quasiperiodic tiling™ (4 (Ref.
coding windows of the top fivefold planes in terminations 31) appeargRefs. 19 and 3Rscaled by a factor. In the
in M (Sec. IV A) we conclude that the Penrog)) tiling is  planes of types 2, 3, and 4, fragments of the same tiling of a
possible on almost all fivefold terraces. In Sec. IV B we su-plane by golden triangles appe@ee Ref. 19, Fig. J7with
perimpose exact patches of the P1 tiling on STM images ofhe same inflation properties as in the tiliffgj (4. 3132

two large terraces. In Refs. 19 and 21 the model is compared to the ideal
icosahedral monograin under the assumption that the terraces
[l. THEORETICAL BACKGROUND on the surface of the material are like the planes in the bulk,

i.e., not reconstructed. This we will first assume and then
support in this paper. The terraces observed by Scleub
A geometric model M for the atomic positions of al.**were related to the sequence of the planes of the model
i-AIPdMn or i-AlCuFe (Refs. 17 and 18has been used to M described above; see also Ref. 19. Whereas Saohiaaib
interpret the STM measurements data of Schaual®* on  after annealing at~800°C, observed only Fibonacci-

A. Geometric model M
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ordered step heights and| on the surfacé; Shenet al.,
after annealing at=630 °C, also detected the step height

see Ref. 7.

In this paper we study the fine structu@ecal atomic
configuration$ within the observed terraces and compare it
to the geometric modeM.!® Whereas in Ref. 19 we suc-
ceeded in relating the sequence of the terracelike fivefold
surfaces of Schaulet al?>* to the layersof the Bergman
polytopes in the geometric modeélt, in this paper, using
high-resolution STM images of a fivefold surface we will fix
the position of the planes within the layers of Bergman poly-

topes.

In order to recognize and identify the fine structure of the
observed surface, we consider certain tilings in the fivefold
planes and a covering with a set of prototiles among which
are the pentagons and pentagonal stafhese tilings will
be locally derived from the tiling’* 4. The local deriva-
tion will be exact to a certain stage and, thereafter, random.
The tiling 7* A4 scaled by the factor defines the quasip-
eriodic structure of the planes on the surfaces according to
the modelM introduced abové® The prototiles in the tiling
T*(Adare golden triangles. The edges of the triangles in th
tiling are parallel to the twofold symmetry axes of an icosa-
hedron(“twofold directions”) and are of two length@) and
7(@. The three-dimensional modelt is supported by the
tiling 77*Pand consequently in the fivefold surfaces by
7% (A4 Hence the edges a2 and 2. With the stan-
dard value ®=4.795 A in the case of-AlPdMn, 7

=7.758 A andr?(®=12.553 A.

The structure on the surface observed by STM can b&
tiled uniquelyonly if the tiling, as an abstract structure, is
derivable from the set of quasilattice points and if the rule
of the local derivation are defined on relatively small dis-
tances with respect to the area of the observed surface.

B. Tilings and coverings with pentagonal prototiles contained

in the tiling 7* (A9

As an intermediate step we locally derive the tilifig®
with pentagon, acute rhombus, and hexagon as prototil
from the quasilattice™ ("4 as shown in Fig. 1. The tiling
has an inflation factor. It is clear that the tilingZ* ® can
be reconstructed from its own quasilattice points. All edges
of the prototiles in7* @ are of lengthr@). In the geometric
model M the prototiles are augmented by a factorso the
edge length is?(@=12.553 A. All prototiles of7* Pare the
unions of golden triangles of the previous tiliig A4, as
shown in Fig. 1. If we keep that content, the window of the
tiling is identical to the window of7* (A4 [because none of
the vertex(quasilattice points is omittedl The coding win-
dow of the tiling 7* @, without the content of golden tri-
angles, is shown in Fig. 2. Small fractions of the tili#g ?
have been observed in the fivefold surfaces of decagonal

(d)-AlCuCo3*

From the intermediate tiling™ ? we can locally derive a
coveringof the tiling 7* 4)_ This covering is by two cells in
the shape of pentagons, the smaller En’ja)f edge lengtt(2)
and the bigger on@ﬁ’ of edge lengthr(2), as shown in Fig.
3(a). Let us denote this covering of the tiling* (*4 by

S
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FIG. 1. The tiling7*@ of the plane with the acute rhombus,
entagon, and hexagon as the prototiles. The tiles are marked by
ick lines and different gray shadows. The tilig A9, from
which 7* @is locally derived, is shown in the background using
thin lines.

