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Formation and rapid evolution of domain structure at phase transitions
in slightly inhomogeneous ferroelectrics and ferroelastics
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We present the analytical study of stability loss and evolution of domain structure in inhomogeneous
ferroelectric(ferroelasti¢ samples for exactly solvable models. The model assumes a short-circuited ferroelec-
tric capacitor(free ferroelasticwith two regions with slightly different critical temperatur&s;>T.,, where
Te1— Te2<Te1, Tep. We show that even a tiny inhomogeneity like 20K results in splitting the system into
domains below the phase transition temperature TAtT., the domain widtha is proportional to T
—T)/(Te1—Tep) and quickly increases with lowering temperature. The minute inhomogeneiti€s may
result from structura(growth) inhomogeneities, which are always present in real samples, and a similar role
can be played by inevitable temperature gradients.
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[. INTRODUCTION part becomes “harder.” Since the inhomogeneity is small,
one might expect that the domains would quickly grow with
The idea that the phase transition in electroded shortlowering temperature. We indeed find a rapid growth of the
circuited ferroelectric proceeds into homogeneous mondomain width linearly with temperature in the case of
odomain stateis very well known. Similar result also ap- Sslightly inhomogeneous short-circuited ferroelectric and free
plies to free ferroelastic crystals. However, it meerbeen  ferroelastic. This behavior is generic and does not depend on
observed. Surprisingly, both electroded ferroelectrics andparticular model assumptions. Generally, the inhomogeneous
free ferroelastics do split into domains, although they shoulderroelectric systems pose various fundamental problems and
not. The present paper aims to answer why. currently_ attract a lot of attention. In partlculglradedferro-
It is generally assumed that in the finite nonelectrodect'€ctric films and ferroelectrisuperlatticeshave been shown

ferroelectric samples the domain structure appears in order 1t8 have giant pyroelectri€and unusual dielectric resporse.

reduce the depolarizing electric field if there is a nonzero

normal component of the polarization at the surface of the

ferroelectrics? (in complete analogy with ferromagn@tsif

the field cannot be reduced by either conductiesually We shall first consider the case of slightly inhomogeneous

negligible in ferroelectrics at low temperatuyesr charge uniaxial ferroelectric in short-circuited capacitor that consists

accumulation from environment at the surf4d@n the other  of two layers with slightly different critical temperatures, so

hand, in inhomogeneous ferroelastiesg., films on a sub- that, for instance, a top part “softens” somewhat earlier than

strate, or inclusions of a new phase in a matthe elastic the bottom part does. We assume the easy aperpendicu-

domain structure accompanies the phase transition in ordéar to electrode plates, and make use of the Landau free-

to minimize the strain energy, as is well understood in theenergy functional for given potentials on electroggs(zero

case of martensitic phase transformatfoasd epitaxial thin in  the present cage IE:F,_GD[IS]Jrde(EZ/Bw)

films 68 — 38,04, With

In search for reasons of domain appearance in otherwise A B b

perfect electroded samples, which is not yet understood, we 3q_ M2, Ppa, 2 2

shall discusgi) a second-order ferroelectric phase transition FLGD[P]‘E{,Z f dV( 5 Pt g Pt 5 (VP2

in slightly inhomogeneous electroded sample &jigl a

second-order ferroelastic phase transition in slightly inhomo-

geneous free sample. We consider an exactly solvable case of

a system, which has two slightly different phase transition L o

temperatures in its two parts. While the phase transition ochereP; (P.) is the polarization component aloiigerpen-

curs in the “soft” part of the system, the “hard” part may dicular tg the “soft” d.|rect|on, indexp=1(2) marks the top

effectively play a role of a “dead” layéP and trigger a for-  (bottom part of the film:

mation of the domain structure in the soft part with fringe

electric fields(stray stressggenetrating the hard part. One

has to check this possibility, but the behavior of the corre- A=At SA
; ; ; - 2 )

sponding domain structure is expected to be unusual: it

should strongly depend on temperature since further coolinglere A; ;)= a(T—Tcy(2) and JA>0 (meaningT,<Tc).

transforms the hard part into a soft one, while the first softWe shall assume in the following tha{~1,. The constant

Il. PHASE TRANSITIONS IN SLIGHTLY
INHOMOGENEOUS FERROELECTRIC

g Al -
+§<aZPZ>2+§Pf), (D)

A]_:A, 0<Z<|1,
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a=1/Ty, whereTy~ T, (T.) for displacive(order-disorder =G sinhy,k(z+1,). (12
type ferroelectrics,T,~10"—10° K is the characteristic » _
atomic temperature. The boundary condition at the interface<0) reads as

The equation of state is5F gp[P]/oP=E=-Ve, , )
where is the electrostatic potential, or in both parts of the P __ P ,
film p=1,2: A;+DK?> A,+DKk?

