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Local structure, fluctuations, and freezing in two dimensions
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Starting from the concept of local solidlike order in two-dimensional~2D! liquids we introduce and quantify
the corresponding ensembles of fluctuations, using a probabilistic-based method of local-structure analysis
~LSA!. A systematic LSA~including size dependence! was performed for a hard disk and 2D Lennard-Jones
systems, simulated using Monte Carlo and molecular-dynamics methods. We find that the onset of freezing is
accompanied by a dramatic crossover between ensembles of fluctuations. Some universal features related to the
onset of freezing in two dimensions are found and corresponding freezing criteria are formulated:~i! the liquid
starts to freeze when the concentration of solidlike atoms constitutes 0.50–0.56, and~ii ! a Lindemann-like
freezing criterion: the rms fluctuation constitutes, at the onset, 0.12–0.13. Those criteria offer an effective
method for a localization of the onset of freezing in computer simulations. We point out, in this context, that
in computer simulations there is a possibility that all quantitative characterizations of the onset of freezing are
related to a metastable range. This important methodological topic is discussed briefly in the light of recent
results both for 2D and 3D systems.
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I. PHASE DIAGRAMS, LOCAL ORDER, AND
FLUCTUATIONS IN CONDENSED MATTER: AN OUTLINE

The liquid-crystal phase transition has been the objec
numerous experiments and theoretical studies; more rece
increased computer power allows one to study liquids us
computer simulations with realistic potentials. Particular
the position of the melting and crystallization lines in t
thermodynamic (T-r) plane can be predicted. Here,T is the
temperature andr the particle density. The most challengin
question is that of the nature of changes in the local
global structure of the system at melting/crystallization,
lated to the general question of the liquid structure. In t
paper we concentrate on two-dimensional~2D! systems,
which are known1 to exhibit some peculiarities as compar
to ordinary 3D matter. The origin of special features of 2
liquids lies in large~as compared to the 3D case! long-
wavelength fluctuations. We study two simplest models
the 2D melting/freezing transition, the hard disk fluid a
Lennard-Jones~LJ! fluid. The strictly 2D LJ systems hav
been intensively studied by various theoretical approache2–6

as well as by computer simulations.3–7 In general, the phase
diagram for 2D LJ systems is quite well known. It exhib
2D counterparts of all familiar states of matter in thre
dimensional space: gas, liquid, and solid. The triple po
temperature has been estimated quite accurately as equ
Tt* 50.4060.015.3,8 The reduced temperature isT*
5kBT/«, wherekB stands for the Boltzmann constant and«
sets the energy scale for the Lennard-Jones potential. E
ing estimations of the critical temperature9,10 are much less
conclusive, because of well-known difficulties with interpr
tation of computer simulation results in the vicinity o
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second-order phase transitions. An up-to-date discussio
this topic can be found in Ref. 11. Freezing/melting pheno
ena in 2D hard disk systems are reviewed in Refs. 12–2

The special role of long-range fluctuations in 2D order
systems was revealed in the papers, published in the 19
by Peierls29 and Landau.30 They argued that truly long-
ranged positional order cannot exist in two-dimensional s
tems. This was rigorously proven later by Mermin a
Wagner.31 In the 1970s, Kosterlitz and Thouless32 and
Berezinskii33 proposed a theory of dislocation-mediate
melting for two-dimensional systems, later developed
Halperin and Nelson34,35and by Young@Kosterlitz-Thouless-
Halperin-Nelson-Young~KTHNY !#.36 The KTHNY theory
confirms that 2D systems may posses only quasi-long-ran
positional order, characterized by algebraic decay of the t
particle correlation function, and predicts a two-step melt
in two dimensions, via two continuous phase transitions, fi
to a hexatic phase characterized by a crystalline local o
and some density of paired and free defects, and then
liquid state. The local structure of this liquid state may diff
from what is assumed in the KTHNY theory, making th
description of the ‘‘true’’ melting inaccurate. Other theorie
of 2D systems37–40 predict a ‘‘usual’’ first-order melting in
2D systems. The concept of first-order melting was ad
cated by Abraham,7,41 who argued that the loss of position
order is negligible in real systems due to the
limited, though macroscopic, size. Some other theoret
approaches can be found in Refs. 42–44. Compu
simulations1,7,8,19,22,25–27,41,45,46 and physical experi-
ments47–51 do not give conclusive results regarding the im
portant question of melting in two dimensions. Very rece
simulations of a hard disk liquid are compatible with a tw
©2002 The American Physical Society02-1
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continuous transitions scenario. Nevertheless, the possib
of a ~very weak! first-order transition from liquid to crysta
cannot be firmly ruled out.28 In both cases there exists tw
densities,r l,rs , which separate liquid and crystal phase
In the former case, at those densities continuous phase
sitions take place;r l andrs determine the boundaries of th
hexatic phase. In the later case,r l and rs determine the
boundaries of the solid-liquid coexistence region; they
called liquidus and solidus densities, respectively.

Our study is focused on the onset of freezing, i.e.,
phenomena taking place close to the densityr l both in the
liquid phase and in the transition region~hexatic phase or
coexistence region!. For historical reasons we interpret th
occurring phenomena using the terms of liquidus, solid
and liquid-solid coexistence, which by no way excludes
quite probable, in light of Ref. 28, KTHNY scenario. No
that a study of long-range correlations in the hexatic ph
requires massive simulations of systems much larger t
those considered in our study. While elaborate and effec
methods for calculation of the phase diagrams in comp
simulations were worked out, a sound understanding of w
actually happens in the coexistence region is still a ch
lenge. Therefore, to clarify the physical picture of a freez
transition is important; only when this task is completed c
one introduce appropriate physical quantities that charac
ize freezing phenomenon in computer simulations.

Lever-rule-like arguments~see, e.g., Ref. 52!, various
thermodynamic integration schemes and integral equa
approaches for studying the phase diagrams, allow to ca
late the thermodynamic properties. We are, however, in
ested in understanding the changes in the local structur
the coexistence region. This aspect of a freezing is very
portant both from material science and theoretical points
view. We discuss briefly the two main concepts related to
local structure, that of ideal local structure, and fluctuatio
of the structure.

