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Starting from the concept of local solidlike order in two-dimensig24a)) liquids we introduce and quantify
the corresponding ensembles of fluctuations, using a probabilistic-based method of local-structure analysis
(LSA). A systematic LSA(including size dependenceas performed for a hard disk and 2D Lennard-Jones
systems, simulated using Monte Carlo and molecular-dynamics methods. We find that the onset of freezing is
accompanied by a dramatic crossover between ensembles of fluctuations. Some universal features related to the
onset of freezing in two dimensions are found and corresponding freezing criteria are formjatesliquid
starts to freeze when the concentration of solidlike atoms constitutes 0.50—0.56i)amd.indemann-like
freezing criterion: the rms fluctuation constitutes, at the onset, 0.12—0.13. Those criteria offer an effective
method for a localization of the onset of freezing in computer simulations. We point out, in this context, that
in computer simulations there is a possibility that all quantitative characterizations of the onset of freezing are
related to a metastable range. This important methodological topic is discussed briefly in the light of recent
results both for 2D and 3D systems.
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I. PHASE DIAGRAMS, LOCAL ORDER, AND second-order phase transitions. An up-to-date discussion of
FLUCTUATIONS IN CONDENSED MATTER: AN OUTLINE this topic can be found in Ref. 11. Freezing/melting phenom-

ena in 2D hard disk systems are reviewed in Refs. 12—-28.

The liquid-crystal phase transition has been the object of The special role of long-range fluctuations in 2D ordered
numerous experiments and theoretical studies; more recentlgystems was revealed in the papers, published in the 1930s,
increased computer power allows one to study liquids usingy Peierl€® and Landad® They argued that truly long-
computer simulations with realistic potentials. Particularly,ranged positional order cannot exist in two-dimensional sys-
the position of the melting and crystallization lines in thetems. This was rigorously proven later by Mermin and
thermodynamic T-p) plane can be predicted. HefBjs the  Wagner’! In the 1970s, Kosterlitz and Thoulédsand
temperature ang the particle density. The most challenging Berezinskit> proposed a theory of dislocation-mediated
question is that of the nature of changes in the local andgnelting for two-dimensional systems, later developed by
global structure of the system at melting/crystallization, re-Halperin and Nelsoif**and by Yound Kosterlitz-Thouless-
lated to the general question of the liquid structure. In thisHalperin-Nelson-Young KTHNY)].2¢ The KTHNY theory
paper we concentrate on two-dimensiondD) systems, confirms that 2D systems may posses only quasi-long-ranged
which are knowhto exhibit some peculiarities as compared positional order, characterized by algebraic decay of the two-
to ordinary 3D matter. The origin of special features of 2Dparticle correlation function, and predicts a two-step melting
liquids lies in large(as compared to the 3D caslng-  intwo dimensions, via two continuous phase transitions, first
wavelength fluctuations. We study two simplest models ofio a hexatic phase characterized by a crystalline local order
the 2D melting/freezing transition, the hard disk fluid andand some density of paired and free defects, and then to a
Lennard-JonegLJ) fluid. The strictly 2D LJ systems have liquid state. The local structure of this liquid state may differ
been intensively studied by various theoretical approgcfies from what is assumed in the KTHNY theory, making the
as well as by computer simulatiofis’ In general, the phase description of the “true” melting inaccurate. Other theories
diagram for 2D LJ systems is quite well known. It exhibits of 2D system¥ ~*° predict a “usual” first-order melting in
2D counterparts of all familiar states of matter in three-2D systems. The concept of first-order melting was advo-
dimensional space: gas, liquid, and solid. The triple pointcated by Abraham*! who argued that the loss of positional
temperature has been estimated quite accurately as equaldader is negligible in real systems due to their
T¥=0.40+0.015>% The reduced temperature isI* limited, though macroscopic, size. Some other theoretical
=kgT/e, wherekg stands for the Boltzmann constant and approaches can be found in Refs. 42-44. Computer
sets the energy scale for the Lennard-Jones potential. Exissimulationg'”8:1922.25-27:414546 ganq  physical  experi-
ing estimations of the critical temperat® are much less ment4’~>!do not give conclusive results regarding the im-
conclusive, because of well-known difficulties with interpre- portant question of melting in two dimensions. Very recent
tation of computer simulation results in the vicinity of simulations of a hard disk liquid are compatible with a two
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continuous transitions scenario. Nevertheless, the possibilitsered systems might justify efforts to construct theories of
of a (very weal first-order transition from liquid to crystal liquids based on concepts of local symmetries, reminding of
cannot be firmly ruled o In both cases there exists two local symmetries in field theories. Ideas of this kind has lead
densities,p;<ps, which separate liquid and crystal phases.to the concept of structural discontinuous liquid-liquid phase
In the former case, at those densities continuous phase tratransitions>> reported in experimerfté and simulation§®
sitions take placep, andpg determine the boundaries of the taking place not only in classical systems, but also in 2D
hexatic phase. In the later cas®, and ps determine the vortex mattef®

boundaries of the solid-liquid coexistence region; they are One of the ways out of this difficulty is an introducticen,
called liquidus and solidus densities, respectively. priori, of local-structure order parameters. The attempts of a

