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General theory of heat diffusion dynamics
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A detailed theoretical investigation of the influence of heat diffusion processes on the low-frequency dis-
persion in macroscopic elastic susceptibilities is presented. In particular, a general solution of the heat diffusion
equation is derived for arbitrary boundary conditions and externally imposed periodic and spatially inhomo-
geneous stress. In contrast to other calculations found in the literature, our results indicate that in elastic
experiments on monodomain samples of macroscopic dimensions the isothermal-adiabatic crossover function
necessarily reduces to a Debye-like dispersion. Experimentally, this is illustated by measurements of the
complex dynamic elastic susceptibilities of KSCN and KMnF3. Our approach also allows to discuss heat
diffusion in polydomain crystals and heterogeneous systems, for which one obtains dispersions of a non-Debye
type. While explicitly derived in an elastic context, the present theory also applies to heat diffusion in dielectric
materials.
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I. INTRODUCTION

Historically, the problem of ultralow-frequency dynamic
near structural phase transitions is intimately related to
observation of so-called central peaks, which in the 19
were mainly investigated using scattering methods.1–3 Very
recently the field was revived due to the works of Chav
et al.4–6 who investigated the influence of heat-diffusion pr
cesses onmacroscopicsusceptibilities of ferroelectric mate
rials both theoretically and experimentally. Chaveset al.
looked for heat-diffusion central peaks in the complex
electric susceptibilities of a number of ferroelectric crysta
In particular, the authors predicted that the crossover fr
isothermal to adiabatic conditions~i.e., from low to high fre-
quencies! is determined by a certain non-Debye-like disp
sion function. Also, in the recent work of Fallyet al.7 a dif-
ferent non-Debye isothermal-adiabatic crossover func
was calculated for the dielectric susceptibility of ferroelect
materials. At the same time Schranzet al.8,9 began to study
the influence of heat diffusion dynamics usingelastic mea-
surements. In Ref. 8 they clearly observed Debye relaxa
in the low-frequency elastic susceptibility of the molecu
crystal KSCN which was shown to originate from heat d
fusion dynamics. Very recently9 signs of a Debye crossove
from an isothermal to adiabatic regime have been found
KMnF3 crystals. Our present paper addresses the questio
which type of isothermal-adiabatic crossover function is
be expected in elastic measurements under realistic ex
mental conditions. Specifically, we present a general th
dimensional theory which describes the influence of h
propagation on the dynamic properties of macroscopic s
ceptibilites, addresses the crucial influence of the bound
conditions, and coherently relates the different dispers
functions found in the literature. Our results are explici
calculated for crystals subject to external stressess, how-
ever, they correspondingly apply to dielectrically induc
heat diffusion in an obvious way. We therefore prefer to g
erally speak ofs as anexternal excitationin what follows
below.
0163-1829/2002/66~18!/184110~16!/$20.00 66 1841
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II. ELASTIC MEASUREMENTS

Consider a crystal of volumeV subject to a static externa
force applied to a point or area of the crystal’s surface in
way to be specified later. Within linear-response theory
assume that the crystal responds by a reacting forcexTz
linear in the corresponding elongationz. This force is the
result of a stress fields i(r) ( i 51, . . .,6), produced within
V, and conservation of mechanical energy demands that

EmªE
0

z0
dzxTz5

z0
2

2xT
[

1

2 (
i j

Si j
T ^s is j&L2

, ~1!

where^s is j&L2
ª*Vd3rs i(r)s j (r), andSi j

T denotes the crys-
tal’s isothermal compliances. From this we conclude t
staticallyxTf 0

25( i j Si j
T ^s is j&, where f 0ªxTz0. In the case

of a dynamic external forcef (t)5 f 0cos@vt#, suppose that the
system’s long-time response is

z~ t !5 ẑ0~v!cos@vt2d~v!#. ~2!

0,d(v),p describes the loss in mechanical energy. G
eralizing the above static relation, we define

x~v! f 0
2[(

i j
Si j ~v!^s is j&L2

, ~3!

where x(v) and Si j (v) are the complex frequency
dependent mechanical susceptibility and elastic complian
In general, measuring ofx(v) determines a combination o
compliancesSi j (v). However, if s i(x)5d iksk(x), then
Skk(v) is determined byx(v) via

Skk~v![
f 0

2

uuskuuL2

2
x~v!. ~4!

The mechanical work done on the system isEm(t)
5* t0

t f (s) ż(s)ds. Averaged over one period, we obtain
©2002 The American Physical Society10-1
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K dEm

dt L 5
v

2pE0

2p/v

dtĖm~ t !5
f 0

2
ẑ0~v!v sind~v!. ~5!

In complex form, one definesz(t)5Re@z0(v)eivt#,
where z0(v)5z08(v)2 i z09(v). Then z08(v)

5 ẑ0(v)cosd(v), z09(v)52 ẑ0(v)sind(v), and thusẑ0(v)
[uz0(v)u. The complex mechanical susceptibility is defin
as

x~v!5x8~v!2x9~v!5
z0~v!

f 0
~6!

and obviously x8(v)5 ẑ0(v)cosd(v)/f0, x9(v)
5 ẑ0(v)sind(v)/f0, which implies the well-known relation
x9(v)/x8(v)5tand(v). The preceding formulas yield th
following central relation betweenx9(v) and the average
mechanical work done on the system:

x9~v!5
2

v f 0
2 K dEm

dt L . ~7!

Since the real partx8(v) is determined by the Kramers
Kronig relation, the complianceSkk(v) can therefore be cal
culated from Eq.~4! once^dEm/dt& is known.

Dynamic elastic measurements are usually performed
recording the response of a parallelepiped-shaped cryst
either uniaxial compression or bending. Here we treat
most important practical cases of compression between
allel plates and midbending between two supports.

In the so-called parallel plate mode~PPM!, the forcef acts
on the partO1ª l 23 l 3 of the volumeV5 l 13 l 23 l 3. Then
obviouslys15 f /O1 is the only nonvanishing stress comp
nent in the volume, which induces strainse i5Si1

T f /O1. The
elongationz corresponding tof is therefore

z5 l 1e15
l 3
2

V
f 0S11

T . ~8!

In the three-point bending~3PB! mode things are slightly
less trivial. In fact, consider a horizontal stick of lengthl
with rectangular profileA. We choosex as the length coor-
dinate2 l /2,x, l /2 along the stick’s horizontal axis. Sup
pose now that the stick is freely supported on its edges
weakly bent by a forcef [(0,0,2 f ) acting on the stick’s
upper surface on the linex50 parallel to the axisz. When
bending, a part of the volume will be compressed and
other part will be dilated, while on a whole plane, the s
called neutral fiber, no compresion or dilatation occurs.
2d/2,z,d/2 denote the vertical axis, i.e., the stick’s thic
ness coordinate with respect to the neutral fiber, andy the
remaining width coordinate. Then, the vertical displacem
of the neutral fiber follows the weak bending formula10

z~x!5
f

48EI
~ l 326lx214uxu3! 2 l /2<x< l /2, ~9!

whereE5Exx denotes the corresponding elastic module
direction x. I 5*Az2dzdy is the area momentum ofA with
18411
y
to
e

ar-

d

-
-
t

t

respect to they axis perpendicular tox,z. In particular, the
maximum displacement atx50 is

zmax5
f l 3

48EI
. ~10!

This implies that a bending resulting in a displacementz of
the stick’s center (0,0,0) follows the relationf 5kz with
spring constantk548EI/ l 3. A short calculation shows tha
the mechanical energy stored in bending is

Em5
k

2
zmax

2 [
EI

2 E
2 l /2

l /2

dx@z9~x!#2

5
1

2EV
dV@zz9~x!#@Ezz9~x!#. ~11!

