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Bulk termination of the quasicrystalline fivefold surface of Al70Pd21Mn9
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The structure of the Al70Pd21Mn9 surface has been investigated using high-resolution scanning tunneling
microscopy. From two large fivefold terraces on the surface in a short decorated Fibonacci sequence, atomi-
cally resolved surface images have been obtained. One of these terraces carries a rare local configuration in the
form of a ring. The location of the corresponding sequence of terminations in the bulk modelM of icosahedral
i-AlPdMn based on the three-dimensional tilingT * (2F) of an F phase has been estimated using this ring
configuration and the requirement from low-energy electron diffraction work of Giereret al. that the average
atomic density of the terminations is 0.136 atoms per Å2. A termination contains two atomic plane layers
separated by a vertical distance of 0.48 Å. The position of the bulk terminations is fixed within the layers of
Bergman polytopes in the modelM: they are 4.08 Å in the direction of the bulk from a surface of the most
dense Bergman layers. From the coding windows of the top planes in terminations inM we conclude that a
Penrose~P1! tiling is possible on almost all fivefold terraces. The shortest edge of the tiling P1 is either 4.8 or
7.8 Å. The experimentally derived tiling of the surface with the ring configuration has an edge length of 8.0
60.3 Å and hence matches the minimal edge length expected from the model.

DOI: 10.1103/PhysRevB.66.184207 PACS number~s!: 61.44.Br, 68.35.Bs, 68.37.Ef, 61.14.Hg
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I. INTRODUCTION

More than ten years ago, the discovery that centime
sized samples of decagonald-AlCuCo and icosahedra
i-AlPdMn could be grown opened up the possibility of su
face studies of these quasicrystals.1 Since then, other quasi
crystal samples have been grown to similar dimensions
date, most surface studies have been performed on the
fold surface ofi -AlPdMn.2–14A consensus has emerged fro
these studies that this surface, after fairly standard ultrah
vacuum~UHV! sputtering and annealing procedures, is its
quasicrystalline. In this work, using a combined experim
tal and theoretical approach, we show that this surface ca
considered to be a termination of the known bu
structure.15–21

The dynamical low-energy electron diffraction~LEED!
analysis carried out by Giereret al.13,14 indicated that the
fivefold surface of thei-AlPdMn quasicrystal retained bul
quasicrystallinity.13,14 X-ray photoelectron diffraction~XPD!
studies are also consistent with a quasicrystalline sur
nature.10–12 Large flat terraces may be produced, and sc
ning tunneling microscopy~STM! studies have presente
0163-1829/2002/66~18!/184207~13!/$20.00 66 1842
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similar images of the quasicrystalline surface.2–5,7–9Schaub
et al.2–5 produced detailed STM images of the terraces t
reveal a dense distribution ofdark pentagonal holesof edge
length circa 4.8 Å oriented parallel to each other, toget
with a more random distribution of bright protrusions. Th
correlated measurements of structural elements both wi
the terraces and across steps on the surface.

Later, we demonstrated a correspondence of these m
surements with the geometric modelM ~Refs. 19–21! for
atomic positions of an F phase.22 The modelM is based on
the three-dimensional icosahedral tilingT * (2F)~Ref. 23!
decorated essentially by Bergman/Mackay polytopes.16–18,24

The observed terrace structure of the surface was expla
in terms of the layer structure of the bulk model. The da
pentagons observed on the surface corresponded to the B
man polytopes25 in the bulk layers. The position of a give
type of terrace was matched to a layer characterized b
density of certain Bergman polytopes and their distribut
pattern. We assumed that the surface termination respect
integrity of the Bergman polytopes as clusters, at least in
most dense layers, and we supposed that such a laye
Bergman polytopes is exactly below the termination. Ho
©2002 The American Physical Society07-1
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ever, under these assumptions it was not possible to exp
the observed edge length~circa 4.8 Å! of the dark pentagona
holes, as this was bigger by the factor oft5(A511)/2 than
the pentagonal surfaces of the Bergman polytope~circa 3
Å!.19

Later Shen et al., using an autocorrelation analysi
showed that the surface structure is consistent with a b
structure based on truncated pseudo-Mackay icosahedra7 and
~therefore! Bergman clusters. A fundamental limit of thos
previous STM studies~Refs. 2–10!, was that the resolution
of the images, while subnanometer, was not atomic. Th
fore direct comparison with bulk models was not straightf
ward. Additionally, the presence of bright protrusions d
rupted any attempted tiling, and so comparison with tili
models was not possible. In a previous paper, we reporte
improved sample preparation technique. This led to a m
perfect surface devoid of protrusions~Sec. III!, and this in
turn led to improved resolution in the STM images. T
better resolution, together with the structural perfection,
lowed us to demonstrate that the surface structure is con
tent with a bulk termination,26 using the bulk model of Bou-
dardet al.15

In this paper we try to find the position of terminations
the bulk modelM demanding~i! that the terminations be
ordered in a decorated Fibonacci sequence~Secs. II A and
II C! as in Refs. 19–21 and~ii ! that the average density o
terminations be 0.136 atoms per Å2, as determined by Giere
et al.13,14 ~Sec. II D!. The atomically resolved images of th
surface that allow us to map the local patterns of the S
images~Secs. III and IV A! to the local atomic configura
tions in the terminations inM ~Sec. IV A! also prove our
ansatz from Sec. II D which fixes the position of the bu
termination to be 4.08 Å deeper within the layer of Bergm
polytopes than we expected in Refs. 19–21. With this n
position of the termination, the edge length of the dark p
tagonal holes observed by Schaubet al. in Refs. 2–5~and
already considered in Ref. 19! is now understood~Sec.
IV A !. Moreover, we conclude that the termination is high
dense in dark pentagonal holes that we can now interpre
dissectedBergman~cB! polytopes~Sec. IV A!. For the im-
aged surface terraces the densities of single atomic plan
corresponding terminations are given and their positions w
respect to the Bergman layers are discussed~Sec. IV A!.