Our study is focused on the onset of freezing, i.e., theguantification of the concepts of Frenkel in the language of
phenomena taking place close to the denpjtypoth in the fields of local-order tensor parameters and effective
liquid phase and in the transition regighexatic phase or Hamiltonian§’~%°have initialized statistical-mechanics treat-
coexistence region For historical reasons we interpret the ment of equilibrium liquids as locally ordered matter. In two
occurring phenomena using the terms of liquidus, solidusdimensions it is KTHNY theory; in three dimensions a
and liquid-solid coexistence, which by no way excludes theheory was formulated but quantitative analysis is still a
quite probable, in light of Ref. 28, KTHNY scenario. Note challenge. An explicit form of an order parameter depends
that a study of long-range correlations in the hexatic phasen physical assumptions concerning details of the local
requires massive simulations of systems much larger thastructure. Starting from noncrystalline patterns based on
those considered in our study. While elaborate and effectivicosahedron, much progress in understanding structure of
methods for calculation of the phase diagrams in computeglasses, metallic glasses, and undercooled ligtidswas
simulations were worked out, a sound understanding of whadchieved. On the other hand, studies based on local crystal-
actually happens in the coexistence region is still a chalfine ordeP®’® have contributed to a better understanding of
lenge. Therefore, to clarify the physical picture of a freezingsome general features connected with meltseg, e.g., Ref.
transition is important; only when this task is completed can76).
one introduce appropriate physical quantities that character- The second aspect of the local order in liquids is that it
ize freezing phenomenon in computer simulations. manifests itself in the presence of strong fluctuations, so that

Lever-rule-like argumentgsee, e.g., Ref. 52 various a physically meaningful definition and practical recognition
thermodynamic integration schemes and integral equatioof this order is far from being a trivial task. Intuitively, one
approaches for studying the phase diagrams, allow to calcwexpects the order in a small cluster to represent a special
late the thermodynamic properties. We are, however, interarrangement of particles. For example, in a hard sphere or
ested in understanding the changes in the local structure iBD LJ system, one looks for icosahedric, fcc, or hep structure
the coexistence region. This aspect of a freezing is very imin a 13-particle cluster that includes a central particle and its
portant both from material science and theoretical points ofirst coordination shelf! With this assumption, one repre-
view. We discuss briefly the two main concepts related to theents the physical positions of particles in the cluster in terms
local structure, that of ideal local structure, and fluctuationsof small displacements from their ideal positions in the ar-
of the structure. rangement.

The hypothesis of local order in liquids has a long history.  If the idea of an ideal local order is accepted, it immedi-
Numerous experimental results yielding indirect proof of theately invokes the next question: how many different ideal
existence of some kind of local order in liquids have resultedstructures are necessary to describe all the local situations in
in local-order hypotheses formulated years ago at variouthe liquid? Introduction of the minimal full set of ideal local
qualitative and quantitative levels, see, e.g., Refs. 53 and 54tructures results in a natural division of the configuration
A qualitative description of a typical liquid configuration, space of a cluster into domains representing the ideal struc-
based on the concept of solidlike clusters, was formulated byures; each domain includes, together with an ideal structure,
Frenkel®® who underlined their kinetic rather than thermo- all fluctuations of this structure. The ensembles of those fluc-
dynamic character. The quantification of those ideas in termsiations play a decisive role in determination of local and
of particle correlation functions is rather difficult. Both global physical properties of the system.
computer-based calculatioi$” and experimentaf~-®' mea- Those general ideas and, in particular, the role of various
surements of triple correlation functions are technically veryensembles of the fluctuations, are readily applied to super-
difficult. As a rule®? liquid is described in terms of a pair- cooled liquids and glasses. In those systems, a particle is
correlation functiong,(r) only, which contains little infor- assumed to vibrate in a relatively stable cage made by sur-
mation about local symmetries. This technical problem limitsrounding particles. The lifetime of this cage is much larger
the area of physical effects studied within statistical-than the vibration period. The particle and its cage constitute
mechanics methods in liquids, in comparison to solids. Wehe smallest cluster that can be described in terms of struc-
point out that solid-state physics owes a rich variety ofture. At low temperatures and high pressures, in supercooled
physical effects to the underlying concept of the symmetry oimetastable liquids, various ideal configurations of the cluster
the crystalline latticéCurie principlg. The question whether are separated by high enough energy barriers, and the life-
the physics of liquids is actually much more rich than phys-time of a chosen local structure in a cluster becomes very
ics described in terms aj,(r) remains open. A liquid with large compared to the particle vibration period. A dramatic
local order is globally disordered; recent progress in disorincrease of the local-order lifetime is seen in the increase of
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viscosity and in the rapid shift of the-peak frequency upon description of the movements of the atoms belonging to lo-

supercooling in glass formefé.For those systems, a classi- cally solidlike ordered structures. In this scenario, freezing

fication of typical configurations as fluctuations around con-corresponds to a breakdown of IGF, because of a rapid onset

figurations corresponding to local minima of the energy carPf correlations between the fluctuations, typical for 2D sol-

be done using the energy |andscape picture in the theory ('WS. Since those correlations are _Strong in a solid phase, this

the liquid state, see, e.g. Ref. 76. The Hamiltonian assigns Areakdown may have a well-defined, spectacular character,

potential energy to each point of the configuration space. IiRnd may provide means, complementary to the existing ones,

general, the energy landscape is assumed to have many |O(9£|ented to localization of the freezing in computer simula-

minima of the potential energy and barriers intervening betons. , , _

tween them. The division of the configuration space into ba- "€ &m of this paper is to propose an effective method

sins of attraction, closely related to the concept of inherenfor & localization of the onset of freezing in two dimensions,

structured® provides a basis for a classification of typical Starting from fluctuation-oriented physical arguments based

configurations. A physical picture of the process of changing®" !ocal-structure features of two-dimensional liquids.

the basin was formulated in terms of local rearrangement in 1 "€ paper is organized as follows. In the next section we

glassy material&’ The problem of an ensemble of the fluc- present brlef_ly the r_nethod for local-structure angly5|s in 2D

tuations in one basin was studied recefifiyhe interbasin llquids. Section Il is devoted to a study of various local-

fluctuations were analyzed in Ref. 81. The crossover betweefiructure aspects of freezing in a liquid of hard disks; an

various types of ensembles is one of the most important top2h@legous study for a 2D LJ liquitalong various paths in

ics in the physics of supercooled liquids and glasses. thep-T plang is presented in Sec. IV. The emerging physical
The situation for the equilibrium liquids is more difficult. Picture is discussed in Sec. V, in particular, the aspect of