(12

E,=—d,0=A,P,+BPS-DV2P,~gi?P,,  (2) where we have use@,; + Dk?|/4m<1. We obtain from Egs.
(8)—(12) the condition for a nontrivial solution,

E,=AP,. ) xatany 1kl = xotanhyokl,, 13
These equatigns shc:uld be solved together with the Maxwe{\hich allows us to find the value OA| corresponding to the
equation, divE+4mP)=0, or loss of stability of the symmetric phase for a given wave
) ) vector k. It will be shown below that the actual instability
(07 + €Vi)e=4md, Py, (4)  sets in for the value df wherey,kl,>1, so that tanh can be
where the dielectric constant in the plane of the filmejs  réPlaced by unity. Close to the transitiq/x,>1, and the
=1+4m/A, . solution is
f stabil Klg=T XK 7 14
A. Loss of stability X1 1—Em~§, (14)

We shall now find conditions for loss of stability of the o . - )
paraelectric phase close B, with respect to inhomoge- when yokl;>1. -|;hIS %lvesztge condltl_on of stab!hty Iosg in
neous polarization. The stability loss corresponds to appeatl® form|A|=Dk?*+ 7%/ €.kl 7. There is no solution foyy
ance of a nontrivial solution to linearized equations of equi-<0. The minimal value of\ for the nontrivial solutionthe
librium. Indeed, at the brink of instability the system is in actual onset of instability, if the transition wik0 does not
neutral equilibrium, defined by linear terms. We are lookingoccur earlier is defined by
for a nontrivial solution in a form of the “polarization

14
wave,” D At S (15
C_ = T4 L

PZ ,(,DOCeikX. (5) EaDI?. 62/4 datl 1
We shall check later that the stability will be lost for the 2732pY2 o232

. - . 2 at
wave vectokl,;>1 while the scale of change &, with zis |Alc=2Dkg= ], (16)
|, so thatV2 P,=k?P,>ga2P,~P,/I?, and the last term in €a 1 €a 1

the right-hand side of Ed2) should be dropped. Going over \here we have introduced the “atomic” sizi,~ D com-

to Fourier harmonics indicated by the subsckptve obtain  paraple to the lattice parameter. We obtain the corresponding
for the Poisson equation: tiny shift in the critical temperaturfsee estimates below Eq.
(18)] Te1— Te~Todai/ €X' . Hence the system loses its sta-

" 2 _ ’

Pk~ €k Q= APy, ©) bility with respect to an inhomogeneous structure very
where the prime indicates derivative f'&df/dzf” quickly below the bulk transition temperature. It is readily
=d%f/dz?). We can excludé,, with the use of the linear- checked that the assumptions we used to obtain the solution
ized equation of staté?), which gives are easily satisfied. Indeegykl,=1 andy,kl,>1 both cor-