From the general knowledge of possible tilings and c
erings in fivefold planes in the modelM developed in Sec
II B, we analyze in Sec. II D the possibility of the existen
of the P1 tiling on model terminations. From the predict
coding windows of the top fivefoldq planes in terminations
in M ~Sec. IV A! we conclude that the Penrose~P1! tiling is
possible on almost all fivefold terraces. In Sec. IV B we s
perimpose exact patches of the P1 tiling on STM images
two large terraces.

II. THEORETICAL BACKGROUND

A. Geometric modelM
A geometric modelM for the atomic positions of

i-AlPdMn or i-AlCuFe ~Refs. 17 and 18! has been used to
interpret the STM measurements data of Schaubet al.2,4 on
18420
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the fivefold surfaces ofi-AlPdMn.19,20 In the modelM, the
F-phase27 ~see Ref. 22! three-dimensional tilingT * (2F)~Ref.
23! is decorated by Bergman~and automatically Mackay!
polytopes.17,18 For details on Bergman and Mackay pol
topes, see Ref. 16. The geometric model is based on
Katz-Gratias model24 that is explained by Elser16 in a three-
dimensional ‘‘parallel space’’Ei , the space in which the
model projected from theD6 lattice28 ~see Refs. 29 and 22!
exists. The atoms ofi-AlPdMn ~Ref. 30! or of i-AlCuFe
~Ref. 24! can be placed on three translational classes
atomic positions with respect to theD6 lattice and are de-
noted byqD6

([q), b, anda; see Table I in Sec. II C and

Ref. 20. These atomic positions inEi are coded by the cor
responding ‘‘windows’’ or ‘‘acceptance domains’’ in th
three-dimensional ‘‘perpendicular space’’E' . Note that the
six-dimensionalD6 lattice, which models an F phase,22 acts
in the six-dimensional space that is a sum ofEi and E' .
These windows inE' are denoted byWq , Wb , and Wa ,
respectively. The windows of the modelM were constructed
in Refs. 17, 18, and 20. The tilingT * (2F) defines the quasi-
periodic structure. More accurately, the modelM is sup-
ported bytT * (2F), the tiling T * (2F)scaled by the factort
5(A511)/2. The quasilattice points oftT * (2F)are in the
class ofqPD6.

All points of the quasilattice which contains the vertic
of the tiling T * (2F) can be embedded in a sequence of pla
orthogonal to the fivefold symmetry axis of an icosahedr
~‘‘fivefold direction’’ !. The planes orthogonal to the axis a
the ‘‘fivefold planes.’’ The planes appear in a sequence a
have been classified~by particular coding regions in the win
dow WT * 2F) into five types,61, 62, 63, 64, 65; see
Ref. 19. The planes of types 1–4 are ordered in the
bonacci sequence with intervalsm andl. If the planes of type
5 are included, the sequence of planes forms a ‘‘decora
Fibonacci sequence’’ with separationss ~short!, m ~medium!,
and l ~long!, where l 5tm5t2s; see Fig. 13 in Sec. IV A.
How is the decorated Fibonacci sequence defined? Le
consider the Fibonacci sequence of intervalsM5 l and L
5t l . If we renameM by l and ‘‘decorate’’ the intervalL by
two points, such thatL5møsøm, the decorated Fibonacc
sequence appears. For thei-AlPdMn that has the standar
distance parallel to the fivefold direction ise 54.56 Å and
is modeled bytT * (2F), s5@2/(t12)# e 52.52 Å, m
5t@2/(t12)# e 54.08 Å, and l 5t2@2/(t12)# e
56.60 Å.

In the planes of type 1 a quasiperiodic tilingT * (A4)~Ref.
31! appears~Refs. 19 and 32! scaled by a factort. In the
planes of types 2, 3, and 4, fragments of the same tiling o
plane by golden triangles appear~see Ref. 19, Fig. 7! with
the same inflation properties as in the tilingT * (A4).31,32

In Refs. 19 and 21 the model is compared to the id
icosahedral monograin under the assumption that the terr
on the surface of the material are like the planes in the b
i.e., not reconstructed. This we will first assume and th
support in this paper. The terraces observed by Schauet
al.2,4 were related to the sequence of the planes of the mo
M described above; see also Ref. 19. Whereas Schaubet al.,
after annealing at'800 °C, observed only Fibonacc
7-2
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BULK TERMINATION OF THE QUASICRYSTALLINE . . . PHYSICAL REVIEW B 66, 184207 ~2002!
ordered step heightsm and l on the surface,2,4 Shenet al.,
after annealing at'630 °C, also detected the step heights;
see Ref. 7.

In this paper we study the fine structure~local atomic
configurations! within the observed terraces and compare
to the geometric modelM.19 Whereas in Ref. 19 we suc
ceeded in relating the sequence of the terracelike five
surfaces of Schaubet al.2,4 to the layersof the Bergman
polytopes in the geometric modelM, in this paper, using
high-resolution STM images of a fivefold surface we will fi
the position of the planes within the layers of Bergman po
topes.

In order to recognize and identify the fine structure of t
observed surface, we consider certain tilings in the fivef
planes and a covering with a set of prototiles among wh
are the pentagons and pentagonal stars.33 These tilings will
be locally derived from the tilingT * (A4). The local deriva-
tion will be exact to a certain stage and, thereafter, rand
The tiling T * (A4) scaled by the factort defines the quasip
eriodic structure of the planes on the surfaces accordin
the modelM introduced above.19 The prototiles in the tiling
T * (A4)are golden triangles. The edges of the triangles in
tiling are parallel to the twofold symmetry axes of an icos
hedron~‘‘twofold directions’’! and are of two lengthsb and
tb. The three-dimensional modelM is supported by the
tiling tT * (2F)and consequently in the fivefold surfaces
tT * (A4). Hence the edges aretb andt2b. With the stan-
dard value b54.795 Å in the case ofi-AlPdMn, tb
57.758 Å andt2b512.553 Å.

The structure on the surface observed by STM can
tiled uniquelyonly if the tiling, as an abstract structure,
derivable from the set of quasilattice points and if the ru
of the local derivation are defined on relatively small d
tances with respect to the area of the observed surface.