At higher temperatures the fluctuations are larger, and |argeq,pp!|cat|on_s f(_)r an effective localization of an onset of freez-

parts of the configuration space have to be taken into adnd in 2D liquids.

count, leading to difficulties with the concept of a typical

configuration in a liquid. On the other hand, one expects Il. LOCAL-STRUCTURE ANALYSIS (LSA)

intuitively that the ensembles describing the fluctuations in ) ) )

liquid and solid differ noticeably. In this case, freezing Local order in a 2D system in the neighborhood of an

should be accompanied by a dramatic crossover betweexfom located at the poimtis described by a 2D local version

them. Thus, finding a quantitative measure for those enof the bond-order parameter of Nelsenal ;6871:82

sembles constitutes an important task for equilibrium liquids,

which may cast some light onto the physics of the coexist- R No

ence region. Qem(N) =~ > Yem(ml2,80), (1)
The above considerations applied to 3D equilibrium lig- 0=t

uids have rather a speculative character. In two dimensio%hereYGm(0'¢)(m: —6,...,6) denotes the spherical har-

the_ situatior) is_ quite different. Loc_a_l-s_tructure anal_ysis of monic function, where the sum is taken over ignearest
various 2D liquids, based on probabilistic concepts discussed . - .
in the next section, has revealed a high concentration of Iocaﬂe.'ghborS of the atom located at the pcnprand the paur .Of
solidlike structures close to the two-phase re§idh® (see azimuthal and polar angjesai(,fpi?, describes the direction
also Ref. 76. Thus, at least for those solidlike structures, oneP€tween the central atomand itsith nearest neighbor. The
can(hopefully) introduce ensembles of fluctuations and ana-invariantQ(r) for an (No+1)-atom cluster with the central
lyze their behavior in the coexistence region. The emergingitom atr is defined a& 82
hypothetical physical picture looks as follows. Two impor-
tant processes occur at 2D freezing. First, the concentration 4 6

T . . . N aa >,
of solidlike structures just continues to increase. Second, the Q%(r)=—= 2 |Qam(M)|2. 2)
character of the fluctuations of the atoms constituting solid- 13 m==s
like structures changes from a liquidlike-type to a solidlike-
type. In a 2D solid, long-wavelength phonons play a crucial In the spirit of the method of analysis of local 2D
role (actually, they lead to a restoration of translational sym-structure$?2>#3we use two patterns as the candidates for
metry in the thermodynamic limit Density of those phonon the local structure in the system. Pattéigis a 2D hexagon,
states is proportional to the wavelength vecko(k<1/a, i.e., aNgp+1=7-atom cluster from a 2D triangular lattice.
wherea stands for the lattice constanto be compared with The nearest-neighbor distance is taken as the unit of length.
k? in three dimensions. Thus, a highly correlated motion ofPatternT’s is a seven-atom cluster centered around a five-
small groups of the atoms is expected to occur to a mucleoordinated atondisclination in a 2D triangular lattige
higher extent than in 3D solids. Contrary to the case of &luctuating pattern¥g andI's are described in terms of the
solid, a quantification of an ensemble for a liquid requiresprobability density functionsPDF) pg(Q, &) and ps(Q,£).
sound physical assumptions. We deal with this task only foFollowing the arguments presented above, we use an inde-
the local solidlike part of the liquid. Under the assumptionpendent Gaussian ensemble for the modeling of the fluctua-
that only short-range correlations between the motions ofions of the atoms. Each of the six neighbors of the central
atoms are present in this part of a liquid, we introduce arparticle fluctuates independently of the other atoms, accord-
ensemble of independent Gaussian fluctuatid@§) for the  ing to a Gaussian distribution
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1
P(5r;§)=mexp[—(6r)2/§2], () Ofn u s VEREEG g e i
with random displacement vectofs and root-mean-square -10- -
(rms) displacementé. The resulting PDFpg(Q,€) and 3 ,
p5(Q,¢) for I'g andI's, respectively, are then dependent on 8 o0 L
the amplitudeg of the fluctuations. The role of the averaged u
(over the atomsroot-mean-square displacement in our simu- '
= -30 -
lation of patterns is played by quantity(Ar)2=¢/2.25:83 o
The statistics of invarian@ in the trial configuration is P .
described by PDIp(Q) which are approximated by the his- 05 06 07 08 09 1.0
togram of the random variabl®, calculated from the set of reduced density

data{Q(r;)},i=1,... N, whereN denotes the total number
of the atoms in the configuration.

The analysis of local structures is done using the method%
of mathematical statistié€.We assume thgh(Q) depends t
linearly on PDFp,(Q, &) (k=5,6):

FIG. 1. Plot of the logarithm of significance level, lag against
e reduced density* for N=4096 hard disks. Inset: The same for
e densities close to the coexistence region.

can be found in Ref. 85. In our simulations, the probability

of an erroneous classification of a non-solid-like atom as a

p(Q)= 2 Cckor(Q, €1 4 solidlike one is small; on the liquidus line it is approximately
k=56 equal to 0.07. In this sense the fluctuating local solidlike

