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General theory of heat diffusion dynamics
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A detailed theoretical investigation of the influence of heat diffusion processes on the low-frequency dis-
persion in macroscopic elastic susceptibilities is presented. In particular, a general solution of the heat diffusion
equation is derived for arbitrary boundary conditions and externally imposed periodic and spatially inhomo-
geneous stress. In contrast to other calculations found in the literature, our results indicate that in elastic
experiments on monodomain samples of macroscopic dimensions the isothermal-adiabatic crossover function
necessarily reduces to a Debye-like dispersion. Experimentally, this is illustated by measurements of the
complex dynamic elastic susceptibilities of KSCN and KMnPur approach also allows to discuss heat
diffusion in polydomain crystals and heterogeneous systems, for which one obtains dispersions of a non-Debye
type. While explicitly derived in an elastic context, the present theory also applies to heat diffusion in dielectric
materials.

DOI: 10.1103/PhysRevB.66.184110 PACS nuntder62.20—x, 62.40:+i, 66.70+f

I. INTRODUCTION Il. ELASTIC MEASUREMENTS

Consider a crystal of volum¥ subject to a static external

Historically, the problem of ultralow-frequency dynamics force applied to a point or area of the crystal’s surface in a

near structural phase transitions is intimately related to th?vay to be specified later. Within linear-response theory we
observation of so-called central peaks, which in the 1970Scqme that the crystal responds by a reacting farae
were mainly investigated using scattering methbdsvery  jinear in the corresponding elongatidn This force is the
recently the field was revived due to the works of Chavesggit of a stress field(r) (i=1, . ..,6), produced within

et al*~®who investigated the influence of heat-diffusion pro-v/ and conservation of mechanical energy demands that
cesses omacroscopicsusceptibilities of ferroelectric mate-

rials both theoretically and experimentally. Chavetsal. % éS 1

Iookeq for heat.—d'lffl_Jsmn central peaks in the cgmplex di- Em;:J ngng_TEE z siTj<Uigj>L2, (1)
electric susceptibilities of a number of ferroelectric crystals. 0 2x 1

In particular, the authors predicted that the crossover from 3 T

isothermal to adiabatic conditiorse., from low to high fre-  Wher&{aioj). =/ vd*r o7(r)oy(r), andS;; denotes the crys-
quencie$ is determined by a certain non-Debye-”ke disper-tars isothermal Compliances. From this we conclude that
sion function. Also, in the recent work of Falist al? a dif-  statically x"f5=3;;S[(c0;), wherefq:=x"{o. In the case
ferent non-Debye isothermal-adiabatic crossover functio®f a dynamic external forci(t) =focod wt], suppose that the
was calculated for the dielectric susceptibility of ferroelectricSystem’s long-time response is

materials. At the same time Schraeral®® began to study

the influence of heat diffusion dynamics usiafastic mea- g(t)=20(w)co:{wt— o(w)]. 2
surements. In Ref. 8 they clearly observed Debye relaxation

in the low-frequency elastic susceptibility of the molecular0< é(w) < describes the loss in mechanical energy. Gen-
crystal KSCN which was shown to originate from heat dif- €ralizing the above static relation, we define

fusion dynamics. Very recenflysigns of a Debye crossover

from an isothermal to adiabatic regime have been found in 2_ _ .

KMnF; crystals. Our present paper addresses the question of X(w)fo_; Si(@)aio, @
which type of isothermal-adiabatic crossover function is to

be expected in elastic measurements under realistic expetthere x(») and S;(w) are the complex frequency-
mental conditions. Specifically, we present a general threedependent mechanical susceptibility and elastic compliance.
dimensional theory which describes the influence of heatn general, measuring of(w) determines a combination of
propagation on the dynamic properties of macroscopic sugompliancesS;(w). However, if oi(x)= o (X), then
ceptibilites, addresses the crucial influence of the boundar{() is determined by (w) via

conditions, and coherently relates the different dispersion

functions found in the literature. Our results are explicitly fg

calculated for crystals subject to external stresseiow- Si(w)=——x(w). (4)
ever, they correspondingly apply to dielectrically induced ||Uk||L2

heat diffusion in an obvious way. We therefore prefer to gen- )

erally speak ofo as anexternal excitatiorin what follows ~The mechanical work done on the system ks;(t)
below. =f{of(s) {(s)ds. Averaged over one period, we obtain

0163-1829/2002/68.8)/18411116)/$20.00 66 184110-1 ©2002 The American Physical Society



A. TROSTER AND W. SCHRANZ PHYSICAL REVIEW B66, 184110(2002

dEq, w (27lo . fon . respect to they axis perpendicular ta,z. In particular, the
a9t Efo dtEy(t) =5 fo(w)wsind(w). (5 maximum displacement at=0 is

3
In complex form, one defines/(t)=Rq {o(w)e'!], §max:%-
where  fo(w)={H(0)=il(w).  Then (o)
={o(w)cosdw), ()= —Zo(w)sin&w), and thusfy(w) This implies that a bending resulting in a displacement
=|Zo(w)|. The complex mechanical susceptibility is definedthe stick's center (0,0,0) follows the relatidn=kz with
as spring constank=48E1/13. A short calculation shows that
the mechanical energy stored in bending is

(10

(@)= x (@)~ ()= 2 ©) K El (12
fo Em=—§§qaxz—f A 2" ()2
2 2 )

and obviously  x'(®)= {o(w)cosdw)/fo, X' (o) 1
={o(w)sin w)/f,, which implies the well-known relation = —f dV[zZ"(X)[EzZ"(X)]. (11
X" (0)/ x' (w)=tand(w). The preceding formulas yield the 2)v

following central relation between”(w) and the average

In the treated case of weak bending o =
mechanical work done on the system: W ing oy (x) = (%)

#0 (cf. Ref. 10. Therefore, comparison with the general
formula E,= 3 [,dVZ,€/(X)o(X) yields the manifestly in-
neoN i d& homogeneous stress-strain distribution
X'(@)=—5{ ) @)
o » : - e(0=2{"(x), o1 (N)=Ee()=EZ"(x). (12

Since the real park’(w) is determined by the Kramers- . wron . .
Kronig relation, the compliancg,,(w) can therefore be cal- Since{"(x) =f/48E1(24x| - 12), we finally obtain
culated from Eq(4) once(dE,,/dt) is known. f £