In the treated case of weak bending onlys1(x)[sxx(x)
Þ0 ~cf. Ref. 10!. Therefore, comparison with the gener
formula Em5 1

2 *VdV( ie i(x)s i(x) yields the manifestly in-
homogeneous stress-strain distribution

e1~x!5zz9~x!, s1~x!5Ee1~x!5Ezz9~x!. ~12!

Sincez9(x)5 f /48EI(24uxu212l ), we finally obtain

e1~x!5
f

3EI
~2uxu2 l !z, s1~x!5

f

3I
~2uxu2 l !z. ~13!

III. FUNDAMENTAL EQUATIONS OF HEAT DIFFUSION

Suppose now that the system is in contact with a heat b
of temperatureT̄. Switching on the weak periodic externa
force f (t) will produce a small stress fields i5s i(t,r). Let
G(T̄,s) denote the corresponding Gibbs free energy. T
stress s i in turn induces infinitesimal strainse i(T,r)
5(]G/]s i)T as well as small temperature changesdT
5dT(t,r) in the system. This leads to a small inhomog
neous heat distribution

dQ~ t,r!'CsdT~ t,r!1T̄(
i

S ]S

]s i
D

T

s i~ t,r!, ~14!

whereCs5T̄(]S̄/]T̄) s̄ denotes the specific heat at consta
stresss̄. We introduce thethermal-expansioncoefficients
a iª(]ē/]T̄) s̄52@dS̄/ds i(r)# T̄ . Then dQ(t,r)5CdT(t,r)
2T̄( ia is i(t,r), which implies

]Q~ t,r!

]t
5Cs

]T~ t,r!

]t
2T̄(

i
a i

]s i~ t,r!

]t
. ~15!

Combining this with the heat equation

]Q~ t,r!

]t
5kD rT~ t,r! ~16!

we arrive at the linear partial differential equation

]U~ t,r!

]t
2DD rU~ t,r!5F~ t,r! ~17!
0-2
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for the temperature fluctuationU(t,r)ªT(t,r)2T̄, where
Dªk/Cs is the thermal diffusivity, and

F~ t,r!ª
T̄

Cs
(

i
a i

]s i~ t,r!

]t
~18!

will be called thethermal driving function~TDF! in the fol-
lowing. Suppose now that the external forcef (t) of period
2p/v is switched on att50. After the initial configuration
U0(r) has died out, a periodically oscillating temperatu
distributionT(t,r)5T̄1U(t,r) will be found in the system,
which induces the heat currentq(x)52k“T(r)
52k“U(r). Making use of the heat equation~16!, the re-
sulting entropy loss per unit time is

~19!

where Gauss’s theorem was used. We now expandT
5(1/T̄)2(U/T̄2)1O(U2). Then to orderO(U3), again us-
ing Gauss’s theorem, we obtain the two contributions

~1!52
k

T̄2EO
df•~“U !U, ~20a!

~2!5
k

T̄2EO
df•~“U !U2

k

T̄2EV
dVUDU. ~20b!

Altogether, sincedEm/dt5T̄dS/dt, this yields

dEm

dt
5

k

T̄
E

V
dVU~2D!U1O~U3! ~21!

and so, averaged over one period,

K dEm

dt L 5
v

2pE0

2p/v

dtFk

T̄
E

V
dVU~2DU !G . ~22!

IV. SOLUTION FOR A PARALLELEPIPED

A. Analysis of boundary conditions

An analysis of Eq.~22! is quite essential for understand
ing the nature of heat diffusion. In fact, the two contributio
~20a! and ~20b! represent the mechanical energy lo
dEm /dt resulting from heat dissipation through the surfa
O as well as heat transfer between different regions wit
the crystal. Adding these contributions, the surface te
seem to cancel. Nevertheless the admissible eigenvalue
the Laplacian (2D) crucially depend on the boundary co
ditions imposed on its eigenfunctions, actually leaving
problem undefined unless we fix them. In this aspect, a c
sistent treatment of heat diffusion takes a lot more care t
many other phase-transition-related problems, where i
usually safe to assume that the bulk effect is orders
18411
/

n
s
of

e
n-
n

is
f-

magnitude larger than surface contributions and there
any choice of boundary conditions will do. Indeed, in t
literature various types of boundary conditions have be
imposed in a more or less justified way.

• Chaveset al.4 assume that the crystal’s surface is in perfe
contact with an infinite medium of the same thermal co
ductivity k. To what extent this is physically relevant wi
be discussed below.

• Fally et al.7 consider isothermal boundary conditions, i.
they takek to be infinite on the crystal’s surfaceO. While
this may be reasonable in a dielectric context where
crystal’s surface is vaporized with metal for measureme
there is no point in introducing such an assumption
elastic measurements. Yet, in the presence of domains
resulting boundary conditions will turn out to be of co
siderable relevance.

• In a surrounding vacuum, finite heat loss is due to radiat
and could be described by the Stefan-Boltzmann law,
it is proportional toT.4

• In the elastic context, convection will provide the mo
important contribution in the presence of purge gas or
where finite heat conduction on the surface is mai
caused by free and forced convection.

In what follows we will focus on the case of heat loss due
convection. To account for this, we employ Newton’s law
heat conduction, which states that heat transfer on the sur
is proportional to the heat difference of the surface and
surroundings. In other words, recalling thatq52k“ rT5
2k“ rU, we impose the boundary conditions

@n•“ rU~ t,r!1hU~ t,r!# rPO50, ~23!

where n denotes the outer surface normal vector andh is
known as the heat transfer coefficient.

B. Admissible base functions

We now consider a specimen of volumeV5 l 13 l 23 l 3.
Then it is convenient to define the dimensionless vectorx
PV̂ª@21/2,1/2#3 by settingxiªr i / l i . We also introduce
the coefficientsDiªD/ l i

2 and the dimensionless paramete
g iª l ih. Then we can restate Eqs.~17! and ~23! as the sys-
tem of inhomogeneous partial differential equations

]u~ t,x!

]t
1Lu~ t,x!5F̂~ t,x!, Lª2(

i 51

3

Di

]2

]xi
2

, ~24!

with initial condition u(0,x)5u0(x) and boundary condi-
tions

]u~ t,x!

]xi
6g iu~ t,x!50, xi561/2, ~25!

where u(t,x)[U@ t,(l ixi)#, u0(x)[U0@( l ixi)#, ŝ i(t,x)
[s i@ t,(l ixi)#, andF̂(t,x)[F@ t,(l ixi)#. The energy dissipa-
tion per volume is then written as
0-3
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A. TRÖSTER AND W. SCHRANZ PHYSICAL REVIEW B66, 184110 ~2002!
1

V

dEm

dt
5

Cs

T̄
E

V̂
d3xuLu. ~26!

The solution of the system of Eqs.~24! and
~25! can be constructed using the eigenfunctio
Ne(qi)cos(qixi), No(qi)sin(pjxj) of the elliptic operator
2]2/]xi

2 defined on the interval@21/2,1/2#. The factors

Ne~qi !ªA 2qi

qi1sin qi
, No~qi !ªA 2pj

pj2sin pj
~27!

are chosen to normalize these functions to 1 with respec
theL2 Hilbert-space norm. As they are subject to the bou
ary conditions~25!, possible wave vectorsp,q must satisfy
the relations

cot
qi

2
51

qi

g i
, tan

pj

2
52

pj

g j
. ~28!

These equations allow for an infinite number of solutio
qi(mi), pj (mj ), mi ,mj50,1,2, . . . , corresponding to the
admissible wave numbers in directionsi and j,
respectively, yielding the admissible wave vectorsq(n)
ª@q1(m1),q2(m2),q3(m3)#, p(m)ª@p1(m1),p2(m2),
p3(m3)#. We parametrize the solutionsqi(mi), pj (mj ), of
Eq. ~28! by

qi~mi !5q̂i~mi !12pmi , ~29a!

pj~nj !5 p̂ j~mj !12pmj , mi ,mj50,1,2, . . . , ~29b!

whereq̂i(mi),p̂ j (mj ) satisfy the relations

cot
q̂i~mi !