The “best” decompositior{4) is obtained by maximizing the structure is well define@see also in Ref. 83, where the plots

significance level of PDF are presentged
@(Cs5,C6,&5,86)  (C5+Cs=15,C6=0), Ill. HARD DISKS
calculated from ay*-test(see, e.g., Ref. 84verification of A system ofN=4096 hard disks at constant volume was

the hypothesis which states that the data corresponding to thmulated using the standard Metropolis Monte Carlo
left-hand side and the right-hand side of E4) are drawn  method®®®” The details of the simulations were presented in
from Efée same distribution. Very small values@f(of order  Ref. 25. For the densities spanning the interval from low-
of 10"° and smalley indicate that the decompositidd) is  density liquid to high-density solid, the concentratinyip* )
statistically not reliable. Significance level plays a central \yas found p* = o?p, whereo denotes the hard disk diam-
role in our analysis of ensembles of' quct_u'atlonS- _eten. The plot, cf. Fig. 1 in Ref. 25, consisted, for interme-
Each seven-atom cluster can be identified as a fluctuatiogiate densities, of three nearly linear pdf. 2 in Ref. 25.
either of the patteri’s or I'q via a maximal probability The intersection of their linear extrapolation has lead to gen-
decision rule (MPDR).®*® It states that a trial cluster erous boundg? =0.882p% =0.912 for the coexistence re-
with Q=Q* is a fluctuation of'¢ whenQ*=Qy, for some  gion between the liquid and two-dimensional solid. The es-
fixed value of Qo. The central atom of such a cluster is timate was consistent with previous results obtained for a
called a solidlike atom; the remaining atoms in the liquid are;gnstant-volume ensembigl®2iThe midpoint of the coex-
called liquidlike. In the present paper we are interested onlysience regiorp’,~0.897 is the density at which the liquid

in the p_roperties of solidlike atoms. Thus, if not otherwise.and solid phases contribute with equal weight to the local
stated, in the context of LSA the concepts of atoms and theigo|igjike structure in the coexistence regime. This value is

fluctuations refer only to solidlike atoms and their fluctua- .jose to the valug* =0.899 obtained using the cumulant

tions. o o intersection method in Ref. 2(kee also Ref. 22developed
The MPDR-based classification has a probabilistic charg,, an estimation of the density at which the two coexisting

acter. The total probability of a false classification, a fluctua-phases contribute with equal weight to the system under co-

tion of patternl's as a fluctuation of patterfig and vice gyistence.

versa, is given by the degree of overlap of the corresponding | sa-pased analysis of fluctuations in the liquid is done

PDF: using the significance level. Figure 1 demonstrates a spec-
tacular breakdown of the IGF as the density increases. The

E(gs,ge)zf min[ ps(Q,£5),pe(Q,&6)]dQ. (5)  plot of loga(p*), calculated using 50 or 100 configurations

(the later for the densities 0.85%* <0.93), displays two

E(&s,£6) is a measure of structural identity of two fluctuat- regimes. For the densities lower thaj=0.884 the signifi-

ing patterns. When the overlap is small then the probabilitycance level showgwithin the statistical errodsno systematic

of a false classification is also small and fluctuating strucdependence on the density. It takes the values larger than

tures preserve their structural identity. With increasing fluc-10"3, thus giving no ground to question the usefulness of

tuation level the overlap of the PDF increases and the strudGF for solidlike atoms in liquid. The estimate fpfy was

tural identity of fluctuating patterns is gradually lost. More calculated using linear fits to the data. This construction, us-

information on mathematical aspects of structural identitying 50 configurations, is shown in the inset to Fig. 1. For the
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o FIG. 3. Plot of the concentration of solidlike atorog against

0.2 L reduced densityp* for a 2D LJ system of 2500 atoms at*
o1k v =0.7. Inset: the same for the density close to the coexistence re-

’ o gion.
0.0 1 1 1 1 L.

00 02 04 06 08 1.0 was chosen to be 25 We have studiedN=2500 atoms.
p The equilibrium characteristics were sampled after 5000

FIG. 2. The paths in the* — T* plane along which the freezing €duilibration steps. The local-structure parameters were av-

of a 2D LJ liquid was studied. The phase diagram is taken from Reféfaged over 50 configurations.
11 after Ref. 45.

o : L A. MD simulation results at T*=0.7
densities higher thapg the significance level decreases dra-

matically as the density increases, e.g., for the density higher 1Nhe plot of the concentration of solidlike atomgagainst
by 4% thanp}, , the significance level drops to 18 Small the density is shown in Fig. 3. As in the case of hard dfSks,

values ofe rule out the applicability of IGF; one observes a it displays three different regimes. For the density close to,

dramatic crossover from IGF to another ensemble which acd2ut lower than,p" =0.825, a linear regime is present. In a
counts for the correlations typical for the atoms in solids, in"arrow intervalpf <p*<pg=0.87 another linear regime,
agreement with the scenario discussed in the Introduction¥Vith @ much steeper slope, sets in. At still higher densities
The densityp? = 0.884 is very close to the estimated densitythe effects of the saturation appear. The valigsps were

at the liquidus linep¥ ~0.882. The meaning of this observa- calculated using linear fits to the three regimes, as shown in
tion is discussed in Sec. V A. the inset to Fig. 3. This procedure is more reliable for esti-

mating p;° than p} . The coexistence intervdD.825,0.87
calculated in this way is in good agreement with the interval
IV. LENNARD-JONES LIQUID (0.82,0.88 found using linear extrapolation of the data pre-

We analyze the freezing of the 2D LJ system algifg ~ sented in the phase diagram in Ref. 7. The concentrations at
=const andT* =const paths inp*-T* plane, see Fig. 2. the boundaries of the two-phase regioneyp;") =0.53 and
Here, p* = o?p, whereo is the length parameter of the LJ cg(p%)=0.86.
potential. For constant-volume freezing studies we have cho- The model ensemble of the fluctuations for solidlike at-
sen two pathsp* =0.694 andp* =0.833. The former den- oms in a 2D liquid is characterized by the amplitugle]cf.
sity is smaller and the latter larger than the density of theEq. (3)]; its reliability for this description is given by the
triple point p¥ =0.79% The constant-temperature studies significance levek. The plot of the amplitude, see the inset
were made at the temperatufé =0.7, i.e., well above the (b) to Fig. 4, shows two regimes of behavior. At low densi-
critical-point temperature. ties, p* <0.78, no systematic dependence on the density is

The systems of constant densjiy were simulated via a present. Wherp*>0.78 the amplitude decreases linearly
standard NVT Monte Carlo method. For thermalizatiof§ 10 with density. The value of* =0.78 was calculated from the
—5x10° Monte Carlo step§MCS’s) (1 MCS corresponds intersection of the extrapolation of linear parts of the plot.
to one sweep over all particlesvere used and the equilib- Because of relatively large statistical errors, this result
rium parameters were calculated using 50°—10" MCS.  should be treated with some care.