B. Tilings and coverings with pentagonal prototiles contained
in the tiling T * „A4…

As an intermediate step we locally derive the tilingT * (z)

with pentagon, acute rhombus, and hexagon as proto
from the quasilatticeT * (A4), as shown in Fig. 1. The tiling
has an inflation factort. It is clear that the tilingT * (z) can
be reconstructed from its own quasilattice points. All edg
of the prototiles inT * (z) are of lengthtb. In the geometric
modelM the prototiles are augmented by a factort, so the
edge length ist2b512.553 Å. All prototiles ofT * (z)are the
unions of golden triangles of the previous tilingT * (A4), as
shown in Fig. 1. If we keep that content, the window of t
tiling is identical to the window ofT * (A4) @because none o
the vertex~quasilattice! points is omitted#. The coding win-
dow of the tiling T * (z), without the content of golden tri
angles, is shown in Fig. 2. Small fractions of the tilingT * (z)

have been observed in the fivefold surfaces of decag
(d)-AlCuCo.34

From the intermediate tilingT * (z) we can locally derive a
coveringof the tilingT * (A4). This covering is by two cells in
the shape of pentagons, the smaller oneD i

a of edge lengthb
and the bigger oneD i

b of edge lengthtb, as shown in Fig.
3~a!. Let us denote this covering of the tilingT * (A4) by
18420
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s . Each acute rhombus fromT * (z) is transformed into

a pair of pentagons of edge lengthb@shown in the left-hand
side of Fig. 3~a!#, and each hexagon is transformed into
pair of overlapping pentagons of edge lengthtb @right-hand
side of Fig. 3~a!#. The remainder of the tilingT * (A4)should
be covered by pentagons of edge lengthtb as in the tiling
T * (z); see Fig. 1. The above-defined coveringC T * (A4)

s of the
tiling T * (A4) is a subcovering of the covering of Kramer.35,36

Kramer also covers the tilingT * (A4) by two pentagons of the
same size as above. These cells are projected Delone
Da andDb of the latticeA4 in Ei . In Ei they are denoted by
D i

a and D i
b , respectively. Let us denote Kramer’s coverin

by the symbolC T * (A4)
k . The set of pentagons inC T * (A4)

s of
edge lengthtb is identical to the set ofD i

b’s in C T * (A4)
k . The

set of pentagons inC T * (A4)
s of edge lengthb, derived from

FIG. 1. The tilingT * (z) of the plane with the acute rhombus
pentagon, and hexagon as the prototiles. The tiles are marke
thick lines and different gray shadows. The tilingT * (A4), from
which T * (z)is locally derived, is shown in the background usin
thin lines.

FIG. 2. The coding window of the tilingT * (z), without the
content of golden triangles, is inscribed in the decagon by th
lines, which is the coding window of the tilingT * (A4). The codings
of the nine types of vertex configurations in the tilingT * (A4)are
marked by the numbers 1–9.
7-3
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Z. PAPADOPOLOSet al. PHYSICAL REVIEW B 66, 184207 ~2002!
the acute rhombuses, is asubsetof the set of allD i
a’s in

C T * (A4)
k , and therefore the coveringC T * (A4)

s of T * (A4) is a

subcoveringof the coveringC T * (A4)
k .35,36Whereas the thick-

ness of the covering ofC T * (A4)
k is Ck532t'1.382, the

thickness of the covering of the subcoveringC T * (A4)
s is Cs

52t22'1.236,1.382. ~For an explanation of the thick
ness of the covering see Ref. 37. As a reference: the th
ness of the covering of a space by a tiling always equals!

In the subcoveringC T * (A4)
s only the single and double deckin

~covering! ~Ref. 37! of the tiles by the covering clusters a
present. The triple decking, which exists in the cover
C T * (A4)

k , is excluded37 in C T * (A4)
s . The window of the sub-

coveringC T * (A4)
s of T * (A4) by two pentagonswithout the con-

tent of golden triangles is presented in Fig. 4.
From the tilingT * (z) let us keep all acute rhombuses a

replace each hexagon by two overlapping pentagons~as in
the subcoveringC T * (A4)

s ). This is an exact local derivation
shown in the left-hand side of Fig. 3~b!. At this stage we
randomlychoose one of the pentagons from each overl
ping pair, and the rest of each hexagon unites with the ne
boring acute rhombus. In this way, either a crown or a p
tagonal star appears to replace the rhombus, and we obt
partly random tilingT * (p1)r; see the right-hand side of Fig
3~b!. The ideal class of tilings~P1! with the inflation factort
are described in Refs. 38 and 39. In Fig. 5~a!, the window
that exactly defines the quasilattice of the tilingT * (p1) is
inscribed in the window of the tilingT * (A4).

FIG. 3. ~a! The derivationT * (z)→C T * (A4)
s is in thetop part of the

figure. ~b! T * (z)→T * (p1)r is in thebottompart of the figure.
18420
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There is another tiling of a plane by pentagonal sta
pentagons and obtuse rhombuses introduced by Niize39

Let us call it the Niizeki star tiling and denote it byT * (n).
The inflation factor of this tiling is alsot. In Fig. 6 we derive
this tiling from the tilingT * (z). In Fig. 6~a! ~top part of Fig.
6! on the left-hand side, from the set of all stars, only t
locally derivable stars are presented. The locally deriva
star appears wherever there exists an acute rhombus n
boring one or two hexagons, each by an edge. Between t
stars, there appear obtuse rhombuses. In Fig. 6~a! on the
right-hand side the white spaces around the isolated a
rhombuses are framed by thick lines. Inside these patc
there appear pairs of overlapping stars, inscribed in
single place in the figure and marked by an arrow. Th
overlap is exactly the acute rhombus. Up to the choice of
star from each pair of overlapping stars, the local derivat
of the tiling is exact. The exact tiling of the plane by th
stars, obtuse rhombuses, and pentagons,T * (n), is uniquely
determined by its window inscribed in the window o
T * (A4); see Fig. 5~b!. It is the window of the Niizeki tiling.
We randomly choose a star from each overlapping pair
stars indicated in the bottom part of Fig. 6 and obtain a pa
random tilingT * (nr ). The only edge length that appears
the tiling is tb~in the geometric modelM, it is t2b
512.553 Å). It is also the tiling that could be, eventual
seen and reconstructed from the STM images of the surfa

FIG. 4. The window of the coveringC T * (A4)
s without the content

of golden triangles, inscribed by the thick lines in the window of t
tiling T * (A4).