The hypothesis of local order in liquids has a long histo
Numerous experimental results yielding indirect proof of t
existence of some kind of local order in liquids have resul
in local-order hypotheses formulated years ago at vari
qualitative and quantitative levels, see, e.g., Refs. 53 and
A qualitative description of a typical liquid configuration
based on the concept of solidlike clusters, was formulated
Frenkel,55 who underlined their kinetic rather than therm
dynamic character. The quantification of those ideas in te
of particle correlation functions is rather difficult. Bot
computer-based calculations56,57 and experimental58–61 mea-
surements of triple correlation functions are technically v
difficult. As a rule,62 liquid is described in terms of a pair
correlation functiong2(r ) only, which contains little infor-
mation about local symmetries. This technical problem lim
the area of physical effects studied within statistic
mechanics methods in liquids, in comparison to solids.
point out that solid-state physics owes a rich variety
physical effects to the underlying concept of the symmetry
the crystalline lattice~Curie principle!. The question whethe
the physics of liquids is actually much more rich than ph
ics described in terms ofg2(r ) remains open. A liquid with
local order is globally disordered; recent progress in dis
18420
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dered systems might justify efforts to construct theories
liquids based on concepts of local symmetries, reminding
local symmetries in field theories. Ideas of this kind has le
to the concept of structural discontinuous liquid-liquid pha
transitions,63 reported in experiments64 and simulations,65

taking place not only in classical systems, but also in
vortex matter.66

One of the ways out of this difficulty is an introduction,a
priori , of local-structure order parameters. The attempts o
quantification of the concepts of Frenkel in the language
fields of local-order tensor parameters and effect
Hamiltonians67–69have initialized statistical-mechanics trea
ment of equilibrium liquids as locally ordered matter. In tw
dimensions it is KTHNY theory; in three dimensions
theory was formulated,70 but quantitative analysis is still a
challenge. An explicit form of an order parameter depen
on physical assumptions concerning details of the lo
structure. Starting from noncrystalline patterns based
icosahedron, much progress in understanding structure
glasses, metallic glasses, and undercooled liquids71–74 was
achieved. On the other hand, studies based on local cry
line order69,75 have contributed to a better understanding
some general features connected with melting~see, e.g., Ref.
76!.

The second aspect of the local order in liquids is tha
manifests itself in the presence of strong fluctuations, so
a physically meaningful definition and practical recogniti
of this order is far from being a trivial task. Intuitively, on
expects the order in a small cluster to represent a spe
arrangement of particles. For example, in a hard sphere
3D LJ system, one looks for icosahedric, fcc, or hcp struct
in a 13-particle cluster that includes a central particle and
first coordination shell.71 With this assumption, one repre
sents the physical positions of particles in the cluster in te
of small displacements from their ideal positions in the
rangement.

If the idea of an ideal local order is accepted, it imme
ately invokes the next question: how many different ide
structures are necessary to describe all the local situation
the liquid? Introduction of the minimal full set of ideal loca
structures results in a natural division of the configurat
space of a cluster into domains representing the ideal st
tures; each domain includes, together with an ideal struct
all fluctuations of this structure. The ensembles of those fl
tuations play a decisive role in determination of local a
global physical properties of the system.

Those general ideas and, in particular, the role of vari
ensembles of the fluctuations, are readily applied to su
cooled liquids and glasses. In those systems, a particl
assumed to vibrate in a relatively stable cage made by
rounding particles. The lifetime of this cage is much larg
than the vibration period. The particle and its cage constit
the smallest cluster that can be described in terms of st
ture. At low temperatures and high pressures, in superco
metastable liquids, various ideal configurations of the clus
are separated by high enough energy barriers, and the
time of a chosen local structure in a cluster becomes v
large compared to the particle vibration period. A drama
increase of the local-order lifetime is seen in the increase
2-2
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viscosity and in the rapid shift of thea-peak frequency upon
supercooling in glass formers.77 For those systems, a class
fication of typical configurations as fluctuations around co
figurations corresponding to local minima of the energy c
be done using the energy landscape picture in the theor
the liquid state, see, e.g. Ref. 76. The Hamiltonian assig
potential energy to each point of the configuration space
general, the energy landscape is assumed to have many
minima of the potential energy and barriers intervening
tween them. The division of the configuration space into
sins of attraction, closely related to the concept of inher
structures,78 provides a basis for a classification of typic
configurations. A physical picture of the process of chang
the basin was formulated in terms of local rearrangemen
glassy materials.79 The problem of an ensemble of the flu
tuations in one basin was studied recently;80 the interbasin
fluctuations were analyzed in Ref. 81. The crossover betw
various types of ensembles is one of the most important
ics in the physics of supercooled liquids and glasses.

The situation for the equilibrium liquids is more difficul
At higher temperatures the fluctuations are larger, and la
parts of the configuration space have to be taken into
count, leading to difficulties with the concept of a typic
configuration in a liquid. On the other hand, one expe
intuitively that the ensembles describing the fluctuations
liquid and solid differ noticeably. In this case, freezin
should be accompanied by a dramatic crossover betw
them. Thus, finding a quantitative measure for those
sembles constitutes an important task for equilibrium liqui
which may cast some light onto the physics of the coex
ence region.