C5+(n, - Each acute rhombus frofi* (?) is transformed into

a pair of pentagons of edge lend®|shown in the left-hand
side of Fig. 3a)], and each hexagon is transformed into a
air of overlapping pentagons of edge leng® [right-hand
side of Fig. 3a)]. The remainder of the tiling™* *4should

be covered by pentagons of edge leng® as in the tiling
7*@; see Fig. 1. The above-defined coveritig, (s, 0f the
tiling 7* A4 is a subcovering of the covering of Kram@r?®
Kramer also covers the tiling* (A4 by two pentagons of the
same size as above. These cells are projected Delone cells
D2 andDP of the latticeA, in Ey. In K they are denoted by
Dﬁ and Dh), respectively. Let us denote Kramer’'s covering

by the symboICkT*(A4). The set of pentagons iﬁST*(A4)of

“Sdge lengthr@ is identical to the set d[s in Ck.. (s, . The

set of pentagons idf,*(AA)of edge length®2), derived from

FIG. 2. The coding window of the tiling™®, without the
content of golden triangles, is inscribed in the decagon by thick
lines, which is the coding window of the tiling* (*. The codings
of the nine types of vertex configurations in the tilifigf (“Yare
marked by the numbers 1-9.
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Let us call it the Niizeki star tiling and denote it kg (™.
The inflation factor of this tiling is alse. In Fig. 6 we derive
this tiling from the tiling7* . In Fig. 6@a) (top part of Fig.
6) on the left-hand side, from the set of all stars, only the
locally derivable stars are presented. The locally derivable
star appears wherever there exists an acute rhombus neigh-
boring one or two hexagons, each by an edge. Between these
stars, there appear obtuse rhombuses. In Fig. én the

FIG. 3. (a) The derivationT* ?— (3, x,is in thetop part of the right-hand side the white spaces around the isolated acute
figure. (b) 7*@—7* (1) is in the bottompart of the figure. rhombuses are framed by thick lines. Inside these patches,
there appear pairs of overlapping stars, inscribed in one
single place in the figure and marked by an arrow. Their
» _ s A overlap is exactly the acute rhombus. Up to the choice of one
Cr«ny. and thereforethe coveringC5.m, of 79 is a  star from each pair of overlapping stars, the local derivation
subcoveringof the coveringC, , .3 Whereas the thick- of the tiling is exact. The exact tiling of the plane by the
ness of the covering ofX, s s CK=3-r~1.382, the Stars, obtuse rhombuses, and pentang_‘Té?), is uniquely
thickness of the covering of the subcoveriG§. (a,is C* determined py s Wujdow mscnbed n th? W|pdi of

9 _ *(AYIS T*(A4): see Fig. B). It is the window of the Niizeki tiling.

=27-2~1.236<1.382. (For an explanation of the thick- \ve randomly choose a star from each overlapping pair of
ness of the covering see Ref. 37. As a reference: the thickstars indicated in the bottom part of Fig. 6 and obtain a partly
ness of the covering of a space by a tiling always equals 1random tiling7* ™). The only edge length that appears in
In the subcoverin@‘;*(AA)only the single and double decking the tiling is #@)(in the geometric modelM, it is Q)
(covering (Ref. 37 of the tiles by the covering clusters are =12.553 A). It is also the tiling that could be, eventually
present. The triple decking, which exists in the coveringseen and reconstructed from the STM images of the surfaces

Coviay, is excluded in €5, a,. The window of the sub-
Vd»

coveringC 5, 0f 7* A4 by two pentagonwithoutthe con-
tent of golden triangles is presented in Fig. 4. 7 K \‘
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the acute rhombuses, is subsetof the set of aIIDH 'S in

From the tiling7* @ let us keep all acute rhombuses and ‘
replace each_ he>§agon by tvvo overlapping pentaq_aesin ‘,ggyp«q‘syl\v
the subcovering 7. (a,). This is an exact local derivation, ‘AN.KK
shown in the left-hand side of Fig.(13. At this stage we ‘\4&‘ 44‘ﬂ>’/\
randomly choose one of the pentagons from each overlap- &7 "
ping pair, and the rest of each hexagon unites with the neigh-

boring acute rhombus. In this way, either a crown or a pen-
tagonal star appears to replace the rhombus, and we obtain a

partly random tilingZ* (P1)r; see the right-hand side of Fig. FIG. 5. (a) The window of7* (°1) is inscribed in the window of
3(b). The ideal class of tilinggP1) with the inflation factorr 7% (A by thick lines.(b) The exact tiling of the plane by the stars,
are described in Refs. 38 and 39. In Figa)5the window  optuse rhombuses, and pentagdfis(™, is uniquely determined by
that exactly defines the quasilattice of the tilifg ®) is its window inscribed by thick lines in the window G 9. It is
inscribed in the window of the tiling™ (A4 the window that codes the Niizeki tiling* ™.
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C. Atomic positions in fivefold planes
of the geometric modelM

In Sec. Il B we have derived the tilingg* @, 7% (P1) and
7*(" either from the ideal tilingZ* *?or from their own
corresponding quasilattices. We have been considering ex-
clusively these pointg e Dg which belong to the underlying
tiling of the model,77* (A4, Consequently the edge lengths
Vara r A 47, 00 A SN N A2\ in both locally derived tilings7* (?Yr and 7* (") were of
length 72(@=12.553 A. If we also take into account the

FIG. 6. Local derivation:7*?— T*("). In the text, the top  decoration of the tiling by Bergman/Mackay polytopes, the
part of the figure is referred to d8) and the bottom part a®). window of the quasilattice points of typee Dy, WqD . be-
6

comes the polytope derived in Refs. 17, 18, and 20.