Dynamic elastic measurements are usually performed by €1(X)= ﬁ(2|x| -z, o.(x)= §(2|x| -z, (13
recording the response of a parallelepiped-shaped crystal to
either uniaxial compression or bending. Here we treat the
most important practical cases of compression between pardll. FUNDAMENTAL EQUATIONS OF HEAT DIFFUSION

allel plates and midbending between two supports. o .
In the so-called parallel plate mod@PM), the forcef acts Suppose now that the system is in contact with a heat bath

on the partO,:=I,X 15 of the volumeV=1,X1,XI5. Then of temperaturel. Switching on the weak periodic external
obviously o= /Oy is the only nonvanishing stress compo- force f(t) will produce a small stress field;=o;(t.r). Let
nent in the volume, which induces straigs=S|,f/0;. The  G(T,o) denote the corresponding Gibbs free energy. The

elongation? corresponding td is therefore stress o; in turn induces infinitesimal straing;(T,r)
=(0G/do;)T as well as small temperature changé$
|§ T =6T(t,r) in the system. This leads to a small inhomoge-
{=lher=yfoSu- (8 neous heat distribution
In the three-point bending3PB) mode things are slightly - n (‘7_5) .
less trivial. In fact, consider a horizontal stick of lendth QLN =C,oT(Lr) i Jo; TU'(t'r)’ (14

with rectangular profileA. We choosex as the length coor- o
dinate —1/2<x<1/2 along the stick’s horizontal axis. Sup- WhereC,=T(4S/dT), denotes the specific heat at constant
pose now that the stick is freely supported on its edges angtresso. We introduce thethermal-expansiorcoefficients
weakly bent by a force=(0,0,—f) acting on the stick’s a; ::(0:/0',?)52_[55/5%(0]?_ Then 6Q(t,r)=C,T(t,r)
upper surface on the line=0 parallel to the axiz. When TS (t.r), which implies

bending, a part of the volume will be compressed and an- gttt P

other part will be dilated, while on a whole plane, the so- aQ(t,r) aT(t,r) dai(t,r)

called neutral fiber, no compresion or dilatation occurs. Let n C, P —a a4 (15
—d/2<z<d/2 denote the vertical axis, i.e., the stick’s thick- !
ness coordinate with respect to the neutral fiber, gride  Combining this with the heat equation
remaining width coordinate. Then, the vertical displacement
of the neutral fiber follows the weak bending formla dQ(t,r)
n =kA,T(t,r) (16)
f
{(x)= @(|3—6|X2+4|X|3) —112=x=<I/2, (9)  we arrive at the linear partial differential equation
where E=E,, denotes the corresponding elastic module in au(tr) _
directionx. | = [,z>dzdy is the area momentum & with ot DAUN=F(tN (7
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for the temperature fluctuatiobl(t,r) =:T(t,r)—f where
D:=«/C, is thethermal diffusivity and

(70'i(t,r)
ot

Ftn=a S a (18)

C, 4
will be called thethermal driving function(TDF) in the fol-
lowing. Suppose now that the external forig) of period
27l w is switched on at=0. After the initial configuration
Uo(r) has died out, a periodically oscillating temperature
distribution T(t,r)=T+U(t,r) will be found in the system,
which induces the heat currentq(x)=—«VT(r)
=—kVU(r). Making use of the heat equatidh6), the re-
sulting entropy loss per unit time is

o]ty
:Kfodf'TVU +Kfv dV(VTZ)Z, (19

=(1) =(2)
where Gauss’s theorem was used. We now expafid 1/
=(1T)—(U/T?)+0(U?. Then to ordeO(U?), again us-
ing Gauss'’s theorem, we obtain the two contributions

1 —ifdf vU)U 20

2 ij df- (VU u—if dVUAU.  (20B

Altogether, sinced Em/dt=?d8/dt, this yields

dE,,

K
L p—— _ 3
m ?deVU( A)U+0(U®) (22)
and so, averaged over one period,
AEn)_ o fzmd Kf dVU(-AU 22
a2, YF,AVUCAY @

IV. SOLUTION FOR A PARALLELEPIPED
A. Analysis of boundary conditions

An analysis of Eq(22) is quite essential for understand-
ing the nature of heat diffusion. In fact, the two contributions

PHYSICAL REVIEW B56, 184110(2002

magnitude larger than surface contributions and therefore
any choice of boundary conditions will do. Indeed, in the

literature various types of boundary conditions have been
imposed in a more or less justified way.

« Chavest al* assume that the crystal’s surface is in perfect
contact with an infinite medium of the same thermal con-
ductivity k. To what extent this is physically relevant will
be discussed below.

Fally et al.” consider isothermal boundary conditions, i.e.,
they takex to be infinite on the crystal’s surfac@ While

this may be reasonable in a dielectric context where the
crystal’s surface is vaporized with metal for measurements,
there is no point in introducing such an assumption for
elastic measurements. Yet, in the presence of domains, the
resulting boundary conditions will turn out to be of con-
siderable relevance.

In a surrounding vacuum, finite heat loss is due to radiation
and could be described by the Stefan-Boltzmann law, i.e.,
it is proportional toT.*

In the elastic context, convection will provide the most
important contribution in the presence of purge gas or air,
where finite heat conduction on the surface is mainly
caused by free and forced convection.

In what follows we will focus on the case of heat loss due to
convection. To account for this, we employ Newton'’s law of
heat conduction, which states that heat transfer on the surface
is proportional to the heat difference of the surface and its
surroundings. In other words, recalling thg —«V, T=

—«V .U, we impose the boundary conditions

[n-V. U(t,r)+hU(t,r],.0=0, (23

wheren denotes the outer surface normal vector dnis
known as the heat transfer coefficient.

B. Admissible base functions

We now consider a specimen of volurive=1,X1,XlIs.
Then it is convenient to define the dimensionless vectors
eV:=[—1/2,1/2° by settingx;:=r;/l;. We also introduce
the coefficientsDi:=D/Ii2 and the dimensionless parameters
vi:=l;h. Then we can restate Eq4.7) and(23) as the sys-
tem of inhomogeneous partial differential equations

au(t,x) 2

3
— +Lu(t,x)=F(t,x), L=—2, D

1

(24)

ax?’

(209 and (20b) represent the mechanical energy loss
dE,,/dt resulting from heat dissipation through the surfaceW
O as well as heat transfer between different regions within[i
the crystal. Adding these contributions, the surface terms

seem to cancel. Nevertheless the admissible eigenvalues of

ith initial condition u(0x)=uy(x) and boundary condi-
ons

au(t,x)

the_ Lap_lacian tA) c_rucia_llly depend on the boundary con- +yu(t,x)=0, xj==*1/2, (25
ditions imposed on its eigenfunctions, actually leaving the IX;

problem undefined unless we fix them. In this aspect, a con- R
sistent treatment of heat diffusion takes a lot more care thawhere u(t,x)=U[t,(Iix;)], Uo(X)=Uo[(lix))], oi(t,x)

many other phase-transition-related problems, where it issa[t,(l;%;)], andF(t,x)=F[t,(l;x;)]. The energy dissipa-
usually safe to assume that the bulk effect is orders-oftion per volume is then written as
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3
1dE, C,
v dtm:?fgdgxlﬂu- (26) )\n’=21 DigZ(ni/2). (33)
The solution of the system of EQgs.24 and Itis shown in Refs. 11 and 12 that these functions form a

(25) can be constructed using the eigenfunctionscomplete orthonormal base of the Hilbert spagéV, R) for
Ne(gi)cos@ix), No(ag)sin(p;x;) of the elliptic operator set of vy;,y,,y3>0. Obviously q;(0)<q;(1/2)<q;(1)
— #?l9x? defined on the intervdl—1/2,1/2. The factors <0;i(3/2)<qi(2)< ..., andsinceq;(0)>0 for 0<h<,
5 5 we qonp_lude thaall eigenvalut_as}\n are positive The follow-
N(q)) = /q +3q|n - N ()i /p _Spm - 27 ing I|m|t|n9 cases are of particular |T1.terest. o
J » y;— (isothermal boundary conditions along direction
are chosen to normalize these functions to 1 with respect to Thenu(t,x)=0 for x;==1/2 and sincey,—»=, we have
theL, Hilbert-space norm. As they are subject to the bound- cotgy(n/2)/2=0, which implies that Im;woq (ni/2)=m
ary conditions(25), possible wave vectorg,q must satisfy and consequently lim...q;(ni/2)=(n;+1)7>0Vn,=0.
the relations All eigenvaluesh , are positive and