2
5

q̂i~mi !12pmi

g i
, ~30a!

tan
p̂ j~mj !

2
52

p̂ j~mj !12pmj

g j
~30b!

since cot(x1mp)5cotx, and tan(x1mp)5tanx. For
general values ofg i these equations can only be solv
numerically. Notice, however, that since tan@(x2p)/2#
52cot(x/2), we have

pj~mj ![qj S 2mj21

2 D . ~31!

In particular, since cotp/250, we obtain q̂ j (21/2)5p,
yielding p̂ j (0)50. Summarizing these relations, for 0,h
,` and any nPN0

3 there is a base functionf n(x)
ª) i 51

3 f ni
(xi) defined by

f ni
~xi !ªH Ne@qi~ni /2!#cos@qi~ni /2!xi # ni even,

No@qi~ni /2!#sin@qi~ni /2!xi # ni odd.
~32!

Each such function is an eigenfunction for the Laplac
2D with eigenvalue( i 51

3 qi
2(ni /2), but simultaneously also

for the operatorL with eigenvalue
18411
s

to
-

s

n

lnª(
i 51

3

Diqi
2~ni /2!. ~33!

It is shown in Refs. 11 and 12 that these functions form
complete orthonormal base of the Hilbert spaceL2(V̂,R) for
set of g1 ,g2 ,g3.0. Obviously qi(0),qi(1/2),qi(1)
,qi(3/2),qi(2), . . . , andsince qi(0).0 for 0,h,`,
we conclude thatall eigenvaluesln are positive. The follow-
ing limiting cases are of particular interest:

• g i→` ~isothermal boundary conditions along directioni ).
Then u(t,x)[0 for xi561/2 and sinceg i→`, we have
cotq̂i(ni/2)/250, which implies that limg i→`q̂i(ni /2)5p

and consequently limh→`qi(ni /2)5(ni11)p.0;ni>0.
All eigenvaluesln are positive and

f ni
~xi !5A23H cos@~ni11!pxi # ni even,

sin@~ni11!pxi # ni odd.
~34!

• g i!1 ~almost adiabatic boundary conditions!. We note the
series expansions

Ne~0!511
g i

12
1O~g i

2!, ~35a!

qi~0!5A2g i2
g i

3/2

6A2
1O~g i

5/2! ~35b!

and

qi~ni !52pni1
g i

pni
2

g i
2

2ni
3p3

1O~g i
3!, ~36a!

Ne,o~ni !5A2S 12
g i

ni
2p2D 1O~g i

2!, ~36b!

which imply that limg i→0qi(ni /2)5nip, ni50,1,2 . . . .

Thus, in the limiting caseg i50 we obtain

f ni
~xi !5A23H cos@nipxi # ni even,

sin@nipxi # ni odd.
~37!

Thus, only under the hypothetic assumptionh50 of per-
fect thermal isolation on the complete surfaceO would the
constant functionf (x)[1/V with corresponding eigen
value l050 be admissible. Numerically, a noticeab
adiabatic-to-isothermal crossover occurs for approxima
1'g i

adiabat,g i,g i
iso'500.

C. General solution for periodic external force

According to Fourier’s method of solving partial differen
tial equations, one can show that using the projection coe
cients

an
ªE

V̂
d3x fn~x!u0~x!, ~38a!
0-4
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cn~s!ªE
V̂
d3x fn~x!F̂~s,x! ~38b!

any solution of Eq.~24! for a given TDFF̂(t,x) and initial
configurationu0(x) can be expanded in terms of the ba
functions f n(x) as

u~ t,x!5 (
nPN0

3
e2lntFan1E

0

t

dscn~s!elnsG f n~x!. ~39!

For later use, we define the relaxation timestnª1/ln and
the spatial averagesf̄ nª* V̂d3x fn(x). Obviously f̄ n50 if
just oneni happens to be odd.

We now consider a stress fieldŝ i(t,x)5ŝ i
0(x)cos(vt) pe-

riodic in time. This yields a TDF

F̂~ t,x!5
T̄

Cs
(

i
a i ŝ i

0~x!@2v sin~vt !# ~40!

with a spatial part

F̂0~x!ª
T̄

Cs
(

i
a i ŝ i

0~x!. ~41!

After the memory of the initial configurationu0(x) has died
out, u(t,x) will be shown below to be of the general form

u~ t,x!5 (
nPN0

3
un~ t ! f n~x!. ~42!

The energy dissipation per volume is@cf. Eq. ~26!#

1

V

dEm

dt
5

Cs

T̄
E

V̂
d3xuLu5

Cs

T̄
(

nPN0
3

un
2~ t !lm , ~43!

where the orthonormality of the base functionsf n(x) was
used. Therefore, the average energy dissipation is

1

V K dEm

dt L 5
Cs

T̄
(

nPN0
3
F v

2pE0

2p/v

dtun
2~ t !Gln , ~44!

which implies forx9(v)5(2/v f 0
2)1/V^dEm /dt& the general

formula

x9~v!5
Cs

T̄f 0
2 (

nPN0
3

ln

1

pE0

2p/v

dt un
2~ t !. ~45!

At this stage it is already obvious that limv→`x9(v)
50. We now calculate the functionsun(t). The coefficients
cn(s) are

cn~s!5@2v sin~vs!#
T̄

Cs
(

i
a i ŝ in

0 , ~46!

where

ŝ in
0 5E

[ 21/2,1/2]3
d3x fn~x!ŝ i

0~x!, ~47!
18411
and so

e2lntE
0

t

dscn~s!elns52
T̄

Cs

v

ln
21v2

@ve2lnt2v cos~vt !

1ln sin~vt !#S (
i

a i ŝ in
0 D . ~48!

Therefore,

u~ t,x!5 (
nPN0

3
e2lntanf n~x!2

T̄

Cs
(

nPN0
3

v

ln
21v2

@ve2lnt

2v cos~vt !1ln sin~vt !#S (
i

a i ŝ in
0 D f n~x!,

~49!

from which we extract

un~ t !52
T̄

Cs

v

ln
21v2

[ 2v cos~vt !

1ln sin~vt !] S (
i

a i ŝ in
0 D ~50!

for 0,g i,` in the limest@1. From this we obtain

1

pE0

2p/v

dtun
2~ t !5

v

ln
21v2

T̄2

Cs
2 S (

i
a i ŝ in

0 D 2

. ~51!

According to Eq.~45!, this finally yields

x9~v!5
1

f 0
2 (

nPN0
3

vln

ln
21v2 S (

i
a i ŝ in

0 D 2

. ~52!

This is a sum of negative imaginary parts of Debye-like co
tributions }ln /(ln1 iv)51/(11 ivtn). The full complex
susceptibility must therefore be of the form

x~v!5x`1
1

f 0
2 (

nPN0
3

S (
i

a i ŝ in
0 D 2

11 ivtn

5x`1
1

f 0
2 (

nPN0
3

S (
i

a i ŝ in
0 D 2

11 ivtn
~53!

Specializing to uniaxial pressure in directionk, i.e., ŝ i
0(x)

50, iÞk, the high-frequency limitx`PR is determined as
follows. In view of Eq.~4! we identify

Skk~v![
f 0

2

uuskuuL2

2
x~v!5

f 0
2

uuŝk
0uuL2

2
x`1

T̄ak
2

Cs
V~v!,

~54!

where we introduce the crossover function
0-5
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V~v!ª
1

uuŝk
0uuL2

2 (
nPN0

3

~ ŝkn
0 !2

11 ivtn
. ~55!