respond to approximately the same condition whgn

— 1= (A,+Dk?)Py. (7)  ~1,:6A> (472 (da /1), meaning that the difference

o o o, 2 betweenT, should be larger than the shift @f; .
SUbSE't““”g this into Eq.(6), we obtain ‘Pk_z[ €2k (Ap Now we have to determine when the transition into inho-
+Dk%)4m]¢ =0, where we have usefh+Dk|/4m<1,  mogeneous state occurs prior to a loss of stability with re-
which is always valid in ferroelectrics. We shall see MOMeN-gect to shomogeneoupolarization. The homogeneous loss
tarily that the nontrivial solution appears only wheéx ¢ stability corresponds t&=A,, found from
+Dk?<0, while A,+Dk?>0. The resulting system is
, Apl1+ (Ap+ 8A),=0. (17)
Pht Xik2e1=0, (8) . _
For the inhomogeneous state to appear first, there must be
o — x2k20=0, (9 Ac>Ap, or 5_A>[w3’2(|1+_|_2)/e;’2| 11(da/17). This means
5 5 5 5 that verytiny inhomogeneityn the sample is enough to split
where x7= — €a(A;+DK) /A, x5= €5(A,+Dk)/4m. The it into the domain structure,
corresponding solutions satisfying the boundary conditions
for electroded surfacesp=0 atz=1,, —1,) read w21 ,+1,) dy
) TCl_TCZZTO 1/2, I_v (18)
o=F sinyk(z—1y), (10) €al1 1
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which, for a film 1 mm thick, is estimated as T
Tat(dae / €24) = e, ¥4(10°-10)1077 K=10"3-10"2) K T, AyoA Y I
for displacive systems, an@iy(dy/er,)<10 5-10"%) K el !
for order-disorder systems. Certainly, such a small tempera- e TeT<T,
ture and/or compositional inhomogeneity exists in all usual T, — — — = = l
experiments. 5
|
B. Domain structure at T,<T<T. (A<0, A+ 6A>0)
After stability loss the resulting “polarization wave” e EE——
quickly develops into a domain structure, as we shall now
demonstrate. The notion of the domain can be applied when W A W A W
the domain widtha= 7/k, becomes comparable and larger ' 7:2
than the domain-wall thicknes#/~ \D/[A]. The relation Vorob
W=a gives[see Eqs(15 and 16]
|
D \¥21  dy . _ _ _
|A]| 2( T e <1 (29 FIG. 1. Schematic of the domain structure with the periadr2
mea) N €311 inhomogeneous ferroelectric film of the thicknégs-1,. Top and

. . . bottom layers have slightly different critical temperaturég,
This is the same tiny temperature interval where the presergTCZI T~ To<Ter,Top. Slightly belowT,, the top layer splits

scenano unfolds, and the system quickly gqes over into thﬁwto domains with electric fringe field propagating into the bottom
domain state well above the lower transition temperatureie(,jlyer(mnge field shown as the hatched area in the top paiile

Teo, if it is larger than the value defined by EA.8). domains persist and evolve beldl, when both layers exhibit a
In the region belowl¢; where the domain structure forms ferroelectric(or ferroelastit transition (bottom panel

(as shown above, it occupies most of the temperature interval
T.1—Teo), We can use the linearized equation of state

1
5 FESZEJ dAosp(z=0), (26)
E,=(A+3BPg)(P,—Po)=—2A(P,—Poy), (20
where o is the density of bound charge at the interface,
corresponding tanly the spontaneous part of the polariza-
tion Pyy(x), and integration goes over the ardabetween
two parts of the film. We calculate this expression by going
over to Fourier expansiof22) and using the fact that in the
present geometry¢(X) = — Pgy(x) (and, therefore, its Fou-
rier componeng ;= — Poy),

where|Py,|=+/—A/B is the spontaneous polarization in the
top layer, which gives P,;=Pg+(1/2A|))E,, P
=(1/A,)E,, for the top and bottom layers, respectively. In
this case the equation for the potential(4) reduces to a
standard Laplace equatione >+ e,V?)e=0, with the
boundary condition

€c10,01— €c20,02=4mPg(X), (21)

Fes 477'|F>0]k|2
where e, =1+ 2m/|A|, ecy=1+4mIA,. A& kD, (27)
The spontaneous polarization in the top layer alternates
from domain to domain aBy;(X) = *|Pyq| =+ V—A/B. We p .
are looking for a solution in a form of a domain structure Dy = €23 eXZcothny [ 2kl + ei’zzcothw /—ak|2}, (28)
with a periodT=2a (Fig. 1), €c1 €c2
with k=mn/a, n=1,2, ..., similar to Ref. 13. Note that

Poi(X) =2 Poe®,  o(x)=> @&, (22)  herePoy=2|Pgj|/i7n, n=2j+1,j=0,1,... andzero oth-
k k erwise. Adding the surface energy of the domain walls, we
obtain the free energy of the domain pattern,