Qi Qi Pj Pj cog(n+1)mx;] n; even
cot—=+—, tan;=——. (28 V= o ' ' ' :
2 2 fn () =12 sif(n+1)mx] n odd.
These equations allow for an infinite number of solutions _ ) .
ai(my), p;(m;), m,m=0,1,2 ..., corresponding to the . yi<<_1 (almost §d|abat|c boundary conditionsve note the
admissible wave numbers in direction$ and j, SElles expansions
respectively, yielding the admissible wave vecta)
:=[d1(M1),g2(mMz),d3(M3) ], p(m) :=[p1(My),p2(my), Ng(0)= 1+—+O(‘y|) (359
ps(m3)]. We parametrize the solutiorgg(m;), p;(m;), of
Eq. (28) by
3/2
- 5/2
ai(m)=G;(m;) +2mm;, (293 ai(0)=v2 "7+0< (350
p;(n)=p;(m)+27m;, m;,m=0,12..., (290 and
whereg;(m;),p;(m;) satisfy the relations ) 2
i
ai(mi):ai(mi)+277mi (30 qi(ni)—ani+7T—ni 2ndsm 3+O(Y') (369
2 Yi '
5:(m 5.(m )+ 27m. Ne, (n-)=\/§< +0(¥d), (36b)
tanpj(zj)z_pj( J)y Tm; (30b) e,o\li ,77 i
]

which imply that Iimyﬂoq-(n-/Z)—n-w n=0,12....

since cotk+mm)=cotx, and tank+mas)=tanx. For Thus, in the limiting case/=0 we obtain

general values ofy; these equations can only be solved

numerically. Notice, however, that since [téx— )/2] cognmx] n, even
= —cot(/2), we have fr(X)=v2X3 . ’
%2) (%) V2 {su’[niwxi] n; odd. S
p'(m-)Eq(zmj_l). (31) Thus, only under the hypothetic assumptios O of per-
e ’ 2 fect thermal isolation on the complete surf@evould the

. . LA constant functionf(x)=1/V with corresponding eigen-
In particular, since cok/2=0, we obtaing;(-1/2)=, value Ap=0 be admissible. Numerically, a noticeable
yielding p;(0)=0. Summarlzmg these relations, for<® adiabatic-to-isothermal crossover occurs for approximately
<o and any neN; there is a base functiorf(x) 1~ yAdiabale ), — IS0 500,

=117, £, (x;) defined by

C. General solution for periodic external force

Ng[g;(ni/2)]Jcog g;(ni/2)x;] n; even,
fo(X; -—{ da(mi2)Jeodq (ni2x] According to Fourier's method of solving partial differen-

olGi(ni/2)Jsin qi(ni/2)x;]  n; odd. tial equations, one can show that using the projection coeffi-
) cients
Each such function is an eigenfunction for the Laplacian
—A with e|genvalue2 10 2(n,/2), but simultaneously also an::f d3x f(X)Ug(X), (383
for the operatolL with eigenvalue v
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c(s):= f(/dSan(x)li(s,x) (38b)

any solution of Eq(24) for a given TDFF(t,x) and initial

configurationug(x) can be expanded in terms of the base

functionsf(x) as

u(t,x)= 2 e Mt

nEN

“+J dsc(s)ers|f (x). (39

For later use, we define the relaxation timgg=1/\, and
the spatial averagefn=:f\“,d3xfn(x). Obviouslyf_n=0 if
just onen; happens to be odd.

We now consider a stress field(t,x) = o2(x) cost) pe-
riodic in time. This yields a TDF

|":(t,x):cl > aiol()[—wsin(wt)] (40)

with a spatial part

(41)

FO(x) ==Cl 2 @a((x)

After the memory of the initial configurationyg(x) has died
out, u(t,x) will be shown below to be of the general form

u(t, )= 2 Un(t)fa(x). (42)
ne‘\o
The energy dissipation per volumel[if. Eq. (26)]
1dEy Cof Co )
VT_?J\A/d xuLu= ? 23 us(HhNg,, (43

neNg

where the orthonormality of the base functiohgx) was
used. Therefore, the average energy dissipation is
w

1 dEm Ca’ 27l 5
V< dt >_?n§mg Zjo At

which implies fory” (o) = (2/of3)1N(dE,/dt) the general
formula

Nn, (49

Co’ 1 (27w
X'(0)==> xn—f dt u(t).

(45)
TfO nEI\ ™Jo
At this stage it is already obvious that |jm..x"(w)
=0. We now calculate the functiong,(t). The coefficients
c"(s) are

c"(s)=[~w sin(ws)]cl > aiol, (46)

where

o= f d®xfo(x) (), (47)
[—1/2,12P

PHYSICAL REVIEW B56, 184110(2002

and so

t T
— At AnS__
e M| dscd(s)eMS=— — ———
0 () Ca)\rz.l+w2

w Aot

[we "' —w coq wt)

+\n sin(wt)](z ai&?n>. (49
I
Therefore,
T w
u(t,x)= 2 e Mtaf (x)— — >, S[we ™t
r‘IE\0 C‘T ne\?’ )\ +(1)
—wcodwt)+\, sin(m)](E_ ai(}?n>fn(x),
I
(49)
from which we extract
(=L [ wcotat)
Up(t)=—=————[—wco
TG N2 T
+\n sin(wt)](z ai(}?n) (50
1

for 0<y;< in the limest>1. From this we obtain

27w 2
—J dtun(t)— (E aa'm) . (5D

According to Eq.(45), this flnally yields

Zc2

2
Xﬂ(w):—z 2 E, a’U'm) . (52)

fO neNg )\ +w

This is a sum of negative imaginary parts of Debye-like con-
tributions o<\, /(A +iw)=1/(1+iwr,). The full complex
susceptibility must therefore be of the form

. 2
|3 it

3 l+ior,

1
X(©)=Xut = 2

fO ne Ny

3ot

3 lt+ior,

1
=Xat = X

(53)
fo nend

Specializing to uniaxial pressure in directiéni.e., [rio(x)
=0, i #k, the high-frequency limity.,e R is determined as
follows. In view of Eq.(4) we identify
Su(@)= 0 (o= 0y T%g ()
Ko T, X\w)= Xoo - w),
I k||2 Rl Co
(54)

where we introduce the crossover function
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1 ((}En)2 pendence of the TDIE(t,X)OCak(;'k(X) generated by the ex-
A(w):= E (59 ternal forcef. Such spatial inhomogeneities can, in principle,
ofll?, neng 1T : : :

2 arise due to different reasons:

Notice that this can also be written as « The stress distributioar,(x) may be inhomogeneous as a
. result of the action of the external forééself, such as the
(@)= 1 > (Fp)? (56) case in a 3PB experiment.
|||EO||E gt l+ioT, e One can a[so introduce a spatial dependenge) of «, .