In order to study the fivefold planes of the modet, we
orthogonal to the fivefold direction in-AlIPdMn and present two important general facts that we implicitly use in
i-AlCuFe and in a decagonal phase. all our considerations.

Both exact tilings7* (°) and 7* (Mcan be locally derived (i) The reciprocal lattice of the root lattid®s we denote
from their respective quasilattice points. In the reconstrucby D¢*°. The latticeDg’ is also known as the weight lattice
tion of tilings 7* (PY) and 7* (™ from the respective quasilat- D¢ . If one icosahedrally projec®¢ ° to the parallel space,
tices there appedr) pairs of pentagonal sets of points cen- Ey/ (E,), an icosahedral(r)module appear®* The mod-
tered in each other and mutually rotated by/20. The set ule points in a plane of a three-dimensior{@osahedral
of points of the smaller sizé&he smallest pentagonal set in Z(7)module inkj, under the * - maglie., r——1/r, are
the tiling) is on the neighboring distancé®, the bigger, on mapped ink, onto a plane too. The section of this plane in
neighboring distances?(?. Each pair leads to the pentago- E, through the three-dimensional windofacceptance re-
nal star.(ii) The isolated pentagonal sets with neighboringgion of the three-dimensional quasilatticdefines a two-
distancesr(2) are to be connected in pentagons. In order todimensional window of the quasilattice in a corresponding
reconstruct the tiling’™ (P, it is enough to draw the penta- plane inkj . The analogous statement holds true for the lines.
gons from the isolated fivetuples of fivefold symmetrically These are the general properties ¢f(a) module with qua-
ordered points. In order to reconstruct the tilig Mone  dratic irrationality X. In our considerations\=7=(\5
draws the stars from the pairs of pentagonal sets defined 1)/2. The above statement is valid for the modules with
above. One can show that in an abstract sense the ti“ng?ymmetnes such as icosahedral, fivefold, tenfold, eightfold,
7*(P1) and7* (MWcan be mapped one to one to each offher,  and twelvefold. , ,
we consider an experimental atomically resolved fivefold (if) Let us consider the four trantslan.onal qlasses W.Ith re-
surface and tile the observed surface, we first have to identifgPect 1 the root latticeDg of six-dimensional points
the surface by a plane in the model which we will call&n ~ 2(M1: - - - Ne) € D¢ , whege n; are integers. The condition
plane. Then we determine the coding window of the plane iffor @n atomic positionx=7z(ny, . .. ,ng) to be in a fivefold
E, , the M-plane window, and we place the biggest possiblgPlane inkj or [, is a class function presented in Table I.
window of an exact tilingsZ* ®Y) or 7*Min the M-plane Hence, the atomic positions in a fivefold plane of a

window; see Figs. 7 and 12, below. Following these arguPs-icosahedrally projected(r)module belong to theingle
ments, we will determine the edge length of a possible tilingclass,dp, (=a), b, a orc.

of an observed surface by the prototiles of the tiling P1 in Using the factgi) and(ii), in the geometric modeM we
Sec. IV. code each fivefold plane containing a class of atomic posi-
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tions in Iy by the fivefold dissection ir, of the single ~minations determined by Gieret al.,\“ which is 0.136 at-

window W, W,,, or W,, corresponding to that class. oms per K. It is easy to conclude that all terminations on
terraces must have equal densities. Consequently an interval

on z, under the plateatthe “carrier” of the plateau codes
the terminations and indicates tinew coding of surfacey
planes to be shifted from theld value that we expected in

In the work of Giereret al'* an average density of “ter- Refs. 19-21. In those pap&ts?'we supposed that single
minations” of fivefold surfaces has been determined to b&_,urfaca;l p|ane has to have the highest density_ In accordance
Pq+b=PqT pp=0.136 atoms per A By the density of the ith this ansatz, at least some of the dense layers of Bergman
termination the authors mean the sum of the densities of twolytopes were below the surfaces. But the dark pentagons
atomic planes on a surface separated by a vertical distance gbserved by Schaugt al.? which we put in correspondence
0.48 A, and consequently each “termination” corresponds tawith the Bergman polytopes in the layer below the surface,
a pair of planes separated by this distance. Let us supposgere bigger by a factor of than the faces of Bergman
that the surfacdtop) planes are of typey; then the planes polytopes:® Let us shift the surfaces of terraces by 4.08 A in
0.48 A below, in the geometric modal, are of typeb. Let  the direction of the bulk { 4.08 A alongz)) in “parallel”
us calculatepy,,(z)) in the model, wherg is along a five-  (observablgspace, such that theplane on a terrace dissects
fold axis orthogonal to terraces on the surface, and let us plahe Bergman polytopes of the layer and the section of each
this value along the correspondiag, pq:,(z,). The result  Bergman polytope is a pentagon of edge length 4.8 A, ap-
is shown in Fig. 7. proximately the size of the dark pentagons observed by