with k=k,=27n/T=mnla, n=*x1,=2,... . Going over
to the Fourier harmonics, we can write the Laplace equations £ | 16P2a .~ 1
for both parts of the film as T_nh o D ' (29
, A a7 50 (2)+1)°Dy
€107 — €K 01 =0, (23
etk Tt Tk whereDn=Dkn. Not very close tdl'.; the argument of coth
€20 — €K%0 =0, (24) is Ve leqkl; =1 even for the smallesk=m/a what is
_ - ) checked by the subsequent resiHg. (30)], so thatD,
with the boundary conditions at the interfaze O :6;/2 6(1;/12+ eé/zz) Minimizing the free energy, we find the
/ / domain width,
P1=Poks  Ec1®ik €c2Pok=4TPow. (295
. . . 2 1/2( 12, 12 1/2
The correspondinglectrostatic(stray) field part of the en- a= T €a (€1 T €2 Al (30)
ergy is found a¥ 14£(3) S
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ala, where e;1(5)=1+27/|A12)|=27/|A12). Note that the
density of the bound charge at the interface, corresponding to
5t this discontinuity of spontaneous polarization, is noyw=
—(Pow—Pox). Therefore, we immediately obtain for the
total free energy of the structure, analogously to the previous
case(29),

P31A1l 1+ P34,

(=
T A a

1 1
I, T, , 16(Por- Po)%a é 1 @3

FIG. 2. The domain width in slightly inhomogeneous ferroelec- w? =0 (2j+1)3 Doj+1

tric or ferroelastic in the units ddy , the Kittel width (31). a=ayx B
when the domain structure sets in BT, and then it grows WN€réAiz=dary Aq(2). Not very close taT¢, we would

linearly with the temperature to large values ay . have e, /e kl,=1 even for the smallest value &= 7/a
which enables us to replace coth by unity. The minimum of

where A=y, /P3,=d,|A|*? is the characteristic micro- the free energy is achieved for the domain width

scopic length, andl,;=(2%%3)D? is comparable to a lat-

tice spacing(“atomic” length scalg. The expre33|0m30) is 3 1 w2 e e+ € P32 1z

yalid when Ve, /e 1kl =1, or |A|=2d,,/(7€¥4;), mean- a=1- Po2/Poy 14¢(3) A1I1+A2|2p_gl

ing that one has to be beloW, by a tiny amountT,;—T (34)

=Toda/(€X4,), estimated earlier. Note that close T, o _ o

one obtains for the domain width Close to the cr|t|cal poinfT;, the domain width formally

behaves am el (T,,—T) ¥4 as found just abovd,
751212 12 before. The same argument indicates though that our deriva-
a=ag= —adat e (31)  tion does not apply in this region, but nonlinearity should not

772¢(3) cause a substantial change in the domain structure.

With lowering the temperature to the region whese
> 5A, we will havePg,/Pgy= \(A+ 6A)/A~1+ SAI2A, SO
that 1—Pg,/Py~2|A|/5A>1 becomes a large prefactor.
Note that in this region e, ~e=27/|A|, A=A,
=d.V/|A[, and the domain width evolves as

and this value doesiot depend on temperature. We shall
formally refer to this result as the Kittel domain width.
Incidentally, close toT,, the domain width isa
~{[ w2 er2eA14L(3)]A 11} < €y, which formally di-
vergesoc(T Teo) Y4 However, in the vicinity ofT¢, the
induced polarization in the formerly “hard” part has about IA| 2502512, 1/2 1/2
the same value as the spontaneous polarization in the “soft” a=— dai(11+15)
part,P,,~Py;. Then the equation of state in the bottom part SAL 743 )
becomes strongly non-linear, since the cubic term is mucly pecomes much larger than the Kittel widtta/ax
larger than the linear termBP3,~BP3,=APy~AP,, =251+ 1 )N Y (T~ T)(Teu—Te) 151, growing
>A;P 3, in the equation of stat@smceA>A2 close toTc2),  linearly with lowering temperaturéFig. 2). For large periods
so the response of the bottom layer does not actually softegf the domain structure Eq35) becomes inapplicable be-
in this region. In this case our derivation does not apply, butause the coth in the formula fér, (28) cannot be replaced
it is practically certain that the domain structure in the vicin-py unity, and this corresponds 1A\ | = (5A)2 ,dy. If we
ity of T, would evolve continuously upon cooling, Fig. 2. assume that the difference between the critical temperatures
in the both parts of the system is, for example, jlist
C. Domain structure at low temperatures (T<T,, A<O, —TC2:O.1 K. Since |A|=(Tx—T)/Ty and SA=(T
A+ 6A<0) Te)/To, we see that in 1-mm-thick filml{d,,~ 10") the
When the system is cooled to below the critical temperaGXpresSIOn for the domain structure period, £39). is valid

ture T.,, a spontaneous polarizatigiy, = /—A,/B also at least in the region

appears in the bottom layer. The domain structure simulta- Iy (Top—Tep)?
neously develops in the whole crystal with domain walls Tcl—Tsd—T—.
running parallel to the ferroelectric axis through the whole at 0
crystal (if they were discontinuous at the interface betweenThis interval is 1—10 K for displacive and 50—100 K for
the two parts of the crystal this would have created a largyrder-disorder systems.