2 ° Assuming (rﬁ(x)zconst to be homogeneous but taking
since in the present situatiar(x) is proportional toF°(x) a(X)=*=|e,| is obviously equivalent to a situation where
[cf. Eq. (41)]. Using the completeness of eigenfunctions we «, = const while&k(x)= + |€rE|. This can be used to study
calculate the limits the contributions originating purely from heat diffusion,

i.e., in a crystal with an completely regular domain pattern.
i 21
l'inoﬂ(w)_”c,k”L 22 (Uk“) (579 Since Eq.(55) represents an infinite sum of Debye-like
2 0 contributions with different relaxation times, the resulting
) crossover function is non-Debye in principle, and in fact,
lim Q(w)=0. (57D several of the crossover functions found in the cited refer-

w—

ences from a variety of theoretical assumptions are of a cor-
This allows to express the Comp|ex elastic Comp“ancé'espondlng nature. However, it remains to |nV€St|gate under

S.(w) by the adiabatic and isothermal compliances which experimental conditions non-Debye-like behavior is
actually expected to be manifestly observed ira experi-
£2 ment.
Sac= lim S w)= T (589
@ Tk V. HEAT DIFFUSION IN MONODOMAIN CRYSTALS
?aﬁ A. PPM experiments
T i =S 4 =
&k'_llToskk(w)_skkJr C, (58D 1. General solution
In a PPM, where the uniaxial stres§ is homogeneous,
as the only nonzero projection coefficients are determined from

Sud @)= St (S S 2 w), (59 ) ,
(ol _ L 61
from which instantly deduce the elastic Pippard relation ||tfk|| X1 fom(X) (61)

L,
Ta? i .
SIK— SEk:C__ (60) This yields the PPM crossover function
o
12

Formulas(59) and(55) are the fundamental equations for Qw)= E __am (62

discussing heat-diffusion phenomena. The physical content me Ny 1+tloTom

of Eq. (55) is quite transparent. Each spatial projection coef-

ficient U(I<)n onto the corresponding heat conduction mode In the following we are interested in the dependence of
fn(x) contributes a Debye-like relaxation propagating withQ)(w) on the dimensionless parameters=hl; determined
relaxation timer,,, which is determined by the heat conduc- by the sample geometry and the boundary conditions. How-
tion coefficient, the specific heat, and the boundary condiever, in three dimensions, most calculations can only be
tions. The amplitude of the whole effect is proportional to evaluated numerically. Since the results below remain quali-
aﬁ. It will therefore be most likely observed in the vicinity tatively valid in three dimensions, some analytic illustrations
of a phase transition. The Pippard relati@0) is recognized obtained ford=1 are therefore presented, which is a useful
as a simple consequence of the completeness of the systeand admissible simplification for the case of platelike
of eigenfunctions(x) and energy conservation. samples of small thickness frequently encountered in experi-

We emphasize that in contrast to former treatmdnfs = ment. To compare the behavior of different crossover func-
Refs. 4, 5, 7, and )8 Egs. (55 and (59) do not explicitly  tions it is convenient to investigate their corresponding Cole-
depend on any particular assumptions concerning the spatiélole plots. Recall that the Cole-CdleC) plot of a complex-
nature of the excitation or the boundary conditions on thevalued functionQ(w)=Q'(w)—-i1Q"(w), »>0 is defined
surface of the sample. Therefore we feel that they are suiias the w-parametrized function grapf(Q'(w),Q"(w)),w
able for a general discussion of heat-diffusion phenomena. I»0}. Inspecting formula55), we notice thatw always en-
particular, the present theory holds for arbitrary spatial deters through the product

184110-6



GENERAL THEORY OF HEAT DIFFUSION DYNAMICS PHYSICAL REVIEW B56, 184110(2002

(n;=1,2,3,...) yielding
3 3 1
Ng=22, Diyi+0(¥)=2Dh, -+O[(hl;)’]. (65
i= i= i
For the realistic casg;<1 we can therefore conclude that
the infinite sum of Eqg.(55 actually collapses to give a
02 04 06 08 1 Debye-like dispersion)(w)~1/(1+iw7y) with relaxation
time
FIG. 1. CC plot of the one-dimensional crossover function
Q) (w) for dimensionless parameter=3, 9, 22, 50, ande.

3 -1
1 1V
B nrv(zohiE1 ﬂ) “5h o (66)

3
> qA(nil2)/1?
i=1

w
O (63 As far as single domain crystals are concerned, we are not
aware of any clear detection of elastically induced heat dif-

SinceD =D Y{T)=C,(T)/«(T) usually displays a con- fusion using a PPM measurement nor of a corresponding
siderable anomaly in the vincinity of., we conclude that observation in a dielectric experiment. However, let us com-
the CC plot of a heat-diffusion crossover functififw) can  pare the above predictions to the result of quite réceRM
equally be parametrized by either angular frequencyat ~ Measurements of temperature and frequency dependencies of
fixed temperaturel or temperatureT at a fixed value of the complex elastic susceptibility of KMgFIndeed, in pure
angular frequency. KMnF; an ultraslow relaxational process just below the

Now it is well known that the CC plot of a Debye-like Structural phase transition =186 K was discovere(Fig.
function Q(w)~1/(1+iw7),7>0 represents an upper half 3), and as the inset of Fig. 3 shows, the CC plot of the data
circle in the complex plane. As shown in Fig. 1, for growing points is in reasonably good agreement with a Debye half
values ofy, , the non-Debye characteristics@f{ w) become ~ circle as expected from E¢66). Unfortunately, due to the
increasingly manifest as the CC plot@f w) becomes more comparatively wide distribution of measurement points,
and more asymmetric. However, one should consider the folthese data are not absolutely conclusive. A closer experimen-
lowing quantitative estimates. tal investigation using frequency scans at fixed temperatures

In a usual PPM experiment, specimen are of sizes of orddp in progress.
l;~1 cm. On the other hand, the parametedepends on N
various quantities, which are experimentally difficult to con- 2. Isothermal boundary conditions
trol. For example, in the case of forced convection due to the |n d=1 dimensions the crossover function can be calcu-
use of purge gas) depends on parameters such as purge gagted in a closed form for isothermal boundary conditions. In
density and velocity, purge flow geometry, turbulence effact, lettingy,;— o then yieldsr,,=(1/D;7?)1/(2m+1)2,

fects, and so on. However, inspecting the literatdrene m=01 £ (x)= 2 cod(2m+1)mx] and so f2
finds that realistic values df for forced convection are con- _ (8/7,72,)21/.(.2.rr,1 n 123“2( zl'he\/:esu?t(ing infi)thg sum can bémex-

. . _l . .
flneql toa r_eglor’n<10 cm . y'EId'ng ¥<10. Forfree con- plicitly performed and yields thd=1 crossover function of
vection, h is yet orders of magnitude smaller. Bearing in Fally et al,’

mind that the Debye factor [U+iw7yom] rapidly ap-

proaches zero for growing values o , a numerical inves- (d=1) (1+1i) (1-1i) )

tigation of the factorstTgmi as a function ofy; (see Fig. 2 Qrany (6= Ve tan — Vel &= 2D, (67)

reveals the fact that for usual experimental conditions only , , . (d=1)n
the termm=0 gives a significant contribution t0 (). The negative imaginary parlg,,"(£) peaks at§
For y,<1, we collect the expansions =5.081 29, leading to a typical relaxation time of order