The functionpq(z,) has a cleafalmost fla} plateau.  Schaubet al* This shift in [ corresponds to the shift by
The appearance of the plateau is due to the polytopal shape +/(r+2)](®) along z, in orthogonal space. Indeed, the
of the coding windowsV, and W, in the geometric model coding interval ofg planes that forces the planes on the sur-
M.182%1n particular the windoww, , which defines the face to appear in a Fibonacci sequerioe in a decorated
surface(top) plane in a termination, differs strongly from the Fibonacci sequengés placed under the plateau of the func-
spherical shape. The plateau of the functignp(z,) simul-  tion pq+b(z.) by this shift; see Fig. 7. We suppose that the
taneously contains the maxima of the function and has gerracelike fivefold terminations do appear in a Fibongoci
value that approximately equals the average density of teidecorated Fibonaccsequence such that the tgplanes in
terminations need not be the most dense amongj filanes,

D. Densities of fivefold planes and terminations
of fivefold surfaces in the geometric modelM

. N [ but the above-defined “terminations,” the pairs of planes on
I T a surface, have the highest densities among all such pairs of
o0.12} g and b planes in the geometric modgH. We check our
1;20 10- s8 hypothesigansatz on two large terraces in Sec. IV.
g L
= 0.08| A Ill. FIVEFOLD SURFACES IMAGED BY STM:
.;0.06- }’(,\ _ SURFACE PREPARATION AND STM RESOLUTION
5004; ~..~.._,_\ ] In this section we describe the surface preparation we
| '~\ | have developed to obtain large flat terraces and low surface
0.0z 1 IR m) '\__ i corrugation in STM experiments. We contrast STM results
. r v using our optimum preparation with results previously pub-
0.00 — TS ished by us and other groups?®
............ | + Figure 8 shows data from the surfacei-gfl-Pd-Mn after
| decorated Fibonacci

the two different preparation procedures. In each case the
quasicrystal samples were grown at Ames Laboratory using

FIG. 7. Densi of the pairs of fivefold planes in the bulk
DPg+ b P b the Bridgman methot?* After being cut perpendicular to

model M: aq plane and & plane, 0.48 Abelowtheq plane.pg.y

as a function ok, in units of 72 8). The image oz axes ik, , z,,  their fivefold symmetry axes in air, the sample surfaces were
is chosen such thay points into the opposite direction of the bulk. prepared by polishing. For the first preparation, preparation
py(2,) is the density of a plane, ando,(z, ) is the density of @ |, the sample was polished using 6 ang.th diamond paste

plane shifted by c97°=[7%(7+2)]®, pq(z.)+pu(z,) for 1 h. In-vacuum preparation consisted of a few cycles of
=pq+b(2,). In the figure theold and new coding regions of the argon ion sputtering at 1 keV energy and a normal incidence
(decoratefl Fibonacci sequence of planes that represent the surfacgngle followed by annealing for periods of abduh at 970
terraces inM are marked. In the new region, the representativeK. The results are shown in Figs(é8 and 8c). For the
plane of the biggest clear terrace of Schatial. (Ref. 4 is marked  second preparation, preparation I, a further polish using 0.25
by S8 on anew position. The condition for appearance of the ring um diamond paste was used. The surface was prepared in-
plane in a sequenagel(R)ml is determined and a representative of vacuum by several cycles of sputtering with 0.5 keV Ar ions,
a ring plang(R) together with a representative of the following clear \yith a sputtering angle of 20°—30° relative to the surface
plane(C) are marked. Finally the region of existence for P1 tilings parallel, followed by annealing to 970 K for 2(in total 12
onaq pla_ne is dgnoted and particular minimal edges are attached tg ¢ annealing Figures 8b) and &d) show the results.

their coding regions; see Sec. IV. When large-scale scans are compaf&iys. §a) and

184207-6
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FIG. 8. (@ 1500 Ax1500 A STM image
showing atomically flat terraces from a surface
prepared using preparation I(b) 17500 A
X 17500 A STM image showing atomically flat
terraces from a surface prepared using prepara-
tion 1. (c) 100 Ax100 A STM image of a flat
terrace that we call the “clear,C terrace from a
surface prepared using preparatiaibias voltage
2.29 V, tip current 0.59 nA (d) 100 Ax 100 A
high-resolution STM image of the sareterrace
obtained on the fivefold surface using preparation
I1(V=1V, 1=0.3nA).