depolarizing electric field The electrostatic energy requires |t follows from the qualitative analysis of the expression
a solution of the same Laplace equatié@8) and(24), only  for the electric energy, that the domain wichwill keep

: (39

(36)

the boundary conditio25) would now read growing with lowering temperature beyond this range to
, ) sizes much larger than the Kittel widif81), because the
€c101k~ €c2P2k=4T(Pow— Pox), (32 system quickly moves into the regipa|> SA. This result is
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where A]_EA: a(T_TC]_), A2: C((T_Tcz) =A+ 5A, with
a,D,u>0 positive constants, andA>0 corresponding to
To<T.;. Thus, the top layer of the system softensTat
(A=0) while the other part of the system remains hard. Note
that A designates now an elastic modulus and not reciprocal
dielectric susceptibility as in the previously described case of
ferroelectric. We designate the two parameters by the same
letter to underline the similarities in the corresponding for-
mulas.

The equation of state in each parbf the system isrj,
:%5F/5Uik, |¢k

o, =2(A,—DV?)u,,+2Bu,, (39
FIG. 3. Schematic of the domain structure in inhomogeneous

ferroelastic film of the thicknesk;+1, with soft in-plane strain O'EZI 2ulUy,, p=1,2, (39

Uy, - Top and bottom layers have slightly different critical tempera-

turesTe>Teo, Tor— Ter<Te1,Teo. (@ Slightly belowT,, the top  Wherep=1 (2) corresponds to the part@<I; (—1,<z

layer splits into domains with fringe elastic field near the interface<<0).

z=0 (schematically shown by the dotted linegb) The domains The treatment of the stability loss is analogous to that of
persist and evolve beloW,, when both layers exhibit a ferroelastic Ref. 7 and we omit some preliminary discussion presented in
phase transitiorfbottom panel that earlier paper. To find the inhomogeneous part of the

displacementvector u, (or, equivalently,u,) at the phase
rather natural, since in this limit the relative difference be-transition one should satisfy the equations of local equilib-
tween two parts of the system diminishes, and the systerfium, do/dx,=0, which in the present case read
approaches the limit of a uniform free sample, which trans-

forms into a monodomain statee., a=x). Ioxy , 9%z _
—+—=0. (40)
ay 9z
. INHOMOGENEOUS FERROELASTIC PHASE We shall use the Fourier expansion for the displacement vec-
TRANSITIONS tor

Very scenario applies in a case of slightly inhomogeneous
proper ferroelastic in spite of some differences in the math- u(y,z)=J ug(z)exp(iky)dk (41)
ematics. Consider a ferroelastic slab with slightly different
phase transition temperatur@s, > T,,, in its two parts of a and find the first appearance of the nontrivial solutiondor
comparable size. In such a situation, the hard part will play dor a givenk wave vector. We then determine tkevhere the
role of a rigid substrate for the top soft part of the sample ainstability sets in first, and this will be the point of the sta-
temperatures slightly below.;, and the sample will split bility loss of the symmetric phase.
into domains. The emerging domain structure should We obtain the following equations for the displacement
strongly evolve with temperature, since the bottom part ofwith the use of Eqs(40) and(38),
the film would also become “soft” al =T, slightly below

TCl' dzuk Alk
— — —k’u,=0, 0<z<ly, 42)
a2 n - ! (
A. Loss of stability (T=T,)
2
We assume that the film is perpendicular to thaxis, w_ Mkzu —0. —l,<z<0 (43)
occupies the space|,<z<I,, and is characterized by the dz? < ? ’

Uyy (in-plang component of the strain tensor as the order ) 5

parameter. The hard shear modulus equals both parts of ~Where Ay =A+Dk" and Ay, =A+ 5A+Dk?. At the free
the film, while the soft modulus corresponds to the com-  surfaces £=1,,—1,) the boundary condition reads,,=0,
ponent of strain. We shall consider a situation when the syswhich is equivalent tadu,(z)/dz=0. In addition, the dis-
tem consists of two layers with slightly different critical tem- Placementu(z) and the strese,,(z) should be continuous

peratures, Fig. 3. Thus the Landau thermodynamic potenti@t the interface=0. _
has the form Let us first consider the case 8§,<0, A, >0, which

would correspond, as we will see shortly, to a loss of stability
of the paraphase. The solution of E¢42) and(43) is