1 12

32 Vi 2 e~ =L (68)

Ai(0)=V2%+0(%™), ai(2m)= W—mi+0(7i ) Faly"5x2D; 10D

(64)

In Ref. 7, these results were obtained in a dielectric con-
text, where the use of isothermal boundary conditions may
be justified as we mentioned above. In contrast, for typical

1
T elastic PPM experiments on monodomain samples such

08} __ . _ i
m=0 boundary conditions are clearly ruled out. However, we

0.6 23 chose to record thed= 1) dispersion functiori67) here be-
o4 a3 cause it is of considerable interest in discussing the polydo-
] main case below.
""" ” 0 30 0" For dimensiongd=2,3 the resulting dispersion can only
be evaluated numerically. A CC plot 6§, (£) for isother-
FIG. 2. Coefficientsf3,, as a function ofy for m=0-3. mal boundary conditions id=1,2,3 is presented in Fig. 4.
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FIG. 3. Temperature dependencies of the real Batw) and the imaginary par$],(w) of the complex elastic compliance of pure
KMnF; in the phase-transition region at various frequencies. The inset shows the temperature-parametrized CC plot.

B. Three point bending mode where
Here o5(X) = X (2]X,| — 1) X const x5, and so 112
fﬁl/ZdX1(2|X1|—1)fnl(X1)
(050) _2 G2 52 (69) X, 1= 12 ' (703
T, s [ a1
2 —12
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FIG. 4. Comparison of CC plots obtained frofs3), (&) for

isothermal boundary conditions in dimensiahs 1-3.

N 1/2
Yn2=: f dXanz(Xz), (70b)
2

1/2
|7 dxoxatnxo

2 =

n
3 12 5
J dxsx3
—1/2

From symmetry it follows that EqQ69) is only nonzero for
n;=2mi, Nn,=2m, even, andng=2m;—1 odd. Using the
abbreviationsq;=q;(my), g>=0q(My), and gz=03(M3
—1/2), we collect(see Fig. %

(700

. ((h)
sir| —
. 4
Xom, =8V3N(01) ——5—, (71a
d;
ds cos(%) -2 sir(%)
Zom,-1=2\3No(ds) " . (71b)

3

FIG. 5. (a) CoefficientsX3,,_, as functions ofy for m=1-4 as

determined from Eq(713. (b) ng_l as a function ofy for m
=0-3 as determined from E71b).

PHYSICAL REVIEW B56, 184110(2002

ot

a2

Y 2m,= fam,= 2Ne(d2) (710

In the physically relevant limit of smalj; one again verifies
numerically that the lowest-order contributior= (0,0,1/2)
dominates the suni5) by far, and thus we conclude that
againQ)(w) should be of the Debye type

1
QUw)~—, 7239
( ) 1+|(1)T(0’0’1/2) (
1 1
= . (72b
7(0,0,1/2) >Dh 72 ) (72b)
N +N+2| I3+ — I
1 2 3 ah 3
Forl;<I4,l, we obtain
13 13 13
7(0,0,1/2) 2 2 D2 (73
4Dh| I3+— 4Dh| —
4h

In contrast to the PPM situation, we observe that for 3PB and
a platelike specimen of thickness the lowest(and usually
only observableheat-diffusion relaxation time, o g)is in-
dependent oh and proportional td%. Physically, this illus-
trates the fact that in 3PB one primarily measures the heat
exchange among different regions inside the crystal caused
by the presence of inhomogeneous stress, while in the PPM
one only observes the heat loss through the crystal’s surface.
Again, the above assertions are fully supported by experi-
ment. Consider the example of KSCN crystalshich un-
dergo an order-disorder phase transition arolipe 415 K.
Measurements of the complex elastic compliagsg as a
function of temperature and frequency yield an ultralow-
frequency elastic relaxation below,. As shown in Fig. 6,
not only is the measured dispersion of a Debye type, but
moreover the corresponding characteristic relaxation time,
being of an order of 0.1 s of magnitude, is indeed observed
to be proportional td3, as predicted by Eq73).

C. The model of Chaveset al.

We now analyze the treatment of heat diffusion given in
Ref. 4. Actually, the theory presented there refers to the study
of the dielectric susceptibility. Nevertheless, as was men-
tioned above the theoretical concepts can be taken over to
the elastic case in a one-to-one manner.

To circumvent the problem of defining and controlling
boundary conditions, in Ref4 a crystal of sizdr;|<I;/2
subject to a homogeneous TDF is assumed to be surrounded
by an infinite medium of the same heat conductivity and heat
capacity. Within our present treatment, this actually re-
sembles a crystal of infinite size subject to an inhomoge-
neous external excitation

184110-9
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FIG. 6. Frequency dependence of the crossover funddi¢m) of KSCN atT.—T=2 K as determined from the experimental data of
Ref. 8. The lines represent a fit with a Debye dispersion, while the corresponding CC plot is shown in the inset.

F(t) [ril<li/2, (74 . oTa
0 ||l F8)=~¢

F(t.n= sin(ws) oy . (79

Working out this problem for general TDF(t,r), we inves-  Since there are no boundary conditions to obey, a review of

tigate the corresponding heat diffusion equation. In reduceghe corresponding derivation shows that E2R) now holds

coordinates we consider for V=R2. Therefore, almost literally repeating the steps of
the calculation of Sec. IV C with sums replaced by integrals,

aJu(t,x . i i i -

( )+Lu(t,x)=F(t,x) (75) we obtain the general crossover functionds=3 dimen

at sions,
with the initial conditionu(0,x)=0. Since no boundary con- 1 43 |(}o|2
ditions are imposed, there is no restriction on the admissible Uw)=—— f d Q. (80)
q vectors. The solution of Eq75) therefore takes the forth ool IL, ks, ) (2m)3 1t+iwT,

d3q o [ s wol How is this approach related to the one presented above? In

U(t,X):f We d deSFq(S)e *le”'9% (76)  Ref. 4 the crossover function of a simple one-dimensional
a

model defined by the steplike spatial excitation function
where againr, '=\q:=3{_,D;q7 and

~ [1 Ix|<1/2,
X):= (81

oo (X):=
~ i =
Fq(s):= f dxF (s, X)€% (77 0 [x=172
was calculated from the response to a steplike excitation in
We now specialize our treatment to excitations of type time. Using the present methods, since

. oTa . ) - ~q 2 sinqg/2)
F(t,x)=— c aO(x)sin( wt). (78) ||UO||EZ(H,\R):1' US:T' (82
Then in an obvious notation of reducing our formuld80) to d=1 yields immediately
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==« Fally
— =04
--- =03
\ €=0.2
--- e=0.1
== Chaves

o )
02 04 06 08 1% " 02 04 06 08 lﬂtﬁ

FIG. 7. Comparison of CC plots of() (&) for e FIG. 8. Comparison of CC plots d2{}), .{¢) in dimensions

=1,04,03,0.2 0.1, 0.07, and 0. d=1-3. The CC plot is of course invariant with respect to the
choiceR=1 of the cluster radius.

rounded by an infinite medium of the same heat capacity and
conductivity. The resulting crossover functions can be

0= £y fﬂ 4 sirf(q/2) 1
ave 2m 2 1+iw/(D;g%)