8(b)], it is evident that larger terraces are obtained usingesolved as that in Fig.(8); the bright spots in Fig. @)
preparation Il. For preparation |, the largest terraces are oforrespond to protrusions of height up to 2.0 A, while dark
the order of 1200 A in magnitude. For preparation |l terracesspots are associated with holes of depth estimated to be at
of width 4000 A and length of micron size were obtained.least 1.5 A. This STM image is comparable to those in the
Further differences between the results of the preparatiowork of Schaubet al?~® This can be contrasted with the
techniques are observed when scans of smaller area are cosuface shown in Fig. (8) where there are no large protru-
pared. Figures @) and 8&d) show 100 A<100 A areas of sions and the surface corrugation within the terraces is
each surface. Clearly the surface in Figc)8s not as well <1 A. Because the STM tip can scan the surface more

#9197

FIG. 9. (a) 100 Ax 100 A lateral autocorrela-
tion function of the STM image of Fig.(8). (b)
100 Ax 100 A lateral autocorrelation function of
the STM image of Fig. &l). (c) Radial distribu-
tion function calculated from the autocorrelation
pattern of(a). (d) Radial distribution function cal-
culated from the autocorrelation pattern(bj.

Arb. Units
Arb. Units

C 10 15 20 25 30 35 40 |[p 10 15 20 25 30 35 40
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closely, features on the surface are better resolved. The fe#hat of the bulk quasicrystal. We interpret the protrusions as
tures in this image have dimensions typical of atomic sizeslue to material on the surface which has not yet diffused to
(2-3 A). Larger feature$4—6 A) are also evident and prob- the step edges. A similar observation was recently made to
ably represent groups of a few atoms. The LEED patterngxplain the origin of such protrusions od-Al-Ni-Co
from each of these surfaces are qualitatively identical, but theurfaces
range of electron beam energies over which the LEED pat-
terns are obtained is much larg@i0—300 eV using prepa-
ration Il than for preparation (40—180 eV. The LEED pat- IV. REPRESENTATIONS OF SURFACES ON TERRACES
terns have very sharp diffraction spots, a low background, IN THE GEOMETRIC MODEL M:
and show fivefold symmetry. TILING ANALYSIS OF STM IMAGES
The resolution can be put on a semiquantitative basis by
calculating the two-dimensional lateral autocorrelation func-
tions of the images of Figs(& and 8d). These are shown in In Sec. Il D we suggested new positions of fivefold ter-
Figs. 9a) and 9b), respectively. While the symmetry of both minations in the geometric modeWt. In this section we
autocorrelation patterns is similar, the pattern of Fign)3  search for the terminations in the geometric mod4| on
considerably clearer and the correlation maxima extend tthesenewpositions that fit to atomically resolved pictures of
longer distances, indicating a higher degree of quasiperiodifivefold surfaces on particular terraces imaged by STM. In a
order. sequence of fivefold terraces we observe a large terrace that
For a more quantitative comparison a radial distributioncontains a rare local configuration that we call the “ring”
function (RDF) has been calculated in both cases. The pro{R). This configuration helps us mrientin the bulk model
cedure consists of dividing the 360° around the center of the\1, i.e., to fix the position of th& terrace with respect to the
autocorrelation function in increments. Along each line cor-fivefold z axes. Near théR terrace we observe theearest
responding to each increment, the distances from the centérrace that we denote byC'” A fragment of theC terrace is
to the maxima are measured. All measurements are then agshown in Fig. &d).

A. Fivefold terraces mapped to the terminations in M

eraged and plotted as histograff#gs. 9c) and 9d)]. It can On theC terrace local configurations of the fivefold de-
be seen that there is considerably more structure in the RDpressions in the shape of dark sté&lS) are observed. The
in Fig. 9d) than in that of Fig. ). strongly shining pentagonal local configurations in the form

In summary, surfaces prepared using preparation Il have af the white flower(wF) and the white star pointing upwards
much lower surface corrugation and lead to much better refwSu), both parallel to the dS and in the same direction,
solved STM data than those previously obtained using prepanake a white picture on a dark background; see Figa)10
ration I. The main differences in these procedures are the In contrast to theC terrace theR terrace is not continu-
sputtering energy and incidence an¢geggesting that mini- ously (globally) clear; i.e., the STM images of tHe terrace
mizing surface damage while removing contaminants is otaken on different places lead to different RDF's. Neverthe-
importance and the long anneal times at high temperaturedess, we observe some local configurations onRherrace
which probably serve to restore the surface composition téhat are clear; see Fig. @@. We find the white flowekwF)

FIG. 10. (a) 100Ax 100 A high-resolution STM image of th@ terrace on a fivefold surface. On tReterrace frequently repeated local
configurations such as a dark stdfS), a white flower(wF), and a white star pointing upward&Su) parallel to the dS are marked. The
Bergman polytope below the terrat®b), above the terracéBa), and the Bergman polytope dissected by the terfaBg are also marked.