— 2 2 4
F_pz{,z dV[2Apqu+2D(Vqu) By u(z)=F cosy k(l,—2), 0<z<ly, (44)
+u(ui—2uZ)], (37) U(2) =G coshy,k(z+1,), —l,<z<0, (45
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where y2=— A /u=(—A—-DK?)/u and xy5=Ay/u=(A  whereM,;=—2A>0 is <u when the system is close to the
+ 6A+Dk?)/ . transition(soft modulug, M,=A+ SA>0. In both partsr,,
The condition of existence of a nontrivial solution, which is given by Eq.(39).
we obtain from the boundary conditions, looks exactly the We shall assume that all the domains have the same
same as in the above case of ferroelectrics, @@. The  width.” which we will find by minimizing the sum of the
subsequent analysis is also similar, and we obtain a conditioglastic energy and thesurface energy of the domain walls.
for an existence of a nontrivial solution, We consider a stripelike domain structure in the top layer
with the spontaneous stra'uﬁy(y,z)z +ug with the period
w2 ) 2a. There would be no stresses in tiree top layer if ug
- 4K2|2 LY (46) =—A/B. We have to find the displacements(y,z)
L =u(y,z) appearing after the top layer experienced a phase
so the minimal value ofA|=|A|., when the solution first transition. The equation of equilibriufd0) takes the form
appears, corresponds to

Al

M &2u+ U 2M y 0<z<lI (53
T 5 — = 7 Z L
ke= \/—W (47) oy’ "o " l
¢ 214d,
M a2u+ U 0 l,<z<0 (59
mud 2o 5 T —5=0, —lp<z<0.
|A|c=2Dk§:M, (49) ay 9z

I
! Since the domain pattern is periodic, the elastic displace-

where we have introduced the characteristic “atomic” lengthments may be represented as a Fourier series,
scaled,~ (D/u)*?, which is comparable to unit cell size.

The corresponding shift of the critical temperature is very uv.2) =S u(z)exnik K=k _m 55
small. The coefficiente in Eq. (37) is u/Ty, where T, (y.2)= 20 ud(2)expliky). " a’ (55
~T,: in the case a displacive, andT . in the case of order- : .
. > wheren==*+1,+2 ... .After solving the resulting system of
disorder phase transition. Then, from &48), ordinary differential equations with the above conditions one
7 udy, _ finds
Te=Ta———=~Ta-To—, 49
el aly cl o, (49) 7, coshy k(z—14)

. - - U= U0R R KT, Coth 7kl + 7, CoshKly
which is practically the same estimate, as for ferroelectrics, 71 S8 728127 772 718l 56)
with the same(by the order of magnitudevalues for the (
displacive and order-disorder phase transitions and the sana¢ 0<z<l,, and
condition for transition into inhomogeneous instead of a ho-
mogeneous state. U(2)= — UoRy 71 coshnok(z+15)

k 71 coshy,kl,+ 7, coth kI sinhz,kl,
B. Domain structure in the top layer (57)
at Tp<T<T; (A<0,A+6A>0) at —1,<z<0, where R,=4/k?a, k=m(2r+1)/a, r=0,

We consider next the domain structure beldwy in a  +1,... andy=yM;/u, i=1,2, so that the amplitudes of
state with the spontaneous Strajﬁy_ One can apply the the displacements,(z) are propprtlonal to'the doma!n width
notion of the domain structure when the domain-wall thick-& &S they shogld be. The elastic energy is found with the use
ness is much smaller than the domain width. This conditior? the formuld
is fulfilled just below T, by a tiny amount given by the 1
same small parametel,;/l; as in the case of the ferroelec- Foi=— _f gijuﬂdvz _f o'xyugydv (58)
trics, Eq.(19). As in the previous case, one can apply the 2
notion of the domain structure praCtica”y in the whole inter-with the result for the e|asti(~stra» energy per unit area of
val of temperatures betweéen,; and T.,, if the transition the film:
indeed proceeds into inhomogeneous state. Within this inter-

val one can use the linearized equation of state for the top Fstray 1671752 1 1
layer, obtained by expanding the free ene(gy) about the > 3 2 ) :D. (59
spontaneous deformation, mUgA m =0 (2j+1)° Y

