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Exactly solved Frenkel-Kontorova model with multiple subwells
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We exactly solve a class of Frenkel-Kontorova models with a periodic potential composed of piecewise
convex parabolas having the same curvature. All rotationally ordered stable configurations can be depicted with
appropriate phase parameters. The elements of a phase parameter are grouped into subcommensurate clusters.
Phase transitions, manifested in the gap structure changes previously seen in numerical simulations, correspond
to the splitting and merging of subcommensurate clusters with the appearance of incommensurate nonrecurrent
rotationally ordered stable configurations. Through the notion of elementary phase shifts, all the possibilities
for the existence of configurations degenerate with the ground state are scrutinized and the domains of stability
in the phase diagram are characterized. At the boundaries of a domain of stability, nonrecurrent minimum
energy configurations are degenerate with the ground state configurations and phase transitions occur.
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[. INTRODUCTION tionary configurations in an FK model and orbits in a twist
map? In this paper, we will use these two sets of language
Spatially modulated structures have been experimentallinterchangeably.

observed in many condensed matter physical systefe In the study of FK models, one is particularly concerned
wave-vector characterizing the modulation varies with exterwith  minimum energy configurations (or minimizing
nal parameters sometimes in a continuous manner but oftesrbits’), in which H cannot be decreased by altering a finite
remains constant, equal to a certain rational locking valuenumber ofu,’s. In the case where the potenti{u) satisfies
through some range of the external parameters. The physicabme criterid, there is a well-defined winding number for
origin of this complicated behavior is understood in terms ofthese configurations
competing interactions in the free energy of the system. The

Frenkel-KontorovaFK) class of models is one of the sim- . Un—U_p;
plest among those models displaying such interesting o= lim N+N' 1.3
behavior In this work, we will investigate a generalization NN e

of the “locking” behavior in a specific FK model and show the inverse of which 14 gives the average number of atoms
that as the external parameters are adjusted to the boundasgr period of the potential. A ground state configuration is,
of the “locking” region, some “nonrecurrent” configuration by definition, a recurrent minimum energy one, and can be

becomes degenerate with a recurrent one. depicted by
The FK model describes a one-dimensional chain of
coupled atoms subject to a periodic potentiflu). The u,=f, (no+a)), (1.9

Hamiltonian of the system is given by where the hull functiorf ,(x) is an increasing function of

1 and satisfies
H{uah) = 20 | 5 (Un=Un- ) AV(U) [, (1D fx+1)=f.(x)+1. (L5

N o « is a phase variable to determine the relative position of the
whereu, denotes the position of theh atom. In the limit of  gtomic chain with respect to the periodic potential. As
shallow potential { —0), the atoms are kept at an equilib- jncreases, the plot of the orkilefined on a cylindgrfor an
rium distance by a tensile force. Such models are also jncommensurate ground state undergoes a transition from a
widely studied in the context of two-dimensional area-kaM invariant curve, corresponding to an unpinned phase,
preserving twist map%?l’he period of the potential can be set {g 5 Cantor-Aubry-Mathe(CAM) sef or a cantorus, corre-
to 1 by choosing a suitable spatial scale. The amplitude ogponding to a pinned phase. In the latter chs) fails to
the external potential can be regarded as a measure of thepe a continuous function and the positions of the atoms can

nonlinearity. _ _ be depicted by choosing either the right-hand side limit
For a stationary configuration one hasl/du,=0 and ' (x) or the left-hand side on&,(x) when a discontinuity is
thus encountered. The transition, featured by the breaking of the
KAM invariant curve, is termed “the transition by breaking
Ups1—2Un+Up_1=AV'(Up). (1.2 of analyticity” (TBA).2*5 On the other hand, for a rational

w, the hull function is piecewise constininless there is a
This equation can be recast as coupled first order differenceero-frequency phonon modeMore specifically, for
equations, which provides the correspondence between sta=p/q (assumed to be irreducible throughout this paped
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without distinct (stated explicitly later degenerate ground laten. To keep the resultant configurations RO, we find that
state configurations, the hull function is composed of pla-only a limited numberat most 2—2 for the case wittd
teaux, each with width &, The incommensurate hull func- subwells in each period of potentiaf such operations need
tion can be obtained as a limit of commensurate hullbe investigated. The evaluation of these energy differences is
functions® further reduced to solving a set of linear relations among
In the study of the area-preserving twist mapways con- ~Some atomic positions. .
sidered to be defined on the cylinglethe invariant set is of The presence of multiple subcommensurate clusters in the
fundamental importance. In the incommensurate case, d&hase parameter, as we shall see, naturally leads to multiple
pending on whether it is a KAM curve or a cantorus, thecompatible configurationghe mixed phase, see Sec,)Iv
invariant set plays the role of a total or a partial barrier,tN€ commensurate case. To carry the notion of compatible
respectively, for the transport in the phase spa@Even if configurations to the incommensurate case, we havg to intro-
the invariant KAM curve is broken, its remnants, the rota-duce the notion of extended numbtras the elements in the
tionally ordered RO) invariant set still satisfies E¢1.2) and phase parameter and then the nonrecurren{IRRO) struc-
is semiconjugate to a rotation by a continuous mapping}ure aUtomatlc_aIIy emerges. _
which is one-to-one but defined on a countable'et. The paper is organized as follows. In Sec. I, we define
The first analytical study on FK models was conducted byfn® FK model to be investigated and establish a one-to-one
Aubry*'2 where TBA was proposed and a devil's staircasecorrespondence bgtwee.n stable configurations a_nd coding se-
was explicitly derived to exhibit the locking of winding num- duences. RO configurations and the corresponding phase pa-
bers to rationals. The potential is the simplest nonlinear ong2Meters are introduced in Sec. Ill. An associated energy
in that the nonlinearity only occurs at one point in each pefunction, giving the average energy per atom, is also derived.
riod. Simple as the model may seem, it captures the essente Sgc. \VA composne hu.II funqtlons are mtrod.uced to depict
of the “cantorus” phase and features a lot of unstable regulafultiple compatible configurations. As the notion of compat-
structures generically found in typical twist maps for Iarge'ble configurations is carrlled over to the incommensurate
nonlinearity parameterS. case, t_he NRO configuration emerges. Two approa_lches_ to
In this paper, we will exactly solve an extension of the determine minimum energy configurations are provided in

Aubry model, where the potential hedsubwells in a period. S€C- V. In Sec. VI, we build up the phase diagram and char-
This model was first proposed by Griffittet al}* Several acterize the domain of stability. In Sec. VII, incommensurate

interesting new phenomena such as the nonrecurrent minNRME configurations are investigated. It is found that the
mum energy(NRME) configuration in the incommensurate NRME configuration naturally emerges at the boundary of
case, discontinuous cantorus-cantorus phase transiiiens f[he domain of stablhty_. Thou_gh some of the results concern-
phase transitions in the gap structynd independent orbits ing the gap stru_cture in the mcommensurate case have been
of gaps composing the complement of the CAM 6., a br!efly reported in Ref. 18, we pr(_)wde all the details to make
gap structure with multiple discontinuity classes or hbles this paper reasonably self-contained.

were found in thel=2 case. Recent work on this motfel’

concentrated on acquiring ground state configurations ll. THE MODEL

through studying directional derivatives of the energy func- . . . . .
tion, giving the average energy per atom, with respect to the Tr?e ppt(;n'glal .Of peglod 1, witl pieces of parabolas in
elements in the phase paramei@efined later. However, as each period, Is given by

we shall see, for a given set of .windipg number and phase V(u)=min{V,(u)}, 2.1)
parameter, the depicted RO configurations may not be unique i

up to shift operationgdefined later. Thus the correspon-

dence between RO configurations and phase parametersViere

not quite clear, and the meanings of the energy function as

well as its derivatives for an arbitrary phase parameter are V,(u)= l(u—b-)2+h- 2.2)
obsessed with ambiguity. Moreover, the above mentioned ' 2 ' '

new phenomena found in tlle=2 case have not been ana-
lyzed in the general case.

To resolve the ambiguity, we will provide two ap-
proaches. We first introduce the notion of subcommensurate
clusters for the elements of a phase parameter. A phase pa-
rameter_with multiple_subcommen_surate clysters builds up a RequiringV/(u) to be continuous, the positions of the tips
composite hull function to describe a mixed phase. Theye given by
meaning of the energy function on the whole space of phase

with hy;=h; andby,;=1+Db; for every integei. Here,h;'s
andb;’s are independent parameters, arranged in the order

by<b,<---<by<l+b;. 2.3

parameters is thus clarified and the procedures adopted in bi+bi,; Ah,

Refs. 16 and 17 can be justified. Instead of studying the i=———*1p. (2.9
average energy per atom, another approach to determine if a :

given RO configuration is a ground state one is conductegvith Ah;=h; ;—h; andAb;=b; ;—b;. We set

through studying the energy differences resulting from mov-

ing some of the atoms across the potential tidsfined to=0<t;< - - <ty=1, (2.5
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RO19-21The exact values di(t;)’s are relevant for mini-

t, max orbits® Throughout this paper onlgtable configura-
tions are of our concern. In fact, as we will show in Sec. V,
there is some depletion region around each tip, where no
atom could visit in minimum energy configurations.

In the terminology of dynamical systems, the FK model
under investigation satisfies the criterion for a twist
homeomorphisif?® and the stable configurations corre-
spond to solutions of the Euler-Lagrange equation due to
Percival®* All the properties derived there without involving
the smoothness of the homeomorphism apply here. In par-
ticular, the winding number is a continuous function of the
hull function in the Hausdorff topology, which guarantees

V(u)

0.0 b, 1.0 that the property of the incommensurate case can be derived
u as a limit of that of the commensurate cases and vice ersa.
FIG. 1. Periodic potentiaV in Eq. (2.1) for d=3. In the following, we will adopt the strategy to discuss the

commensurate case first and then take the incommensurate

where the conditiori,=0 is chosen to fix the translational Case as a limit of commensurate cases.
degree of freedom, leading to The formal solution for a stable configuration is given by

]

Un:dokE e Mxb 2.9

h,+b3/2=hy+b3/2. (2.6)

An example ford=3 is shown in Fig. 1. Particularly for

1 <u<t;, VJ(U) should be the one picked up to minimize where e X=[1+\/2— N(1+\/4)] and dy=tanh{/2).

V(u) in Eqg. (2.. This potential branch is named thta Here,{b,,)} or {(n)} (Ref. 26 is the coding sequence. They
subwell(or branch and the collection of all thosiéh subwell 1, 5t satisfy

with i =] (modd) are named th¢th type of subwells. The
tips at the right ends of those subwells are calledjthdip bmy=b(u,) or, equivalently, t, 1<u <t

and thejth type of tips, correspondingly. Since only the rela- 2.10
tive value of the potential height is relevant ae- 0, there
are 24— 2 degrees of freedom in defining the potential. For
convenience, we will choose={ty=04,t5, ... ty_1} and
b={b,,b,, ... by} as the potential parametefSand 5 are
employed to denote the setstodndb, respectively, satisfy-
ing Egs.(2.5 and(2.3). The constraint

in order to consist with Eq2.8) so that{u,,} denotes &table
configuration. In other words, th@g) designates the poten-

tial branch picked up by, in Eq. (2.1) for everyn. In this
manner, we provide a one-to-one correspondence between a
stable configuration of the FK model and an allowed coding
sequence(n)} or {b;,)} of the symbolic dynamié$ with

d-1 1 Eq. (2.10 employed to prune unallowable sequences.
bo= E t;Ab,— > (2.7 One should note that, for a stable configuration in our FK
=1 model, the phonon gdpis VA/m with m denoting the
implied in Egs.(2.4) and(2.6), reduces a degree of freedom atomic mass and the gap paraméftéris given by \/(4
in the set of 21— 1 variables. +\). Consequently, all these configurations are uniformly
The force-balance equation is given by hyperboli¢® and have nonvanishing phonon gaps Xor 0.
All the theorems and corollaries in Appendix B of Ref. 15
Upr1tUp—1— (2+N)uy=—Ab(up), (2.9 apply here. Losing the phonon gap happens as some continu-

ous variations in the potential parameters fougeto touch

with b(u,) equal to eitherb;, if t;_;<u,<t;, or b(t;) . . .
E(bi+bi11)/21 if u =t; . Thel latter Iassignnmelnt is the rlglver- t(my—1 Or t(y for a certainn when the configuration ceases to

" _ o be stable. As a result, this configuration loses its uniform
age ofb(t;") andb(t; ), which is not compulsory. However, hyperbolicity and disappear through bifurcatfon.
it is irrelevant as long as only the stable configurations are
concerned, for which no atoms can be located at the tips. The
reason is as follows. The derivatives of the system energy

with respect to the position of the atom right gt are Two configurationgu,} and{v,} are said to intersect if
N[b(t)—b(t7)] and \[b(t)—b(t])] for infinitesimal  there areu, =0, andu,<v,, for somen andm. While, they
negative and positive displacements, respectively. No mattefre said tocoincideif u,=v, for everyn. {u,} and{u,m
how b(t;) is assigned, there must be eithieft; ) —b(t;))  +1} with arbitrary integersn and|, will not be regarded as
<0 or b(t;")—Db(t;)>0. Thus such a configuration cannot distinct since they can be made coincident by the shift op-
be a stable one and, needless to say, a minimum energy or&xation, including shifts in the axis by integergperiods of
This fact implies that the fundamental lemma in Ref. 5 ap-the potentigl and in the numbering of the atoms. An incom-
plies for minimum energy configurations in this FK model mensurate RO configuration should not self-intersect, i.e.,
and, accordingly, minimum energy configurations must benot to intersect its own shiftdy applying the shift operation

Ill. ROTATIONALLY ORDERED CONFIGURATIONS
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u;

u

(a)

(b)

(©)

FIG. 2. (a) The cyclic ordercounterclockwisgof an RRO con-
figuration{u,} with w=2/5. (b) The cyclic order of a configuration
with the sameaw but not RRO.(c) The cyclic order of two compat-
ible configurationdu,} (solid circles and{v,,} (open circlegwith
w=2/5.
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for 0=<i,j<d, is also introduced for later use. The values of
n; andn;; are required to be within< q/2,q/2] in order to be
uniquely determined.