The above considerations applied to 3D equilibrium l
uids have rather a speculative character. In two dimens
the situation is quite different. Local-structure analysis
various 2D liquids, based on probabilistic concepts discus
in the next section, has revealed a high concentration of lo
solidlike structures close to the two-phase region25,82,83~see
also Ref. 76!. Thus, at least for those solidlike structures, o
can~hopefully! introduce ensembles of fluctuations and an
lyze their behavior in the coexistence region. The emerg
hypothetical physical picture looks as follows. Two impo
tant processes occur at 2D freezing. First, the concentra
of solidlike structures just continues to increase. Second,
character of the fluctuations of the atoms constituting so
like structures changes from a liquidlike-type to a solidlik
type. In a 2D solid, long-wavelength phonons play a cruc
role ~actually, they lead to a restoration of translational sy
metry in the thermodynamic limit!. Density of those phonon
states is proportional to the wavelength vectork (k!1/a,
wherea stands for the lattice constant!, to be compared with
k2 in three dimensions. Thus, a highly correlated motion
small groups of the atoms is expected to occur to a m
higher extent than in 3D solids. Contrary to the case o
solid, a quantification of an ensemble for a liquid requir
sound physical assumptions. We deal with this task only
the local solidlike part of the liquid. Under the assumpti
that only short-range correlations between the motions
atoms are present in this part of a liquid, we introduce
ensemble of independent Gaussian fluctuations~IGF! for the
18420
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description of the movements of the atoms belonging to
cally solidlike ordered structures. In this scenario, freez
corresponds to a breakdown of IGF, because of a rapid o
of correlations between the fluctuations, typical for 2D s
ids. Since those correlations are strong in a solid phase,
breakdown may have a well-defined, spectacular chara
and may provide means, complementary to the existing o
oriented to localization of the freezing in computer simu
tions.

The aim of this paper is to propose an effective meth
for a localization of the onset of freezing in two dimension
starting from fluctuation-oriented physical arguments ba
on local-structure features of two-dimensional liquids.

The paper is organized as follows. In the next section
present briefly the method for local-structure analysis in
liquids. Section III is devoted to a study of various loca
structure aspects of freezing in a liquid of hard disks;
analogous study for a 2D LJ liquid~along various paths in
ther-T plane! is presented in Sec. IV. The emerging physic
picture is discussed in Sec. V, in particular, the aspect
applications for an effective localization of an onset of free
ing in 2D liquids.

II. LOCAL-STRUCTURE ANALYSIS „LSA…

Local order in a 2D system in the neighborhood of
atom located at the pointrW is described by a 2D local versio
of the bond-order parameter of Nelsonet al.:68,71,82

Q6m~rW !5
1

N0
(
i 51

N0

Y6m~p/2,f i !, ~1!

whereY6m(u,f)(m526, . . . ,6) denotes the spherical ha
monic function, where the sum is taken over theN0 nearest
neighbors of the atom located at the pointrW, and the pair of
azimuthal and polar angles, (u i ,f i), describes the direction
between the central atomrW and itsi th nearest neighbor. The
invariantQ(rW) for an (N011)-atom cluster with the centra
atom atrW is defined as71,82

Q2~rW !5
4p

13 (
m526

6

uQ6m~rW !u2. ~2!

In the spirit of the method of analysis of local 2
structures,82,25,83 we use two patterns as the candidates
the local structure in the system. PatternG6 is a 2D hexagon,
i.e., a N01157-atom cluster from a 2D triangular lattice
The nearest-neighbor distance is taken as the unit of len
PatternG5 is a seven-atom cluster centered around a fi
coordinated atom~disclination in a 2D triangular lattice!.
Fluctuating patternsG6 andG5 are described in terms of th
probability density functions~PDF! r6(Q,j) and r5(Q,j).
Following the arguments presented above, we use an in
pendent Gaussian ensemble for the modeling of the fluc
tions of the atoms. Each of the six neighbors of the cen
particle fluctuates independently of the other atoms, acco
ing to a Gaussian distribution
2-3
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P~dr ;j!5
1

jAp
exp@2~dr !2/j2#, ~3!

with random displacement vectorsdr and root-mean-squar
~rms! displacementj. The resulting PDFr6(Q,j) and
r5(Q,j) for G6 andG5, respectively, are then dependent
the amplitudej of the fluctuations. The role of the average
~over the atoms! root-mean-square displacement in our sim

lation of patterns is played by quantityA(DrW)25j/A2.25,83

The statistics of invariantQ in the trial configuration is
described by PDFr(Q) which are approximated by the his
togram of the random variableQ, calculated from the set o
data$Q(rW i)%,i 51, . . . ,N, whereN denotes the total numbe
of the atoms in the configuration.

The analysis of local structures is done using the meth
of mathematical statistics.82 We assume thatr(Q) depends
linearly on PDFrk(Q,jk)(k55,6):

r~Q!5 (
k55,6

ckrk~Q,jk!. ~4!

The ‘‘best’’ decomposition~4! is obtained by maximizing the
significance level

a~c5 ,c6 ,j5 ,j6! ~c51c651,c5 ,c6>0!,

calculated from ax2-test ~see, e.g., Ref. 84! verification of
the hypothesis which states that the data corresponding to
left-hand side and the right-hand side of Eq.~4! are drawn
from the same distribution. Very small values ofa ~of order
of 1026 and smaller! indicate that the decomposition~4! is
statistically not reliable. Significance levela plays a central
role in our analysis of ensembles of fluctuations.

Each seven-atom cluster can be identified as a fluctua
either of the patternG5 or G6 via a maximal probability
decision rule ~MPDR!.82,85 It states that a trial cluste
with Q5Q* is a fluctuation ofG6 whenQ* >Q0, for some
fixed value of Q0. The central atom of such a cluster
called a solidlike atom; the remaining atoms in the liquid a
called liquidlike. In the present paper we are interested o
in the properties of solidlike atoms. Thus, if not otherwi
stated, in the context of LSA the concepts of atoms and t
fluctuations refer only to solidlike atoms and their fluctu
tions.

The MPDR-based classification has a probabilistic ch
acter. The total probability of a false classification, a fluctu
tion of patternG5 as a fluctuation of patternG6 and vice
versa, is given by the degree of overlap of the correspond
PDF:

E~j5 ,j6!5E min@r5~Q,j5!,r6~Q,j6!#dQ. ~5!

E(j5 ,j6) is a measure of structural identity of two fluctua
ing patterns. When the overlap is small then the probab
of a false classification is also small and fluctuating str
tures preserve their structural identity. With increasing flu
tuation level the overlap of the PDF increases and the st
tural identity of fluctuating patterns is gradually lost. Mo
information on mathematical aspects of structural iden
18420
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can be found in Ref. 85. In our simulations, the probabil
of an erroneous classification of a non-solid-like atom a
solidlike one is small; on the liquidus line it is approximate
equal to 0.07. In this sense the fluctuating local solidl
structure is well defined~see also in Ref. 83, where the plo
of PDF are presented!.