FIG. 5. ~a! The window ofT * (p1) is inscribed in the window of
T * (A4) by thick lines.~b! The exact tiling of the plane by the star
obtuse rhombuses, and pentagons,T * (n), is uniquely determined by
its window inscribed by thick lines in the window ofT * (A4). It is
the window that codes the Niizeki tilingT * (n).
7-4
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BULK TERMINATION OF THE QUASICRYSTALLINE . . . PHYSICAL REVIEW B 66, 184207 ~2002!
orthogonal to the fivefold direction ini-AlPdMn and
i-AlCuFe and in a decagonal phase.

Both exact tilingsT * (p1) andT * (n)can be locally derived
from their respective quasilattice points. In the reconstr
tion of tilings T * (p1) andT * (n) from the respective quasilat
tices there appear~i! pairs of pentagonal sets of points ce
tered in each other and mutually rotated by 2p/10. The set
of points of the smaller size~the smallest pentagonal set
the tiling! is on the neighboring distancesb, the bigger, on
neighboring distancest2b. Each pair leads to the pentag
nal star.~ii ! The isolated pentagonal sets with neighbori
distancestb are to be connected in pentagons. In order
reconstruct the tilingT * (p1), it is enough to draw the penta
gons from the isolated fivetuples of fivefold symmetrica
ordered points. In order to reconstruct the tilingT * (n)one
draws the stars from the pairs of pentagonal sets defi
above. One can show that in an abstract sense the til
T * (p1) andT * (n)can be mapped one to one to each other.37 If
we consider an experimental atomically resolved fivef
surface and tile the observed surface, we first have to iden
the surface by a plane in the model which we will call anM
plane. Then we determine the coding window of the plane
E' , theM-plane window, and we place the biggest possi
window of an exact tilingsT * (p1) or T * (n)in the M-plane
window; see Figs. 7 and 12, below. Following these ar
ments, we will determine the edge length of a possible til
of an observed surface by the prototiles of the tiling P1
Sec. IV.

FIG. 6. Local derivation:T * (z)→ T * (nr ). In the text, the top
part of the figure is referred to as~a! and the bottom part as~b!.
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C. Atomic positions in fivefold planes
of the geometric modelM

In Sec. II B we have derived the tilingsT * (z), T * (p1), and
T * (n) either from the ideal tilingT * (A4)or from their own
corresponding quasilattices. We have been considering
clusively these pointsqPD6 which belong to the underlying
tiling of the model,tT * (A4). Consequently the edge length
in both locally derived tilings,T * (p1)r and T * (nr ), were of
length t2b512.553 Å. If we also take into account th
decoration of the tiling by Bergman/Mackay polytopes, t
window of the quasilattice points of typeqPD6 , WqD6

, be-

comes the polytope derived in Refs. 17, 18, and 20.
In order to study the fivefold planes of the modelM, we

present two important general facts that we implicitly use
all our considerations.

~i! The reciprocal lattice of the root latticeD6 we denote
by D6

rec . The latticeD6
rec is also known as the weight lattic

D6
w . If one icosahedrally projectsD6

rec to the parallel space
Ei/ (E'), an icosahedralZ(t)module appears.40,41 The mod-
ule points in a plane of a three-dimensional~icosahedral!
Z(t)module inEi , under the * - map,41 i.e., t→21/t, are
mapped inE' onto a plane too. The section of this plane
E' through the three-dimensional window~acceptance re-
gion of the three-dimensional quasilattice! defines a two-
dimensional window of the quasilattice in a correspond
plane inEi . The analogous statement holds true for the lin
These are the general properties of aZ(l) module with qua-
dratic irrationality l. In our considerationsl5t5(A5
11)/2. The above statement is valid for the modules w
symmetries such as icosahedral, fivefold, tenfold, eightfo
and twelvefold.

~ii ! Let us consider the four translational classes with
spect to the root latticeD6 of six-dimensional points
1
2 (n1 , . . . ,n6)PD6

w , where ni are integers. The condition
for an atomic positionx5 1

2 (n1 , . . . ,n6) to be in a fivefold
plane inEi or E' is a class function presented in Table
Hence, the atomic positions in a fivefold plane of
D6

w-icosahedrally projectedZ(t)module belong to thesingle
class,qD6

([q), b, a, or c.

Using the facts~i! and~ii !, in the geometric modelM we
code each fivefold plane containing a class of atomic po

TABLE I. The condition for atomic positions x
5

1
2 (n1 , . . . ,n6) to be in a fivefold plane inEi or E' is a class

function. The symbolse and o stand for even and odd integer
respectively. The symbolni

5/n'
5 is a unit normal to the fivefold

plane inEi/ E' space, respectively.xiP Ei andx'P E' , wherex is
the point in six-dimensional space,Ei1 E' . The scalar product is
given in the units@k#, k51/@A2(t12)#.

Class criterion Class ni
5
•xi@k# n'

5
•x'@k#

1
2 (e1 , . . . ,e6); 1

2 ( iei5even qD6
e1et e1et

1
2 (e1 , . . . ,e6); 1

2 ( iei5 odd b e1ot e1ot

1
2 (o1 , . . . ,o6); 1

2 ( ioi5 odd a o1ot o1et

1
2 (o1 , . . . ,o6); 1

2 ( ioi5 even c o1et o1ot
7-5
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Z. PAPADOPOLOSet al. PHYSICAL REVIEW B 66, 184207 ~2002!
tions in Ei by the fivefold dissection inE' of the single
window Wq , Wb , or Wa , corresponding to that class.