The results of local-structure analysis were averaged over 20 The significance level analysis displays an abrupt break-
statistically independent configurations. On the other handdown of the IGF, see Fig. 4. The plot shows two linear re-
systems lying along™* = const paths were simulated via a gimes; a crossover from one to another occurs in close vi-
standard NVT molecular-dynami¢MD) method®” using a  cinity to the densitypg =0.837, calculated using linear
velocity Verlet algorithm with a time stefp=0.064r, where  extrapolation[see the inseta) to Fig. 4. At p* <pg the

the time unit7=0.3113 ps. Long-range corrections for po- significance level is independent of the dengiwithin the
tential energy and pressure were used; the potential cutofftatistical errorsand takes the values larger than pim-
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FIG. 4. Plot of the significance level lagagainst reduced den- (@
sity p* for a 2D LJ system of 2500 atoms @t =0.7. Inset(a):
the same for the density close to the coexistence region. Inset
(b): plot of the amplitude of the fluctuationg against reduced
densityp*.

plying that the IGF can be safely used for that part of the
phase diagram. On the contrary, decreases strongly for
higher densities. For example, on the solidus lin€pZ
=0.87)=10". For this density the IGF no more reliably
describe the fluctuations of the solidlike atoms. Similarly
as in the case of hard disks, a crossover to non-IGF takes
place.

T* = 0.40

B. MC simulation results for p* =0.694 (b)

The snapshots of the configurations of the 3598-atom sys-
tem (Fig. 5 show three different situations. For temperatures
below the triple poinfl; =0.4 the patlp* =0.694 lies in the
gas-solid coexistence regi¢Rig. 5a)]. At Ty three phases,
gas, liquid, and solid, are preseffig. 5b)]. Finally, for
temperatures slightly higher thaf [Fig. 5(c)] the path lies
in the gas-liquid coexistence region. Strictly speaking, the
process, which occurs as the temperature decreases below
T, is not freezing but rather a kind of a spinodal decompo-
sition.

At freezing both liquid and solid phases coexist and in our
case there is no liquid phase beld@{ . The thermodynamic
properties of the gas phase below and abbyehange con-
tinuously with temperature. On the contrary,Tgt the prop-
erti_es of the C_orresponding coexis_ting pha_tses, _quuid and FIG. 5. Snapshots of configuration at*=0.694, for T*
solid, undergo(in the thermodynamic limjtdiscontinuous  _ 5o (@, T*=T*=0.4 (b), and T* =0.45 (¢), for the system of

changes. 3598 LJ atoms.

For sufficiently large systems, the plot of the average en-
ergy per atom(Fig. € exhibits a very steep slope in the method for studies of local structure fails to reproduce a
vicinity of T and the heat capacity displays a very sharpquasidiscontinuous behavior of the system is a direct mani-
6-like peak localized aroundy . Its height increases with festation of the relatively weak sensitivity of the local-
the increase of the size of the system. The quasidiscontinuit§tructure topology in two dimensions against the level of
atT; is also well documented through the plot of the aver-fluctuations.
age nearest-neighbor distange,) against temperature, see  Local-structure analysis provides also an important infor-
the inset to Fig. 7. Finally, the results of local neighborhoodmation concerning the character of fluctuations. The concen-
analysis via Voronoi construction are shown in Fig. 7. Sur-tration cg of solidlike atoms is plotted against the tempera-
prisingly, the plots are rather smooth which makes a sharpure in Fig. 8a) for several system sizes and shows only a
localization of Ty rather difficult. One can speculate that it weak size dependence. Each of the plots is quasidiscontinu-
lies in the interval0.39,0.42. The fact that this widely used ous atT; ; the concentration changes from 0.5-0.55 to

T* = 0.45

(©
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FIG. 6. Average reduced enerdg*) per atom €* =e/e) as a I 3.%&%
function of the temperature for a few sizes of the LJ system*at o o |
=0.694. 010 .
0.3 04 05 0.6
0.75-0.80. The plots Figs.(l® and 8c), characterize the T
changes of ensembles of fluctuationsTét. The amplitude gﬁ%&wﬁaé R
of the fluctuationstg, Fig. 8b), displays three regimes. For '4; (c) -
T* <Ty the amplitude is lower than 0.14 and decreases with T 6h * ]
decreasing temperature. In a close vicinityTgf we find a g -8r ]
linear regime, with a very steep slope, which can be inter- & 101 = ]
preted as reminiscent of a discontinuify.undergoes a rapid 21 ]
change from 0.14 to 0.16—0.18. At still higher temperatures a 14t ¥ ]
linear dependence sets in. Also here, a systematic size depen- jg Lz ]
dence is weak. Figure(® shows the results which demon- 20 bt T
strate the dramatic crossover between different ensembles of LE 0.4 L0585 0.6
fluctuations. Because of a strong, systematic dependence of T

the significance level on the number of atohswe plot a FIG. 8. Local-structure-analysis results for LJ at the density
rescaled significance leveAyloga instead of logr. We p*=0.694 for a few system sizebl: 1111 (diamond$, 1736
have usedA1111=6, A1736=4, Azso0=2, andAgsgs=1. At (circles, 2500 (triangles, and 3598(squares (a)—(c) show the
the temperatures higher thaif a logarithm of the signifi- temperature changes af, &, and of the rescaled significance
cance level logr is practically temperature independent andlevel (see text Ay log a, respectively.