III. HARD DISKS

A system ofN54096 hard disks at constant volume w
simulated using the standard Metropolis Monte Ca
method.86,87The details of the simulations were presented
Ref. 25. For the densities spanning the interval from lo
density liquid to high-density solid, the concentrationc6(r* )
was found (r* 5s2r, wheres denotes the hard disk diam
eter!. The plot, cf. Fig. 1 in Ref. 25, consisted, for interm
diate densities, of three nearly linear parts~Fig. 2 in Ref. 25!.
The intersection of their linear extrapolation has lead to g
erous boundsr l* .0.882,rs* .0.912 for the coexistence re
gion between the liquid and two-dimensional solid. The
timate was consistent with previous results obtained fo
constant-volume ensemble.12,19,21The midpoint of the coex-
istence regionrM* .0.897 is the density at which the liqui
and solid phases contribute with equal weight to the lo
solidlike structure in the coexistence regime. This value
close to the valuer* .0.899 obtained using the cumulan
intersection method in Ref. 21~see also Ref. 22! developed
for an estimation of the density at which the two coexisti
phases contribute with equal weight to the system under
existence.

LSA-based analysis of fluctuations in the liquid is do
using the significance level. Figure 1 demonstrates a sp
tacular breakdown of the IGF as the density increases.
plot of loga(r* ), calculated using 50 or 100 configuration
~the later for the densities 0.85<r* <0.93), displays two
regimes. For the densities lower thanr0* 50.884 the signifi-
cance level shows~within the statistical errors! no systematic
dependence on the density. It takes the values larger
1023, thus giving no ground to question the usefulness
IGF for solidlike atoms in liquid. The estimate forr0* was
calculated using linear fits to the data. This construction,
ing 50 configurations, is shown in the inset to Fig. 1. For t

FIG. 1. Plot of the logarithm of significance level, loga, against
the reduced densityr* for N54096 hard disks. Inset: The same fo
the densities close to the coexistence region.
2-4
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densities higher thanr0* the significance level decreases dr
matically as the density increases, e.g., for the density hig
by 4% thanr0* , the significance level drops to 1026. Small
values ofa rule out the applicability of IGF; one observes
dramatic crossover from IGF to another ensemble which
counts for the correlations typical for the atoms in solids,
agreement with the scenario discussed in the Introduct
The densityr0* 50.884 is very close to the estimated dens
at the liquidus liner l* .0.882. The meaning of this observ
tion is discussed in Sec. V A.

IV. LENNARD-JONES LIQUID

We analyze the freezing of the 2D LJ system alongr*
5const andT* 5const paths inr* -T* plane, see Fig. 2
Here,r* 5s2r, wheres is the length parameter of the L
potential. For constant-volume freezing studies we have c
sen two paths:r* 50.694 andr* 50.833. The former den
sity is smaller and the latter larger than the density of
triple point r t* 50.79.45 The constant-temperature studi
were made at the temperatureT* 50.7, i.e., well above the
critical-point temperature.

The systems of constant densityr* were simulated via a
standard NVT Monte Carlo method. For thermalization 16

253106 Monte Carlo steps~MCS’s! ~1 MCS corresponds
to one sweep over all particles! were used and the equilib
rium parameters were calculated using 531062107 MCS.
The results of local-structure analysis were averaged ove
statistically independent configurations. On the other ha
systems lying alongT* 5const paths were simulated via
standard NVT molecular-dynamics~MD! method,87 using a
velocity Verlet algorithm with a time stept050.064t, where
the time unitt50.3113 ps. Long-range corrections for p
tential energy and pressure were used; the potential cu

FIG. 2. The paths in ther* 2T* plane along which the freezing
of a 2D LJ liquid was studied. The phase diagram is taken from R
11 after Ref. 45.
18420
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was chosen to be 2.5s. We have studiedN52500 atoms.
The equilibrium characteristics were sampled after 50
equilibration steps. The local-structure parameters were
eraged over 50 configurations.

A. MD simulation results at T*Ä0.7

The plot of the concentration of solidlike atomsc6 against
the density is shown in Fig. 3. As in the case of hard disk25

it displays three different regimes. For the density close
but lower than,r l* 50.825, a linear regime is present. In
narrow intervalr l* ,r* ,rs* 50.87 another linear regime
with a much steeper slope, sets in. At still higher densit
the effects of the saturation appear. The valuesr l* ,rs* were
calculated using linear fits to the three regimes, as show
the inset to Fig. 3. This procedure is more reliable for e
mating r l* than rs* . The coexistence interval~0.825,0.87!
calculated in this way is in good agreement with the inter
~0.82,0.88! found using linear extrapolation of the data pr
sented in the phase diagram in Ref. 7. The concentration
the boundaries of the two-phase region arec6(r l* )50.53 and
c6(rs* )50.86.

The model ensemble of the fluctuations for solidlike
oms in a 2D liquid is characterized by the amplitudej6 @cf.
Eq. ~3!#; its reliability for this description is given by the
significance levela. The plot of the amplitude, see the ins
~b! to Fig. 4, shows two regimes of behavior. At low dens
ties, r* ,0.78, no systematic dependence on the densit
present. Whenr* .0.78 the amplitude decreases linear
with density. The value ofr* 50.78 was calculated from the
intersection of the extrapolation of linear parts of the pl
Because of relatively large statistical errors, this res
should be treated with some care.

The significance level analysis displays an abrupt bre
down of the IGF, see Fig. 4. The plot shows two linear
gimes; a crossover from one to another occurs in close
cinity to the densityr0* 50.837, calculated using linea
extrapolation@see the inset~a! to Fig. 4#. At r* ,r0* the
significance level is independent of the density~within the
statistical errors! and takes the values larger than 1021, im-

f.