For an RO stable configuratiofu,}, there must be
ti<u,<ti;q for BisnNw<pBii1. Introduce v
={vq,vy, ...,vg}, given byv;=p;— B;_, for eachi, with
the physical meaning as follows. Consider the model as a
twist map defined on a cylind¢i0,1)xX R with u, replaced
by Fragu,]. All atomic positions for{u,} form a set ofq
points, called the periodic cycle; denotes the atomic frac-
tion located inside theth type of subwells.r must be a
partition of unity, i.e.,»;=0 andv,+ v+ - +pyy=1.

The hull function to depicfu,} through Eq.(1.4) will be
denoted byf ,(Xx), where the parametes=(w, 8) explicitly
reveals the dependence g The restrictionf'w(O)<O

<f!(0), is adopted to pin down the translational degree of
to itself),">*°while for the commensurate case, an RO con-freedom in the origin of the axis. Define a coding function
figuration should not intersects, unless coincides with, it%ﬁ(x) byEB(x)Ebi, as well asTwﬁ(x)Ehi (for later use, for

own 'shifts. According to' the fgndamental lemma in Ref. 5’ﬁi—1$x<ﬂi . One can introduce the hull function, given by
all minimum energy configurations in our model must be RO

(an FK model allowing of minimum energy configurations %
not RO, even without a well-defined winding number was f (0)=dy > e*‘”‘XEB(ernw)
discussed in Ref. 30 n=—o

A related concept called compatibilitgfter Katok in Ref.
25) will be employed in later discussions for degenerate
ground state configurations. Two distinct configurations are
said to be compatible if they cannot be made to intersect
through any shift operatiotand, therefore, it is apparent that
each compatible configuration must itself be )RDhe crite-
rion for {u,} and{v,} to be compatible can be recast as, for
any n and m, Fragdu,]>Fradv,,] implies up~;—Intfu,]
>vm=1— Intfv,] and vice versa. If we exclude the possibil-
ity of discommensurationéwvhich is not of concern in this
paper, one may refer to Refs. 5 and 18 for detaflso phase
variablese and 8 can be found such that the order of the
union of two sequence$Fradnw+ a]|—~<n<w«} and
{Frad mw+ B]| —<n<«}, arranged according to the
magnitude, is kept in the union of sequenddsadu,]
| —co<n<o} and {Fradv ]| —®<m<cw}. An illustration
for RO and compatible configurations is shown in Fig. 2.
These properties are closely related to the fact that two com-
patible configuration can be depicted by a single hull func-
tion, as will be shown in the next section. -

Next, we would like to depict a given RO stable configu- Both bg(x) andf,(x) are increasing irx. The consistency
ration with a hull function. Consider the commensurate cas€ondition for stable configurations is given by
with w=p/q at first. To avoid variations due to shift opera-
tions, we demand €uy<1 andn=0 to be the one mini-
mizing Frag¢u,] in {u,} (termed the fixing condition which
leads to Intu,]=Int{nw] for all n. We further introduce a
set of integera;’s such thatn=n; is the one minimizing

©

=dy >, e "MXInt[x+nw]

n=—w
d 9

+do> by > e MX(Int[x+new—B_4]
i=1 n=-x

—Int{X+nw—Bi])
j+d—1 o

=1+bj+dy >, Ab; > e I
=]

n=-—w

XInt[x+nw— B;] 3.3

with any integejlj. This hull function satisfies the equation of
motion

fo(X+ @)+ o(X— ) = (24 N)f ,(X) = = Nbg(x).
(3.9

fL(B<t<fL(B) 3.5

for eachi. As will be shown in Sec. VI, Eq3.5 can always
be respected, for any prescribed set af and Ab

Fragu,—t;] in {u,} for 0<i<d. Define the phase param- ={Ab;,Aby, ... Abg_;}, by choosing an appropriate set
EterﬁE{,BOIO,ﬁl, P ,ﬁd,l} by of t. ) -
Particularly, foro=p/q, every elemenp,; in B8 should be
Bi=Fragn,w] (3.1 restricted in the form of;/q with integers G=ly<I;<---

<l4_1=(q so that with any choice of phase variakie the
hull function will depict a specific RO configuration and all
its shifts through Eq(1.4).

The coding function and hull function, introduced above,
apply as well for the incommensurate case, witdenoting

for 0=<i<d and useg;, y=1+ B; to extend the definition of
B for arbitrary integeii. The{n;;}, satisfying
Frad nj;w]=Frad g;— B;] (3.2

184108-4
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limiting values(since an infinitely long, but not repetitious,
atomic chain is consider¢af atomic fractions. The details
will be given elsewheré!

A crucial point is that, for givert and Ab, there are ge-
nericallyd—1 degrees of freedom in choosing tpeto sat-
isfy Eq. (3.5. Consequently, for a givem, there is a @

PHYSICAL REVIEW B 66, 184108 (2002

A
7+)\E hvi+t= >

2 Oo=i<j=d-1

[(bi—bj)

—1)-parameter family of RO stable configurations, as com-

pared to the uniqueness of the RO stable configuration in the

case with a single-well potential in each peri§dSuch a

difference will lead to the existence of multiple compatible
RO stable configurations, as will be discussed in the next

section. Particularly, the existence of the—<(1)-parameter

X (1+b;—b;) vivj]— Mo 2 e Inlx
d-1

X .ZOAbiAbjS(nw—i—ﬁj—Bi) (3.10
1,]=

family of RO solutions to the corresponding Euler-Lagrange
equation of Percival, instead of being an artifact due to thevith S(x)=Frad x](1— Frag x]). The energy function gives
specific choice of the nonanalytical potential, was also obthe energy averaging, with uniform weight, over the phase

served numerically in a model with smooth potentfarhus,

variable o since the integration over is conducted. In the

the phenomena described afterwards that result from the exacommensurate cas¥,(w) andE,, are equivalent no mat-
istence of additional parameters to characterize RO stabler which « is chosen in Eq(3.9) according to the Weyl's
configurations must be applicable to quite a general class afriterior?® since&,(x) is Riemann integrabl&. In the com-

FK models.

mensurate case, different RO configurations may be depicted

To the atomu,,, one can assign the amount of energy  with different choices ofx in Eq. (1.4), as will be discussed

1
( n) n)2+Z(un_

A
(un+l un71)2+§[un_b(un)]2

+xh(up), (3.6

whereh(u,) =h; if b(u,)=b;. The average energy per atom

for {u,} is given by

1
2 E(u,)

3.
N+N +1n=—n 3.9

N,N’—

if the limit exists. For an RO configuration, this limit always
exists and Eq9.3.6) and(3.7) can be replaced by

1 1
Eu(X)= Z[fw(XJr o) = (x)]*+ Z[fw(x)—fw(x—w)]z

A ~ ~
+§[fw(x)—bﬁ(x)]2+)\hﬂ(x) (3.8

as well as

N

>

E.~ lm ———
& N+N'+1 "

N,N’*}DO

Ea+nw), (3.9

with the phase variablex corresponding taug.
periodic inx with period 1.

£,(X) is

in the following section.

IV. COMPATIBLE CONFIGURATIONS

In the phase diagram, the boundary between two neigh-
boring domains of stability is where these two phases coexist
(become degenerateAs we will see in the next section,
degenerate ground stateninimum energy configurations
must be compatible. Therefore, to built up the phase dia-
gram, we should identify the compatible configurations at
first. Here we will begin with the compatible configurations
in the commensurate case.

As shown in the last section, with every elemghtin 8
restricted in the form of;/q for integers G=1,<
<l4_1=q, the depicted conflguratlons are a specific RRO
(recurrent or repetitious Rzonfiguration withw=p/q and
all its shifts. Thus a B, with all elements inS,
={Fradnw]| —»<n<«}, as well as its accompanying cod-
ing function and hull function are termed elementary and
denote a pure phase. The union of all pure phases constitutes
a set of finite pointgcountably infinite many points but with
null measure in the incommensurate gaskethe the phase
parameter spac@={B|0=Bo<p1<" - <Bq_1=<By4=1}.

In Refs. 16 and 17, the ground state configurations are
found through studying directional derivatives of the energy
function with respect to the elements in the phase parameter.
In this approach, the values of the energy functiorBasar-
ies continuously are of concern. Thus the contents of the
energy function evaluated at a nonelementgrghould also
be examined in order to justify such an approach. As a result,
the composite phase parameter, consisting of more than one
subcommensurate clusters and thus depicting more than one
distinct compatible RO stable configurations, is introduced.
The composite phase parameter is proposed to denote a
mixed phasewith the abundance associated with each pure

ly<---

Once the hull function is obtained, a useful quantity,phase specified b in a proper way described below.

called the energy function, be

straightforwardly:6'8 given by

can

derived

Consider the pure phase first. For a given RRO stable
configuration{u,} with w=p/q, we introduce the coding

184108-5
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function satisfyingBﬂ(x)=b(un) for no=x<nw+1/q and
1=n=q. In this way, the associate is automatically el- Y

ementary. On the other hand, for each elementary phase pa-
rameterf with respect to the winding numb@rg, one can
define an increasing coding functi&@(x). If the accompa-

nying hull function satisfies Eq.3.5), there exists an RRO V(u)
stable configuration with winding numbpfq depicted by it. A

In this manner, we build up a one-to-one correspondence
between an RRO stable configuration with all its shifts and
an elementary phase paramej@rwith the accompanying

hull function consistent with Eq3.5).
Now let us look into the gafthe discontinuity in the hull
function) structure for the pure phase. The invariant set u

{Era({fw(x+nw)]|—w<n<w}, defined on the circlg0,1), FIG. 3. An example of compatible configuratiofs,} (solid
will be denoted by ,(X) andX ,=Ug<y<134(X). FOr an  gjrgles and{u/} (open circley with d=2, w=3/8, 8,=6/8, and
elementaryB, the value ok s irrelevant and ,=% ,(x). I g:=5/8. By moving the atoms closet to the tip acros@liistrated
2., there is one holddiscontinuity classcomposed ofg by the arrows in the figuje corresponding to an elementary phase
gaps, which come in orbits cyclicalfyand are the disconti- shift, either of these two configurations is transformed to the other.
nuities off ,(x) located atx=i/q for every O<i<(. For all Compatible configurations are generated by elementary phase
the otherx, one had f (x)/dx=0. shifts.