For the scale the wSu is framed by a pentagon of edge lefigtD~4.8 A. (b) The C terrace from(a) corresponds to th€ termination

in M. Black points are atomic positions in thiel024 plane inM (No. 175 in Fig. 13which is on the surface, grey points are in th&025

plane, 0.48 A below the-1024 plane. The local atomic configurations that may present the dS, wF, and wSu are marked. The main
constituents of these configurations are the top surface of the Bergman polytopes that are in the layer below th8lslrfaeebottom
surface of the Bergman polytopes that are in the layer above the s(iacend the pentagonal section of the Bergman polytopes from the
layer that is dissected by the surfge®). Scale:D = rd=4.8 A. From the center of cB the next atomic position in the bulk is 2.04 A below

the surface.

184207-8



BULK TERMINATION OF THE QUASICRYSTALLINE . .. PHYSICAL REVIEW B 66, 184207 (2002

FIG. 11. (a) 75 Ax75 A STM image of theR terrace. The local configurations ringR), dark star(dS), and white star pointing
downwards(wSd) are framed by three pentagons of edge lengfti3, 7°D, and 7D, respectively, wher®~4.8 A. On a bigger STM
image of theR termination a full white flowelwF) can be seen alsgb) The R terrace from(a) corresponds to th® termination in M.
Black points are atomic positions @1037 plane inM (No. 178 in Fig. 13 which is on the surface; gray points arekir1038 plane, 0.48
A below theg-1037 plane. The local configurations of atomic positions that may represent the dadSstéine white flowerwF), and the
white star(wSd) antiparallel to the dark st#dS) are marked. Scal® = rd=4.8 A. In the center of the dark star the nearest atomic position
is 2.04 A below the surface. In the1037 plane there are empty “streets\’=4.56 A broad.

and the dark stafdS) identical to those on th€ terrace[see  24.2, 31.1, and 38.0 A% 0.3 A). The radial distribution
Fig. 10@)], but we also see a characteristic “ring” configu- function calculated from th€ planeg-1024(No. 175 of the
ration (R) that is present on none of the other observed tergeometric modelM [shown in Fig. 14(bottom] is very
races. The terrace is therefore denotedRHerrace. In theR  similar, the main differences being the presence of a double
terrace there is also a configuration which we call the whitgpeak at 15 A and some extra structure at higher distances.
star pointing downward$wSd); it is rotated 180° with re-  The correspondence with the largest intensity peaks is, how-
spect to the wSu that we observe on théeerrace. ever, very good.

As we stated the. areas of bdthand C terrace are large To theC andR planes of typej, there correspon@ andR
and they appear in a local upward sequence of stepgrminations, which are pairs gfandb planes at the surface
mI(R)mI(C), wherem~4.08 A and ~ rm. On theg planes  separated by a vertical distance of 0.48 A. All local patterns
of the geometric modeM we find a rare atomic configura- observed on th€-terrace andR terrace can be mapped to the
tion that may represent a local ring configuration on the STMmodel terminations, th€(lean termination and theR(ing)

image of theR terrace; compare Figs. @& and 11b). We
determine the coding of the ring configurati®) in I, and
E. L QW)

demand that the plane containing the ring configuration be
found in an upward sequence of theplanesmI(R)mI(C)
on the new positiongshifted by 4.08 A; see Sec. Il)Dand
both Rand C planes are to be among the planes from the
decorated Fibonacci sequence. From these conditions we
find the coding area ifi, alongz, of theR plane to be in the
interval z, €(0.198,0.337)72(G)] marked in Fig. 7. In a
patch of the geometric model! that spreads along, axes
in an interval of 1195 A we find only 15 representatives of
the R plane that fulfill all conditions mentioned above. We
choose tha-1037 plangNo. 178 in Fig. 13; the plane that
is coded ink, by z, =0.323-%G) (see Fig. 7. The corre-
spondingC plane is therg-1024 (No. 175 in Fig. 13 coded
by z, =0.192-°(B)(see Fig. 7. In Fig. 12 the coding windows
of the R and theC p'.a”?s are shown. This pair & andC FIG. 12. InE, the windows of the togqg) planes inR andC
planes(one (_)f 15 pairs in the model pajcare tak,en not far terminationsWg andW¢, respectively. Over them is plottéd the
from the estlmatgq model plane S8 fpr Sphaubs terrace NQuindow of the tiling P1 of edge length 4.8 An F;) denoted by
8% on a new positiorg-1128 (No. 193 in Fig. 13 coded by W(py). It is the maximal window of P1, such thefp;)C W, and
z,=0.211°(®) (see Fig. 7. (ii) the window of the tilingr(P1), of edge length 7.8 Ain F),
As we have stated, in contrast to theterrace, theC  denoted byW,py. It is the maximal window of P1, such that
terrace is uniformly clear and it has a unique RDF. Figure 14y _,,CWg(CW,.). The scale for the figure is set by the decagon
(top) corresponds to the RDF calculated from the high-W; ., , which is the window of the tilingZ* *4 with edgesd
resolution STM image of Fig. (&) [identical to the RDF =7 'D andD=4.8 A (in ). For the biggest possible window of
shown in Fig. @d)]. Maxima are found at 7.3, 12.1, 19.4, P1 inW«», see Fig. 8 in Sec. Il B.