FIG. 3. Plot of the concentration of solidlike atomsc6 against
reduced densityr* for a 2D LJ system of 2500 atoms atT*
50.7. Inset: the same for the density close to the coexistence
gion.
2-5
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plying that the IGF can be safely used for that part of
phase diagram. On the contrary,a decreases strongly fo
higher densities. For example, on the solidus line,a(rs*
50.87).1027. For this density the IGF no more reliabl
describe the fluctuations of the solidlike atoms. Simila
as in the case of hard disks, a crossover to non-IGF ta
place.

B. MC simulation results for r*Ä0.694

The snapshots of the configurations of the 3598-atom
tem ~Fig. 5! show three different situations. For temperatu
below the triple pointTt* 50.4 the pathr* 50.694 lies in the
gas-solid coexistence region@Fig. 5~a!#. At Tt* three phases
gas, liquid, and solid, are present@Fig. 5~b!#. Finally, for
temperatures slightly higher thanTt* @Fig. 5~c!# the path lies
in the gas-liquid coexistence region. Strictly speaking,
process, which occurs as the temperature decreases b
Tt* , is not freezing but rather a kind of a spinodal decomp
sition.

At freezing both liquid and solid phases coexist and in o
case there is no liquid phase belowTt* . The thermodynamic
properties of the gas phase below and aboveTt* change con-
tinuously with temperature. On the contrary, atTt* the prop-
erties of the corresponding coexisting phases, liquid
solid, undergo~in the thermodynamic limit! discontinuous
changes.

For sufficiently large systems, the plot of the average
ergy per atom~Fig. 6! exhibits a very steep slope in th
vicinity of Tt* and the heat capacity displays a very sha
d-like peak localized aroundTt* . Its height increases with
the increase of the size of the system. The quasidiscontin
at Tt* is also well documented through the plot of the av
age nearest-neighbor distance^r nn& against temperature, se
the inset to Fig. 7. Finally, the results of local neighborho
analysis via Voronoi construction are shown in Fig. 7. S
prisingly, the plots are rather smooth which makes a sh
localization ofTt* rather difficult. One can speculate that
lies in the interval@0.39,0.42#. The fact that this widely used

FIG. 4. Plot of the significance level loga against reduced den
sity r* for a 2D LJ system of 2500 atoms atT* 50.7. Inset~a!:
the same for the density close to the coexistence region. I
~b!: plot of the amplitude of the fluctuationsj6 against reduced
densityr* .
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method for studies of local structure fails to reproduce
quasidiscontinuous behavior of the system is a direct m
festation of the relatively weak sensitivity of the loca
structure topology in two dimensions against the level
fluctuations.

Local-structure analysis provides also an important inf
mation concerning the character of fluctuations. The conc
tration c6 of solidlike atoms is plotted against the temper
ture in Fig. 8~a! for several system sizes and shows only
weak size dependence. Each of the plots is quasidiscon
ous at Tt* ; the concentration changes from 0.5–0.55

et

FIG. 5. Snapshots of configuration atr* 50.694, for T*
50.35 ~a!, T* 5Tt* 50.4 ~b!, andT* 50.45 ~c!, for the system of
3598 LJ atoms.
2-6
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0.75–0.80. The plots Figs. 8~b! and 8~c!, characterize the
changes of ensembles of fluctuations atTt* . The amplitude
of the fluctuationsj6, Fig. 8~b!, displays three regimes. Fo
T* ,Tt* the amplitude is lower than 0.14 and decreases w
decreasing temperature. In a close vicinity ofTt* we find a
linear regime, with a very steep slope, which can be in
preted as reminiscent of a discontinuity.j6 undergoes a rapid
change from 0.14 to 0.16–0.18. At still higher temperature
linear dependence sets in. Also here, a systematic size de
dence is weak. Figure 8~c! shows the results which demon
strate the dramatic crossover between different ensemble
fluctuations. Because of a strong, systematic dependenc
the significance level on the number of atomsN, we plot a
rescaled significance levelAN loga instead of loga. We
have usedA111156, A173654, A250052, andA359851. At
the temperatures higher thanTt* a logarithm of the signifi-
cance level loga is practically temperature independent a
takes on the values larger than22. In a very close vicinity

FIG. 6. Average reduced energy^e* & per atom (e* 5e/e) as a
function of the temperature for a few sizes of the LJ system atr*
50.694.

FIG. 7. Plot of the average number^pk& of k5five ~circles!, six
~squares!, and seven~diamonds! polygons in Voronoi construction
against temperature for the LJ system of 3598 atoms atr*
50.694. Inset: Plot of the average distance^r nn& between neares
neighbors against temperature for different sizes of the syste
the same density.
18420
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of Tt* an abrupt, quasidiscontinuous drop of loga occurs. It
it then followed by a further decrease at still lower tempe
tures. Here, two facts are important. First, a quasidiscont
ous behavior is present. Secondly, there is rather system
dependence of the results on the size of the system. The
in loga increases for larger system sizes. The value of
significance level in the lower end of the gap decreases w
increasing size of the system: for1111atoms it is equal to
22 while for 3598 atoms it is213. Thus, for the small
system~1111 atoms! the decomposition~4! is statistically
reliable atT* ,Tt* close toTt* , while in the case of larger
systems~2500 and 3598 atoms! it is not. In close vicinity to
Tt* , one observes a qualitative change in the behavior of
significance level. ForT* .Tt* the Gaussian fluctuations, c
Eq. ~3!, serve as a satisfactory approximation to the fluct
tions of solidlike atoms in the liquid. On the contrary, tho
fluctuations yield a nonsatisfactory significance level
T* ,Tt* and thus have to be rejected. Here, the situation
analogous to the crossover discussed in Secs. III and IV
at

FIG. 8. Local-structure-analysis results for LJ at the dens
r* 50.694 for a few system sizesN: 1111 ~diamonds!, 1736
~circles!, 2500 ~triangles!, and 3598~squares!. ~a!–~c! show the
temperature changes ofc6 , j6, and of the rescaled significanc
level ~see text! AN log a, respectively.
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The only difference is due to the fact that the system s
changes discontinuously from that corresponding to the
quidus line to the solidus line, as the temperature cros
Tt* .