The gap structure can be analyzed according to the
amount of discontinuity resulting from a certakb; in Eq.  gap structure in an analytical way. As we proceed to imple-
(3.3). Associated with eachb; for 0<i<d, there is a prin- ment the phase parameter to depict multiple compatible RO
Cip|e Opening(referring to a certain amount of discontinuity stable Configurations, one will find that all the restrictions
in the gap atx=B; (positioned aroundi=t; and this veryi imposed org could, indeed, be loosened except the one with
will be employed to characterize the specific type of openB€ . _ i .
ings). The principal opening has widttl,Ab; and carries a Consider two compatible stable configuratidng} and
sequence of derived openings xat Frad 8;+nw] for all n, {u/} both opservmg the fixing COI‘idItIOﬂ. They must hav.e the
having widthse*‘”‘XdoAbi . The width of the gap irf (x) at ~ Same W|nd|ngi numbe® = p/q. Without Iqss of ge_nerah_ty,
x=jlq=Fragmw] with some G<j<q is given by assumeup=<u, gnd these two compatible configurations
9 va(m—n)doAb;, where then’s are given in Eq. MUSt be related in such a way that
(3.1 and xq(n)==y_ e "*Mx_ Every gap containsl
types of openingsreferring to the summation ove), each Une m> Unem> UL+ >0+ for I<mo,
from a certainAb;, due to theresonanceamongd types of
openings. Particularly, for a given integex0<(q, there ex-
ists an integer &k;<q such that Frdgs;+kw]=1/q for )
eachp; ; therefored types of openings merge to form a gap for all n, to guar_antee@un} and{ué} not to intersect through
and we say that openings dftypes are in resonance. any shift operation. These relations hold among all compat-

In fact, there is another kind of resonance among Oloen|_bIe cpnflguratlons, even in t’he incommensurate case.
ings for repetitious configurations. The factog,(n) Using elementary3 and to denote the phase param-
—3*_ e I"tmdx instead of a single terra "X as ap- eters respectn,/ely fofu,} ang{un}, there must beggy= B}
peared in Eq(3.3), is employed to take account of the reso- — 0 @ndBi— =0 or 1, with the value 14 taken at least

nance among openings of the same type. Specificall)f,’nce for 1$i§éj;1t.) TWOI Fihgss pararrieters trelatecij] in su%hﬁ
Bi - mpc=Bi-+mp for every integemn so that each opening, a way are said to be related by an elementary phase shift.

) . : The physical picture is that, to transform the configuration
resulting fromAb;, merges with one of the openings, from U.} to{u’}, one in every period af atoms must be moved
ADj mpg- Such resonance occurs only in the commensuraté n nw yp

: cross one of thh type of tip from the left to the right for
case and it allows the emergence of commensurate NR . , .
i T osei’s with 8;— B/ =1/g. See Fig. 3 for an example.
configurations:

. . . . Now we will construct a phase parameter to depict both
The connecting points of neighboring gaps compose th%onfi urations. LeB;(y)= v+ (1— y) & for every integer
periodic cycleS,. This3, is an invariant séf in the sense 9 . NY) = YR Y)Pi yinteg

that it is invariant under the twist map and it is also a mini-~ with some G<y<1. One can derive the corresponding

mal set® in the sense that it has no invariant proper subsetPp»(X) and f (). CoInS|der ti1e RO stable configura-
Next, let us turn to the mixed phase with a compositetions —depicted by uy'(€)=fy (no+a) with ¢
phase parameter. We shall find that the range of the compos Fradqa]. The configurationguy,(£)} with 0<é£<vy, as
ite hull function carries a gap structure with multiple holes,well as{ul(£)} with 0<¢<1y, are the same as the one de-
which provides a valuable example for us to inspect such picted byB(1)= B. The configurations for all the othérare

Unt m<Uj e m<up+1<ul+1, for I>mo,
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1 eachj. In the phase paramet@(y) there ard subcommen-
surate clusters, each having elements in the form lof (
+¥;)/q with k integer. Equivalently, there arke constitu-
tional (elementary phase parametef@':, 8'2, ..., andg",
for the compositgd(y). The invariant sek ,,, hasl distinct
minimal proper subset®eriodic cycles In addition, the set
of all the B(vy) with admissibley forms an (—1) simplex in
Q with thesel constitutional phase parameters as its ver-
texes. The weight of the pure phase, depicteggby in the
mixed phase, depicted bg(y), is given by y;—y;, for
x=0 10 10 1 each;.
@ ® © For the potential wittd subwells in a period, there can be
FIG. 4. The hull functions for the compatible configurations in & mostd subcommensurate clusters in a phase parangeter
Fig. 3.(a) Is the hull function for{u,}, (b) is the hull function for ~ Thus there are at mostcompatible distinct RO stable con-
{u;}, and(c) is the composite hull function for both with=0.6. figurations. The classification by the number of subcommen-
surate clusters, from 1 t, exhaustes all the possibilities for
the same as the one depicted8(0)= B’. See Fig. 4 for an the phase parametersihand we have successfully attached
example. the physical meaning to the phadgsire or mixed associ-
Such ap(y) can be decomposed into two disjoint non- ated withany B Q in order to be consistent for the value of
empty subsets: one with elements in the fornkkf and the  the physical quantities like the energy at sucp.a
other, of k+y)/q, with integerk. Within each subset, any  Now let us inspect the gap structure of a composite phase
two elementsg; and g; observe the subcommensurate parameter. The openings are classified ghtgpes according
condition?® defined by Frags;— 8] S, . These two sub- o the indexi in Ab; (or ;). Each subcommensurate cluster
sets are called subcommensurate clustB(s), as well as  carries a corresponding hole. [9,1), gaps resulting from
Eﬂ(y)(x) andf .,y (x), will be termed compositg8 and g’ the cluster containings; are the discontinuities of the hull
are called the constitutional elementary phase parameters fnction f,,,(x), located ax=Fra¢ nw+ ;] for all n. In-
B(v). FurthermoreX ,,,=%,U%, . InQ, Band B’ are side each of these gaps, there is an opening from every ele-
two points and the set gB(y) with 0<y<1 forms a one ment in the very cluster. For the case witsubcommensu-
simplex (a straight ling with g and B8’ as its vertexes. This rate clusters, there atéoles andq gaps in%,,, . Here and
B(7) is taken to depict a mixed phase, with the ratio of thethereafter, the coalescence of opening of the same type in the
abundance of the two pure phas@sand 8’ given by commensurate case is understood and will not be addressed
v:(1—vy) because any associated physical quariéity., the  explicitly.
energy functionwith its value evaluated through an integra-  One can use the; to characterize the hole and its accom-
tion overx, is attributed to these two pure phases with theirpanying gapsto avoid confusion, recall that the openings
corresponding weights in such a ratio. are characterized by the indein Ab; or 3;). In the descrip-
The extension to the case of more than two compatibldion below, we will identify y; with ; for j=i(modl). In
stable configurations is straightforward. In fact, the relationthe interval[0,1), each gap of the; type[associated with a
between{u,} and{u,}, as discussed above, should be re-cluster with elements in the form ok y;)/q] contacts one
spected by any two among all simultaneously compatibleof the y;_; type in the left and one of the;; type in the
configurations. If there aredistinct RO stable configurations right. They come in orbits side by side. Thus the holes are
compatible simultaneously, one can arrange their correarranged in a cyclic order according to the magnitude;of
sponding elementary phase paramegts 8'2, . . ., andB" The connecting points, between gaps of the adjacent type,
such thatﬂi'l—ﬁi'l':ki'i/q for all 1<j<I and O<i<d, Yi-1 and y; , also_cqme n QTbl_tS and compose thgy, fOf
Wherekilj are either zero or one With{)jzo for all j and 0 0<i=lI. Thesel distinct periodic cycles formh compatible

i1 lo L , RRO stable configurations.
=kj'sk;’<---<k'<1 for each 6<i<d. We usel; to de- Now let us look into how the resonance among openings

note the positive integers whose binary representation igf different types affects the gap structure. Ferd, each
k'ljk'zi---k:jl;l and it follows that G=I,<l,<-.-<I gap contains a single type of opening. Assume that the gaps
<2971 In this setting, it is clear thg8'i's are independent from B; andB; are of adjacent types; i.e., they are of the
vectors in ad-dimensional space so thatsl<d. Define the and y,; types, respectively, for some Consider the pro-
phase paamEEp ()= y)fl+ s 2052 0 st v s of e ket or ) cor

B | T (3. i : inte-
=y for ef%h' with y_{7°_0_<~y1<“'<7' ger n;; ; i.e., the value ofy,,;— ¥ decreases to zero and
=1}. One can derive the accompanyiry,)(X) and  their corresponding openings become in resonance. Just be-
fwﬂ'y)(x)' Fon3|der the RO configuration depicted by fore the resonance happened, every gap consisting of the
uy (&) =fl(a+nw) with ¢=Fradqae]. The configura-  opening of theth type neighbors one consisting of the open-
tions {u(€)} with y;_;<é<vy;, as well as{u (&)} with  ing of thejth type. All the pairs of such neighboring gaps and
¥j-1<£<vy; are the same as the one depicted My for  their connecting points come in orbits and the latter form a

hull function f{x)
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periodic cycle. After the resonance occurs, every pair of twdu'n,i(N)) and u[nij(,\,) (u',nij(N)) are, respectively, the atoms

neighboring gaps coalesce into one and the periodic cyclg|gsest to théth type of tips from above and from below in

consisting of joint points of these two types of gaps disap- u'} ({u'l) for —N<n=N. As N—, Fra¢n;;(N)w] and

pears. The number of subcommensurate clusters is, accor fad —n; (N)w] converge to;— 3. Two difjferent cases
ij j it '

ingly, decreased by one. With; and ; bound together in according to whetheg; — 8; is in S, or not, will be scruti-
one cluster, one can continue the process of adjusting thr%zed below. !

values of the elemgnts im(or ﬁ) to make_more gaps getin If B~ ¢S, both n;(N) and n;(N) diverge asN
resonance in a similar way. This process is the commensurate _, e~ il and e~ MiMNIX go to zero asN—o and

i _— - iti O I . . . .
\éersmn of_gnl tof (1-1) T)Ole transitiort V|<|:e vers?, thle_ Iopenlngs of thath type and of thgth type are not in reso-
ecomposition of one subcommensurate cluster of multiple, ¢ particular, if none of the other elementsBirare

elements into two, the reverse process, involves the splitting .0\ ansurate #,, then in3, the gap at the left-hand
of the corresponding hole and gaps, as well as the emergen?ﬁght-hand side of IF,ra{:u’] (Far)ac{u' 1) has the width
of a new periodic cycle between them. This is the commen- n n

“in e o
surate version of ahto (I+1)-hole transition. On the other doAbie o and there are infinitely many gaps of infinitesi-
hand, if the above process referring to the joining8pfand mal widths at its right-handeft-hang side. The configura-
: ; - ' husrecurrentand the closure ot ,(5;)

B; conducts in such a way thaB(— ;) continues to vary in fuon {un} ({tp}) is t o\Zl
the same trend after getting in resonance, they will breals & cantorus. _
resonance again. After breaking resonance, every gap con- For the case withg;—gi=Fra¢n;w]eS,, there are
sisting of the opening of thih type still neighbors one of adain two possibilities. The first is whenj(N)=n;;
the jth type but their relative positions with respect to their (Nij(N)=—n;;) for all N=[nj;|, while the value ofn;;(N)
connecting points are interchanged. [n;i(N)] diverges folN—. That is, in{up} ({ul}) the Oth

To carry the above discussion for the compatible configuatom and then;;th atom are, respectively, the atoms closest
rations in the commensurate case over to the incommenstoe theith and to thejth types of tips from abovébelow),
rate case, difficulty will be encountered due to the absence afhile the atom closest to thigh type of tips from below
a well-defined 1d. The scrutiny throughy is no longer fea-  (above cannot be found in the finite spatial extent.Jp,,
sible. Nevertheless, with the s8f still employed to classify the gap at the left-handright-hand side of Frafu!]
subcommensurate clusters amgto determinethe “degree” (Fradul]) contains two openings with widthd,Ab;e~I"x
of resonance between the gaps associated tyiéimdt; (to  5ng doAbje "t Milx. At the right-hand(left-hand side of
be moIﬁ]‘XspeC|f|c, the opening due tp with width  pra¢y') (Fragu']) are infinitely many gaps with infinitesi-
doAbie .atx=.FraQBi+n(i)H is merged with an opening -\ \idths: therefore{u’} and{u'} are recurrent.
due tot; with width dpAbje” I"*"il), we will explicitly The other possibility is whem; (N)=—n; [n;(N)
show the existence of distinct compatible RO stable configu-_ ! .