Notice that this can also be written as

V~v!5
1

uuF̂0uuL2

2 (
nPN0

3

~ F̂n
0!2

11 ivtn
~56!

since in the present situationŝk
0(x) is proportional toF̂0(x)

@cf. Eq. ~41!#. Using the completeness of eigenfunctions
calculate the limits

lim
v→0

V~v!5
1

uuŝkuuL2

2 (
nPN0

3
~ ŝkn

0 !251, ~57a!

lim
v→`

V~v!50. ~57b!

This allows to express the complex elastic complian
Skk(v) by the adiabatic and isothermal compliances

Skk
S
ª lim

v→`

Skk~v![
f 0

2

uuŝkuuL2

2
x` , ~58a!

Skk
T
ª lim

v→0
Skk~v![Skk

S 1
T̄ak

2

Cs
~58b!

as

Skk~v!5Skk
S 1~Skk

T 2Skk
S !V~v!, ~59!

from which instantly deduce the elastic Pippard relation

Skk
T 2Skk

S 5
T̄ak

2

Cs
. ~60!

Formulas~59! and~55! are the fundamental equations f
discussing heat-diffusion phenomena. The physical con
of Eq. ~55! is quite transparent. Each spatial projection co
ficient ŝkn

0 onto the corresponding heat conduction mo
f n(x) contributes a Debye-like relaxation propagating w
relaxation timetn , which is determined by the heat condu
tion coefficient, the specific heat, and the boundary con
tions. The amplitude of the whole effect is proportional
ak

2 . It will therefore be most likely observed in the vicinit
of a phase transition. The Pippard relation~60! is recognized
as a simple consequence of the completeness of the sy
of eigenfunctionsf n(x) and energy conservation.

We emphasize that in contrast to former treatments~cf.
Refs. 4, 5, 7, and 8!, Eqs. ~55! and ~59! do not explicitly
depend on any particular assumptions concerning the sp
nature of the excitation or the boundary conditions on
surface of the sample. Therefore we feel that they are s
able for a general discussion of heat-diffusion phenomena
particular, the present theory holds for arbitrary spatial
18411
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pendence of the TDFF̂(t,x)}akŝk(x) generated by the ex
ternal forcef. Such spatial inhomogeneities can, in princip
arise due to different reasons:

• The stress distributionŝk(x) may be inhomogeneous as
result of the action of the external forcef itself, such as the
case in a 3PB experiment.

• One can also introduce a spatial dependenceak(x) of ak .
Assuming ŝk

0(x)5const to be homogeneous but takin
ak(x)56uaku is obviously equivalent to a situation wher
ak5const whileŝk(x)56uŝk

0u. This can be used to stud
the contributions originating purely from heat diffusio
i.e., in a crystal with an completely regular domain patte

Since Eq.~55! represents an infinite sum of Debye-lik
contributions with different relaxation times, the resultin
crossover function is non-Debye in principle, and in fa
several of the crossover functions found in the cited ref
ences from a variety of theoretical assumptions are of a
responding nature. However, it remains to investigate un
which experimental conditions non-Debye-like behavior
actually expected to be manifestly observed in areal experi-
ment.

V. HEAT DIFFUSION IN MONODOMAIN CRYSTALS

A. PPM experiments

1. General solution

In a PPM, where the uniaxial stresssk
0 is homogeneous

the only nonzero projection coefficients are determined fr

~ ŝk2m
0 !2

uuŝkuuL2

2
5F E

V̂
d3x1• f 2m~x!G2

5 f̄ 2m
2 . ~61!

This yields the PPM crossover function

V~v!5 (
mPN0

3

f̄ 2m
2

11 ivt2m
. ~62!

In the following we are interested in the dependence
V(v) on the dimensionless parametersg i5hli determined
by the sample geometry and the boundary conditions. H
ever, in three dimensions, most calculations can only
evaluated numerically. Since the results below remain qu
tatively valid in three dimensions, some analytic illustratio
obtained ford51 are therefore presented, which is a use
and admissible simplification for the case of plateli
samples of small thickness frequently encountered in exp
ment. To compare the behavior of different crossover fu
tions it is convenient to investigate their corresponding Co
Cole plots. Recall that the Cole-Cole~CC! plot of a complex-
valued functionV(v)5V8(v)2 iV9(v), v.0 is defined
as thev-parametrized function graph$(V8(v),V9(v)),v
.0%. Inspecting formula~55!, we notice thatv always en-
ters through the product
0-6
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vtn5
v

D F(
i 51

3

qi
2~ni /2!/ l i

2G21

. ~63!

SinceD215D21(T)5Cs(T)/k(T) usually displays a con
siderable anomaly in the vincinity ofTc , we conclude that
the CC plot of a heat-diffusion crossover functionV(v) can
equally be parametrized by either angular frequencyv at
fixed temperatureT or temperatureT at a fixed value of
angular frequencyv.

Now it is well known that the CC plot of a Debye-lik
function V(v);1/(11 ivt),t.0 represents an upper ha
circle in the complex plane. As shown in Fig. 1, for growin
values ofg i , the non-Debye characteristics ofV(v) become
increasingly manifest as the CC plot ofV(v) becomes more
and more asymmetric. However, one should consider the
lowing quantitative estimates.

In a usual PPM experiment, specimen are of sizes of o
l i;1 cm. On the other hand, the parameterh depends on
various quantities, which are experimentally difficult to co
trol. For example, in the case of forced convection due to
use of purge gas,h depends on parameters such as purge
density and velocity, purge flow geometry, turbulence
fects, and so on. However, inspecting the literature,13 one
finds that realistic values ofh for forced convection are con
fined to a regionh,10 cm21, yieldingg i,10. For free con-
vection, h is yet orders of magnitude smaller. Bearing
mind that the Debye factor 1/@11 ivtq(2m)# rapidly ap-
proaches zero for growing values ofmi , a numerical inves-
tigation of the factorsf̄ 2mi

2 as a function ofg i ~see Fig. 2!

reveals the fact that for usual experimental conditions o
the termm50 gives a significant contribution toV(v).

For g i!1, we collect the expansions

qi~0!5A2g i1O~g i
3/2!, qi~2mi !5

g i

pmi
1O~g i

2!

~64!

FIG. 1. CC plot of the one-dimensional crossover functi
V(v) for dimensionless parameterg53, 9, 22, 50, and̀ .

FIG. 2. Coefficientsf̄ 2m
2 as a function ofg for m50 –3.
18411
l-

er
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as
-

y

(ni51,2,3,. . . ) yielding

l052(
i 51

3

Dig i1O~g i
2!52Dh(

i 51

3
1

l i
1O@~hli !

2#. ~65!

For the realistic caseg i!1 we can therefore conclude tha
the infinite sum of Eq.~55! actually collapses to give a
Debye-like dispersionV(v);1/(11 ivt0) with relaxation
time

t0;S 2Dh(
i 51

3
1

l i
D 21

5
1

Dh

V

O
. ~66!

As far as single domain crystals are concerned, we are
aware of any clear detection of elastically induced heat
fusion using a PPM measurement nor of a correspond
observation in a dielectric experiment. However, let us co
pare the above predictions to the result of quite recent9 PPM
measurements of temperature and frequency dependenc
the complex elastic susceptibility of KMnF3. Indeed, in pure
KMnF3 an ultraslow relaxational process just below t
structural phase transition atTc5186 K was discovered~Fig.
3!, and as the inset of Fig. 3 shows, the CC plot of the d
points is in reasonably good agreement with a Debye h
circle as expected from Eq.~66!. Unfortunately, due to the
comparatively wide distribution of measurement poin
these data are not absolutely conclusive. A closer experim
tal investigation using frequency scans at fixed temperatu
is in progress.

2. Isothermal boundary conditions

In d51 dimensions the crossover function can be cal
lated in a closed form for isothermal boundary conditions.
fact, lettingg1→` then yieldst2m5(1/D1p2)1/(2m11)2,
m50,1,2, . . . , f 2m(x)5A2 cos@(2m11)px# and so f̄ 2m

2

5(8/p2)1/(2m11)2. The resulting infinite sum can be ex
plicitly performed and yields thed51 crossover function of
Fally et al.,7

VFally
(d51)~j!5

~11 i !