D. Densities of fivefold planes and terminations
of fivefold surfaces in the geometric modelM

In the work of Giereret al.14 an average density of ‘‘ter
minations’’ of fivefold surfaces has been determined to
rq1b5rq1rb50.136 atoms per Å2. By the density of the
termination the authors mean the sum of the densities of
atomic planes on a surface separated by a vertical distan
0.48 Å, and consequently each ‘‘termination’’ corresponds
a pair of planes separated by this distance. Let us sup
that the surface~top! planes are of typeq; then the planes
0.48 Å below, in the geometric modelM, are of typeb. Let
us calculaterq1b(zi) in the model, wherezi is along a five-
fold axis orthogonal to terraces on the surface, and let us
this value along the correspondingz' , rq1b(z'). The result
is shown in Fig. 7.

The functionrq1b(z') has a clear~almost flat! plateau.
The appearance of the plateau is due to the polytopal sh
of the coding windowsWq andWb in the geometric mode
M.17,18,20 In particular the windowWq , which defines the
surface~top! plane in a termination, differs strongly from th
spherical shape. The plateau of the functionrq1b(z') simul-
taneously contains the maxima of the function and ha
value that approximately equals the average density of

FIG. 7. Densityrq1b of the pairs of fivefold planes in the bul
modelM: a q plane and ab plane, 0.48 Åbelowtheq plane.rq1b

as a function ofz' in units oft2 e. The image ofz axes inE' , z' ,
is chosen such thatzi points into the opposite direction of the bulk
rq(z') is the density of aq plane, andrb(z') is the density of ab
plane shifted by c'

q→b5@t4/(t12)#e, rq(z')1rb(z')
5rq1b(z'). In the figure theold and new coding regions of the
~decorated! Fibonacci sequence of planes that represent the sur
terraces inM are marked. In the new region, the representat
plane of the biggest clear terrace of Schaubet al. ~Ref. 4! is marked
by S8 on anewposition. The condition for appearance of the rin
plane in a sequenceml(R)ml is determined and a representative
a ring plane~R! together with a representative of the following cle
plane~C! are marked. Finally the region of existence for P1 tilin
on aq plane is denoted and particular minimal edges are attache
their coding regions; see Sec. IV.
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minations determined by Giereret al.,14 which is 0.136 at-
oms per Å2. It is easy to conclude that all terminations o
terraces must have equal densities. Consequently an inte
on z' under the plateau~the ‘‘carrier’’ of the plateau! codes
the terminations and indicates thenew coding of surfaceq
planes to be shifted from theold value that we expected in
Refs. 19–21. In those papers19–21we supposed that asingle-
surfaceq plane has to have the highest density. In accorda
with this ansatz, at least some of the dense layers of Berg
polytopes were below the surfaces. But the dark pentag
observed by Schaubet al.,4 which we put in correspondenc
with the Bergman polytopes in the layer below the surfa
were bigger by a factor oft than the faces of Bergma
polytopes.19 Let us shift the surfaces of terraces by 4.08 Å
the direction of the bulk (24.08 Å alongzi) in ‘‘parallel’’
~observable! space, such that theq plane on a terrace dissec
the Bergman polytopes of the layer and the section of e
Bergman polytope is a pentagon of edge length 4.8 Å,
proximately the size of the dark pentagons observed
Schaubet al.4 This shift in Ei corresponds to the shift by
@2t/(t12)#e along z' in orthogonal space. Indeed, th
coding interval ofq planes that forces the planes on the s
face to appear in a Fibonacci sequence~or in a decorated
Fibonacci sequence! is placed under the plateau of the fun
tion rq1b(z') by this shift; see Fig. 7. We suppose that t
terracelike fivefold terminations do appear in a Fibonacci~or
decorated Fibonacci! sequence such that the topq planes in
terminations need not be the most dense among theq planes,
but the above-defined ‘‘terminations,’’ the pairs of planes
a surface, have the highest densities among all such pai
q and b planes in the geometric modelM. We check our
hypothesis~ansatz! on two large terraces in Sec. IV.

III. FIVEFOLD SURFACES IMAGED BY STM:
SURFACE PREPARATION AND STM RESOLUTION

In this section we describe the surface preparation
have developed to obtain large flat terraces and low sur
corrugation in STM experiments. We contrast STM resu
using our optimum preparation with results previously pu
lished by us and other groups.2,7,8

Figure 8 shows data from the surface ofi-Al-Pd-Mn after
the two different preparation procedures. In each case
quasicrystal samples were grown at Ames Laboratory us
the Bridgman method.42,43 After being cut perpendicular to
their fivefold symmetry axes in air, the sample surfaces w
prepared26 by polishing. For the first preparation, preparati
I, the sample was polished using 6 and 1mm diamond paste
for 1 h. In-vacuum preparation consisted of a few cycles
argon ion sputtering at 1 keV energy and a normal incide
angle followed by annealing for periods of about 1 h at 970
K. The results are shown in Figs. 8~a! and 8~c!. For the
second preparation, preparation II, a further polish using 0
mm diamond paste was used. The surface was prepare
vacuum by several cycles of sputtering with 0.5 keV Ar ion
with a sputtering angle of 20° –30° relative to the surfa
parallel, followed by annealing to 970 K for 2 h~in total 12
h of annealing!. Figures 8~b! and 8~d! show the results.

When large-scale scans are compared@Figs. 8~a! and
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FIG. 8. ~a! 1500 Å31500 Å STM image
showing atomically flat terraces from a surfac
prepared using preparation I.~b! 17 500 Å
317 500 Å STM image showing atomically fla
terraces from a surface prepared using prepa
tion II. ~c! 100 Å3100 Å STM image of a flat
terrace that we call the ‘‘clear,’’C terrace from a
surface prepared using preparation I~bias voltage
2.29 V, tip current 0.59 nA!. ~d! 100 Å3100 Å
high-resolution STM image of the sameC terrace
obtained on the fivefold surface using preparati
II ( V51 V, I 50.3 nA).
in

e
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rk
e at
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ore
8~b!#, it is evident that larger terraces are obtained us
preparation II. For preparation I, the largest terraces are
the order of 1200 Å in magnitude. For preparation II terrac
of width 4000 Å and length of micron size were obtaine
Further differences between the results of the prepara
techniques are observed when scans of smaller area are
pared. Figures 8~c! and 8~d! show 100 Å3100 Å areas of
each surface. Clearly the surface in Fig. 8~c! is not as well
18420
g
of
s
.
n
m-