C. MC simulation results for r*Ä0.833

The densityr* 50.833 is considerably larger than th
triple point density and lies in the solid-liquid coexisten
region, atT* .Tt* , or in the solid-gas coexistence region,
T* ,Tt* . Figures 9~a! and 9~b! present the temperatur
changes of the average energy and the heat capacity~per
atom!, respectively. Contrary to the case ofr* 50.694, we
do not find any systematic dependence of those quantitie
the system size. The energy changes smoothly with temp
ture and offers no ground for identifying the freezing poi
Heat capacity displays a broad maximum centered aro
T* 50.65. Standard structural characteristics give a sligh
higher temperature of the freezing point. The plot of t
average nearest-neighbor distance,^r nn& ~see the inset to Fig
10!, possesses a well-developed linear piecewise chara
The extrapolation of those two parts of the linear regio
leads to the intersection point, which is located atT* 5 0.7.
A similar situation holds for the results of Voronoi analys
~Fig. 10!. The two linear parts change their slopes at
temperature close toT* 50.7.

Local-structure analysis yields interesting results. T
plots of the concentrationc6 against the temperature forN
5750, 1333, and 3630, shown in Fig. 11~a!, display two
linear regimes of different slopes. The change of the sl
increases slightly with the system size. The linearly extra
lated plots intersect atTl* located in the interval@0.72,0.75#
and the corresponding concentrationsc6(Tl* )P@0.52,0.55#.
At the temperatures below the intersection point we do

FIG. 9. Plots of average energy^e* & per atom~a! and of the
heat capacity at constant volume~b! against the temperature fo
different LJ system sizes atr* 50.833.
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find any saturation effects, which evidently take place at te
peratures lower than those used in our simulations.

Figures 11~b! and 11~c! characterize the crossover b
tween the ensembles of the fluctuations. The plot of the a
plitude of the fluctuationsj6(T* ), Fig. 11~b!, displays three
linear regimes. The slopes at high (T* .Tl ,j* ) and low (T*
,Ts,j* ) temperatures are nearly equal and are both sma
than the slope atTs,j* ,T* ,Tl ,j* . The change of the slope
makes possible a reliable identification of the temperat
Tl ,j* , which lies in the interval@0.7,0.75#.

Both c6 andj6 exhibit only weak size dependence effec
On the contrary, the analysis of the significance levela
yields, as in the previously studied cases, strongN depen-
dence. In Fig. 11~c! we show the plots ofAN loga with
A75059, A133354, and A363051. At high temperatures
@T* .T0* , cf. Fig. 11~c!# loga(T* ) is practicallyN indepen-
dent and assumes the values higher than23, which indi-
cates that the model IGF are acceptable. ForT* ,T0* the
significance level decreases strongly with decreasing t
perature. The crossover between those regimes is quite
defined and takes place at the temperature 0.72,T0* ,0.74.
Note a good coincidence of the estimated temperaturesTl* ,
Tl ,j* , and T0* , which corresponds to the onset of physic
processes related to the changes of the fluid local struct
The slopes of the linear plots forT* ,T0* are stronglyN
dependent. Even at temperatures much lower thanT0* ~e.g.,
at T* 50.5) the significance levels for smaller systemsN
5750 and 1333! are not low enough to invalidate the IGF
On the contrary, for the system containing 3630 atoms,
significance level drops to the values smaller than 1026 at
the temperature equal to 0.9T0* , indicating clearly, as in the
cases previously studied, a crossover to non-IGF.

V. DISCUSSION

The main goal of this paper was to analyze the loc
structural properties of two-dimensional hard disks a
Lennard-Jones fluids in connection with freezing, using
probabilistic-based method of local-structure recognitio
The results clarify and systematize some of the structu

FIG. 10. Plot of the average number of^pk&, k5five ~empty
circles!, six ~filled circles!, and seven~diamonds! polygons in
Voronoi construction against temperature for a LJ system withN
53630 atr* 50.833. Inset: Plot of the average distance^r nn& be-
tween nearest neighbors against temperature for the same de
and number of atoms.
2-8
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LOCAL STRUCTURE, FLUCTUATIONS, AND FREEZING . . . PHYSICAL REVIEW B66, 184202 ~2002!
aspects of the behavior of 2D liquids close to as well
within the two-phase coexistence region. They include, in
methodological part,~i! an attempt to identify the structura
processes that accompany freezing in two dimensions
~ii ! a quantification of the concept of a sudden crosso
between different ensembles of fluctuations of atoms in
liquid and the solid states~more precisely, of the solidlike
component of the local structure in both phases!. This, in
turn, offers an intuitively attractive interpretation of the liqu
dus line. We have found some universal behavior relate
the onset of freezing, which in consequence leads to the
mulation of local-structure-based and Lindemann-like fre
ing criteria in two dimensions. On the other hand, our stud
offer some practical applications. Having, as physical ba
clearly defined concepts, our method offers an interes
approach to the analysis of phase diagrams in comp
simulations. One of its advantages is that satisfactory res
can be obtained from a small number of the configurati
recorded during the simulation run. In the case of a su

FIG. 11. Local-structure-analysis results for LJ at the den
r* 50.833 for a few system sizesN: 750 ~circles!, 1333~triangles!,
and 3630 ~squares!. ~a!–~c! show the temperature change
of c6 , j6, and of the rescaled significance level~see text! AN log a,
respectively.
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ciently large system size (N.2000 or more! reliable results
can be obtained from the analysis of a single configuration
more detailed discussion of those topics is presented be

First of all, however, let us briefly comment on the art
simulation of melting/freezing. Following accepted standa
in the literature~see, e.g., Ref. 28!, we just span certain
ranges of temperatures or densities. It has been corre
pointed out88,89 that such a way of simulations may, in som
cases, lead to serious discrepancies of results because o
sible overheating of simulated systems, originated by a s
nucleation in computer experiments. To overcome this di
culty, a promising two-phase method was invented.88,89It has
lead to a critical revision of simulation data, see, e.g.,
Refs. 90–94. Overheating may take place, however, in th
dimensions, where the melting/freezing is a strongly fir
order PT ~phase transition! and metastable states exist.
two dimensions the situation is quite different. Meltin
freezing of hard disks takes place either via two continuo
transitions or is a very weak first-order transition.28 In the
first case there are no hysteresis effects~overheating, super-
cooling! at all, in the second they are very small. We belie
that this is also true for a 2D LJ system, as a result of v
specific and general behavior of 2D systems discussed in
Introduction. For those reasons we think our simulations
sound. Moreover, most of our results correspond to a cl
vicinity of liquidus line ~or the line of transition from the
liquid to hexatic phase!, where the two-phase method cann
be directly used because of a specific ordering of atoms
2D liquid. Namely, close to this line the liquid is in a hig
degree locally ordered in a solidlike fashion.