Aj
tanF ~12 i !

2
AjG , j5

v

2D1
. ~67!

The negative imaginary partVFally
(d51)9(j) peaks at j

55.081 29, leading to a typical relaxation time of order

tFally'
1

532D1
5

l 1
2

10D
. ~68!

In Ref. 7, these results were obtained in a dielectric c
text, where the use of isothermal boundary conditions m
be justified as we mentioned above. In contrast, for typi
elastic PPM experiments on monodomain samples s
boundary conditions are clearly ruled out. However,
chose to record the (d51) dispersion function~67! here be-
cause it is of considerable interest in discussing the poly
main case below.

For dimensionsd52,3 the resulting dispersion can on
be evaluated numerically. A CC plot ofVFally

(d) (j) for isother-
mal boundary conditions ind51,2,3 is presented in Fig. 4
0-7
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FIG. 3. Temperature dependencies of the real partS118 (v) and the imaginary partS119 (v) of the complex elastic compliance of pur
KMnF3 in the phase-transition region at various frequencies. The inset shows the temperature-parametrized CC plot.
B. Three point bending mode

Here ŝ3(x)53(2ux1u21)3const3x3, and so

~ ŝ3,n
0 !2

uuŝ3uuL2

2
5X̂n1

2 Ŷn2

2 Ẑn3

2 , ~69!
18411
where

X̂n1
ª

E
21/2

1/2

dx1~2ux1u21! f n1
~x1!

AE
21/2

1/2

dx1~2ux1u21!2

, ~70a!
0-8
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Ŷn2
ªE

21/2

1/2

dx2f n2
~x2!, ~70b!

Ẑn3
ª

E
21/2

1/2

dx3x3f n3
~x3!

AE
21/2

1/2

dx3x3
2

. ~70c!

From symmetry it follows that Eq.~69! is only nonzero for
n152m1 , n252m2 even, andn352m321 odd. Using the
abbreviationsq1[q1(m1), q2[q2(m2), and q3[q3(m3
21/2), we collect~see Fig. 5!

X̂2m1
58A3No~q1!

sin2S q1

4 D
q1

2
, ~71a!

Ẑ2m32152A3No~q3!

q3 cosS q3

2 D22 sinS q3

2 D
q3

2
, ~71b!

FIG. 4. Comparison of CC plots obtained fromVFally
(d) (j) for

isothermal boundary conditions in dimensionsd51–3.

FIG. 5. ~a! CoefficientsX̂2m21
2 as functions ofg for m51 –4 as

determined from Eq.~71a!. ~b! Ẑ2m21
2 as a function ofg for m

50 –3 as determined from Eq.~71b!.
18411
Ŷ2m2
5 f̄ 2m2

52Ne~q2!

sinS q2

2 D
q2

. ~71c!

In the physically relevant limit of smallg i one again verifies
numerically that the lowest-order contributionn5(0,0,1/2)
dominates the sum~55! by far, and thus we conclude tha
againV(v) should be of the Debye type

V~v!;
1

11 ivt (0,0,1/2)
, ~72a!

t (0,0,1/2)5
1

2Dh

1

1/l 111/l 212S l 31
p2

4h
D Y l 3

2

. ~72b!

For l 3! l 1 ,l 2 we obtain

t (0,0,1/2)'
l 3
2

4DhS l 31
p2

4h
D '

l 3
2

4DhS p2

4h
D 5

l 3
2

Dp2
. ~73!

In contrast to the PPM situation, we observe that for 3PB a
a platelike specimen of thicknessl 3 the lowest~and usually
only observable! heat-diffusion relaxation timet (1/2,0,0) is in-
dependent ofh and proportional tol 3

2. Physically, this illus-
trates the fact that in 3PB one primarily measures the h
exchange among different regions inside the crystal cau
by the presence of inhomogeneous stress, while in the P
one only observes the heat loss through the crystal’s surf

Again, the above assertions are fully supported by exp
ment. Consider the example of KSCN crystals,8 which un-
dergo an order-disorder phase transition aroundTc5415 K.
Measurements of the complex elastic complianceS33 as a
function of temperature and frequency yield an ultralo
frequency elastic relaxation belowTc . As shown in Fig. 6,
not only is the measured dispersion of a Debye type,
moreover the corresponding characteristic relaxation tim
being of an order of 0.1 s of magnitude, is indeed obser
to be proportional tol 3

2, as predicted by Eq.~73!.

C. The model of Chaveset al.

We now analyze the treatment of heat diffusion given
Ref. 4. Actually, the theory presented there refers to the st
of the dielectric susceptibility. Nevertheless, as was m
tioned above the theoretical concepts can be taken ove
the elastic case in a one-to-one manner.

To circumvent the problem of defining and controllin
boundary conditions, in Ref. 4 a crystal of sizeur i u< l i /2
subject to a homogeneous TDF is assumed to be surrou
by an infinite medium of the same heat conductivity and h
capacity. Within our present treatment, this actually
sembles a crystal of infinite size subject to an inhomo
neous external excitation
0-9
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FIG. 6. Frequency dependence of the crossover functionV(v) of KSCN atTc2T52 K as determined from the experimental data
Ref. 8. The lines represent a fit with a Debye dispersion, while the corresponding CC plot is shown in the inset.
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F~ t,r!5H F~ t ! ur i u< l i /2,

0 ur i u. l i /2.
~74!

Working out this problem for general TDFF(t,r), we inves-
tigate the corresponding heat diffusion equation. In redu
coordinates we consider

]u~ t,x!

]t
1Lu~ t,x!5F̂~ t,x! ~75!

with the initial conditionu(0,x)50. Since no boundary con
ditions are imposed, there is no restriction on the admiss
q vectors. The solution of Eq.~75! therefore takes the form14

u~ t,x!5E d3q

~2p!3
e2lqtF E

0

t

dsF̂q~s!elqsGe2 iq•x, ~76!

where againtq
215lqª( i 51

3 Diqi
2 and

F̂q~s!ªE d3xF~s,x!eiq•x. ~77!

We now specialize our treatment to excitations of type

F̂~ t,x![2
vT̄a

Cs
ŝ0~x!sin~vt !. ~78!

Then in an obvious notation of
18411
d

le

F̂q~s!52
vT̄a

Cs
sin~vs!ŝq

0 . ~79!

Since there are no boundary conditions to obey, a review
the corresponding derivation shows that Eq.~22! now holds
for V5R3. Therefore, almost literally repeating the steps
the calculation of Sec. IV C with sums replaced by integra
we obtain the general crossover function ind53 dimen-
sions,

V~v!5
1

uuŝ0uuL2(R3,R)
2 E d3q

~2p!3

uŝq
0u2

11 ivtq
. ~80!

How is this approach related to the one presented above
Ref. 4 the crossover function of a simple one-dimensio
model defined by the steplike spatial excitation function

ŝ0~x!ªH 1 uxu,1/2,

0 uxu>1/2
~81!

was calculated from the response to a steplike excitation
time. Using the present methods, since

uuŝ0uuL2(R,R)
2 51, ŝq

05
2 sin~q/2!

q
, ~82!

reducing our formula~80! to d51 yields immediately
0-10
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VChaves
(d51)~j!ªE dq

2p

4 sin2~q/2!

q2

1

11 iv/~D1q2!

5
12e2(11 i )Aj

~11 i !Aj
, ~83!

wherej was defined in Eq.~67!.
On the other hand, consider a (d51) finite-volume model

defined by the excitation function

s r 0
~ t,r !ªH cos~vt ! ur u,r 0/2,

0 ur u>r 0/2
~84!

with boundary conditions defined by a given heat trans
coefficienth. In reduced units, the spatial part is

ŝe
0~x!5H 1 uxu,e/2,

0 uxu>e/2,
eªr 0 / l 1 . ~85!