1— e (L+INE readily obtained from evaluating the formulas corresponding
-, (83  to Eq. (80) for d=2 andd=3 in polar coordinates foD;
(1+i)Ve =D, i=1,... d. Integrating Eq/(80) for
where ¢ was defined in Eq(67). R
On the other hand, consider d= 1) finite-volume model J1(RO), d=2,
defined by the excitation function ~0
Ta” ¥y (87)
codwt) |r|<ro/2, —[sin(Rg)~RgcogRq)], d=3
o (t,r):= (84) q®
0 0 [r|=ry/2

with boundary conditions defined by a given heat transfe@nd defining another dimensionless angular frequency
coefficienth. In reduced units, the spatial part is R?
w
1 |x<el2, ETY
=rollq.
0 |X|Be/2, € ro/ 1 (85)

(88)

&E<x>={
we instantly obtain
Now let us consider the casg— for D= D/I2 held

constant. If we simultaneously leg— such thate=1 re- Qa2 €R) = 2R%11 (1+DVER K ((1+1)VER)  (89)
mains constant, this approaches a system with |sotherm%r d=2. HereJ
(y,==) boundary conditions, and the corresponding crosss;
over function reduces tﬁ)fz‘;”yl)(w) as defined by Eq(67).
More generally, ife is kept fixed at a value<1, since

n(2) denotes the Bessel function of the first
kind andl ,(z) andK,(z) denote the modified Bessel func-
tions of the first and second kinds, respectively. Her3,

- one has
|l0°l|,= €, we obtain the sum
0.0 g 1-co§(2m+1)me] 1 OfravtéR) =5 §R3’2{1+I+2(1—|)§R [1+i+4iVér
W)= 2 1+i ' i) JEa
e m=0 (2m+1) '@ T2m . —2(1—i)£gle 20D R, (90)

A numerical comparison of CC plots shovd. Fig. 7) that ~ Figure 8 shows a CC plot comparison of the crossover func-

for O<e<1 the function QO (£) interpolates between tions Q) esfor d=1,2.3.

Q=10 andQ,(:‘ji”yl)(g). In closing this section we note the interesting similarity
We therefore conclude that the< 1) model of Ref. 4 is  between the CC plots db{,»(¢) andQ{2)(£) as shown

equivalent to a one-dimensional crystal of finite volume subdn Fig. 9: While their CC plots are quite distinct inda=1
ject to a deltalike excitation at its center with isothermalsetting, ind=3 a CC plot resulting from the boundary con-
boundary conditions. In our opinion, its practical physicalditions used by Chavest al.is hard to distinguish from that
relevance for interpreting experimental measurements on

single domain crystals is therefore doubtful. Nevertheless, it 03‘}5”(5)

is of considerable relevance in the study of heat diffusion in 0.3

random domain distributions, as we shall show below. 023 —— Fally
001? ---- Chaves

D. Considerations for dimensionsd=2,3 0.05 " e
02 04 06 08 1

Following a similar approach as that taken in Ref. 4, in
Ref. 5 the above model is generalized to one representing a FIG. 9. Comparison of CC plots dd{4-3)(¢) as compared to
spherically shaped crystalline “bubble” of, say, radRsur-  Q{;3)(£) for d=3.
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derived from completely isothermal ones for single domainnonzero for odcdh=2m—1. Using rz’rﬁ,lz D,(2m=)? and

crystals of close to cubic shape. calculating the projection coefficients
VI. HEAT DIFFUSION IN POLYDOMAIN £ _ T E _1ym_q (92
CRYSTALS AND DISORDERED SYSTEMS aem-1)= 7 c mat ] )

Up to now we have studied heat diffusion dynamics in thewe therefore obtain the dispersion
rather restrictive case of a monodomain crystal. However,
usually a structural phase transition may be accompanied by

the formation of domains and other microstructures. In par- v S ol(=1M-1]?

ticular, it is well known that the presence of domain walls QUw:2)= m-m =Qr(£(2))
often leads to large deviations of the dynamic eld3titor =] iw i ’
dielectric¢’ susceptibilities from the monodomain behavior. 1+ ——o—

This may be due to a variety of effects such as e.g., domain- 93)

wall motion hindered by various pinning mechanisfng®

and domain freezing* On the other hand, in the presence of where we define
domains heat diffusion inevitably occurs, not only between

the crystal and its surrounding but also within different do- £(2)mt = (94)
mains, since an external excitation leads to different internal 78D, 2(4D,)°

temperature levels. Therefore it comes as no surprise that in 5.

real experiments it is often very difficult or impossible to N effect, compared to formulé7), D, =D/I7 is replaced by
decouple all these different central peak mechanisms. HowAD1=4D/1=D/(1,/2)?, such that actually; is replaced by
ever, note that quite generally the influence of domain-wall 1/2.

motion to macroscopic susceptibilities is proportional to the On the other hand, consider our former model mon-
number of domain wall$>?? Therefore by controlling the odomain crystal subject to a spatially homogeneous excita-
domain density by application of an electric or elastic biastion. Since the boundary conditions are symmetric with re-
field it should be possible to separate heat-diffusion fronspect tox;— —x,, the heat flow through the central plane
domain-wall dynamics. In fact, in Ref. 5 non-Debye low- X;=0 must be zero, i.e.,

frequency dielectric dispersions were measured in a number

of ferroelectric crystals and were attributed to the switching d(0,Xz,X3) = — k(0,dy/ Xz, dy1IX3). (95)

of small polarization clusters or domains. In the following e peqt diffusion dispersion of such a crystal is therefore
we briefly investigate the problem of heat diffusion dynamics,p,,jqusly equivalent to that of a homogeneous crystal with
in polydomain crystals. the replacement;—1,/2 andadiabaticboundary conditions

_ imposed perpendicular to thg direction on one of the two
A. Analytical arguments surfaces, whiléh is kept fixed on the other.

To begin, consider the most elementary case of a central 1h€se observations are quite useful for a qualitative and
domain wall perpendicular to the; direction dividing the —quantitative study of heat diffusion in more general domain
crystal into two domains of opposite polarization ). As- distributions. However, a thorough investigation of the prob-

sume further a TDHE(t,x) homogeneous in space. Then, lem involving, e.g., different domain orientations is beyond

) , - i . the scope of the present paper. In the following we confine
since the actions d¥(t,x) on both domains will always bear 4, selves to the two extreme cases ofegular periodic

an opposite sign, symmetry demands that the temperatutgyiiern of domains of alternating polarization as compared to

fluctuations must vanish all along the central plae=0,  systems with arandom statisticaldistribution of such do-
i.e.,u[t,(0x,,X3)]=0. Thus, the physics of heat diffusion in pains.

such a crystal should be equivalent to that of heat diffusion
in a single domain crystal of just half the original size where 1. Regular domain pattern
isothermalboundary conditions are used on one of the sur- . ) . . .
face planes perpendicular to thedirection. The situationis 'ft M EN'IV'V_e define the f(;I!O\r/]vmg symmetric partition
reminiscent of the method of mirror charges used in electro®f the intervall :=[ —1/2,1/2, whic _descrlb(;\:‘/lsgl —1 one-
static boundary problems. dimensional domains of polarlgatlom(—l)_ . and s%le
In d=1 it is instructive to investigate this analytically for 1/(2M) enclosed by two domains of polar.lzan@w(—l)
the simple case of isothermal boundary conditions. We intro@d size 1/(M) at the boundarycf. Fig. 10:

duce the inhomogeneous function _{ 1 1 . 1 ) 1 . AM—1 1}
. 0% T [+1 —1/2<x<0, o 2° 2 4M 2 T4M 2
Fo(x)= X 1
0 C, -1 0=x<1/2 (0) aM-11 1 2p—1 1 2v+1
. . . - : Ui U |—5+——F,—5+—F7—
in reduced coordinates. Since this is odd with respect, to —1l 2  4M 2 4M
the corresponding projection coefficierﬁg(n) will only be (96)
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/ NE (|1/N)2: TFally
s TS NZ

(101

We thus conclude that the system can effectively be regarded
as a homogeneous one wigothermalboundary conditions
which has been shrunk from lengithto I, /N.