We
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C R Ss

[ 175 174 b is0 181 187 188 191 1g2! labels

tiling—
planes

|
92/1.00 1.000.BZ| 00 09g (B1)

y4 1 -34-5-15-43 -24_51 -43 -19-42 -34-51 Type
5—fold Y | h_
Qé 1.00, |0 1
0.64] 0.69

1.00| Y0090
0.46 0.40 077 |ose | (B)
— 1 — —_
0.|23| ) o.?s o.|05 tzlg ‘ 01d | | (B
1
Vol i S
4.08A 2.52A 6.60A

FIG. 13. A decorated Fibonacci sequence=@.52 A, m
=4.08 A, 1=6.60 A) of theq planes along the; (fivefold axe$ of
types*1,£2,+£3,£4,£5 in M on theold positions; see Ref. 19.
Relative to these positions the stacked layers of the Bergman poly-
topes are drawn with their relative densities. The representative
planes of the larg®, C, and S8 terraces are marked on tiew
positions. The—4.08 A shift from theold to the new positions is
indicated by arrows.

FIG. 15. 75 A< 75 A segment of an STM image of tiReterrace

. . . ith i d t patch of the P1 tili f edge length
termination, respectively; see Figs.(bpand 11b). These with @ supenmposed exact paich of the ting of edge 'eng

patterns are mapped to the local atomic configurations on’

model terminations that contain groups of atoms in the shape o )

of pentagons related to Bergman polytopes that(@reither po_Iytopes _that arabovethe termination(Ba) (in wSu). For
dissectedby the terminationcB) (some of them are in the this see Figs. 1®), 11(b), and 13.

central parts of d or (ii) are below the termination(Bb)

(some of them are in dS, wF, R, wgar (iii ) to the Bergman B. Tiling P1 on fivefold surfaces

73 In order to extract information from the STM images, we
have employed a tiling approach in Refs. 8 and 26. In Ref.
26 this consisted of connecting points of high contrast on the
STM image to create pentagons. The filling-in of the image
using pentagons led to a Penroge41- like tiling of the
experimental planéwith an edge length of 7.8 AHere we
will reconstruct exact patches of the P1 tiling on the STM
images of bottR andC terraceqsee Figs. 15 and }@nd on
corresponding model planésot shown.

The coding regions of P1 tilings with minimal edge
lengths onq planes are marked in Fig. 7. The tiling P1 with
edge length 7.8 A is coded in the intenmle (— 71,77 %)

e 122 X[ 72®)] and that with edge length 4.8 A in the intenal
L2 (=7 % 7Gl

From the coding of they planes of theC, S8, andR
terminations ¢£=0.192-%®), z°=0.211%®, and z}
=0.3232(3) we conclude that thg-1024 plangNo. 175 in
Fig. 13 of the C termination and the-1128 plangNo. 193
in Fig. 13 of the S8 termination in\ allow a P1 tiling of
minimal edge length 4.8 A, and tlie1037 plangNo. 178 in
Fig. 13 of the R termination allows a P1 tiling of minimal
edge length 7.8 A(See also in Fig. 12 the coding windows
of P1 tilings with edge lengths 4.8 and 7.8 A plotted over the
coding windows of theg-1024 plane of theC termination
and theg-1037 plane of théR termination)

FIG. 14. Radial distributions calculatétbp) from the autocor- An exact patch of the tiling P1 can be exactly placed on
relation pattern of the high-resolution STM image shown on Fig.the g plane of a model termination as followé) Plot the
8(d); (bottom from the autocorrelation pattern of thg plane ~ Window of the P1 tiling,Wp4, of the maximal possible size
(9-1024 of the C termination in the geometric modéh presented ~ such thatWp, CW,,_,;, whereW,_, is the coding window of
in Fig. 10b). the surfacey plane in the modeM. For the biggest possible

Arb. Units
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TABLE II. Densities onold andnewpositions of theR, S8, and
C terminations(shifted by—4.08 A). Following Giereet al. (Ref.
14) terminationcontains two planes on the surface, and\if its
density iSpq+ )= pq)t Pmy: See Sec. Il D.

Termination R S8 C Average
No. (PE'%) 177 192 174

7, [P®)] -0.019 -0.131 -0.150

Pl [A2] 0.087 0.084 0.082

POy [A2] 0.026 0.008 0.007

Platny [A72] 0.113 0.092 0.089 0.098
No. (P{*") 178 193 175

7, [7®)] 0.323 0.211 0.192

Pl [A2] 0.059 0.073 0.076

iy [A72] 0.076 0.063 0.060

platy [A2] 0.135 0.136 0.136 0.136

have managed to reconstruct only an exact patch of P1 tiling
of edge length 7.8 A on the STM image of tBeterrace; see
Fig. 16. For this purpose we apply an image enhancement
technique to the data of Fig(d® in order to even out experi-
mental contrast variation@nherent in the use of the STM
technique which measures electron charge density at the sur-
face rather than nuclear coordingtesd to reduce experi-
mental noise. The procedure is based on Fourier filtering and
consists of taking a fast Fourier transform of the image, and
then enhancing obvious Bragg reflections with unigueal-
ues and removing experimentally induced diffuse features
due to noise. This modified frequency space representation is
then Fourier transformed to obtain the filtered image shown
in Fig. 16a). The result of this procedure is to strongly en-
hance features in the image corresponding to the selécted
values. The procedure is essentially identical to that used by
Soltmann and Beeli in the enhancement of high-resolution
transmission electron microscop RTEM) images®®