Now let us consider the casel 1→` for D15D/ l 1
25 held

constant. If we simultaneously letr 0→` such thate51 re-
mains constant, this approaches a system with isothe
(g15`) boundary conditions, and the corresponding cro
over function reduces toVFally

(d51)(v) as defined by Eq.~67!.
More generally, ife is kept fixed at a valuee,1, since
uuŝ0uuL2

2 5e, we obtain the sum

Ve~v!ª
4

p2e
(

m50

`
12cos@~2m11!pe#

~2m11!2

1

11 ivt2m
.

~86!

A numerical comparison of CC plots shows~cf. Fig. 7! that
for 0<e<1 the function Ve(j) interpolates between
VChaves

(d51)(j) andVFally
(d51)(j).

We therefore conclude that the (d51) model of Ref. 4 is
equivalent to a one-dimensional crystal of finite volume s
ject to a deltalike excitation at its center with isotherm
boundary conditions. In our opinion, its practical physic
relevance for interpreting experimental measurements
single domain crystals is therefore doubtful. Nevertheles
is of considerable relevance in the study of heat diffusion
random domain distributions, as we shall show below.

D. Considerations for dimensionsdÄ2,3

Following a similar approach as that taken in Ref. 4,
Ref. 5 the above model is generalized to one representi
spherically shaped crystalline ‘‘bubble’’ of, say, radiusR sur-

FIG. 7. Comparison of CC plots ofVe(j) for e
51, 0.4, 0.3, 0.2, 0.1, 0.07, and 0.
18411
r
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-
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l
n
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a

rounded by an infinite medium of the same heat capacity
conductivity. The resulting crossover functions can
readily obtained from evaluating the formulas correspond
to Eq. ~80! for d52 andd53 in polar coordinates forDi
5D, i 51, . . . ,d. Integrating Eq.~80! for

ŝq
055

2pR

q
J1~Rq!, d52,

4p

q3
@sin~Rq!2Rq cos~Rq!#, d53

~87!

and defining another dimensionless angular frequency

jRª
R2v

2D
~88!

we instantly obtain

VChaves
(d52)~jR!52R2I 1~~11 i !AjR!K1~~11 i !AjR! ~89!

for d52. HereJn(z) denotes the Bessel function of the fir
kind andI n(z) andKn(z) denote the modified Bessel func
tions of the first and second kinds, respectively. Ford53,
one has

VChaves
(d53)~jR!5

3

8
jR

23/2$11 i 12~12 i !jR2@11 i 14iAjR

22~12 i !jR#e22(11 i )AjR%. ~90!

Figure 8 shows a CC plot comparison of the crossover fu
tions VChaves

(d) for d51,2,3.
In closing this section we note the interesting similar

between the CC plots ofVFally
(d53)(j) andVChaves

(d53)(j) as shown
in Fig. 9: While their CC plots are quite distinct in ad51
setting, ind53 a CC plot resulting from the boundary con
ditions used by Chaveset al. is hard to distinguish from tha

FIG. 8. Comparison of CC plots ofVChaves
(d) (j) in dimensions

d51 –3. The CC plot is of course invariant with respect to t
choiceR51 of the cluster radius.

FIG. 9. Comparison of CC plots ofVChaves
(d53)(j) as compared to

VFally
(d53)(j) for d53.
0-11
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A. TRÖSTER AND W. SCHRANZ PHYSICAL REVIEW B66, 184110 ~2002!
derived from completely isothermal ones for single dom
crystals of close to cubic shape.

VI. HEAT DIFFUSION IN POLYDOMAIN
CRYSTALS AND DISORDERED SYSTEMS

Up to now we have studied heat diffusion dynamics in
rather restrictive case of a monodomain crystal. Howe
usually a structural phase transition may be accompanie
the formation of domains and other microstructures. In p
ticular, it is well known that the presence of domain wa
often leads to large deviations of the dynamic elastic15,16 or
dielectric17 susceptibilities from the monodomain behavio
This may be due to a variety of effects such as e.g., dom
wall motion hindered by various pinning mechanisms18–20

and domain freezing.21 On the other hand, in the presence
domains heat diffusion inevitably occurs, not only betwe
the crystal and its surrounding but also within different d
mains, since an external excitation leads to different inter
temperature levels. Therefore it comes as no surprise th
real experiments it is often very difficult or impossible
decouple all these different central peak mechanisms. H
ever, note that quite qenerally the influence of domain-w
motion to macroscopic susceptibilities is proportional to
number of domain walls.15,22 Therefore by controlling the
domain density by application of an electric or elastic b
field it should be possible to separate heat-diffusion fr
domain-wall dynamics. In fact, in Ref. 5 non-Debye low
frequency dielectric dispersions were measured in a num
of ferroelectric crystals and were attributed to the switch
of small polarization clusters or domains. In the followin
we briefly investigate the problem of heat diffusion dynam
in polydomain crystals.

A. Analytical arguments

To begin, consider the most elementary case of a cen
domain wall perpendicular to thex1 direction dividing the
crystal into two domains of opposite polarization (6). As-
sume further a TDFF̂(t,x) homogeneous in space. The
since the actions ofF̂(t,x) on both domains will always bea
an opposite sign, symmetry demands that the tempera
fluctuations must vanish all along the central planex150,
i.e.,u@ t,(0,x2 ,x3)#[0. Thus, the physics of heat diffusion i
such a crystal should be equivalent to that of heat diffus
in a single domain crystal of just half the original size whe
isothermalboundary conditions are used on one of the s
face planes perpendicular to thex1 direction. The situation is
reminiscent of the method of mirror charges used in elec
static boundary problems.

In d51 it is instructive to investigate this analytically fo
the simple case of isothermal boundary conditions. We in
duce the inhomogeneous function

F̂0~x!5
ŝ0aT̄

Cs
3H 11 21/2,x,0,

21 0<x,1/2
~91!

in reduced coordinates. Since this is odd with respect tx,
the corresponding projection coefficientsF̂q(n)

0 will only be
18411
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nonzero for oddn52m21. Usingt2m21
21 5D1(2mp)2 and

calculating the projection coefficients

F̂q(2m21)5ŝ0
aT̄

Cs

A2

mp
@~21!m21# ~92!

we therefore obtain the dispersion

V~v;2!ª (
m51

`

2

m2p2
@~21!m21#2

11
iv

4D1m2p2

5VFally~j~2!!,

~93!

where we define

j~2!ª
v

8D1
5

v

2~4D1!
. ~94!

In effect, compared to formula~67!, D15D/ l 1
2 is replaced by

4D154D/ l 1
25D/( l 1/2)2, such that actuallyl 1 is replaced by

l 1/2.
On the other hand, consider our former model mo

odomain crystal subject to a spatially homogeneous exc
tion. Since the boundary conditions are symmetric with
spect tox1→2x1, the heat flow through the central plan
x150 must be zero, i.e.,

q~0,x2 ,x3!52k~0,]u /]x2 ,]u /]x3!. ~95!

The heat diffusion dispersion of such a crystal is theref
obviously equivalent to that of a homogeneous crystal w
the replacementl 1→ l 1/2 andadiabaticboundary conditions
imposed perpendicular to thex1 direction on one of the two
surfaces, whileh is kept fixed on the other.

These observations are quite useful for a qualitative
quantitative study of heat diffusion in more general dom
distributions. However, a thorough investigation of the pro
lem involving, e.g., different domain orientations is beyo
the scope of the present paper. In the following we confi
ourselves to the two extreme cases of aregular periodic
pattern of domains of alternating polarization as compare
systems with arandom statisticaldistribution of such do-
mains.