) ) ; ) = =n;] for all N=|n;|, while the value ofn;;(N) [n;;(N)]
Laotllggs and an invariant set with a gap structure of multlplediverges foN—¢. That is, in{u’} ({Uln}) the Oth atom and

In the incommensurate case an infinitely long atomicthe hjith atom are, respectively, the atoms closest toithe

L : ; ; type of tips from abovedbelow) and to thejth type of tips
chain is taken into account, so thg’s, being the phase of : .
e atom closest to fnah e of s, re defned o e [ MEITEIOL e e S losse o 1 e o
limiting values of sequences and the Sgtis dense i 0,1]. P P

The way to find out the phase parameter in order to depict EXtent; I, the| gap at the Ieft-handlgh_t-hand_ side .Of
given incommensurate RO stable configuration is describef]@dUnl (Fradu,]) contains an opening with width
in detail in Ref. 31. Here, let us see what new results wiIIdoAbie "x and tlhe gap at t.he nght-harﬁtdaft—hanq side .Of
come out in this limiting process. Fradu]] (Fradu,]) contains an opening with width
For an incommensurate RO stable configuration characdoAbje™"*"ilX. Therefore{uy} and{uy} are not recurrent.
terized by the phase paramef@rone may not be able to find In this case8;— B; would rather be identified with an ex-
the atom, closest to thigh type of tips from abovébelowy  tended numbep™ (57), denoting thelequivalent class of
among all the atoms in an infinitely long chain, in a finite strictly increasing(decreasing sequences with elements in
spatial extent. However, one can always locate ifatul) S and the limiting valugg=Frad nj;»].
by renumbering the atoms withu',=f" (nw+ B;) [Uln Now let us see how to employ_ extended numbers
:ij(anrBi)].eﬂ Once this is done, it is then impossible to as elements of the phase parameter in the above example.

pin down the atom closest to tli type of tips from below Let B, B, and g, respectivlely, denote
(above in the finite spatial extent of the configurati¢a]} Bov By Biv b ABos - Bi-1. B Bjas -

(U, Biood o and {Bo, . BB Bren B
More generally, for any &i<j<d, let us introduce Where Bi=Bi+p, Bj=Bi+B", Bi=pi+B , and B
n;i(N) and—n;;(N) to be the integers, respectively, mini- =Frag n;;w]. Assume that none of the other elementgin

mizing and maximizing Frd@w+ B;— ;] (maximizing and ~ ar® SlIchommensurateﬁp or B;. Useup=f,(nw+ ;) and
minimizing Fra¢8;— 8 —nw]) with —N<n<N for some u,=f,(nw+ B;) for the recurrent configurations as well as
positive integem to simulate the effect due to cutoff in the v,=f,(nw+ B;) and wn=f'w,,(nw+,8i) for the nonrecur-
limiting process(driving N—®). In other Words,ugji(N) rent ones. It is straightforward to show that
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Un=fo(No+B;) the right-hand side and those from the other at the left-hand
side. The set of these dividing points will form a new mini-
mal invariant se® . The orbit composed of the dividing
points is not recurrent and the closureXf, is not a can-
torus. However, the set of limiting points &, is still in the
x{Intf(n+m)w—B7] closure of the original invariant sét,,, so, is a Denjoy
set®® This splitting process and its reverse, the coalescing
—Int{(n+mw— B} process, dictate the hole transition in the incommensurate

=uf,—doAbje” N Milx (42  case.

=f,(No+B)+doAb; > e M
m=—o

and V. MINIMUM ENERGY CONFIGURATIONS

W= f'w”(anrlgi) In the FK model under discussion, minimum energy con-
figurations must be R& Here, two approaches to determine

| ” - minimum energy and ground state configurations from the
=f (No+ B;)+doAb; Z e~ Imlx collection of all RO stable configurations will be devised.
mee One is based on the investigation of the energy differences
x{Int [(n+mo—B"] resulting from some atomic movements conducted in a given
RO stable configuration. The other is based on studying the
—Int"[(n+m)w—B]} directional derivatives of the energy function.
= up+doAbje M milx, 4.3

A. Elementary phase shifts
The difference betweej and ' (or ") captures the es- Consider a stable configuratidmi,}, accompanied with

sence of an elementary phase shift 'for the incqmmensurg fe coding sequendén)}, given in Eq.(2.9). Assuming that
case and these phase parameters indeed depict compati 53<<1)=i+1 one can construct another formal configu-
configurations. In other words, the notion of extended num- '

bers naturally comes out as the concept of elementary pha% tion {u} with (n) replaced by(n)’=(n)~ 4, in Eq.

shifts is carried over from the commensurate case to the in¥ 9. Hefgﬁn,m denotes th? Kronecke_r de_lta function. The
commensurate case. energy difference betwedm/} and{u,} is given by

In particular, vp=Uuh+doAbe M=yl ,
—dgAbjeIn—milx (Wy=u"—doAbje Mx=yl  H{uH) ~H{un}p)
+d0Abje:|“‘“ii‘Xl). Consequently,;n_(wn) is inside the gap S 2
betweenu, andu,, and{v,} ({w,}) is RO and compatible =; E(un—un_l) + E[un—b<n>+ Sna(bis1—by)

with {u"} and{ul}. Moreover, the orbits ofv,} and{w,}

are homoclinic to those dl,} and{ul}. All of them are not

discernible to any prescribed accuracy |ag—=. To be —;
more specific, the difference between the configurations, de-
picted, respectively, by, (nw+ «) [f'w,,(nw+ a] and by
fo(Nw+a) [f (nw+a] with « not subcommensurate to
B, is not discernible for any finita. Namely, by choosing a (5.1)
phase variabler not subcommensurate f8), the discernible '

part between the two configurations due to the differencq\lote that H{U ) <H{UL) if uj—t<doAby/2. In this
betweeng; () and g, is driven to the spatial infinity. To - coqe 1y 1\ cannot be a minimum energy configuration. We
bring the discernible part of the difference to the finite Spat'aldeliberately called{u/} a formal configuration because it

extent in an infinitely long chain, an appropriate choice ofmay happen that<n>,,1<u,’1<t<n>, fails for somen=m:

tj];p;h;s)e variabler is indispensabldin our example,« namely,{u’} may not be stable. Say_1<u,’n<t,~ for some
I wl*

Though the values of extended numbegs, g, and ) #{(m)’, the energy (I){u(]} IS gverestlmated in E5.1) by
their limit 8 are not discernible to any accuracy, they can bdhe @amouni[Vm)’ (up,) —V;(uy,)] because/;(u) should be
employed to denote distinct configurations. The openingsthe one picked up to minimiz&/(u) in Eq. (2.1) for u
respectively, of théth type andjth type, will be considered =Um- On the other hand, ii;,=t; for somej, then{u;} is
to be about to break their resonance for both phase paranhl.nstab'e. Under a small perturbation it will relax to one with
etersB’ and . lower energy. Therefore, the statement, thaf cannot be a

The multiple-hole structure is discernible only as the resominimum energy configuration ifu; —t;<doAb;/2, still
nant openings are just about to split. Namely, one can deholds.
compose the elements in a subcommensurate cluster into two Vice versa, one can also consider the case {bg} is
groups and, for every gap associated with this cluster, fingtable andu,} is a formal configuration resulting from mov-
the dividing point with the openings from one of the group ating the atom positioned at; across the potential tip at its

2

1 , A
E(Un_un—l) +§(un_b<n> +)\(hi_hi+1)

do do
:)\Abi ul_ti_iAbi :)\Abi Ui—ti‘l'?Abi .
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within do(bs—b4)/2 reach of the tip located at, which is
more stringent than that proposed in theorem 1 sirt¢e
+do(b3—D01)/2] = (t2+doAby/2) = [Aby /(b3 —b1) ][ do(b3
—by)/2—(t,—t1)]>0 and [t'—dy(bs—by)/2]—(t;
—doAby/2) = [Aby/ (b3 —by) J[(t2 — t1) — do(bs—b1) /2]

<0. Hence, all the second type potential branches can be
removed without affecting minimum energy configurations.
This process can be regarded as the coalescence of the deple-
tion regions belonging to two adjacent tips and the subwell
in-between is depleted. The coalescing process can be ap-
plied repeatedly; namely, fdy —t;<dy(b;, 1 —b;)/2 with |
>i+1, all thekth types of potential branches wijh>k>i

can be removed without affecting minimum energy configu-

()" uonouny [y

rations.
FIG. 5. The potential withd=2 and the hull function for the Now let us turn to ground Stat,e configurations and inves-
minimum energy configuration witkw=50/89. Inside the dashed tigate the Commensuratef case first. From theorem 5 in Ref.
lines are the depletion regions. 39, only repetitious configurations need be considered. For

o=p/q, an RRO stable configuration satisfias,, q
right-hand side. Eq(5.1) gives H{u/)>H{u,}) if u}  =fo(x+nge)=np+f,(x)=np+u, and b q=b
>t;—dyAb;/2. As a result, we have the following theorem. +P. Given the coding sequencij,} can be expressed as

Theorem 1For the FK model with potential given by Eq.
(2.1), there cannot be any atom withiAb;/2 reach of the
ith tip for everyi in a minimum energy configuration.

q nx _ a(@+1-n)x
dop[e™—e ]
u,=d b m—n)+
n omE:l (m)Xq( ) (eX—1)(e™—1)

Theorem 1 provides a necessary condition for minimum (5.2)
energy configurations. The region withipAb;/2 reach of
theith tip for everyi is called the depletion region for mini- 4 dop[el@Fx—1]
mum energy configurations. An example is shown in Fig. 5, =do >, bynmyXxq(mM)— e B CAC
where every depletion region is indeed inside a gap of the m=1 (eX=1)(e™-1)

hull function for the minimum energy configuration. where  xq(n)={exp(-Ix)+exd —(q—)x[/[1—exp(—ax)]

It is interesting to note that fortj—t; ;<dg(bj;;  with I=n(modq) for 0<I<q. Note that Eq.(5.2) is valid
—b;j_1)/2, no atom is allowed in thigh type of subwells for  for 0O<n=<q+ 1, while Eq.(5.3) is valid for arbitraryn. Such
minimum energy configurations. In this case, it makes na configuration is specified hy codes(1)<(2)<---<(q)
difference whether in Eq2.1) all the ith type of potential  <(1)+ pd.
branches are removed or not as long as only minimum en- Assume thatq) —pd<(1)=i+1, and consider another
ergy configurations are concerned. Say—t;<do(bs  repetitious configuratiofu,} (associated with the coding se-
—b,)/2 (as shown in Fig. § lett’ be the tip supposed to be quence{(n)’}), constructed fron{u,} by moving the aq
between the first and the third potential branches, if thei 1)th atom, for everyn, to the neighboring subwell at its
branch Vo(u) is removed. One hasbg—by)t'=Abit;  |eft-hand side, i.e., from ani ¢ 1)th type of subwell to the
+tAbyt, with t'=(b;+b3)/2+ (h3—hy)/(bg—by). For  neighboringith type of subwell. One can show that the en-
minimum energy configurations, no atoms are allowedgrgy difference per period af atoms betweefiu’} and{u,}
is given by

d
Hq({<n>,})_ Hq({<n>}):)\Ab| up—ti— %Abin)a
(5.9

where x4= x4(0). Similarly, we have the following lemma.

Lemma 2.For the FK model with potential given by Eg.
(2.1), there cannot be any atom withjp,doAb;/2 reach of
theith tip for everyi in a commensurate ground state con-
figuration with winding numbep/q.

Theorem 1 is for minimum energy configurations and
lemma 2 is for ground state configurations. Taking the irra-
tional numbers as the limits of rational numbers wiih
—oo, the same depletion regions as those for minimum en-
ergy configurations will be obtained for the incommensurate

FIG. 6. A segment ofv(u) showing that the second type of ground state.
potential branches can be deleted without affecting the minimum To determine the commensurate ground state configura-
energy configurations. tion, one must compare the energy of a given RRO stable

V(u)

b,
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configuration with those of all the other RRO configurationsbetween them consisting of both positive and negative ele-
with the same winding number. L&tn)'} denote any other ments. From Eq.(5.7), there must exist some other configu-
repetitious configuration with the same winding number andation with the same winding number but having lower sys-

{u/} is specified by Eq(5.3) with by replaced byb . tem energy, which contradicts the original assumption. We
The energy difference per period gfatoms betwee(n)’}  summarize these crucial results as follows.
and{(n)} is given by Theorem 3For the FK model with potential given by Eq.
) (2.1), a given RO stable configuration, depicted by an el-
AH({a(mB=Hq({(n"}) —Hq({(m}) ementary phase paramej@ris a ground state if and only if
q the differences in the system energy induced by all the el-
= _)\2 5b<n)[un_t<,n) ementary phase shifts are non-negative.
n=1 Corollary 4. For the FK model with potential given by
4. Eqg. (2.1, if there exist more than one distinct degenerate
+22 z b Xo(N—M) minimum energy configurations with the same winding num-
2 72y M Aa ber, these configurations must be compatible.

q . This corollary is deliberately stated in a way to be also
_ nTUy applicable for NRME configurations with discommen-
B _)\n§=:l 5b<”>< 2 _t<”>)’ 59 surationg®

The above properties are closely related to the fundamen-

where §(n)=(n)" —(n) and 8b,=b(ny — by . FOr anon-  tal lemma in Ref. 39, which holds for quite general classes of
zero&(n), t/,, denotes the position of the tip supposed to berk models. The new ingredient in our case is that the cyclic

between thgn)’th and the(n)th potential branches, if all ordering of atoms in RO stable configurations is faithfully
the in-between potential branches are removed, hgy, encoded in the coding sequences. With multiple codes as-
+(b<n>—t<’n>)2/2= h<n>,+(b<n>’—t<’n>)2/2. While for a null  signed in each period of potential, extra parameters are re-

&(n), the value oft/, is irrelevant. quired to characterize RO stable configurations in addition to
For {(n)} specifying a ground state configurati¢a,},  the winding number, which provides the possibility for the
there must be analytical investigation of multiple compatible RO stable
configurations. Therefore, we conjecture that these theorems
AHq({&(n)})=0 (5.6 should also hold, in some suitable form, for other FK models

above TBA, where the hull functions for RO stable configu-
rations is not uniquely determined by the winding num(er
other words, when the winding number and the phase vari-
able « is not sufficient to characterize an RO stable configu-
ration).