In the enhanced image the white spots that we interpret as
the images of atomic positions are almost as sharp as in the
model planeg-1024 from theC termination; see Fig. 10).
We find a patch of exact P1 tiling of edge length 7.8
+0.2 A that can be easily superimposed on the enhanced
image; see Fig. 1@). Figure 1@b) shows this tiling super-
imposed on the unenhanced STM image.

FIG. 16. (a) An exact patch of the P1 tiling superimposed on the
enhanced high-resolution STM image (10xA00 A) of the C
terrace.(b) The patch of P1 tiling obtained frorta) shown super-
imposed on the unenhanced high-resolution STM image ofCthe
termination from Fig. &).

window of P1 inW«a,) see Fig. &) in Sec. Il B.(ii) Mark

all atomic positions coded by the points in the winddg,

in . This set of points uniquely determines the P1 tiling on

the modelq plane. The procedure is evident. In contrast, for In Table Il we compare the densities of tReC, and S8

an STM image of a terrace we have to proceed locally. If theerminations and also the densities of singieafidb) planes

plane is very clear and the windowp, can be tightly placed contained in each termination on the old and new positions.

in the corresponding windowV,,.,;, we can reconstruct an It is evident that the densities of terminations on tiew

exact patch of the P1 tiling by trial and error. A probable positions give a better fit to the LEED result of Gierr

exact patch of the tiling P1 with minimal edge length of al.,** an average density of 0.136 atoms pér M/e see that

7.8 A is reconstructed on an STM image of tReterrace, theC and S8 terminations contain tggplanes that are much

in Fig. 15. more dense compared to the pplane of theR termination.
The g-1024 plane related to the surface of theermina- The STM images of the&C and S8 terminations show that

tion is very dense, and although we could theoretically placghey are continuously clear. Another fact is that the tpp

the P1 tiling of minimal edge length 4.8 &ee Fig. 12 we  plane of both C and S8 terminations are on similar relative

C. Densities of fivefold planes and terminations
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positions in the bulk with respect to the layers of BergmanDissected Bergman polytopes correspond to the dark stars.
polytopes(compare Fig. 18 a dense layerg1) is below the  The edge lengths of superimposed exact patches of the Pen-
plane, a middle dense layeB() is dissected by the plane, rose P1 tiling on two STM image&orresponding to penta-

and a layer of low densityR") is above the plane. gons of height equal to 120.36 A) are shown to be in
agreement with the bulk modeM based on the tiling
V. CONCLUSIONS 7T+ (2F) 19

. . Note addedSince this manuscript was submitted for pub-

We have presented two atomically resolved, high-jication, another paper containing STM results has been pub-
resolution STM images of large and flat terraces on the fivefished; see Ref. 46. We note that those authors also conclude
fold Al7gPd;Mng surface. We have mapped these surfaceshat the i-Al-Pd-Mn surface is a termination of the bulk
onto the fivefold terminations in the geometric model  strycture.
such that they form a decorated Fibonacci sequence, and
their average atomic density is in agreement with the LEED
measurements of Gierat all* Due to the polytopal win-
dows of the geometric modél1, all terminations turn out to We acknowledge M. Boudard for putting his model at our
haveequaland simultaneouslynaximaldensities. These new disposal; the first investigations of our STM images and
terminations inM are placed 4.08 A lower than in the work comparison to a bulk model were done on the fivefold planes
of Ref. 19. In the present STM images the dark pentagonsf that model. We also acknowledge G. Booch for releasing
appear as the dark stars. At the new positions of the modehis software components in Ad&ef. 47 under a modified
termination planes the patterns of dark pentagonal holes a@PL. The code for handling the polyhedral windows of the
the same as in Ref. 19 but now each dark hole is of ameometric modelM is based partly on these components.
appropriate size. At the new positions the surface terminaThe EPSRQGrant Nos. GR/N18680 and GR/N25718ISF
tions dissect the most dense Bergman layers in the modéGrant No. DMR-981997)7 DFG (Grant No. KA 1001/4-2,
M. The local patterns in STM images are present in theand AAT (Grant No. 111273-664A188816are acknowledged
model terminations and are related to the Bergman layerfor funding. We also acknowledge the University of St. An-
above(if one exist$, below and dissected by the termination. drews for financial support.
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