1. Regular domain pattern

Let MPN. We define the following symmetric partition
of the intervalIª@21/2,1/2#, which describes 2M21 one-
dimensional domains of polarization}(21)M1n and size
1/(2M ) enclosed by two domains of polarization}(21)M

and size 1/(4M ) at the boundary~cf. Fig. 10!:

I 5F2
1

2
,2

1

2
1

1

4M DøF2
1

2
1

4M21

4M
,
1

2G
øH ø

n51

2M21F2
1

2
1

2n21

4M
,2

1

2
1

2n11

4M D J .

~96!
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Let u [a,b] (x) denote the characteristic function of the interv

@a,b#. Then a homogeneous external excitationŝ(t,x)
5ŝ0(x)cos(vt) yields an effective TDFF̂(t,x) with a spatial
part

F̂0~x!5
ŝ0aT̄

Cs
H ~21!Mu [ 2(1/2),2(1/2)1(1/4M )]~x!

1 (
n51

2M21

~21!M1n

3u [ 2(1/2)1(2n21/4M ),2(1/2)1(2n11/4M )]~x!

1~21!Mu [ 2(1/2)1(4M21/4M ),(1/2)]~x!J ~97!

in reduced coordinates. Note that triviallyuuŝuuL2

2

5(ŝ0aT̄/Cs)2. Due to inversion symmetry only the eve
base functionsf 2m(x) are relevant. According to the abov
observations, in the limit of adiabatic boundary conditio
where the heat flow on the boundary is assumed to be z
the two ‘‘small’’ boundary domains can be merged to o
single domain. Moreover, symmetry and orthogonality of
base functionsf n(x) demands that the temperature fluctu
tions u(t,x) must vanish along all the domain wallsx1[
2 1

2 1(2n21)/4M . Symmetry also singles out the base fun
tions f 2m(x)5A2 cos@2mpx# for adiabatic boundary condi
tions, and, projecting the resulting pattern ofNª2M do-
mains onto these base functions, one obtains the coeffic

ŝq(2m)
0 5

aT̄

Cs
H ~21! i 11

2A2

~2i 21!p
m5~2i 21!M ,

0 else.
~98!

From this one explicitly computes

V~v;N!ª
1

uuŝ0uuL2

2 (
m50

`
@ŝq(2m)

0 #2

11 ivt2m
5VFally~j~N!!,

~99!

where we generalize

j~N!ª
1

N2

v

2D1
. ~100!

The corresponding characteristic relaxation time is

FIG. 10. Periodic domain distribution according to Eq.~96! for
M53 vs f 6(x).
18411
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nts

t~N!'
1

5

~ l 1 /N!2

2D
5

tFally

N2
. ~101!

We thus conclude that the system can effectively be regar
as a homogeneous one withisothermalboundary conditions
which has been shrunk from lengthl 1 to l 1 /N.

2. Random domain pattern

Suppose now that the crystal displays a domain patter
complete random nature. Next, we pick a single one of th
domains not too close to the crystal’s boundary and ca
domainDm . In contrast to the strictly regular scenario, th
presence the neighboring domains then does not yield s
boundary conditions for the isolated systemDm such as in
the regular case where the temperature deviationu(x) is
forced to be zero. However, suppose first thatDm is rather
small as compared to its surrounding neighbo
Dm21 ,Dm11. Then, recalling the interpretation at the end
Sec. V C, we realize that in good approximation domainDm
represents a system of just the type investigated there~but
with a doubled temperature difference of the system and
rounding!. On the other hand, ifDm is surrounded by a num
ber of smaller domainsDm2 i , . . . ,Dm1 i , domainDm can
also be thought of as residing in a thermal environment
average temperatureT̄, i.e.,u(x)50 and thermal conductiv-
ity and diffusivity identical to that of itself, since the extern
excitation induces polarization-dependent temperature de
tions in the surrounding domainsDm2 i which quickly cancel
on the average by ‘‘destructive thermal interference.’’ The
observations lead to the conclusion that while in a real cr
tal with a given irregular domain pattern the crossover fu
tion should be expected to be of a quite distinguished fo
individually dependent on the very details of this pattern,
‘‘average’’ crossover function of a large number of su
crystals should indeed bear considerable similarity to
crossover functionVChaves(j), wherej roughly scales with
an average domain width.

B. Numerical investigations

Due to its symmetry, the partition underlying Eq.~97!
proves to be useful for analytic calculations at adiaba
boundary conditions. For numerical studies of the effect
more general boundary conditions and statistically distr
uted domain patterns the following partition ofI into N sec-
tions I m of length 1/N proves to be more convenient:

I 5øm51
N I m , I mªF2

1

2
1

m21

N
,2

1

2
1

m

NG . ~102!

For a given numberNPN there exist 2N possible domain
configurations Pn , n51, . . . ,2N, defined by Pn

ª(Pmn)m51
N , where Pmn defines the polarization ofI m in

configurationPn . Suppose that the system takes on the c
figuration Pn . Then effectively the action of the homoge
neous TDFF̂(t,x) on the inhomogeneous system is equiv
lent to that of the inhomogeneous TDF with a spatial par
0-13
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F̂~x;Pn!ª2
ŝ0aT̄v

Cs
(
m51

N

Pmnu I m
~x! ~103!

on a homogeneous system. The configurationPn then yields
a crossover function

V~v;Pn!ª(
n50

` F (
m51

N

PmnE
I m

dx fn~x!G2
1

11 ivtn
.

~104!

We now fixN and consider the following two extremal cas

1. Regular domain pattern

We assume that the system’s configurationPn is given by
N alternatingly polarized domains in a strictly regular p
tern, i.e.,

Pmn5~21!m. ~105!

Of course in such a system not only the heat exchange
tween domains@q}(wave vector ofdomain pattern)# but also
the aditional heat loss through the surface due to the m
q5q(0) contributes toV(v). ForN even Eq.~103! is an odd
function ofx and vice versa. We conclude that for small a
odd N there is a noticable contribution forq5q(0). Indeed,
numerical computations of CC plots of the resulting disp
sion, which we write asV(v;N), for various values ofN
odd reveal an additional small half circle forN odd in the
physically interesting caseg i!1, as illustrated by Fig. 11.

For growing values ofN, the CC plots ofV(v;N) rapidly
approach that ofVFally(v), which comes as no surprise a
we argued above. On the other hand, forN not too large an
additional low-frequency Debye-like contributio
}@ F̂q(0)

0 (N)#2/(11 ivt0) is visible since the projection coef

ficient F̂q(0)
0 (N)'F̂0(N)̄ cannot be neglected for small an

odd N. However, the accompanying relaxation timet0

FIG. 11. ~a! CC plots of V(v;N) computed for the effective
TDF defined by Eqs.~103! and ~105! for g50.001 and N
53, 5, 7, and 9.~b! Similar for V* (v;N), which is calculated
from V(v;N) by removing theq(0)-modecontribution and renor-
malizing the resulting function to 1 atv50.
18411
-

e-

de

-

'(2( iDig i)
215(2Dh( i1/l i)

21 @cf. Eq. ~35a!# is usually
large and therefore frequently remains undetected in exp
ment.

2. Random domain pattern

Suppose that the domain pattern is completely rand
and we consider the averaged crossover function

^V&N~v!ª
1

2N (
n51

2N

V~v;Pn! ~106!

over all possible configurationsPn with polarizationsPmn

561, m51, . . . ,N. In this caseN should of course not be
confused with the number of domains, but rather it labels
coarseness of our hypothetical grid of domains. In fact, i
not hard to see that for such model systems the average
main size in reduced units is

2~1222N!

N
;

2

N
for N@5. ~107!

We thus conclude that for largeN this averaging mode
should yield a crossover function̂V&N(j), whose CC plot
approaches that ofVChaves(j) and a typical maximum value
jmax of ^V&N9 (j) proportional toN2 with increasing accuracy
for growing N. For numerical tests of these assertions s
Figs. 12 and 13.