for every {5(n)}. However, only a subclass dfé(n)},
namely, the set of directional movements with&lh)=0 or
all 8(n)=<0, need be considered, as will be shown below.
For an arbitrary moveme#(n)}, one can introduce two
dwecilonal movements{&(n)*_} and{&(n) }, defined by Theorem 3 allows us to determine if an elementg@y
&(n) ™ =max(&n),0) and &(n) =+m|n(5<n>,0) for everyn.  genicts a ground state configuration by checking the energy
They are accompanied withdb , ; and {6b,}, respec- gitferences induced by -2 distinct elementary phase
tively. It follows that shifts only. Furthermore, Eq5.5) simplifies the determina-
ion xaminin fin lity relations linear in th
AHq({a(m}) =AH({5(n) "} +AHq({&(n)"}) ;?onii% Sozitions?ezcie:)fowhifr?lijsangargsittg ascertegn typteei)f
qa q tips from below or above. Hence, all we need are the values
—Ndg X X b 8b xg(n—m), of f1:(3;) for 0<i<d. The relations in Eq(5.5 amounts to
n=1m=1 giving 29— 2 restrictions for depletion regions.
(5.7) In the commensurate case, the elementary phase shifts can
_ o . _be characterized by 8'={0=ky,k}/q, ... kij_,/q}. For
where the last term on the rlght-hgnd_ side is definitely posiy | <29-1 KKl .. K, . is the binary representation of
tive unless eithefs(n)*} or {8(n)~} is null. If Eq. (5.6) F do1 2 ndml S A
. ; J . 3+ or —2%*<1<0, everyk; is equal to—k{''. The resultant
fails for some{&(n)}, then it must fail for eithef5(n) "} or C e P |
{8(n)~}. Thus only those{{n)’} having no intersections phase pareérpltater 'ﬂdiﬁ_Aﬁ with ;=5 —ki/q for O
with {{n)} needs be compared. Combined with the shift op—<dI <d. =27 <I<2" " can thus be employed to represent
erations, only configurations compatible wifh,} need be 2°—-2 distinct elementary phase Sh'ﬁs ex-cept for the null
considered. Recall that, in our model, the incommensurat8"®: For the case with some atomic fractiog= 5 — 5i—1

case can be regarded as a limit of the commensurate cases,Z%Q' It;%se elelmdendtary phase shifts leading to sghe(
the derivation applies for the incommensurate case as wellS10U/0 b€ excluded.
Now let us see how to conduct these elementary phase

Now assume that there are two degenerate ground state ™" - ) i
configurations(in the commensurate case, or minimum en-Shifts in an RO stable configuration given h{{:fw(”w_)
ergy configurations in the incommensurate ¢asith the ~ With Fradup 1=1,(5;). Only the movement of atoms in a
same winding number but not compatilfie., not related by period ofq atoms is described and the corresponding move-
any elementary phase shjftone can apply a certain shift ments should also be conducted in all the other periods. One
operation to make them interse@te., to make thg 8(n)}  can choose to move thgth atom, for each &i<d, across
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the tip at its left-hand side or not, resulting il 2onfigura- The 222 inequality relations for the depletion regions, in
tions. However, the two, with either all or none of tde the commensurate case, to be fulfilled in order to determine
atoms moved, are equivalent, up to the shift operation, to thé the g characterizes the ground state are now reduced to
original one. The remaining®-2 choices correspond to the Sl_1(2%—2) inequality relations and—1 equality rela-
29— 2 distinct elementary phase shifts. tions. Each term under the summation okecomes from

To carry the above discussions over to the incommensuene of the subcommensurate clusters. Tte-2 elementary
rate caseH, should be replaced bi, x,(n) by e Inlx (no  phase shifts for th&th cluster come from the two choices,
more resonance among the same type of)iig range of with each of thed, atoms corresponding to the_ eler_nents in
the summationsd by S”.., and the other termé&.g., the the very cluster moved across its corresponding tip or not,

elementary phase shifby their corresponding ones defined €xcluding the two with either none or all of thg atoms

in a limiting sense for the incommensurate case. Such rénoved. The condition that each of the elementary phase

placement amounts to taking the whole chain of infinitely SNifts must involve non-negative energy change gives one of
many atoms as within a single peridte., q—x). Some € inequality refations.

comments for the incommensurate case will be made further An additional equality refatiofiin the form of Eq.(6.9)]
on. or each cluster arises from the case when all ofdhatoms

Consider the ground state characterized by an elementaff€ moved in théth cluster. Namely, trhe total energy Ofl the
phase parameter(e S, ={Fra¢nw][=><n<c} for all 0  SyStem must be the same far,=f,(nw+p;) and u,
<i<d). For the configuration given by’ =f (nw), each =f,(nw+ B;). Both configurations are depictable by the _
of these #—2 distinct elementary phase shifts comprisesS@me phase parameter and they must have the same energy if
some of the movements of theth atoms across the tips at the given phase parameter defines the ground state. In this
their left-hand side for &i<d. The phase paramet@ of  S€Nse, the very phase parameter are thought of to denote a
the resultant configuration is defined as follows. For the OtH;i]cl)Xne(z)fptT]ZS%oLh;isn ec?fu:tlg%ilri(;agsno\r,\vzla” :gdggﬁf;?; ?c')”l‘;g'
atom staying in the original potential brangfi=g;" if the '
moveme?/\t c?f then;th at?)m agross the tip if?:onﬁdlucted, andGibbs’ phase rufe [some related_ discussion from another
B{=B;, if not. On the other hand, for the Oth atom moved aspect Is given arouno_l EC§.9?]. Since we can use the |eft-
across the Oth tig8! = 3; if the movement of thenth atom hand and right-hand side limits ¢ (or any value subcom-

o PR N mensurate t@3;), respectively, as the phase variables to de-
across the tip is conducted apd=;", if not. Heres™ and pict these two configurations, we may as well think of them

B~ are the extended numbers with respecwioThe state- 55 rejated by different choices of phase variables and refer
ment, that distinct RO configurations that are not compatiblgy, elementary phase shifts for théh cluster only to the
cannot be degenerate with the ground state, remains trugd,_ 5 gnes mentioned above.

However, the elements o’ are decomposed into two The last “—1” in * |- 1" equality relations is from the

groups, with the differences between any pair of elementgyqngant relation corresponding to the case where all of the
belonging to different groups being extended numbers. Thugy ¢ rresponding atoms are moved. Specifically, the aove
it turns out that, in the incommensurate case under Cons'deé'qualities are not all independent because the equality

ation, at most one of the compatible configurations is recur-
rent and all the others are, in fact, NRO configurations.
Hence, they should be termed, more precisdbgenerate | ,
minimum energy configuratiorias we did in corollary % ;O Abi[fw(ﬁi)+fw(ﬁi)]:2izo Abyt;, (5.8

In general, there may be multiple subcommensurate clus-
ters in the phase parameter to characterize the ground sta{g. guaranteed in the formulation for the hull functiim
Consider a phase paramef@¢composed of subcommensu-  particular, see Eq(6.1)]. To be more precise, assign the clus-
rate clusters withd; elements in théth cluster such thad;  ter containingB,=0 to be thelth cluster. One can obtain
tdy+---+d;=d. Particularly, forg; and 8 not in the  _1 independent equalities to equate the system energies of
same cluster, the difference between them is assumed to I??Iw(ﬁﬁnw)} and{f" (8;+nw)} for a certaing in each of
neither a number irf,, nor an extended number, t0 assuree first| — 1 clusters. Then the equivalence of the system
tha_t the_deplcte(rj_conflguratlon is recurrent. For.the Conf'gu'energies oi{f'w(nw)} and{f’ (nw)} will be assured by Eq.
ration given byu, = f(nw+ B;), if the njth atom is moved (5.9).
across the q Int{n;;w]+j)th tip, the displacement of the
n;j;th atom will be —doAb;, while that of the Oth atom will
be —e IMilxd,Ab; . If B; is not in the same cluster g,
then the limiting value of;; will diverge as the whole of the The determination of ground state configurations through
infinitely long atomic chain is taken into account. In this studying directional derivatives of the energy function has
case, the Oth atom is indifferent to whether thgh atom is  been conducted in Refs. 16 and 17. However, without prop-
moved or not becauss "ilx— 0 and the atom closest to the erly introducing the notion of mixed phase and extended
jth type of tips moves to infinity in this limit. Such behavior numbers, the domain of stability is difficult, if not impos-
explains the meaning of two types of openings not in resosible, to scrutinize. Here we will put emphasis on the new
nance in the incommensurate case. Consequently, we neetjredients that we have built. Specifically, now we have a
only consider the elementary phase shifts cluster by clustebetter grasp of the phase represented by a general phase pa-

d-1 d-1

B. The energy function
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rameter so that the physical meaning of taking directional

derivatives in the phase parameter sp@cbecomes clearer. +Bj—Bi—€djszl—Int[nw+ Bi— B+ €5 z])

It will turn out that all results, obtained from the notion of

elementary phase shifts, can, in principle, be achieved d

through studying the energy function. =)\2 Abi{fﬁo(ﬁi)— =2 2 Ab,—e'“iiX—ti}
For a givenw, the energy function, given in E¢3.10), is ez 2 ez

continuous and convex over the spate{w}® ) (see Ap- do

pendix A). More specifically, the curvature of the energy =\> Abi{ﬂg(ﬁi)"’? > Ab,—e'“iiX—ti}
function is null almost everywheréoccupying the whole e le2

measurg*" The nontrivial cases happen in a dense set with =0, W, B(X)]|x-0

null measure, where either the commensurate conditidth
w rationa) or some subcommensurate conditige.g.,
Fragnow+ B;—B;]=0 for certain G<si<j<d and —e<n
<) holds. For this case, the curvature at any point on the
hyperplane, specified by the commensurate or subcomme
surate condition, along a direction transverse to the hype

plane becomes singular and positive. T n 7 . )
In the commensurate case, a composite phase parameieff"(’g'+nw)} and{fw(ﬁ,fpw)} for imy e 2. .To detgr
mine the domain of stability fo3(x=0), two inequality

with two subcommensurate clusters is related to its two . _

cﬁérﬁtitutional phase parametgBs and g8’ by Bi(y)=vB/ relations g, W[w, B(x)]lx-o=<0 and QI‘P[m,B(X)]Ix:o

+(1—y) B for a suitable 6<y<1 and every @:Ii<d It iis =0, are now replaced by the equality¥[ o, S(x)]lx-o
i .

_ , , =0. Note the resemblance to the case with potential com-
obvious that W[w,B(y)]1=y¥ (@, B)+(1=N¥(w.B),  osed of a single subwell in each periddn that case, the
so the derivative of the energy function gfy) along the

oo ) . _ energy function¥ (w) is a function of the winding number
direction of varyingy is a constant and the curvature is null.

; nly. For rational ne hasd V(w)>d, ¥ n
In the incommensurate case one can also regard the ez— y. For rational v, one hasg,V(w)>d,¥(w) and

- + . . :
ementary phase parameter to denote the pure phase, while H\P((f‘))$0$ aw\lf(w)hdefines the_plfueau |r; the pha;e dia-
the others can be thought of to denote mixed phases, in tHg@Mm fore vso. One hasi, ¥ (w) =4,V () for v irratio-

sense given below. For a givghicomposed of two subcom- nhal aﬂd thig_ equivalencgl clondri]tion defli_nes a siggilf point in
mensurate clusters, one can keep the cluster contajging € Phase diagram. Similarly, the equality £8.9) defines a

—0 fixed and add a numberto every element of the other hyperplane in the.space of.po_tential parameters. In this sense,

cluster, with Z denoting the set of subscripts of all its the very compositgg consisting of two subcomm_ensurate

elements g;), to form a family of phase parametefx) clusters is considered to denote a mixed phase with two pure
1/

. . ts.
with B=B(0). Thecurvature of the energy function along ¢0MPONent . .
the direction of varying at x=0 is null since none of the It is straightforward to extend the above consideration to

Fragnw+ B;— ;]=0 is satisfied for3; and §; not in the the phase parameters withsubcommensurate clusters for

same clustefsee Eq(Al)]. The two neighboring elementary any 0<l=d. One can add<1,_ X2, N andx,_, to each
phase parameters to constity@ex=0) are not well defined. cluster except th_e one contalnlr_m—_o. Th_e curvature of
More specifically, there arg,>0 andx,<0 in any neigh- the energy function along any direction Iylng.on the hyper-
borhood of 0 such thapB(x;) and B(x,) are elementary. plane spanned bY the_ respective axes of vaning<, - . . ,
Nevertheless, the domain of stabilitin the space of poten- 2NdXi—1 atthe point given by, =x,=--- =x_, =0 is null,

tial parametesfor B(x=0) has the dimensionality lowered which will give | =1 equalities to determine the correspond-

by one, than that of an elementary phase parameter, becadgg domain of stability. This domain of stability has the di-

the null-curvature conditior?W[ w, B(x)]/3x2|,_o=0 leads mensionality lowered by—1, than that of an elementary
to the equality ' x= phase parameter. Hence, it is thought of to denote a mixed

phase ofl distinct pure components with theke 1 equali-
ties to assure that thesealistinct pure phases have the same
system energy.