takes on the values larger than2. In a very close vicinity

of T{ an abrupt, quasidiscontinuous drop of legccurs. It

1 O Goomogg ' it then followed by a further decrease at still lower tempera-
I ° 5 o I tures. Here, two facts are important. First, a quasidiscontinu-
0.8 en ous behavior is present. Secondly, there is rather systematic
, Toag, —_— dependence of the results on the size of the system. The gap
0.6 I ﬁﬂ‘““". 3 in log @ increases for larger system sizes. The value of the
P e e e ] significance level in the lower end of the gap decreases with
041 ‘»Z'Gﬁdﬁ‘ggggﬁ ] ] increasing size of the system: fai11 atoms it is equal to
ool s 24 0s 0000 _ —2 while for 3598 atoms it is—13. Thus, for the small
' . g‘; oo ) system (1111 atomg the decompositior(4) is statistically
oo ecemed® , reliable atT* <T; close toT; , while in the case of larger
0.3 0.35 04 045 0.5 systemg2500 and 3598 atomndt is not. In close vicinity to
T* T{ , one observes a qualitative change in the behavior of the

FIG. 7. Plot of the average numbf,) of k=five (circles, six significance level. Fof* >T{ the Gaussian fluctuations, cf.
(square} and sever(diamonds polygons in Voronoi construction Ed- (3), Serve as a satisfactory approximation to the fluctua-
against temperature for the LJ system of 3598 atomsp’at tions of solidlike atoms in the liquid. On the contrary, those
=0.694. Inset: Plot of the average distar{eg,) between nearest fluctuations yield a nonsatisfac':tory significance .Ieve'l fo_r
neighbors against temperature for different sizes of the system dt* <T; and thus have to be rejected. Here, the situation is
the same density. analogous to the crossover discussed in Secs. Il and IV A.
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FIG. 10. Plot of the average number ¢f,), k=five (empty
1.2 T circles, six (filled circles, and seven(diamond$ polygons in
F @A.ﬁz% 1 Voronoi construction against temperature for a LJ system With
C, 1} 9@52%0% . =3630 atp* =0.833. Inset: Plot of the average distarcg,) be-
I %gg? 5 ] tween nearest neighbors against temperature for the same density
& X5 % and number of atoms.
0.84520% 8 .
o E@e
%%ﬁgéo 1 find any saturation effects, which evidently take place at tem-
0.604 : 0'6 : 0'8 : '1 : peratures lower than those used in our simulations.
) ) T* Figures 11b) and 1Xc) characterize the crossover be-

tween the ensembles of the fluctuations. The plot of the am-
FIG. 9. Plots of average enerdg*) per atom(a) and of the  plitude of the fluctuationgs(T*), Fig. 11(b), displays three
heat capacity at constant volunile) against the temperature for linear regimes. The slopes at higfﬁ*(>T|*§) and low (T*
different LJ system sizes at* =0.833. <T%,) temperatures are nearly equal and are both smaller

The only difference is due to the fact that the system statéhan the slope arg ,<T*<T},. The change of the slopes
changes discontinuously from that corresponding to the limakes possible a reliable identification of the temperature
quidus line to the solidus line, as the temperature crosseki ¢, Which lies in the interval0.7,0.79.
T, Both cg and &g exhibit only weak size dependence effects.
On the contrary, the analysis of the significance lewel

C. MC simulation results for p* =0.833 yields, as in the previously studied cases, strdbhdepen-
dence. In Fig. 1) we show the plots ofAy\loga with
A50=9, Ajzzz=4, and Agg=1. At high temperatures
[T*>Tj , cf. Fig. 1Xc)] log «(T*) is practicallyN indepen-
dent and assumes the values higher tha®, which indi-
cates that the model IGF are acceptable. FOK T the
significance level decreases strongly with decreasing tem-

do not find any systematic dependence of those quantities &er_ature. The crossover between those regimes is quite well
the system size. The energy changes smoothly with temperg§efined and takes place at the temperature-0T/2<0.74.
ture and offers no ground for identifying the freezing point. NOte @ good coincidence of the estimated temperatftfes
Heat capacity displays a broad maximum centered aroundii.¢» and Tg, which corresponds to the onset of physical
T*=0.65. Standard structural characteristics give a slightlyprocesses related to the changes of the fluid local structure.
higher temperature of the freezing point. The plot of theThe slopes of the linear plots foF* <Tg are stronglyN
average nearest-neighbor distar(gg,,) (see the inset to Fig. dependent. Even at temperatures much lower fFarte.g.,
10), possesses a well-developed linear piecewise charactat T* =0.5) the significance levels for smaller systen (
The extrapolation of those two parts of the linear regions=750 and 133Bare not low enough to invalidate the IGF.
leads to the intersection point, which is locatedat= 0.7.  On the contrary, for the system containing 3630 atoms, the
A similar situation holds for the results of Voronoi analysis significance level drops to the values smaller than ®1at
(Fig. 10. The two linear parts change their slopes at thethe temperature equal to 0Tg , indicating clearly, as in the
temperature close t6* =0.7. cases previously studied, a crossover to non-IGF.
Local-structure analysis vyields interesting results. The
plots of the concentrationg against the temperature fo
=750, 1333, and 3630, shown in Fig. (&) display two
linear regimes of different slopes. The change of the slope The main goal of this paper was to analyze the local-
increases slightly with the system size. The linearly extrapostructural properties of two-dimensional hard disks and
lated plots intersect &k located in the interval0.72,0.73  Lennard-Jones fluids in connection with freezing, using the
and the corresponding concentratiangT;") €[0.52,0.55. probabilistic-based method of local-structure recognition.
At the temperatures below the intersection point we do noffhe results clarify and systematize some of the structural