D.5

1

- S . 2. Random domain pattern
FIG. 10. Periodic domain distribution according to E@6) for P

M =3 vs fg(x). Suppose now that the crystal displays a domain pattern of
complete random nature. Next, we pick a single one of these
Let 6,5 (X) denote the characteristic function of the interval domains not too close to the crystal’s boundary and call it
[a,b]. Then a homogeneous external excitatioft,x) domainD,,. In contrast to the strictly regular scenario, the

10 ; ; 2 ; ; presence the neighboring domains then does not yield strict
pa(:t (x)cose) yields an effective TDR(t,x) with a spatial boundary conditions for the isolated systéP such as in

the regular case where the temperature deviatifx) is

A oOaT forced to be zero. However, suppose first thgt is rather
Fo(x)= c (=DM (12) - 12+ (wramyy (X) small as compared to its. surroun.ding neighbors
o D, -1,D, 1. Then, recalling the interpretation at the end of

2M-1 Sec. V C, we realize that in good approximation donfjp

+ (—1)M+v represents a system of just the type investigated ttmue

v=1 with a doubled temperature difference of the system and sur-
rounding. On the other hand, D, is surrounded by a num-
ber of smaller domain®,, ;, ..., D,,;, domainD, can
also be thought of as residing in a thermal environment of
average temperatuii i.e.,u(x)=0 and thermal conductiv-

ity and diffusivity identical to that of itself, since the external
excitation induces polarization-dependent temperature devia-
0 T 2 . . tions in the surrounding domairt®, _; which quickly cancel
=(0"aT/C,)". Due to inversion symmetry only the even ,, yhe average by “destructive thermal interference.” These
base functiond ,,(x) are relevant. According to the above ohqenations lead to the conclusion that while in a real crys-
observations, in the limit of ad|abat|c_ boundary condltlonstal with a given irregular domain pattern the crossover func-
where the heat flow on the boundary is assumed to be zerg,, gshouid be expected to be of a quite distinguished form
the two “small” boundary domains can be merged to onejniyiqually dependent on the very details of this pattern, the
single domain. Moreover, symmetry and orthogonality of the“average" crossover function of a large number of such

X O (12)+ (20— 1/aM), — (112)+ (20 + 1/am)] (X)

97)

F(=DMO - (112)+ (am - 11am), (172)1(X)

in reduced coordinates. Note that trivially|a||?,

base functiond ,(x) demands that the temperature fluctua-

tions u(t,x) must vanish along all the domain wabg=

— 3+ (2v—1)/4M. Symmetry also singles out the base func-
tions f,m(X) = \/2 co§2mmx] for adiabatic boundary condi-

tions, and, projecting the resulting pattern M{=2M do-

mains onto these base functions, one obtains the coefficients

. aT (—1)”1.2—‘/E m=(2i—1)M,
o'q(zm)zc— (2| _1)77
“1o else.
(98)
From this one explicitly computes
o [0gem])
Q(w;N):=— . =0 N)),
(w;N) 597, i T+iwmm Faiy(§(N))
(99
where we generalize
1l w
&(N) =7 2D, (100

The corresponding characteristic relaxation time is

crystals should indeed bear considerable similarity to the
crossover function) cpavef€), Whereé roughly scales with
an average domain width.

B. Numerical investigations

Due to its symmetry, the partition underlying EQ7)
proves to be useful for analytic calculations at adiabatic
boundary conditions. For numerical studies of the effect of
more general boundary conditions and statistically distrib-
uted domain patterns the following partition lointo N sec-
tions|, of length 1N proves to be more convenient:

boul 1w

— N
'=Uumtle L= Tt T T2 TN

(102

For a given numbeNe N there exist 2 possible domain
configurations P,, v=1,...,2, defined by P,
==(PW)INFl, where P, defines the polarization af, in
configurationlP’, . Suppose that the system takes on the con-
figuration P,. Then effectively the action of the homoge-
neous TDFIE(t,x) on the inhomogeneous system is equiva-
lent to that of the inhomogeneous TDF with a spatial part
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® 02 04 06 08 1

® 02 04 06 08
) FIG. 12. (a) CC plots of (Q)y(&) for y=0.001 and N

=2,3,5, and 10 compared to that 8f~,,e{£). (b) Similar for
0O, (w), which is calculated fromQ(w) by removing the
g(0)-modecontribution and renormalizing the resulting function to
1 atw=0.

FIG. 11. (a) CC plots of Q(w;N) computed for the effective
TDF defined by Egs.(103 and (105 for y=0.001 andN
=3,5,7, and 9.(b) Similar for Q, (w;N), which is calculated
from Q(w;N) by removing theg(0)-modecontribution and renor-
malizing the resulting function to 1 ai=0.

~(2%;D;y;) *=(2DhZ;1/;) ! [cf. Eq. (353] is usually

N large and therefore frequently remains undetected in experi-
> Pu6 (x) (103  ment
n=1 #

. ogoaTw

- P Pr——
FOGP,)s==—c

on a homogeneous system. The configuratigrihen yields 2. Random domain patter

a crossover function Suppose that the domain pattern is completely random
and we consider the averaged crossover function

©

Qw;P,)=2,

n=0

2
2N

1 . )
(104) <Q>N(w)‘=ﬁ 1;21 Q(w;P) (106

We now fixN and consider the following two extremal cases

1+iwr,

f dxf,(x)

M—

over all possible configurationg, with polarizationsP,,,
=+1,u=1,... N. In this caseN should of course not be
confused with the number of domains, but rather it labels the
We assume that the system’s configuratignis given by  coarseness of our hypothetical grid of domains. In fact, it is
N alternatingly polarized domains in a strictly regular pat-not hard to see that for such model systems the average do-