In general, for a giverw, only denumerable many points

V[w,B0)]-¥[w,B(—€)]

€

(5.9

e—0,e>0

Xs compared with the incommensurate version of &b),
'BEq. (5.9 gives, in fact, the energy difference between

05V w, BX)]lxo in () denote pure phases. Since the curvature of the energy
function is null almost everywhere, one only needs to com-
. Vw,p(e)]-Y[wp0)] pare the energy function of the pure phageith positive-
zf_!:)'lo € definite curvaturgto pick out the ground state configura-

tion(s) for a given set of potential parameters. A mixed phase
. can be the ground state only if certain fieldetermined by
lim )\'2 (hj=h; )+ T'(1+ 2bg—bi—Db;,1) the potential parametergonjugate to thes;’s accidentally
e~0e>0 162 match the derivatives of the energy function along the direc-

q o d—1 tions with null curvaturdsuch as Eq(5.9)].
_ —OAbi 2 e—\n|XE Ab;(Innw . Al_so du_e_ to the'fa}ct that the curvature of the energy func-
2 n=—o j=0 tion is positive-definite only at elementary phase parameters,
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to determine if an elementary phase paramgteiepicts the where 8’ and g” are almost the same g@excepts = 8;"
ground state, only the directional derivatives directing to itsand 8{'=8; . All the elements inw, exceptg;, are kept
neighboring pure phases need be investigated. In the confixed in taking the directional derivative. The above two
mensurate case witbh=p/q, the neighboring pure phases equations respectively, give the energy needed to move the
are those withg/ equal toB;+1/q, B;, or B;—1/q for 0  atom closest to thath type of tips from above, ofu,
<i<d. In the incommensurate case, the neighboring pure=f,(nw)}, to its left neighboring subwell and the energy
phases can be considered to be those differing with the origireeded to move the atom closest to itietype of tips from
nal one depicted by3 by at most one atom moved across below, of{u'nzf'w(nw)}, to its right neighboring subwell.
each type of tips. Hence, one only needs to replace the aboviéhey are special cases of E§.1) for RO stable configura-
Bi+1l/lg and B;—1/q, for the commensurate case, by ex- tions.
tended numberg;” andg; . In this way, one can build up a one-to-one correspondence
From Eq. (A1), the 9*¥/dB;dp; with i#] is negative between the elementary phase shifts and the directional de-
definite for any elementarg. The cases wittB; = lgr and rivatives of the energy function, _eval'uated at a cert.ain el-
,gjfzﬁj— for somei+j should be excluded accordingly. In ementary phase parameter and dlrectl_ng toa compatll_)le one.
fact, those excluded in this way are not even compatible withf hus the same results, as those derived from studying the
B. As a result, the remaining 2§21 — 1) directional deriva- elemen'gary _phase sr_ufts., are also obtamablg from stgdymg
tives to be inspected turn out to correspond to the eIementar’\Eese directional derivatives, once the physical meaning of
phase shifts, which is consistent with theorem 3. the phases assoqlated with all phase parame_téhsmclan_—
The analysis of the commensurate case is straightforwardi®d and the notion of extended numbers is appropriately
so we will only describe how the directional derivative is €mployed.
conducted for the incommensurate case. For an elementary

B, one has VI. THE PHASE DIAGRAM
L W(Bte-V(B) In determining the ground state cqnfiguration, one can
aEi\If= lim c regard B as dependent variables while b
€-0.e>0 =(bq,b,, ... ,bg_1) and h=(hy,h,, ... hy_;) as inde-

pendent variables, an@ as a controlling parameter for a

=A(hi—hj; )+ EAbi(1+ 2by—b;—b; 1) fixed \>0. In fact, any faithful transformations can be con-
2 ducted on those independent variables. For example, one can
\d o d-1 choose the setAb=(Ab;,Ab,,...,Aby ;) and t
— TOAbi > e x> Abj(Inf{ne =(ty,ty, ... tg_1) Iinstead, with Aby=1-Ab;—Ab,
n=-—o ]=0

—---—Aby_; andty=0 implied. The transformations can
s o p 1 o be conducted through Eq&.4) and (2.7). In terms of this
TBi+ i€~ Bi— el Intinw+ 5= ;1) new choice, Eq(3.3) can be recast as

d—-1 0
1
fm(x)=§+i20 Ab, ti+don2 e|”|Xlnt[x+nw—,8i]).

=—

(5.10 (6.1)

d
fL,(,Bi)_EOAbi_ti

:)\Abi

(B + T, (B)
=)\Ab{+—ti ,
Ab andt will be promoted, in preference to andh, as the

in comparison with independent variables because the formulation of(&E) is
simpler in terms of the former. The boundary Bhfi.e., the
e o V(B)-Y(Bi—e) region in7 with t;=t; ., for somei, will be denoted by7.
dg V= 1Iim N
i 0,620 € To minimize the system energy, only—1 dependent

variablesg are to be determined for a given point in ad(2
—2)-dimensional space Ab®t). In the following, we
would like to regardt as independent variables atkb as
parameters. This choice is just for conveniefase we have

A
=A(hi=hiiq)+ 5 AD(1+2Dbg—bi—bj 1)

Ndg - 7|n|del seen, the relations to determine the domain of stability can be
- TAbin;w e J-Z‘o Abj(Inf{ne expressed as linear relationstifs; in addition, 8 andt can
sort of be regarded as conjugate variapl€ur goal is to
+B;—9jie—Bitel—-Intlno+Bi—B;]) study the domain of stabilitip[ 8], i.e., the set of in 7, in

which the configurations depicted by the givBnhave the
lowest energy(either a ground state or a minimum energy
configuration, for a given set ofv andAb. As we shall see,

d
=xAbi[fL,(ﬁi>+7°Abi—ti

fl ¢l any point in7 is generically(with probability 1) locked in
_ o Bi) + Ty (Bi) _ someD[ B] with the B containing a single subcommensurate
=MAD; 2 b G1D uster
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A. The domain of stability The intersectionD[ B]ND[B'] for a certainl is con-

Now let us find out théLebesque’sdimensionality of the stralined in a g— 2|)-dimensiona| hyperplane, given by
domain of stability for a given phase parametein Con-  AHq(B)=—AH,(B)=0, and accordingly occupies a null
sider the commensurate case with winding numpéy at  (d—1)-dimensional Lebesgue measureZinbut occupies a

first. For an elementarg and a givemAb, one can derive the finite (d—2)-dimensional Lebesgue measure on the hyper-
relation plane. Such a domain is calledda-2 domain. In general, if

the intersection of distinctd — 1 domains is not empty, these
d, d-1 | elementary phase parameters mustbmpatibleand there
fi;'(ﬁi)=ffu(ﬁi)t§ > Abjx4(ni—n;)) (6.2 s a unique way to arrange them §8'1,8'2, ... B} with
=0 0=1,<l,<-..<I,<29"1 Their intersection occupies a fi-
nite Lebesgue measure on @&<1)-dimensional hyperplane,

ith £S,(8))=[f1,(8;)+ fl,(8:)1/2 for lat : .
with (B =[T(B) + T,(A1) 112 for later use given by relationsAH;J(B)=0 for 1<j<I, and is thus al

The domainD[ B] is closed, in the sense that it contains

all its boundary points, because the inequality in &g) is ~ — | domain. _ _

not strict(distinct degenerate ground state configurations are Next, let us turn to the case with a composite phase pa-
thus alloweql. In addition, the union of alD[ 8] with el-  rameter, which can be decomposed ihtmnempty subcom-
ementaryB's is the wholeZ. As a result, the boundary of Mensurate clusters for somesl<d. Onel can arrange its
each D[ 8] with an elementaryg is composed of pieces COnstitutional phase parameters Lp2 ... " with
given either bya7N D[ 8] or by D[ 81N D[] for some 1 0=|_1<|2<- --<1}<2% * and a certainy, so that the com-
<|I|=<29"1 to specify the elementary phase shift. posite elementary parameter can be denotedBby). In

The energy difference per period gfatoms induced by D[ﬁ(y)_], every constitutional phase parameter can be used
an elementary phase shift specified by a none from 10 depict a ground state configuration, so th{s(v)]

Eq. (5.5, given by =D[B'1]ND[B'2]N---ND[B"]. In fact, for all theB(v')
inside the (—1) simplex of() with the constitutional phase
d-1 £ B0t T (Bl as parameters of3(y) as its verticesP[ B(y')] coincides with
AH;(ﬂ)Mb: > ki'Abi{ Al ©w 7 _ti} D[B(9)]. Such results conform to the Gibb’s phase rule to
=1 2 consider the composit8(y) to denote a mixed phase com-

d-1 posed ofl distinct pure phases. For there to be one more
— _)\E kgAbi{fw(,BiNAb coexistent pure phasén our case, one more constitutional
i=1 elementary phase parameter to represent an additional pure
phase, an additional equality must be imposed on the set of
field variables(in our case, the degree of freedom for the
domain of stability in the phase diagram is decreased)by 1
Particularly, the set of all the points iy allowing com-
where the hull functiof=f" for 1<0 andf=f' for 1>0. posite phase parameters to depict ground state configurations
The condition AHh(ﬂ)Mb:O specifies a Iis a wunion of denumerable many sets with null

(d—2)-dimensional hyperplane i:*? In this hyperplane, (d—1)-dimensional Lebesgue measure. Accordingly, an ar-
Hqy(B)=Hq(B'). On one side of itH,(B)>Hy(B') while, bitrarily chosen point if7 is generically(with probability 1)

on the other siddﬂq(ﬂ)<Hq(,B'). Consequently, their inter- inside somed—1 domain specified by a single eleme_ntary
sectionD[ B]ND[B'] is contained in this hyperplane and phase parameter. The other cases happen only accidentally
plays as the boundary betweBr 8] andD[8']. (with probability 0. As a result, the allowable phase param-

P , eter to depict ground state configurations is generically
Definet(B)={t,.,t,, ... ty_1}, with t=t(B) to be the . :
solution of t;=fS(B;) for 1<i=d—1. From the fact that locked into an elementary one, which meets all the subcom

— mensurate conditions.
Eq. (6.3 is continuous int, one knows that(p) is inside In the incommensurate casg,(n) should be replaced by
D[ B] (not a boundary pointfor an elementary8 with all e~ Inlx to take away the resonance among openings of the
>0 becausef (8)>f\(8;) for 1<0 and f.,(8) same type. Even with such a replacement conducted upon
<fu(Bi) for 1>0. Hence, D[B] occupies a finite Eq.(6.2), itis obvious that the poirtt 8), with t=t(8) to be
(d—1)-dimensional Lebesgue measureZinThis domain is  the solution ofti=fS(B;) for 1<i=d-—1, is still inside
bounded by the hyperplaneésH(B) =0 for 2¢—2 distinct D[ g] for every elementan. Most features oD[ 8] with
elementary phase shiftsand is, therefore, a convex hyper- gn elementang, derived from Eq(6.3), for the commensu-
polygon. Such a domain is calledda-1 domain. rate case can thus be carried over to the incommensurate
For an elementary3 with some atomic fraction;=0,  case.D[g] is still ad—1 domain for an elementarg. The
one hag;=t,_; and, thereforet(B) e #7. Such aD[ B] still elementary phase shift wit=1 (k/=—1) will take ; to
extends to the bulk off since a subwell with sufficiently 3. (8"), and the subcommensurate cluster in the resultant
small t;—t;_; is allowed, which will be depleted as sug- g'is about to break into two groups. We shall usid'() to
gested in lemma 2. ThiB[ 8] is still a convex hyperpoly- denote the energy required to conduct such a phase shift.
gon, bounded byy7 and AHg(ﬁ)=0 for the elementary ThusAH'(8)=0 gives the hyperplane, overlapping part of
phase shiftd leading toB' € 2, and is still ad— 1 domain. the boundary oD[ 8].

d-1
do
+7§1 k}Aijq(ni—nj)—ti}, (6.3
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As we learned in the last section, ti#5 does not depict a and all the resultant NRO configurations are compatible with
recurrent configuration. One must be careful in counting theone another. The domain of stability for the resultant phase
dimensionality of the domail[ 8']. Here we describe the parameter is restricted to al{)-dimensional hyperplane
case withl <0 and the other case can be treated similarlyand is ad—I domain on the boundary @[ g].