N 0 with D= 7, cothnkjl,+ 7, cothn,kjl,. To find the equilib-

Oyxy=2M1(Uyy—Uyy), 0<z<ly, (500 rium domain width, we have to add the energy of the domain
walls
Ugy=Uo=*(—A/B)*?, (51)
Faw/A=yl1/a=puzAql, /a, (60)
0')2<y:2M2UXy, _|2< Z<0, (52) Wheré
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8\/§D1’2|A|3’2 ) . We have to find the inhompgeneous dis.placements in_the
7’1:TEMU0A1: (61  film Ux(Y,2)=u(y,2). For the film the equation of mechani-
cal equilibrium(40) takes the form
8,2D*A[*2 AT Pu  du Juy,
Ay 3 darV|A|/ (62 Mla_yz_FME:ZMIW’ 0<z<l,, (69)
and we have introduced the microscopic length scgje
with d,=(8+/2/3)(D/ 1) *?is, once more, of the order of the Pu  u g,
unit cell size. Note that the actual domain walls exist only in Mza_szrME:ZMz ay —1,<z<0. (69

the top layer, which underwent a ferroelastic transition, with
the stray displacement field penetrating into the bottomWe look for a solution in the same periodic for(85) as

“rigid” part of the sample. earlier with the result
The equilibrium domain width is found from the total free
energy, u(2)=R (up—Wwp) 17, coshp k(z—14) B
K Kl ‘77, sinhg.kl; cothzm,Kl,+ 7, coshykl; O’
F F A4l (70
t;)t _ st;ay + 1'1 (63)
pugA  upugd @ for 0<z<l,, and
with the stray energy from Eq.(59. Assuming 3 (up—wyg) 71 coshmpk(z+15)
mT12)l12)/@=1 (to be checked latérwe replace all coth Uk(2) =~ Ry 771 CoShy Kl + 7,coth 7 Kl sinh kI,
in Eq. (59 by unity and easily obtain for the domain width (71)
A, 71+ 7, for —1,<z<0, whereRy is defined after E(57). The elas-
a= 142(3) . (64) tic (stray energy per unit area of the film is now found by
4L 172 integrating over both parts of the film, since now a sponta-

Slightly belowT,; one hasy;< 7, neous strain exists in both of them:

Al 1 [ 3 Fstray 1671 7,(Up—Wp)?a

a=ax="/ —=\/—=——dl:, (65 N 3
KON 140(3) . N p¥274(3) 63 A G

the limiting value which doesiot depend on temperature Xi 1 1
close to tran_sition. We shall formally call this a Kittel period =0 (2j+1)3 n1cothykjl,+ 7, cothn kil
for the elastic domain structure, and the system, as we have
shown, loses stability and quickly sets in the domain struc- (72)

ture with this period, which is independent of the temperayhere 7=\IM;lp, i=1,2, with M;=—2A, M,=—2(A
ture close to the phase transition. As in the case of ferroelecs. sa) and kj=m(2j+1)/a. Closer toT=T, from below
trics, the period of the domain structure formally increaseshjs expression becomes similar to that for the previous case,

close toTe,, but this conclusion is not reliable because thesjncew,— 0. To find the total free energy one has to add the
nonlinear effects in the former hard layer should be takensnergy of the domain walls

into account in this region.
2 2

Faw  mUpAqli+ uwpAsly

C. Ferroelastic domain structure at low A a ’
temperatures (T<T.,, A<0, A+ 6A<0)

(73

_ _ where A,=d,|(A+ 8A)/u|*?, while A, is given by Eq.
We consider next the domain structure not very close {qgp) The equilibrium period of the structure, is

the phase transition. There the domain wall width is much

smaller than the width of the domains and one can use the 1 7L A gl + Ayl ,(WaIUD)] 91+ 7,