A. Reliability of the localization of liquidus line via LSA

The coexistence region was localized using the plot of
concentrationc6 of solidlike atoms. Since we are mainl
interested in the onset and early stages of freezing, we
cuss the low-density or high-temperature boundary, i.e.,
liquidus line. The results are in fair agreement with oth
constant-volume simulations. For hard disks, LSA~Ref. 25!
yields r l* 50.882, and this should be compared with t
value of 0.880 reported in Refs. 12 and 21 and of 0.8
given in Ref. 19. The relative difference of the LSA resu
and other estimations ofr l* is smaller than 631023. For the
Lennard-Jones liquid atT* 50.7, the relative difference be
tween the LSA result,r l* 50.825, and the value,r l* 50.82,
estimated from the phase diagram7 again yields the relative
accuracy of 631023. Those numbers show that LSA loca
izes correctly the liquidus line. This important observati
allows us to make conclusions related to the physical na
of the onset of freezing.

B. Ensembles of fluctuations: crossover. Onset of freezing

The main methodological result of this paper is the qu
tification of the concept of a crossover between liquidli
and solidlike ensembles of the fluctuations of the atoms c
stituting the solidlike component of local structure in liquid
close to and in the two-phase region. The crossover m
fests itself in a dramatic change of the statistical param

y

2-9
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~significance level!, which determines the degree of re
evance of independent Gaussian fluctuations in the des
tion of the solidlike atoms in the system. The crossover
curs at a well-defined densityr0* or temperatureT0* . Two
regimes of totally different behavior were found. In the fir
one, corresponding either to constant temperature and d
ties belowr0* , or to constant density and temperatures ab
T0* , the significance level is density independent and ta
large values (102121023). Moreover, no systematic siz
dependence within that regime was found. The two ab
observations lead us to the conclusion that the indepen
Gaussian ensemble offers a good choice for the descrip
of the simulation data. In the second regime (T*
5const, r* .r0* or r* 5const,T* ,T0* ) the significance
level decreases strongly with increasing density or with
creasing temperature. The slope of the plot of loga shows a
very strong size dependence. For large systems, the sig
cance level decreases from large (102121022) to small
(,1026) values already in close vicinity tor0* or T0* . We
conclude that the IGF no longer offer a reasonable appr
mation to the fluctuations of the solidlike atoms. Here,
size dependence plays the decisive role: the increase o
system size increases the statistics, which in turn requ
more realistic ensembles to model the fluctuations of patte
of local structure. We believe that the failure of IGF
mainly due to the assumed statistical independence of fl
tuations of the atoms and not to the chosen Gaussian d
bution ~see a short discussion on 3D ensembles in Ref.!.

The pointsr0* and T0* , where the crossover occurs, l
close to the liquidus line. The distance to this line, relative
the width of the coexistence region, is given by the ra
dr[(r0* 2r l* )/(rs* 2r l* ), or dT[(Tl* 2T0* )/(Tl* 2Ts* ).
For hard disksdr50.07, while for 2D LJ liquid atr*
50.833 and for three different system sizes reported ab
dT,0.04 @we have used a very rough estimationTs* .0.5,
taken from the plot in Fig. 11~c!#. For 2D LJ liquid atT*
50.7 dr is higher: 0.2,dr,0.25. Note that all the result
discussed here were obtained using linear extrapola
which depends on the number of points analyzed and he
should be treated with some care. In general, we find a c
tendency: the points where the ensemble crossover occu
close to the liquidus line. This line, where~according to ther-
modynamics! the coexistence regime sets in~or the liquid-
hexatic transition occurs!, acquires a much more interestin
physical interpretation. Namely, it is a line at~or close to!
which a ‘‘truly-’’ solidlike behavior starts in the following
sense. On the liquid side of this line, but close to it, the liqu
has a large concentration, around 50%, of the solidlike ato
~see Sec. V C! and in the two-phase region this concentrati
just continues to increase. In other words, it is not the liq
dus line where the solidlike local structures start to appea
abundance. What changes in the system properties are
fluctuations, from uncorrelated, typical for gases, to hig
correlated, typical for 2D solids. We conclude that a 2D l
uid close to its liquidus line has both solidlike features~a
large concentration of local solidlike structures! and gaslike
features~fluctuations!. The onset of freezing is accompanie
by disappearance of gaslike features in the local solid
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component of a liquid. Those statements quantify simi
mostly qualitative concepts formulated earlier.55,53,54

Finally, let us comment on some aspects of the ene
distribution in the coexistence region. In standard thermo
namics, a point in a two-phase region represents a mixtur
different phases with weights given by the lever rule.52 In our
case the system has local structure and the situation is m
complicated. A dramatic decrease of the significance le
for large systems suggests that a solidlike ensemble se
rapidly, and not in a smoother way as suggested by the le
rule. This new ensemble governs the distribution of ene
between the solidlike degrees of freedom in the system.
total-energy relations in the system are thus determined b
solidlike behavior of local solidlike component and by a no
solid-like behavior of the remaining part of the syste
Those two regimes result in a complex behavior. In parti
lar, there is no reason to expecta priori that an overall mean-
square fluctuation of the energy, which is proportional to
heat capacity, displays some anomaly at the very onse
freezing. This conclusion is supported by the observat
made in Sec. IV C, where the maximum of the heat capa
appeared atT* .0.65, well below the temperaturesTl*
50.72–0.75.