resolved as that in Fig. 8~d!; the bright spots in Fig. 8~c!
correspond to protrusions of height up to 2.0 Å, while da
spots are associated with holes of depth estimated to b
least 1.5 Å. This STM image is comparable to those in
work of Schaubet al.2–5 This can be contrasted with th
surface shown in Fig. 8~d! where there are no large protru
sions and the surface corrugation within the terraces
,1 Å. Because the STM tip can scan the surface m
f

n

FIG. 9. ~a! 100 Å3100 Å lateral autocorrela-
tion function of the STM image of Fig. 8~c!. ~b!
100 Å3100 Å lateral autocorrelation function o
the STM image of Fig. 8~d!. ~c! Radial distribu-
tion function calculated from the autocorrelatio
pattern of~a!. ~d! Radial distribution function cal-
culated from the autocorrelation pattern of~b!.
7-7
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closely, features on the surface are better resolved. The
tures in this image have dimensions typical of atomic si
~2–3 Å!. Larger features~4–6 Å! are also evident and prob
ably represent groups of a few atoms. The LEED patte
from each of these surfaces are qualitatively identical, but
range of electron beam energies over which the LEED p
terns are obtained is much larger~10–300 eV! using prepa-
ration II than for preparation I~40–180 eV!. The LEED pat-
terns have very sharp diffraction spots, a low backgrou
and show fivefold symmetry.

The resolution can be put on a semiquantitative basis
calculating the two-dimensional lateral autocorrelation fu
tions of the images of Figs. 8~c! and 8~d!. These are shown in
Figs. 9~a! and 9~b!, respectively. While the symmetry of bot
autocorrelation patterns is similar, the pattern of Fig. 9~b! is
considerably clearer and the correlation maxima extend
longer distances, indicating a higher degree of quasiperio
order.

For a more quantitative comparison a radial distribut
function ~RDF! has been calculated in both cases. The p
cedure consists of dividing the 360° around the center of
autocorrelation function in increments. Along each line c
responding to each increment, the distances from the ce
to the maxima are measured. All measurements are then
eraged and plotted as histograms@Figs. 9~c! and 9~d!#. It can
be seen that there is considerably more structure in the R
in Fig. 9~d! than in that of Fig. 9~c!.

In summary, surfaces prepared using preparation II ha
much lower surface corrugation and lead to much better
solved STM data than those previously obtained using pre
ration I. The main differences in these procedures are
sputtering energy and incidence angle~suggesting that mini-
mizing surface damage while removing contaminants is
importance! and the long anneal times at high temperatu
which probably serve to restore the surface composition
18420
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that of the bulk quasicrystal. We interpret the protrusions
due to material on the surface which has not yet diffused
the step edges. A similar observation was recently mad
explain the origin of such protrusions ond-Al-Ni-Co
surfaces.44

IV. REPRESENTATIONS OF SURFACES ON TERRACES
IN THE GEOMETRIC MODEL M:

TILING ANALYSIS OF STM IMAGES

A. Fivefold terraces mapped to the terminations inM
In Sec. II D we suggested new positions of fivefold te

minations in the geometric modelM. In this section we
search for the terminations in the geometric modelM on
thesenewpositions that fit to atomically resolved pictures
fivefold surfaces on particular terraces imaged by STM. I
sequence of fivefold terraces we observe a large terrace
contains a rare local configuration that we call the ‘‘ring
(R). This configuration helps us toorient in the bulk model
M, i.e., to fix the position of theR terrace with respect to the
fivefold z axes. Near theR terrace we observe theclearest
terrace that we denote by ‘‘C. ’’A fragment of theC terrace is
shown in Fig. 8~d!.

On theC terrace local configurations of the fivefold de
pressions in the shape of dark stars~dS! are observed. The
strongly shining pentagonal local configurations in the fo
of the white flower~wF! and the white star pointing upward
~wSu!, both parallel to the dS and in the same directio
make a white picture on a dark background; see Fig. 10~a!.

In contrast to theC terrace theR terrace is not continu-
ously ~globally! clear; i.e., the STM images of theR terrace
taken on different places lead to different RDF’s. Neverth
less, we observe some local configurations on theR terrace
that are clear; see Fig. 11~a!. We find the white flower~wF!
l
e

e main

the
low
FIG. 10. ~a! 100Å3100 Å high-resolution STM image of theC terrace on a fivefold surface. On theC terrace frequently repeated loca
configurations such as a dark star~dS!, a white flower~wF!, and a white star pointing upwards~wSu! parallel to the dS are marked. Th
Bergman polytope below the terrace~Bb!, above the terrace~Ba!, and the Bergman polytope dissected by the terrace~cB! are also marked.
For the scale the wSu is framed by a pentagon of edge lengthtD, D'4.8 Å. ~b! The C terrace from~a! corresponds to theC termination
in M. Black points are atomic positions in theq-1024 plane inM ~No. 175 in Fig. 13! which is on the surface, grey points are in theb-1025
plane, 0.48 Å below theq-1024 plane. The local atomic configurations that may present the dS, wF, and wSu are marked. Th
constituents of these configurations are the top surface of the Bergman polytopes that are in the layer below the surface~Bb!, the bottom
surface of the Bergman polytopes that are in the layer above the surface~Ba!, and the pentagonal section of the Bergman polytopes from
layer that is dissected by the surface~cB!. Scale:D5td54.8 Å. From the center of cB the next atomic position in the bulk is 2.04 Å be
the surface.
7-8
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FIG. 11. ~a! 75 Å375 Å STM image of theR terrace. The local configurations ring (R), dark star~dS!, and white star pointing
downwards~wSd! are framed by three pentagons of edge lengthst3D, t2D, andtD, respectively, whereD'4.8 Å. On a bigger STM
image of theR termination a full white flower~wF! can be seen also.~b! The R terrace from~a! corresponds to theR termination inM.
Black points are atomic positions inq-1037 plane inM ~No. 178 in Fig. 13! which is on the surface; gray points are inb-1038 plane, 0.48
Å below theq-1037 plane. The local configurations of atomic positions that may represent the dark star~dS!, the white flower~wF!, and the
white star~wSd! antiparallel to the dark star~dS! are marked. Scale:D5td54.8 Å. In the center of the dark star the nearest atomic posi
is 2.04 Å below the surface. In theq-1037 plane there are empty ‘‘streets,’’D54.56 Å broad.
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and the dark star~dS! identical to those on theC terrace@see
Fig. 10~a!#, but we also see a characteristic ‘‘ring’’ configu
ration ~R! that is present on none of the other observed
races. The terrace is therefore denoted theR terrace. In theR
terrace there is also a configuration which we call the wh
star pointing downwards~wSd!; it is rotated 180° with re-
spect to the wSu that we observe on theC terrace.