linearized equation of state in both top and bottom parts of a \/ 142(3) ,

the film, obtained by expanding the free enef@y) about % 172

- 1—-wg/ug

the spontaneous deformation, (74
in the same approximation as beforey,l,/a=1, which
Oxy=2My(Ugy—u),  0<z<ly, (66)  enables us to replace coth by unity in Ed2).
We find in the vicinity of T, where 7,=7,
- ) _ o
Tyy=2Mo(Uyxy—Wy,), 1,<z<0, (67)  =V-2(A+56A) u<my, Ay<A;, Wo<up), the equilib-
i rium domain width,
whereM ;= —2A is <y (soft modulug, M,=—2(A+ 5A)
(note the change in th®l, value belowT,). Similarly to 3AL. 1 1
i 0 (| —+(— 1/2 0 _ _ T Al
the previous case uy,=uUo==*(—A/B)™ W, =W, a=\/ 13 =~ =" (75)
= +[~ (A+ 5A)/B]Y2 A3) 9, n,
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We see that the period of the domain structure formally di{oses stability in the softest part of thicknelss which is
verges when one is approachifig, from below but this derived from the position of the boundary where lodal
behavior will be modified by the nonlinear effects. =0, with respect to a domain structure with fine period
Let us check the behavior of the domain width at temperaz. Jls. The domains extend into the bulk of the system and
tures deep into the ferroelastic region for both parts of thgyecome wider with further cooling, sindg increases. In
film, where |A[>6A. There n~7n;, A;~A; and 1  glectroded sample there will be no domain branching and

—Wo/uo~5A/2|A|<1, and we obtain domain walls would run straight across all transformed
3 slices. Otherwise, discontinuities would have resulted in very
_ 2|A| ™ strong depolarizing field. If the overall inhomogeneity is

(lit12). (76 small, the picture would obviously remain very similar to the

oA N 7723 ™ | .
two-slice model solved above. The same arguments remain
We see that far below the temperature where a spontaneoygiid if the inhomogeneity were to have more complex form/
strain sets in the whole system, the period of the domainjistribution in a sample. The interesting feature of
structure grows with respect to the Kittel period of initial the present effect in case ferroelecticsis that the depolar-

domain structurey , Eq.(65), as izing field appears not due to surface charges, which
a2 112 112 are screened out by the electrodes, but because of the bulk
a_ 2_|A|( |1+|2) —23/2 L+, Teim T >1 inhomogeneity. In the case tdrroelastics inhomogeneity in
ax oA Iy Iy Tai— T2 7 the sample results in tHeulk stresseshat cause the splitting

(77 of the system into domains. In this case too the domain

Since the period is linearly growing with lowering tempera- Wall would run straight through the soft part of the crystal,
ture, ax<|A|, and becomes very larges>a,, and the re- Since the discontinuities would result in large stray elastic

placement of the coth by unity becomes unjustified. The conStréSses.

dition of applicability of Eq.(77) is the same as for E¢35) ~We have shown that a very tiny temperature gradient, or a
in the case of ferroelectrics. slight compositional inhomogeneity, etc., would result in
practically any crystal eventually splitting into domains no
V. SUMMARY matter how high the quality of it is. The rapid evolution

of the domain pattern, found in the present paper, when

Summarizing, in an electroded ferroelectric or free fer-it starts from very fine domains ak., which then grow
roelastic sample with a tiny inhomogeneity of either the criti-linearly with temperature to very large sizes is similar
cal temperature or temperature its@lé., in the presence of to what has been reported in Ref. 15 ferl-mm-thick
a slight temperature gradient and/or minute compositionalriglycine sulfate(TGS) crystals. It would be very interesting
inhomogeneity across the systerthe domain structure to perform controlled experiments for the domain structure
abruptly sets in when the spontaneous polarization appears glose to the second-order phase transitions. One could
the softest part of the samplee., the part with maximal check, in particular, the basic assumption of the present
T.). This takes place when the differenceTipin the parts theory that the electric field®lastic stressgsaccompanying
of the sample is just 10°~10 2) K for the displacive sys- ferroelectric (ferroelasti¢ phase transitions even in
tems, and even smaller, 10-10* K, for the order-disorder slightly inhomogeneous media are compensated by
systems. The period of the structure then grows linearly witiformation of the domain structures rather than, for example,
lowering temperature and quickly becommasch largerthan by screening of the electric field by charge carriers in ferro-
the corresponding Kittel period. electrics. Further understanding of the domain formation

This result does not depend on specific geometry assumeat phase transitions in real crystals is very important given
in the present model. Indeed, if locél=T.(z) varies con- that many properties of ferroelectrics and ferroelastics,
tinuously, it can be approximated by a piecewise distributiorused in applications, are mainly determined by the domain
of a sequence of “slices.” Upon cooling the system first structures.
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