1. Regular domain pattern

tern, i.e., main size in reduced units is
Pu,=(—=1)* (109 2(1-27N 2

) ——  ~ — for N>5. (107
Of course in such a system not only the heat exchange be- N N

tween domaingqgec (wave vector ofdomain patterhput also . .
the aditional heat loss through the surface due to the mod € thus_ conclude that for Ia_rgBJ this averaging model
g=q(0) contributes td)(w). ForN even Eq(103) is an odd should yield a crossover funCt'O(m>N(.§)’ whoge CC plot
function ofx and vice versa. We conclude that for small andapproaches that dchavef£) and a typical maximum value

odd N there is a noticable contribution fai=g(0). Indeed, ~ $maxOf (Q)r(£) proportional toN? with increasing accuracy
numerical computations of CC plots of the resulting dlsperfor growing N. For numerical tests of these assertions see

sion, which we write a)(w:N), for various values oN  Fi9s: 12 and 13. . . .
odd reveal an additional small half circle for odd in the In Ref. 5 the measured low frequency dielectric permit-

physically interesting casg,<1, as illustrated by Fig. 11.  tVity of Rochelle salt, triglycine sulfate, BaTiQand potas-
For growing values oN, the CC plots of)(w:N) rapidly sium dihydrogen phosphate near their phase-transition tem-
approach that of)q(w), which comes as no surprise as peratures was attributed to heat diffusion and fitted to the
ally ’

we argued above. On the other hand, Konot too large an  Crossover functioncpa,e£€). However, the authors note
additional low-frequency Debye-like contribution that this behavior cannot be intepreted as a monodomain

2 . L . - response and conflicts with the boundary conditions repre-
Oc[':q(o)(N)] /(1+|w—7-0)|3w5|b|e since the projection coef- sented by the measuring setup. While no explicit calculations
ficient FO o(N)~ FO(N) cannot be neglected for small and are made, they speculate on the role of heat exchange be-
odd N. However the accompanying relaxation timg  tween microdomains. Indeed, as we theoretically showed
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at ~0.1651 is necessarily somewhat higher than the ab-
sorption maximum valuég~5.0542 of the negative imagi-
nary part ofQ{4=-3)(w).

In Ref. 5 the above approach is proposed to describe heat
diffusion among “clusters” of various physical origins. In
particular, an overall response function is introduced by av-

wGE™h eraging the single cluster dispersidr08) over a probability
distributionn(R) of clusters of radiR as obtained from, e.g.,
FIG. 13. Comparison of the negative imaginary part of the ran-percolation theory. The resulting dispersion is claimed to be
dom domain crossover functidf) ) (N2¢) for N=3, 5, 8, and 10.  rather insensitive to the choice of sugfR) and fitted to the
Laplace transform of a stretched exponential-type time relax-

above, the appearance Of.p,,.{£) is not at all in conflict ~ ation ~e W’ with B~0.6.
with the experimental boundary conditions but can also Obviously, the above approach can be applied to study,
neatly be understood as heat diffusion in irregular domaire.g., heat diffusion caused by ferroelectic domains in cases
patterns. On the other hand, the enhancement of the mewhere the domain structure is effectively spherical rather
sured central peak intensity is also consistent with a multithan that of one-dimensional layers. However, the results
domain response as a result of additional domain wall mohave to be taken with a grain of salt. On the one hand, in
tion. calculating the response of a multisphere system by averag-
ing the single cluster response over a partitidiR) of radii
R, the authors knowingly neglected the mutual thermal inter-
action of these spheres, while in Sec. VI A 1 we recognized
In closing this section, let us review the interesting resultshe “mirror effect” appearing in regular patterns of-( do-
of Ref. 5 in the context of the theory presented above. In Refmains to be important in such systems. Additional concerns
5, a “raisins in a cake” model of well-separated spherically regarding the applicability of such an approach to structures
shaped isotropic clusters, which are susceptible to an exteof mesoscopic dimensions were also noted. Nevertheless, we
nal excitation(i.e., a;j=a#0,=1-3 inside the bubbl¢s conjecture that the above approach could be quite useful to
surrounded by an infinite medium of identical heat capacitystudy, e.g., heat diffusion between precursor clusters near
and conductivity, is studied. The corresponding crossovephase transitions, whose radius is governed by a strongly
function was calculated as E@90) of Sec. V D. After a  T-dependent correlation lengé{fT), and where disturbances
simple transformation of variables=(Dg?) ! in Eq. (80) stemming from domain-wall dynamics/freezing are absent in

2 4 6 8 10 12 14

C. Heat diffusion for spherically shaped clusters

we read off the spectral representation the symmetrical phase. In this context, we would like to
draw attention to the results of Ref. 23 on low-frequency
=dr g(D7/R?) elastic measurements inggsingle crystals, where a cross-

Q=3 w)= f Trior (1089  over from isothermal-to-adiabatic elastic constants was in-
o7 loT deed observed as a precursor to the phase transition and at-
tributed to heat diffusion. To completely clarify this
conjecture in the present theoretical context, work is in

progress.

where

3
_° B : 2
g(0) 7_r\/a(cos\/llb' 6 siny1/6)2. (109 VIl. DISCUSSION

As illustrated by Fig. 14, the widespread distribution of The preceding sections hﬁve ;hoyvn how ml_JItn‘aceted IS
the appearance of heat diffusion in single domain crystals at

g(0), which displays an infinite series of rapidly descending . " d
maxima, illustrates the non-Debye character of the disper\—/arlous types of boundary conditions and polydomain crys-

sion function (108). The lowest dimensionless frequency ?E’ng ohnetﬁ”nr;(?r?)rs],ce:g;ii f%’g:gggm';?; (:Prsxalznv?/e?)ﬁ;:)é%enr:-

_:I_~ . . -
0 6.0569 corresponding to the largest maximung 6f) onstrated that for physically acceptable boundary conditions
the observed relaxation will necessarily be of a Debye type

&) with a characteristic dependence on the sample’s geometry
0.4 [cf. Egs.(66) and(72)]. For dielectric experiments, one can-
03 not completely rule out the possibility of isothermal bound-

ary conditions, in which case the crossover functi{@)
02 would be found. All other experimental appearances of non-
0.1 Debye-like relaxations for macroscopic monodomain crys-

tals must necessarily be either attributed to heat diffusion
within polydomain structures and/or other processes of other
physical origin such as order-parameter dynamics, domain-

FIG. 14. Plot of the spectral functiog(¢) as defined by Egs. Wwall motion, or domain freezing. Other dispersions may ap-
(108 and(109. pear for cases of extremely anisotropic geometry such as

0
01 02 03 04 05
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e.g., in thin crystalline films. As far as pure heat diffusion in sion, their accompanying frequency behavior always shows a
crystals with layered polydomain structures is concerned, théistinct size and geometry dependeredlecting
crossover function&7) and(83) describe two extremal situ- the maroscopic dimensions of the sample,

ations of either a strictly regular domain sequence or an av; the typical length scale of domains or clusters under inves-
erage over a large number of samples with random domain tigation or,

patterns. Heat diffusion originating from spherical clusters is, the experimental wavelength with which the sample is
yet another story. robed.

Despite its universal presence, in experiment the effects of
heat diffusion are frequently contaminated by large contribu- In fact, experimental observatidrof this characteristic
tions resulting from domain-wall motion, domain freezing, dependence serves as decisive evidence to distinguish heat
or additional order-parameter dynamics, and usually neithefliffusion from other effects.
the distinction of Debye vs non-Debye relaxation, nor a par-
ticular shape of the CC plot or the low frequency nature of a )
measured effect can alone be regarded as clear evidence.Support from Qterreichischer Fonds zur Frderung der
However, although we have determined a diversity of quitewWissenschaftlichen Forschuitgroject No. P15016-PH)Yis
different disperson functions all originating from heat diffu- gratefully acknowledged.
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