In Ref. 5 the measured low frequency dielectric perm
tivity of Rochelle salt, triglycine sulfate, BaTiO3, and potas-
sium dihydrogen phosphate near their phase-transition t
peratures was attributed to heat diffusion and fitted to
crossover functionVChaves(j). However, the authors not
that this behavior cannot be intepreted as a monodom
response and conflicts with the boundary conditions rep
sented by the measuring setup. While no explicit calculati
are made, they speculate on the role of heat exchange
tween microdomains. Indeed, as we theoretically show

FIG. 12. ~a! CC plots of ^V&N(j) for g50.001 and N
52, 3, 5, and 10 compared to that ofVChaves(j). ~b! Similar for
V* (v), which is calculated fromV(v) by removing the
q(0)-modecontribution and renormalizing the resulting function
1 at v50.
0-14
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GENERAL THEORY OF HEAT DIFFUSION DYNAMICS PHYSICAL REVIEW B66, 184110 ~2002!
above, the appearance ofVChaves(j) is not at all in conflict
with the experimental boundary conditions but can a
neatly be understood as heat diffusion in irregular dom
patterns. On the other hand, the enhancement of the m
sured central peak intensity is also consistent with a mu
domain response as a result of additional domain wall m
tion.

C. Heat diffusion for spherically shaped clusters

In closing this section, let us review the interesting resu
of Ref. 5 in the context of the theory presented above. In R
5, a ‘‘raisins in a cake’’ model of well-separated spherica
shaped isotropic clusters, which are susceptible to an e
nal excitation ~i.e., a i5aÞ0,i 51 –3 inside the bubbles!,
surrounded by an infinite medium of identical heat capac
and conductivity, is studied. The corresponding crosso
function was calculated as Eq.~90! of Sec. V D. After a
simple transformation of variablest5(Dq2)21 in Eq. ~80!
we read off the spectral representation

VChaves
(d53)~v!5E

0

`dt

t

g~Dt/R2!

11 ivt
, ~108!

where

g~u!5
3

p
Au~cosA1/u2Au sinA1/u!2. ~109!

As illustrated by Fig. 14, the widespread distribution
g(u), which displays an infinite series of rapidly descendi
maxima, illustrates the non-Debye character of the disp
sion function ~108!. The lowest dimensionless frequenc
u21'6.0569 corresponding to the largest maximum ofg(u)

FIG. 13. Comparison of the negative imaginary part of the r
dom domain crossover function^V&N(N2j) for N53, 5, 8, and 10.

FIG. 14. Plot of the spectral functiong(u) as defined by Eqs
~108! and ~109!.
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at u'0.1651 is necessarily somewhat higher than the
sorption maximum valuejR'5.0542 of the negative imagi
nary part ofVChaves

(d53)(v).
In Ref. 5 the above approach is proposed to describe

diffusion among ‘‘clusters’’ of various physical origins. I
particular, an overall response function is introduced by
eraging the single cluster dispersion~108! over a probability
distributionn(R) of clusters of radiiR as obtained from, e.g.
percolation theory. The resulting dispersion is claimed to
rather insensitive to the choice of suchn(R) and fitted to the
Laplace transform of a stretched exponential-type time re
ation ;e2(t/t0)b

with b;0.6.
Obviously, the above approach can be applied to stu

e.g., heat diffusion caused by ferroelectic domains in ca
where the domain structure is effectively spherical rat
than that of one-dimensional layers. However, the res
have to be taken with a grain of salt. On the one hand
calculating the response of a multisphere system by ave
ing the single cluster response over a partitionn(R) of radii
R, the authors knowingly neglected the mutual thermal int
action of these spheres, while in Sec. VI A 1 we recogniz
the ‘‘mirror effect’’ appearing in regular patterns of (6) do-
mains to be important in such systems. Additional conce
regarding the applicability of such an approach to structu
of mesoscopic dimensions were also noted. Nevertheless
conjecture that the above approach could be quite usefu
study, e.g., heat diffusion between precursor clusters n
phase transitions, whose radius is governed by a stron
T-dependent correlation lengthj(T), and where disturbance
stemming from domain-wall dynamics/freezing are absen
the symmetrical phase. In this context, we would like
draw attention to the results of Ref. 23 on low-frequen
elastic measurements in C60 single crystals, where a cross
over from isothermal-to-adiabatic elastic constants was
deed observed as a precursor to the phase transition an
tributed to heat diffusion. To completely clarify thi
conjecture in the present theoretical context, work is
progress.

VII. DISCUSSION

The preceding sections have shown how multifaceted
the appearance of heat diffusion in single domain crystal
various types of boundary conditions and polydomain cr
tals or heterogeneous systems. For PPM and 3PB exp
ments on macroscopic monodomain crystals we have d
onstrated that for physically acceptable boundary conditi
the observed relaxation will necessarily be of a Debye ty
with a characteristic dependence on the sample’s geom
@cf. Eqs.~66! and~72!#. For dielectric experiments, one can
not completely rule out the possibility of isothermal boun
ary conditions, in which case the crossover function~67!
would be found. All other experimental appearances of n
Debye-like relaxations for macroscopic monodomain cr
tals must necessarily be either attributed to heat diffus
within polydomain structures and/or other processes of o
physical origin such as order-parameter dynamics, dom
wall motion, or domain freezing. Other dispersions may a
pear for cases of extremely anisotropic geometry such

-
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A. TRÖSTER AND W. SCHRANZ PHYSICAL REVIEW B66, 184110 ~2002!
e.g., in thin crystalline films. As far as pure heat diffusion
crystals with layered polydomain structures is concerned,
crossover functions~67! and~83! describe two extremal situ
ations of either a strictly regular domain sequence or an
erage over a large number of samples with random dom
patterns. Heat diffusion originating from spherical clusters
yet another story.

Despite its universal presence, in experiment the effect
heat diffusion are frequently contaminated by large contri
tions resulting from domain-wall motion, domain freezin
or additional order-parameter dynamics, and usually nei
the distinction of Debye vs non-Debye relaxation, nor a p
ticular shape of the CC plot or the low frequency nature o
measured effect can alone be regarded as clear evide
However, although we have determined a diversity of qu
different disperson functions all originating from heat diff
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Support from Österreichischer Fonds zur Frderung d
Wissenschaftlichen Forschung~Project No. P15016-PHY! is
gratefully acknowledged.

m-

s.

.

J.

Institute Report No. UWFDM-1129, 2000~unpublished!.
14From this, one easily derives the well-known convolution rep

sentationu(t,x)5*0
t ds*d3yG(t2s,x2y)F̂(s,y), where

G~t2s,x2y!ª
1

p3/2)i 51

3 expF ~xi2yi!
2

4Di~t2s!G
A4Di~ t2s!

~110!

is the celebratedheat kernel.
15A.V. Kityk, W. Schranz, P. Sondergeld, D. Havlik, E.K.H. Salj

and J.F. Scott, Phys. Rev. B61, 946 ~2000!.
16A.V. Kityk, W. Schranz, P. Sondergeld, D. Havlik, E.K.H. Salj

and J.F. Scott, Europhys. Lett.50, 41 ~2000!.
17Y.N. Huanget al., Phys. Rev. B55, 16 159~1997!.
18T. Nattermann, Y. Shapir, and J. Vilfan, Phys. Rev. B42, 8577

~1990!.
19V. Mueller, Y. Shchur, H. Beige, S. Mattauch, J. Glinnemann, a

G. Heger, Phys. Rev. B65, 134102~2002!.
20V. Mueller, Y. Shchur, H. Beige, A. Fuith, and S. Stepanov, E

rophys. Lett.57, 107 ~2002!.
21M. Fally, P. Kubinec, A. Fuith, H. Warhanek, and C. Filipic,

Phys.: Condens. Matter7, 2195~1995!.
22A.S. Sidorkin, J. Appl. Phys.83, 3762~1998!.
23P. Dolinar and W. Schranz, Phys. Rev. B56, 8566~1997!.
0-16