Consider the configuration u,=f (hw) with B,

=Frad n;w] for 0<i<d. Movingt beyond the boundary of B. The geometry of domains

DLB], given by AH'(8)=0, will make AHl(Iﬁ)<O' That Here, we would like to recognize the shape of the domain
is, at thist, moving all then;th atoms withkj <0, respec-  of stability from the interactiorsplitting or merging among
tively, to their left neighboring subweligalled the operation different types of openings. In the commensurate case, an
1), resulting in the configuratiofu,}, will reduce system arbitrarily choseng in Q generically(with probability 1) has
energy. However, we shall show below tHat} is not the  d subcommensurate clusters and can be expressegBby)a

minimum energy configuration. with 0= y,< Yi<-- -<yd__=1. Wg sha_II show_that in this
Since{u,} is recurrent, one can always find some integercase the domain of stabilitp[ 3] Is a single point.
M#0 such that Frdai, . »—t;] are close to Fraei, —t;] Consider the configuratiofiu,'(£€)}, associated with a

within any prescribed accuracy for everysd<d. Thus no coding sequencg(n"!(¢))}, defined by
matter how close the givens to the hyperplane specified by

AH'(B)=0, the integerM#0 can always be found such utl (o) =f"! §+nw
that moving all the ;+M)th atoms withk! <0, respec- 3 “\q
tively, to their left neighboring subwell§regarded as con- with 0<¢<1. For eachj with 0<j<d N (v and
dL_Jcting the operatiohin another part ofu,} shifted byl\/!) {(n'(yj)>} differ only by (J)ne code if,] théir{iorﬁgjs)génding
will reduce the energy ofu,}. From the fact that Fran]  consecutive codes. irD[B], these two configuration,
should be inside the gap at the left-hand side of [rrgcin rea diu (v d te. A litv. in th
the invariant setS, for all n, we have Fraay, —t;] %r“rg](l))f} and{uy(y;)}, are degenerate. An equality, in the
<Frac{u,’1i+M—ti]<Frac{uni+M—ti]. As a result, moving

all the (n;+M)th atoms withk| <0, in{u/,}, respectively, to t;="15(8)), (6.5
their left neighboring subwell§.e., conducting the operation
I in the part of{u,} shifted byM after the operatio in the
part of {u,} shifted byM =0 has been conductgdill still
reduce the system energy at the giteffhat is to say{u,}

is no longer a minimum energy configurationtais moved
beyond the the hyperplane specifiedboy'(8)=0. We thus
come to the conclusion thdd[ B'] is restricted to the d

(6.9

is thus imposed ome D[ 8] from lemma 2 becausﬁw(ﬁj)

— f'w(,B]-) is exactly equal to the width of the depletion region
associated with the tip,. As § is increased from 0 to 1d
distinct minimal periodic cycles are explored and the posi-
tions ofd—1 tips are uniquely determinddecall the redun-
dant relation due to Ed5.8)] with the solution oft denoted

—2)-dimensional hyperplane given lyH'(8)=0 and is a by t _(t_heref_ore, theorem 1 and lemma 2 are al_so sufficient
d—2 domain coincident with part of the boundaryfg]. ~ conditions if no resonance occurs among gagnce the
In words, for any given atomic segment of any finite lengthight-hand side of Eq(6.5) is still dependent on from Eg.
in {u,l, one can always find infinitely many segments of 6.1), we w:)ulii rather*choose anoth_er set of co_ordln_ate Sys-
atoms that are close to the given ofafter the shifts by (€M t"={ti.t;, ... .tj_;} to describe the points ir7,
integers within any prescribed precision becaysg! is re- which is related td through the linear transformation
current. Thus the fact that conducting the operation L o1
thought of as adding a defect, in some place{wf} will 4 s
reduce the system energy implies that adding z{ucg defects in B =t=bp=ti+ 7 121 Abjt, 6.6
infinitely many suitable places of this atomic chain can still ) ) ) )
reduce the system energy. As a result, the NRO configuratiofPr 0<ii<d. Now the phanejpaCEIS constrained, in the
{u’}, with a single defect, cannot be the minimum energycoordinate t*, by 1/2-ZfZ7Abjtj=tg<ti<-.-<tj ,
configuration. <tj=1+tg . Particularly, the coordinatesandt* are faith-
Crossing the boundarp[ '] of the elementanD[ 8], fully (with a constant non-zero Jacobiab,) linearly re-
infinitely many d—2 domains with infinitesimal thickness lated and thus the reference to the geoméstyapg of a
along the direction orthogonal to the hyperplane given bydomain is the same for both coordinate systems. We also
AH'(B)=0 will be encountered. Thes¢—2 domains are introduce
associated with phase parameters composed of two subcom- o
mensurate clusters, corresponding to the two groups with tF=t;—bo="f5(8;) by (6.7
their resonance broken by the elementary phase Ishift ) o ) .
With the applications of different kinds of elementary for 0<i<d, which is a function ofAb and B but indepen-
phase shifts, one by one, on an elementary phase paramet@gnt oft or t*, from Egs.(2.7) and (6.1). Hence, Eq(6.9
the subcommensurate cluster can be decomposed - ~ ¢@n be written as
empty groups for some<l=<d. Each step produces a new _
NRO configuration compatible to the background RRO one tr=ty (0<i<d), (6.9
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which specifies a single point ifi. As a result,D[ ] is a * *

single point in7. t ikj t ijk
Turn to the case that one of the subcommensurate cluster,

with elements in the form of K+ y;)/q with integer K,

contains  multiple  elements, say, m elements

{B1/.B2r+ ... .Bm}. As ¢ is increased from belowy; to #
above y;, m atoms in each period of atoms should be ik
moved across their corresponding tipsgether Namely, in- *

side such aD[ B8], only thesem atoms all or none moved t

across corresponding tips are allowed for ground state con-
figurations. In this casem openings, corresponding to the
elements in the very cluster, coalesce to form a single gap.
The previousm separate conditions in the form of E®.8) % h
are now replaced by a single onél,[{(n"(¥)))}] t kji t
=Hg[{(n'(¥))}] or, from Eq.(5.5),

Jki

FIG. 7. The domain of stability wittg;, B;, and 8y subcom-

* *

m m

E Ab ot _2 Ab T (6.9 mensurate on the plane, given by HG.12), in the (; ,tj* 1)
) it it :

i=1 i=1

subspace. The point{ ,t ,tg) is at the center of the domain.

where the term at the right-hand side is independetit ofn
the (t7,,t5,,...tr,) space(a m’-dimensional projected
subspace of7), a single point, previously specified by
equations in the form of Eq6.8), is now replaced by an
m—1 dimensional hyperplane, specified by E£§.9). This

reveals how the resonant®bcommensurate conditipdic- .
tates the domain of stabicﬁgl/. Id {ul} [recall the redundant relation in E¢5.8)].

Specifically, consider a subcommensurate cluster containr-nel:](t)sr a. sub.corgnm densura;:]ee C(Ijuosr;tqe;_ncocr)?p;z%qll.tof _t:rfﬁeele-
ing two elementsB; and B;. The domain of stability in the Bi: Bi, gk’ . ! iy
g . , . (t* ,t¥ ,t¥) subspace is given by
(t7 ,t) subspacéa projected 2 dimensional spacedn is Ptk
now given by, instead off =t{" andtf =t} , a single rela-
tion

spond to the elementary phase shifts allowed to be conducted
on the very subcommensurate cluster. In general, for there to
be k elements in a subcommensurate cluster, there will be

2K—2 relations, in the form of Eq6.11), and one equality,

in the form of Eq.(6.10), to equalize the energies fii;,} and

Ab;(tf —tF)+Abj(tF —t} )+ Aby(t} — t§) =0,
(6.12
Abi(tF —t7) + Abj(tF —tF) =0, (6.10

with the constraintsee afterwards

with the constraint

_ _ Aby|tF —tF|<djj+diy (6.13
Abj|tf —tf[=d;j(or Abj|tf —tF[<d;) (6.1D

and the other two combinatorial partnémveri, j, andk).
These six conditiongeach equation contains two relatipns

are equivalent to

where dj;=doxq(n;j;) AbjAb;/2. It describes a straight line
segment with endpoints t{,t]) given by tf;=(t]
—dj/Ab, tF +d;/Ab)  and  th=(tF +d; /Ab; T
pa?grgAekt)é)r.fc!?t;]heeglrrgSr?g rsgt;hrlr?ulsl;?Eas\‘/eeg(r)r;)eerr?i’nzi;;?(a:‘)nhdase |Ab;(tF —tf) + Abj(tf —tF)|<dy+dy, (6.14

jth types in resonance. At the endpoifif, these two types  5ng the other two combinatorial partners. The set of points
of openings are allowed to break resonance with openings Qfonforming to the above constraint forms a hexagon in the

theith type on the left and those of tijih type on the right, plane, given by Eq(6.12), as shown in Fig. 7. The coordi-
;/\r/]herea(ljs thet oth(Tr Wa)t/har?_und fpr theb ens((g?’g Beyot?]d nates of the six verticest{(,tf ,ty) are, respectively,

e endpoints, along the line given by E®.10, are the . (kg A TR _
domains withg; and 3; subcommensurate with other values given by_* = (47 — i 7AD; =i /AD; 1] +d'.' /Aby
of ny;. —dj/Ab;,ty +dyi/Aby+dy;/Aby) and the other five per-

Let us come back to the constraint. Consider the configulutation partnerst{ ;, ti; . tc; i, thy;, andtf; ). Inside
ration depicted by,=f,(nw+ B;). n=0 andn=n;; desig- the hexagon, the phase parameters for the ground state must
nate the atoms respectively closest tojtheand theith types ~ have openings of thith, jth, andkth types in resonance. On
of tips from above. Eq(6.10 amounts to the statement that the line segment betwesfy; , andtf, ;, the resonant open-
simultaneous moving the Oth and thgth atoms, respec- ings are allowed to split into two groups, with opening of the
tively, across the tips at their left-hand side does not cosith type on the left and the resonant openinggtiofandkth
energy, while the two relations in E¢6.11) amount to the on the right. Right at the verteff; , the resonant openings
statement that moving either one of the two atoms across thare allowed to split into three, with openings of titie, jth,
corresponding tip cost energy. The latter two relations correand kth types arranged from left to right.
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t¥; 1« in the (t ,t) subspace. Again, the resonant openings
are allowed to break into two groups, each with two types of
openings, in this face.

The domain of stabilityD[ 8] in 7 is a direct product of
convex hyperpolygons, each corresponding to a subcommen-
surate cluster and being constructed in the way described
above, with the parts outsidE if any, truncated® Descrip-
tions of the hyperpolygon for a general subcommensurate
cluster and of the surroundings for a given domain of stabil-
ity are given in Appendix B.

Next, turn to the incommensurate case. In every subcom-
mensurate cluster of a general phase parametdl,irthe
domain of stability in the corresponding projected subspace
in 7 is determined by relations similar to Eg®%.10 and
(6.11). Hence, the subcommensurate clusters dictate the do-
mains of stability in the same way as in the commensurate
case. That is, using the description of resonance between

FIG. 8. The domain of stability with four elements Bfsub-  openings in counting the dimensionality and determining the
commensurate on the three-dimensional hyperplane, given by Eghape of the domains of stability can be carried over from the
(6.19, in the " .t} ,tg ,t") subspace. commensurate case to the incommensurate case. However,
there is still one important different feature, as we shall de-

For a subcommensurate cluster composed of four elescribe below.

mentsB;, B;, Br, and B, the domain of stability in the The domain of stability for a phase paramegwith |
(t* ,t* t¥ t*) subspace is given by (>1) subcommensurate clusters has the same shape as that