C. Lindemann-like and concentration-based criteria of onset
of freezing in two dimensions

The onset of the freezing displays some universal featu
related to the amplitude of the fluctuationsj6 and the con-
centrationc6 of solidlike atoms. In this respect the case
r* 50.693 is of particular importance because~i! there is no
uncertainty accompanying the localization of the liquid
and solidus lines atTt* and~ii ! c6 andj6 undergo a~quasi-!
discontinuous change at this temperature. Thus, the value
c6 andj6 on both sides of the gap provide ‘‘unbiased’’ es
matesc6

( l ) , j6
( l ) andc6

(s) , j6
(s) of solidlike atom concentrations

and amplitudes of fluctuations on liquidus and solidus lin
respectively. We find j6

( l )50.17–0.18, j6
(s)50.14, c6

( l )

50.50–0.55, andc6
(s)50.75–0.80. If there is some unive

sality in local structures for various 2D liquids, then the co
responding values ofc6

( l ) and j6
( l ) should fall into those in-

tervals.
We find, for the liquids analyzed here, that the concen

tions of solidlike atoms, on the liquidus line, lie in a narro
interval: c6

( l )50.56 ~hard disks!, 0.53 ~LJ, T* 50.7), and
0.52–0.55~LJ, r* 50.833). The statistical error is, as a rul
smaller than60.01. Those results suggest a universal cr
rion of the onset of freezing in two dimensions:

c6
( l )P@0.50,0.56#. ~6!

The thumbrule criterionc6
( l )50.50 was first formulated in

Ref. 83 using heuristic lever-rule arguments.
The result~6! offers a very interesting interpretation o

freezing in two dimensions as a percolation process in v
of the fact that on a regular triangular lattice the site per
lation threshold is exactly 0.5.95 According to a simple
scenario96 percolating structures propagate a shear str
through the system, giving rise to a solidlike response of
2-10
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system to an external static~or low-frequency! strain. Further
discussion of this topic goes beyond the scope of this pa

The level of fluctuations also shows an universal beh
ior. We findj6

( l )50.17~hard disks!, 0.175~LJ, T* 50.7), and
0.17–0.18~LJ, r* 50.833). This suggests a Lindemann-lik
freezing criterion in two dimensions:j6

( l )P@0.17,0.18# at the
onset of freezing. Since an average fluctuation per atom

given by A(DrW)25j6 /A2 ~Sec. II!, the Lindemann-like
freezing criterion finally takes the form
hy

.

e

Le

at

18420
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A~DrW !2P@0.12,0.13#. ~7!
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44V. N. Ryzhov, Zh. Éksp. Teor. Fiz.100, 1627~1991! @Sov. Phys.

JETP73, 899 ~1991!#; V. N. Ryzhow and E. E. Tareyeva, Phy
Rev. B51, 8789~1995!.

45J. M. Phillips, L. W. Bruch, and R. D. Murphy, J. Chem. Phys.75
~10!, 5097~1981!.

46C. Udink and J. van der Elsken, Phys. Rev. B35, 279 ~1987!.
47P. A. Heiney, P. W. Stephans, R. J. Birgeneau, M. P. Horn, and

E. Moncton, Phys. Rev. B28, 6416~1983!.
48S. E. Nagler, P. M. Horn, T. F. Rosenbaum, R. J. Birgeneau,

Sutton, S. G. J. Mochrie, D. E. Moncton, and R. Clarke, Ph
Rev. B32, 7373~1983!.

49J. P. McTague, J. Als-Nielsen, J. Bohr, and M. Nielsen, Phys. R
B 25, 7765~1982!.

50A. D. Migone, Z. R. Li, and M. H. W. Chan, Phys. Rev. Lett.53,
1133 ~1984!.

51J. A. Litzinger and G. A. Steward, inOrdering in Two Dimen-
sions, edited by S. K. Sinha~North-Holland, Amsterdam, 1980!,
p. 147.

52L. D. Landau and E. M. Lifshitz,Statistical Physics. Course in
Theoretical Physics~Pergamon, Oxford, 1961!, Vol. 5.

53A. R. Ubbellohde,The Molten State of Matter~Wiley, New York,
1978!.

54J. M. Ziman,Models of Disorder~Cambridge University, Cam-
bridge, England, 1979!.

55J. Frenkel,Kinetic Theory of Liquids~Clarendon Press, Oxford
1946!.

56H. J. Raveche and R. D. Mountain, J. Chem. Phys.61, 1970
~1974!.
2-11



i-

tt.
.

h.

hy
F.

ok
A.

b-

A

kii,

g,
,

nt

v.

on,

b.

MITUS, PATASHINSKI, PATRYKIEJEW, AND SOKOLOWSKI PHYSICAL REVIEW B66, 184202 ~2002!
57A. Baranyai and D. J. Evans, Phys. Rev. A40, 3817~1989!; 42,
849 ~1990!.

58A. Di Cicco and A. Filipponi, J. Non-Cryst. Solids156-158, 102
~1993!; Europhys. Lett.27, 407 ~1994!; J. Non-Cryst. Solids
205-207, 304 ~1996!.

59A. Filiponi, A. Di Cicco, T. A. Tyson, and C. R. Natoli, Solid
State Commun.78, 265 ~1991!.

60L. Ottaviano, A. Filipponi, A. Di Cicco, S. Santucci, and P. P
cozzi, J. Non-Cryst. Solids156-158, 112 ~1993!.

61H. Endo, J. Non-Cryst. Solids156-158, 667 ~1993!.
62J. P. Hansen and I. R McDonald,Theory of Simple Liquids~Aca-

demic Press, London, 1976!.
63A. C. Mitus, A. Z. Patashinskii, and B. I. Shumilo, Phys. Le

113A, 41 ~1985!; A. C. Mitus and A. Z. Patashinskii, Acta Phys
Pol. A 47, 779 ~1988!.

64V. V. Brazhkin, R. N. Voloshin, and S. V. Popova, Pis’ma Z
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