The densityp* =0.833 is considerably larger than the
triple point density and lies in the solid-liquid coexistence
region, atT* >T; , or in the solid-gas coexistence region, at
T*<Ty . Figures 9a) and 9b) present the temperature
changes of the average energy and the heat capgmuity
atom), respectively. Contrary to the case @f =0.694, we

V. DISCUSSION
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1.0 ' , , — ciently large system sizeN(=2000 or morg reliable results
ool m (@) | can be obtained from the analysis of a single configuration. A
08l .q% h more detailed discussion of those topics is presented below.
l First of all, however, let us briefly comment on the art of
&L o7r % ] simulation of melting/freezing. Following accepted standards
06k i in the literature(see, e.g., Ref. 28 we just span certain
i & ] ranges of temperatures or densities. It has been correctly
051 %ﬁg&! 1 pointed out®®®that such a way of simulations may, in some
04r S cases, lead to serious discrepancies of results because of pos-
03l . . b sible overheating of simulated systems, originated by a slow
02 04 06 08 10 12 nucleation in computer experiments. To overcome this diffi-
0.20 T culty, a promising two-phase method was inverit&®.t has
: oo T T lead to a critical revision of simulation data, see, e.g., in
0.191 7 Refs. 90—94. Overheating may take place, however, in three
0.18 . dimensions, where the melting/freezing is a strongly first-
017 , order PT (phase transitionand metastable states exist. In
0161 ] two dimensions the situation is quite different. Melting/
L freezing of hard disks takes place either via two continuous
0.15 1 transitions or is a very weak first-order transitfnin the
014 o 1 first case there are no hysteresis effdcigerheating, super-
T cooling at all, in the second they are very small. We believe
04 06 08 10 12 that this is also true for a 2D LJ system, as a result of very
T specific and general behavior of 2D systems discussed in the
o g | Introduction. For those reasons we think our simulations are
5| o A i sound. Moreover, most of our results correspond to a close
5 =1 (c) vicinity of liquidus line (or the line of transition from the
S 10 Za ] liquid to hexatic phage where the two-phase method cannot
22 _15: f i be directly used because of a specific ordering of atoms in a
< - ] 2D liquid. Namely, close to this line the liquid is in a high
20 4z . degree locally ordered in a solidlike fashion.
25+ ' 4

P A. Reliability of the localization of liquidus line via LSA

T The coexistence region was localized using the plot of the

FIG. 11. Local-structure-analysis results for LJ at the densityconcentrationce of solidiike atoms. Since we are mainly
o ) e > ; interested in the onset and early stages of freezing, we dis-
p* =0.833 for a few system sizé& 750 (circles, 1333(triangles, y 9 9

and 3630 (squares (a)—(c) show the temperature changes cuss the low-density or high-temperature boundary, i.e., the

- liquidus line. The results are in fair agreement with other
f d of th led li levete text Ay | . - .
?e;[?éciﬁ;e?; of the rescaled significance levabe textAxlog e, o iant-volume simulations. For hard disks, LG¥ef. 25

yields p;*=0.882, and this should be compared with the

aspects of the behavior of 2D liquids close to as well agalue of 0.880 reported in Refs. 12 and 21 and of 0.887
within the two-phase coexistence region. They include, in th€iven in Ref. 19. The relative difference of the LSA result
methodological part(i) an attempt to identify the structural and other estimations g@f* is smaller than & 10>, For the
processes that accompany freezing in two dimensions arléennard-Jones liquid a* =0.7, the relative difference be-
(i) a quantification of the concept of a sudden crossovetween the LSA resultp =0.825, and the valugy; =0.82,
between different ensembles of fluctuations of atoms in the@stimated from the phase diagraagain yields the relative
liquid and the solid stategmore precisely, of the solidlike accuracy of 6<10 2. Those numbers show that LSA local-
component of the local structure in both phasdsis, in  izes correctly the liquidus line. This important observation
turn, offers an intuitively attractive interpretation of the liqui- allows us to make conclusions related to the physical nature
dus line. We have found some universal behavior related tof the onset of freezing.

the onset of freezing, which in consequence leads to the for-
mulation of local-structure-based and Lindemann-like freez-
ing criteria in two dimensions. On the other hand, our studies
offer some practical applications. Having, as physical bases, The main methodological result of this paper is the quan-
clearly defined concepts, our method offers an interestingjfication of the concept of a crossover between liquidlike
approach to the analysis of phase diagrams in computeand solidlike ensembles of the fluctuations of the atoms con-
simulations. One of its advantages is that satisfactory resultstituting the solidlike component of local structure in liquids
can be obtained from a small number of the configurationglose to and in the two-phase region. The crossover mani-
recorded during the simulation run. In the case of a suffifests itself in a dramatic change of the statistical parameter