As we stated the areas of bothR andC terrace are large
and they appear in a local upward sequence of s
ml(R)ml(C), wherem'4.08 Å andl'tm. On theq planes
of the geometric modelM we find a rare atomic configura
tion that may represent a local ring configuration on the S
image of theR terrace; compare Figs. 11~a! and 11~b!. We
determine the coding of the ring configuration~R! in E' and
demand that theq plane containing the ring configuration b
found in an upward sequence of theq planesml(R)ml(C)
on the new positions~shifted by 4.08 Å; see Sec. II D!, and
both Rand C planes are to be among the planes from
decorated Fibonacci sequence. From these conditions
find the coding area inE' alongz' of theR plane to be in the
interval z'P(0.198,0.337)@t2e# marked in Fig. 7. In a
patch of the geometric modelM that spreads alongzi axes
in an interval of 1195 Å we find only 15 representatives
the R plane that fulfill all conditions mentioned above. W
choose theq-1037 plane~No. 178 in Fig. 13!; the plane that
is coded inE' by z'50.323t2e ~see Fig. 7!. The corre-
spondingC plane is thenq-1024~No. 175 in Fig. 13! coded
by z'50.192t2e~see Fig. 7!. In Fig. 12 the coding windows
of the R and theC planes are shown. This pair ofR and C
planes~one of 15 pairs in the model patch! are taken not far
from the estimated model plane S8 for Schaub’s terrace
84 on a new positionq-1128 ~No. 193 in Fig. 13! coded by
z'50.211t2e ~see Fig. 7!.

As we have stated, in contrast to theR terrace, theC
terrace is uniformly clear and it has a unique RDF. Figure
~top! corresponds to the RDF calculated from the hig
resolution STM image of Fig. 8~d! @identical to the RDF
shown in Fig. 9~d!#. Maxima are found at 7.3, 12.1, 19.4
18420
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24.2, 31.1, and 38.0 Å (6 0.3 Å). The radial distribution
function calculated from theC planeq-1024~No. 175! of the
geometric modelM @shown in Fig. 14~bottom!# is very
similar, the main differences being the presence of a dou
peak at 15 Å and some extra structure at higher distan
The correspondence with the largest intensity peaks is, h
ever, very good.

To theC andR planes of typeq, there correspondC andR
terminations, which are pairs ofq andb planes at the surface
separated by a vertical distance of 0.48 Å. All local patte
observed on theC-terrace andR terrace can be mapped to th
model terminations, theC~lear! termination and theR~ing!

FIG. 12. In E' the windows of the top~q! planes inR and C
terminations,WR andWC , respectively. Over them is plotted~i! the
window of the tiling P1 of edge length 4.8 Å~in Ei) denoted by
W(P1) . It is the maximal window of P1, such thatW(P1),WC , and
~ii ! the window of the tilingt(P1), of edge length 7.8 Å~in Ei),
denoted byWt(P1) . It is the maximal window of P1, such tha
WtP1,WR(,WC). The scale for the figure is set by the decag
WT * (A4) , which is the window of the tilingT * (A4) with edgesd
5t21D andD54.8 Å ~in Ei). For the biggest possible window o
P1 in WT * (A4) see Fig. 5~a! in Sec. II B.
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termination, respectively; see Figs. 10~b! and 11~b!. These
patterns are mapped to the local atomic configurations
model terminations that contain groups of atoms in the sh
of pentagons related to Bergman polytopes that are~i! either
dissectedby the termination~cB! ~some of them are in the
central parts of dS!, or ~ii ! are below the termination~Bb!
~some of them are in dS, wF, R, wSd!, or ~iii ! to the Bergman

FIG. 13. A decorated Fibonacci sequence (s52.52 Å, m
54.08 Å, l 56.60 Å) of theq planes along thezi ~fivefold axes! of
types61,62,63,64,65 in M on theold positions; see Ref. 19
Relative to these positions the stacked layers of the Bergman p
topes are drawn with their relative densities. The representa
planes of the largeR, C, and S8 terraces are marked on thenew
positions. The24.08 Å shift from theold to the new positions is
indicated by arrows.

FIG. 14. Radial distributions calculated~top! from the autocor-
relation pattern of the high-resolution STM image shown on F
8~d!; ~bottom! from the autocorrelation pattern of theq plane
(q-1024! of theC termination in the geometric modelM presented
in Fig. 10~b!.
18420
n
e
polytopes that areabovethe termination~Ba! ~in wSu!. For
this see Figs. 10~b!, 11~b!, and 13.

B. Tiling P1 on fivefold surfaces

In order to extract information from the STM images, w
have employed a tiling approach in Refs. 8 and 26. In R
26 this consisted of connecting points of high contrast on
STM image to create pentagons. The filling-in of the ima
using pentagons led to a Penrose-~P1-! like tiling of the
experimental plane~with an edge length of 7.8 Å!. Here we
will reconstruct exact patches of the P1 tiling on the ST
images of bothR andC terraces~see Figs. 15 and 16! and on
corresponding model planes~not shown!.