P in the commensurate case and id-al domain. Recall that
though the veryB represents a mixed phase, its constitu-
Aby(t —t_i*)+Abj(tJ* —t_J*)+Abk(t’,§ —t—;‘)+Ab,(t|* —t_|*) tionql pure phasgs_ are not well defin@én only be defined
as limitg. Thus it is not on the boundary of arg~—I+1
=0. (6.19  domain. On the other hand, the boundaryDjfB] is com-
posed of the hyperplanesl{ | —1 domain$ which are do-
With appropriate constraint, it gives rise to a three-mains of the_ stability for the phase parameters, re_sulting
dimensional  polyhedron (see Fig. 8 with 24 from conducting elementary phase s_hlfts on a cert.aln sub-
vertices €*,t* ,tf,t*), respectively, given byt* commensurate cluster g8 and denotlng NRO configura-
_ (?‘ 4 /AtJ)- o Ab — i JAD: T 4+ do/Ab. — dJ / tions. Crossing the bounda_ltyllong the dlrec_:thn_ to tear the
i ijr 2 Hik Pl A sz Hik subcommensurate cluster into tywéayers of infinitely many
Ab;d;i / Aby , ti +dyi/ Aby + dy;/ Aby— di/ Aby,tf +dii/  d—1—1 domains(with infinitesimal thicknesswill be met,
Abj+dj/Ab+d,/Ab)) and its 23 permutation partners just as in the case at the endpoint of the plateau in the devil's
(overi, j, k, andl). It has eight faces with six vertices and six staircase.
faces with four vertices. There aré22=14 faces in total. The number of all the elementary phase parameters in the
The eight faces is similar to that shown in Fig. 7 and each ofncommensurate case is infinite but still denumerable, and
them has vertices such &§,,, or t; ., where the the set of all the corresponding 0 simplexes is dehseing
{i,j,k} in the subscript means that the six vertices are speciad—1 fractal dimensionin  but has a nulh dimensional
fied by the six permutations overj, k. Specifically, the face Lebesgue measure for anysh<d—1. Nevertheless, their
given byt.{ki,j,k},l is on the plane given by = t;+ (d; +d,; domains of _stability arel—1 domains and the union of all
+d,)/Aby in the three-dimensional hyperplane given by Eq.these domains occupy the whole measurd.obn the con-
(6.15. It amounts to a direct product of a point in the  trary, though the phase parameters with multiple subcom-
subspace and a hexagon in thg (t* ,t}) subspace. In this mensurate clusters occupy the whole measuréljnthey
face, the resonant opening are allowed to split into twohave null curvat_ure in one or ano.ther direction. Thus they
groups, the resonant opening of ittie, jth, andkth types on  have null Jacobians for the mapping fram to 7. Conse-
the left and that of théth type on the right. One can continue duently, an arbitrary choseiris generically(with probability
to analyze the boundaries of the very faeeg., line seg- 1) inside somed—1 domain with the corresponding phase_
ments or verticesin the same way as the above case for aParameter elementary. We then propose that the phase dia-
subcommensurate cluster with three elements. The other s@m is acomplete(d —1)-dimensional devil's staircase.
faces are direct products of two line segments. One of them
has vertices given b%ci,j},{k,l}' It is on the p|ane given by VII. INCOMMENSURATE NONRECURRENT MINIMUM
Aby(tF —TF) + Ab;(t* — t) = —dy—dy —dye—d and ENERGY CONFIGURATION

amounts to the direct product of a line segment ftgm, | to The existence of incommensurate NRME configurations

tfi k1 in the (tf ,t") subspace and the other froify | to  was first proposed in Ref. 14. Here, we would like to show
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N, (taking the limit of an infinitely long chain for the incom-
mensurate cash diverges but the limiting value of
Fradnj,w] is still 0. In this case, we identif@; with 81 (an
extended numbegrto reveal the fact that the openings of the
first and second types are about to break their resonance.

As h, is lowered further, the configurations continued
from {u/} or{u,} are no longer minimum energy configura-
tions, since moving certaifin fact, infinitely many atoms
from the third types of subwells into the second type of
subwells will lower the system energy. There must be a finite
fraction of the infinite many atoms in this atomic chain
moved across the second types of tips from above in order to
achieve a ground state configuration again. Therefore, one
may well say that the defects produced by the elementary
u phase shifts mediate the subcommensurate-
subincommensurate phase transition relatinggtoand 3,,
which differentiates the fractiong,— 3;) of atoms in the
second type of subwells, for the ground state configuration,
to be locked inS,, or not.

how they can be implemented in the general case. Consider The abov_e implementation can be regarded as to brgak the
the FK model with potential given by Ed2.1) having an resonancewith nz,=0) betweeng, and 5. It can be easily

incommensurate ground state configurations with Windinggener_";‘)l'Zde_d tz the ((:jaszf(')rrham{hitnd B with r:” tf|n|te, as
numberw and phase paramet@r Assumeh, is so high that e]iscrl € dTI gpen .'Xt : it ebs : dbfz ar‘r;(itin_sl %mov!ng
t, andt, are close enough to make the second type o rom a omain o 1ts bounaary, omain.

subwells depleted by the coalescence of depletion region§UCh implementation can also be generalized to break the

. = T resonance between two groups of elements in a subcommen-
. 9 = <t < S o
(sere Fig. 9 Then, one has, =/, with f,(B)<U<l> g a0 cluster. This is indeed what occurs at the transition
<f,(B1) to depict the ground state configuration. That is to

q b 0. Now | point for anl to (I +1)-hole transition?
say, 5, and B, are su commensurate witfy,=0. Now let One can imagine how to use different elementary phase
us see what happens kg is decreased.

. . , ) shifts to implement more compatible NRO configuration
As h, is varied,t; andt, vary accordingly. Define\b o0 50 RRO background, and these NRO configurations are

=Dbs—D, andt to be the tip, supposed to be between the firsy|;o\ed to become NRME ones &ss driven to appropriate
and third potential branches if the second branch is N€3lace(in ad—I—k domain on the boundary of @1 do-

glected. Foih, decreased gradually from a sufficiently large p,5in i k distinct NRME configurations are allowgdhat is

value, the second potential branch becomes observaltle at, say, any NRO stable configuration can be made to be an
=t,=1,. However, according to theorem 1, the minimum \p\E configuration by choosing an appropriate sett.of
energy configuratioriincluding ground stafeis not affected  herefore, the properties of the NRO configurations can be
until h, reaches the valu; such that eithet,=f,(81)  carried over to the NRME configurations. In particular, the
—doAby,/2 or t;=f,(8;) +doAb,/2 is satisfied, which oc- NRME configuration is homoclinic to its background RRO
curs at configuration and no net phase shift is introduced. In this
sense, the emergence of the NRME configuration signals a

V)

FIG. 9. The variation of the potential d&s, is lowered.t; is
denoted by the solid circles ang, by the open circles. An NRME
configuration is allowed at,=h5.

do 1 h Y U
C_ph _ -0 - phase transition in the gap structufeccurring in theQ
"2="s )\Abz[fw(ﬁl) 2 Ab 2(b2+b3) (7.1 space instead of the commensurate-incommensurate phase
transitiorf (occurring in thew space.
or
dog 1 VIIl. CONCLUSIONS
C__ | -0 _ =
Nz=hatAADy To(B)* 2 Aby 2(b1+b2) (72 In this paper, we exactly solve a class of FK models,

whose potential had subwells in a period. The RO stable

respectively. These two cases happen simultaneous onfpnfiguration is characterized by a winding number and a
when 8, and 3, are not subcommensurate to any other e|e'phase parameter i), with elements & Bo<p;<B,<-- -
ments inB. Now we will describe the case when E@.1)is  <pg, ,<1.
reached first and the other case can be treated similarly. To depict all RO stable configurations with hull functions,

As Eq.(7.1) is reached, the ground state configuration atphase parameters expressed in terms of extended numbers
this point is still depicted byu,=f,(no+p;) and the must be included for the incommensurate case. The depicted
NRME configuration, given byu/=u,—doAbye™ ""™X,  configurations in such cases are shown to be nonrecurrent.
emerges. There are two facts to demonstrate fba} is  The existence of these NRO configurations assures the exis-
nonrecurrent. The zeroth atom is the only atom sitting at theence of incommensurate NRME configurations for a suit-
second type of subwells. In addition, the limiting value of able choice of potential parameters.
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The notions of subcommensurate clusters, and resonanead
between different types of openings are introduced to fully

characterize the gap structure. These notions are helpful in P> o-lnlx
visualizing phase transitions in the gap structures. > _)‘_ ”2_: Ab;Ab; n_Zw n?

We provided an approach to determine the ground state
configurations through the information about the relative po- X é(Fragnw+Bi—B;]), (A4)

sitions of tips for the potential and gaps for the RO configu- ) )
rations. All the possibilities of degenerate ground state conwhere (- - -) denotes the Dirac delta function. For every
figurations are explored. Using these results, we are able tpoint ({g,{1,{2, - - - {q-1)=(®0,B1,82, - - - ,Bg-1) In Q
study the phase diagram. In the incommensurate case, we{we[0,1)}& (), define the curvature matrid, with ele-
show that the phase diagram ihis an extension of the ments given by
complete devil's staircase ta (1) dimensions. It will be )
interesting to see if the conclusion is still valid in tlde M. = i (A5)
—oo limit. KT o0a08,

We also provided a general method to implement an in-

commensurate NRME configuration. For any FK model be- This matrix can be decomposed into

yond TBA, which allows more than one discontinuity d-1

classes, it appears that such incommensurate NRME con- p =) E e Inlx E Ab25(Fragnw])M™°
figurations should also exist at the transition points for kny n=—c

to (I+1)-hole transitions. In general, NRME configurations

emerge as long as a certain locking conditi@ither the Ah o ni.j
subcommensurate condition in our case or the commensurate " 2o<i2j<d Abiabja(Fragne+ =4 )M

condition of the parameters to characterize the configuration

(including the phase parameters in our case and the winding (A6)
numbeyj is allowed to break down, which are expected towith
occur at boundaries of the domains of stability, where some d
locking conditions prevail. 0
? b MiP=n?= 60810 (A7)
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dog
ME JE5K|5I|+5k15IJ Ok,i0j— 5k15I|+n (5ko5||

do
+ 6,010~ Ok001,j— k610 T n27 Ok0010- (A8)

It is easy to check that every mati™'} is positive semi-
definite, where the fact that<0dy,<1 should_be employed.

APPENDIX A As a result, the energy function is convex(h
From Eq.(3.10), it is straightforward to show that APPENDIX B
Pz A, E Inlx In general, for a subcommensurate cluster composed of
alglaﬁj W=, e 1<ks=d elements, the domain of stability is an
o (k—1)-dimensional convex hyperpolygon wiltl vertices
X 8(Fragnw+ Bi—B;]), for 0<i<j<d, in the projected phase subspace. All pieces of the hypersur-

(A1) faces on its boundary are fldtyperplanesand are the direct
product of two convex hyperpolygons of lower dimensions.

pran d-1 * On the boundary hypersurface, the subcommensurate cluster
— =\Ab; 2 Ab; 2 e Inlx is allowed to split into two groups. Each of the lower dimen-
i =T+ e sional hyperpolygons can still be decomposed in the same

way until the verticegwith dimensionalities Dare reached,

X é(Fragno+ = 1), for 0<i<d, (A2) where the subcommensurate cluster is allowed to decompose

P2 dg d-1 % into k one-_element groups. _
— 2 Ab E Ab, 2 n e Inlx Let us inspect the circumstances of each domain of sta-
Ipidw =T nfs bility. For a phase parametgd containingl subcommensu-
rate clusters, witld,, d,, ..., andd, elements, respectively.

X d(Fragnw+ 6= 1), for 0<i<d, The correspondin®[ B8] is ad—1 domain and the hypersur-

(A3) faces on its boundary a—1—1 domains. Each of these
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d—I1—1 domains is also the overlapping region Bf 8] APPENDIX C
with its adjacentl—1 domain. Hence, the number of ways to
split the | holes (subcommensurate clustgrénto |+1
through continuously varying the elements ghgives the
number of d—1—1 domains surroundingD[B]. For

D[BINJT= (i.e.,v;>0 for alli), the number is given by : .
3i_1(2%-2). Similar procedure to count the number of the boundary oD[ 8] where moving then;;th atom in the

ways to split thel holes intok holes, for anyl <k=d, will {up} configuration across thel(nt[n;;]+j)th tip does not

give the number ofi—k domains on the boundary & 8]. cost energy. Such a movement can be conducted via an el-

In particular, the number of verticé® domains of this do- ~ €mentary phase shift characterized ky=—&; for 0<I

main is given byH}=1(d,-!). <d. The resultant configuratiofu/} has a segment, with
On the other hand, d—1 domain can play as the bound- one atom(say, thenth one located at thei(+1)-th type of

ary (overlapping regionof 1!/[k!(1—k)!] distinctd—k do- ~ subwells [say, the (nd+i+1)-th subwell and the

mains forl>k=1. The number ofd—k domains is from (n+n;)-th atom located at thenfd+dInt[n;w]+j)th

counting the ways to coalesce adjacent hdlek times  subwell, occurring only abh=0 andm=0. There is no other

Consider a ground state configurations,=f'"(3;
+nw) with the winding numbew irrational and the phase
parameteg with two of the elementg; and 8; subcommen-
surate with a finiten;; . Adjust the potential parametérto

among thd cyclic holes. place to find such a segment{n,}. Therefore{u,} is an
Care should be taken in counting the numbedefl do- incommensurate NRME configuration. It emerges where the

mains adjacent to a giveth—| domainD[ B]. The overlap- two types of openings, associated wigh and g; respec-

ping part of two adjacent—1 domains can be d—1—1  tively, are just about to break their resonance. Namejy,

domain or a domain with lower dimensionality. Here, we has a finite limiting value but the limiting value cm‘j’i di-
only consider the cases with the overlapping parts béing verges as the infinitely long atomic chain is taken into ac-
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