B. Ensembles of fluctuations: crossover. Onset of freezing
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(significance levegl which determines the degree of rel- component of a liquid. Those statements quantify similar,

evance of independent Gaussian fluctuations in the descriprostly qualitative concepts formulated earfier®>*

tion of the solidlike atoms in the system. The crossover oc- Finally, let us comment on some aspects of the energy
curs at a well-defined density; or temperaturely . Two distribution in the coexistence region. In standard thermody-
regimes of totally different behavior were found. In the first "@mics, a point in a two-phase region represents a mixture of
one, corresponding either to constant temperature and denélifferent phases with weights given by the lever riflén our

ties belowpg , or to constant density and temperatures abové&dse t_he system has chal structure and the_ situation Is more
% the sianificance level is densitv independent and takecompllcated. A dramatic decrease of the significance level
0’ 9 1 s Y P nd 1Aty large systems suggests that a solidlike ensemble sets in
large values (10°—10"°). Moreover, no systematic size

e ) rapidly, and not in a smoother way as suggested by the lever
dependence within that regime was found. The two aboveje This new ensemble governs the distribution of energy

observations lead us to the conclusion that the independefktween the solidlike degrees of freedom in the system. The
Gaussian ensemble offers a good choice for the descriptiogta|-energy relations in the system are thus determined by a
of the simulation data. In the second regim&™(  solidlike behavior of local solidlike component and by a non-
=const, p*>pg or p*=const,T*<Tg) the significance solid-like behavior of the remaining part of the system.
level decreases strongly with increasing density or with deThose two regimes result in a complex behavior. In particu-
creasing temperature. The slope of the plot ofdoghows a  lar, there is no reason to expecpriori that an overall mean-
very strong size dependence. For large systems, the signifiquare fluctuation of the energy, which is proportional to the
cance level decreases from large (161072 to small heat capacity, displays some anomaly at the very onset of
(<105 values already in close vicinity tof or T; . We  freezing. This conclusion is supported by the observation
conclude that the IGF no longer offer a reasonable approximade in Sec. IV C, where the maximum of the heat capacity
mation to the fluctuations of the solidlike atoms. Here, theappeared afT*=0.65, well below the temperaturef;
size dependence plays the decisive role: the increase of theQ.72-0.75.
system size increases the statistics, which in turn requires
more realistic ensembles to_ model the fluctu_ations of pattgrnsc_ Lindemann-like and concentration-based criteria of onset
of local structure. We believe that the failure of IGF is
mainly due to the assumed statistical independence of fluc-
tuations of the atoms and not to the chosen Gaussian distri- The onset of the freezing displays some universal features
bution (see a short discussion on 3D ensembles in Ref. 85 related to the amplitude of the fluctuatiods and the con-
The pointsp% and T, where the crossover occurs, lie centrationcg of solidlike atoms. In this respect the case of
close to the liquidus line. The distance to this line, relative to?” =0-693 is of particular importance becaugethere is no
the width of the coexistence region, is given by the ratiouncertainty accompanying the localization of the liquidus

d,=(pt —p)(pt—pF), or dr=(TF—TEI(TF—TF). and solidus lines &ty and(ii) cg and & undergo aquasiy
Fgr hard disksd,=0.07, while for 2D LJ liquid atp* discontinuous change at this temperature. Thus, the values of

=0.833 and for three different system sizes reported abovés and %:If)s or:l)both sgges (z)f the gap provide “unbiased” esti-
dr<0.04 [we have used a very rough estimati®i~0.5, ~Matesce’, &’ andcg”, & of solidlike atom concentrations
taken from the plot in Fig. 1t)]. For 2D LJ liquid atT*  and amplitudes of fluctuations on liquidus and solidus lines,
—0.7d. is higher: 0.2d respectively. We find £{’=0.17-0.18, £Y=0.14, ¢
7d, gher: 0.2<d,<0.25. Note that all the results 6 6 6
discussed here were obtained using linear extrapolatiorr 0.50-0.55, ana{’=0.75-0.80. If there is some univer-
which depends on the number of points analyzed and hengglity in local structures for various 2D liquids, then the cor-
should be treated with some care. In general, we find a cleaesponding values af§’ and ¢§) should fall into those in-
tendency: the points where the ensemble crossover occurs liervals.
close to the liquidus line. This line, whefaccording to ther- We find, for the liquids analyzed here, that the concentra-
modynamic} the coexistence regime sets (or the liquid-  tions of solidlike atoms, on the liquidus line, lie in a narrow
hexatic transition occuysacquires a much more interesting interval: cg')=0.56 (hard disks, 0.53 (LJ, T*=0.7), and
physical interpretation. Namely, it is a line @r close t9 ~ 0.52-0.55LJ, p* =0.833). The statistical error is, as a rule,
which a “truly-" solidlike behavior starts in the following smaller than+0.01. Those results suggest a universal crite-
sense. On the liquid side of this line, but close to it, the liquidrion of the onset of freezing in two dimensions:
has a large concentration, around 50%, of the solidlike atoms
(see Sec. V €and in the two-phase region this concentration c{) €[0.50,0.58. (6)
just continues to increase. In other words, it is not the liqui-
dus line where the solidlike local structures start to appear iThe thumbrule criteriorc$’=0.50 was first formulated in
abundance. What changes in the system properties are tRef. 83 using heuristic lever-rule arguments.
fluctuations, from uncorrelated, typical for gases, to highly The result(6) offers a very interesting interpretation of
correlated, typical for 2D solids. We conclude that a 2D lig-freezing in two dimensions as a percolation process in view
uid close to its liquidus line has both solidlike featui@s of the fact that on a regular triangular lattice the site perco-
large concentration of local solidlike structuresd gaslike lation threshold is exactly 05. According to a simple
features(fluctuations. The onset of freezing is accompanied scenari@® percolating structures propagate a shear stress
by disappearance of gaslike features in the local solidlikehrough the system, giving rise to a solidlike response of the

of freezing in two dimensions
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system to an external stafior low-frequency strain. Further [ A2
discussion of this topic goes beyond the scope of this paper. (Ar)°[0.12,0.13 ™
The level of fluctuations also shows an universal behav-
ior. We find £{’ =0.17 (hard disk$, 0.175(LJ, T* =0.7), and
ACKNOWLEDGMENTS

0.17-0.18(LJ, p* =0.833). This suggests a Lindemann-like

freezing criterion in two dimensiongy’ €[0.17,0.18 at the
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