The coding regions of P1 tilings with minimal edg
lengths onq planes are marked in Fig. 7. The tiling P1 wi
edge length 7.8 Å is coded in the intervalz'P(2t21,t21)
3@t2e# and that with edge length 4.8 Å in the intervalz'

P(2t23,t23)@t2e#.
From the coding of theq planes of theC, S8, andR

terminations (z'
C50.192t2e, z'

S850.211t2e, and z'
R

50.323t2e! we conclude that theq-1024 plane~No. 175 in
Fig. 13! of the C termination and theq-1128 plane~No. 193
in Fig. 13! of the S8 termination inM allow a P1 tiling of
minimal edge length 4.8 Å, and theq-1037 plane~No. 178 in
Fig. 13! of the R termination allows a P1 tiling of minima
edge length 7.8 Å.~See also in Fig. 12 the coding window
of P1 tilings with edge lengths 4.8 and 7.8 Å plotted over t
coding windows of theq-1024 plane of theC termination
and theq-1037 plane of theR termination.!

An exact patch of the tiling P1 can be exactly placed
the q plane of a model termination as follows:~i! Plot the
window of the P1 tiling,WP1, of the maximal possible size
such thatWP1#Wq-pl , whereWq-pl is the coding window of
the surfaceq plane in the modelM. For the biggest possible

ly-
e

.

FIG. 15. 75 Å375 Å segment of an STM image of theR terrace
with a superimposed exact patch of the P1 tiling of edge len
7.8 Å.
7-10
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BULK TERMINATION OF THE QUASICRYSTALLINE . . . PHYSICAL REVIEW B 66, 184207 ~2002!
window of P1 inWT * (A4) see Fig. 5~a! in Sec. II B.~ii ! Mark
all atomic positions coded by the points in the windowWP1
in Ei . This set of points uniquely determines the P1 tiling
the modelq plane. The procedure is evident. In contrast,
an STM image of a terrace we have to proceed locally. If
plane is very clear and the windowWP1 can be tightly placed
in the corresponding windowWq-pl , we can reconstruct an
exact patch of the P1 tiling by trial and error. A probab
exact patch of the tiling P1 with minimal edge length
7.8 Å is reconstructed on an STM image of theR terrace,
in Fig. 15.

The q-1024 plane related to the surface of theC termina-
tion is very dense, and although we could theoretically pl
the P1 tiling of minimal edge length 4.8 Å~see Fig. 12!, we

FIG. 16. ~a! An exact patch of the P1 tiling superimposed on t
enhanced high-resolution STM image (100 Å3100 Å) of the C
terrace.~b! The patch of P1 tiling obtained from~a! shown super-
imposed on the unenhanced high-resolution STM image of thC
termination from Fig. 8~d!.
18420
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have managed to reconstruct only an exact patch of P1 ti
of edge length 7.8 Å on the STM image of theC terrace; see
Fig. 16. For this purpose we apply an image enhancem
technique to the data of Fig. 8~d! in order to even out experi
mental contrast variations~inherent in the use of the STM
technique which measures electron charge density at the
face rather than nuclear coordinates! and to reduce experi
mental noise. The procedure is based on Fourier filtering
consists of taking a fast Fourier transform of the image, a
then enhancing obvious Bragg reflections with uniquek val-
ues and removing experimentally induced diffuse featu
due to noise. This modified frequency space representatio
then Fourier transformed to obtain the filtered image sho
in Fig. 16~a!. The result of this procedure is to strongly e
hance features in the image corresponding to the selectk
values. The procedure is essentially identical to that used
Soltmann and Beeli in the enhancement of high-resolut
transmission electron microscopy~HRTEM! images.45

In the enhanced image the white spots that we interpre
the images of atomic positions are almost as sharp as in
model planeq-1024 from theC termination; see Fig. 10~b!.
We find a patch of exact P1 tiling of edge length 7
60.2 Å that can be easily superimposed on the enhan
image; see Fig. 16~a!. Figure 16~b! shows this tiling super-
imposed on the unenhanced STM image.

C. Densities of fivefold planes and terminations

In Table II we compare the densities of theR, C, and S8
terminations and also the densities of single (q andb) planes
contained in each termination on the old and new positio
It is evident that the densities of terminations on thenew
positions give a better fit to the LEED result of Giereret
al.,14 an average density of 0.136 atoms per Å2. We see that
theC and S8 terminations contain topq planes that are much
more dense compared to the topq plane of theR termination.
The STM images of theC and S8 terminations show tha
they are continuously clear. Another fact is that the topq
plane of both (C and S8! terminations are on similar relativ

TABLE II. Densities onold andnewpositions of theR, S8, and
C terminations~shifted by24.08 Å). Following Giereret al. ~Ref.
14! terminationcontains two planes on the surface, and inM its
density isr (q1b)5r (q)1r (b) ; see Sec. II D.

Termination R S8 C Average

No. (Plq
old) 177 192 174

z'@t2e# 20.019 20.131 20.150

r (q)
old @Å22# 0.087 0.084 0.082

r (b)
old @Å22# 0.026 0.008 0.007

r (q1b)
old @Å22# 0.113 0.092 0.089 0.098

No. (Plq
new) 178 193 175

z'@t2e# 0.323 0.211 0.192

r (q)
new @Å22# 0.059 0.073 0.076

r (b)
new @Å22# 0.076 0.063 0.060

r (q1b)
new @Å22# 0.135 0.136 0.136 0.136
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Z. PAPADOPOLOSet al. PHYSICAL REVIEW B 66, 184207 ~2002!
positions in the bulk with respect to the layers of Bergm
polytopes~compare Fig. 13!: a dense layer (B1) is below the
plane, a middle dense layer (B8) is dissected by the plane
and a layer of low density (B9) is above the plane.

V. CONCLUSIONS

We have presented two atomically resolved, hig
resolution STM images of large and flat terraces on the fi
fold Al70Pd21Mn9 surface. We have mapped these surfa
onto the fivefold terminations in the geometric modelM
such that they form a decorated Fibonacci sequence,
their average atomic density is in agreement with the LE
measurements of Giereret al.14 Due to the polytopal win-
dows of the geometric modelM, all terminations turn out to
haveequaland simultaneouslymaximaldensities. These new
terminations inM are placed 4.08 Å lower than in the wor
of Ref. 19. In the present STM images the dark pentag
appear as the dark stars. At the new positions of the mo
termination planes the patterns of dark pentagonal holes
the same as in Ref. 19 but now each dark hole is of
appropriate size. At the new positions the surface term
tions dissect the most dense Bergman layers in the m
M. The local patterns in STM images are present in
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