New polymorph of HfMo₂O₈ synthesized using a high-pressure and high-temperature toroid anvil setup

S. N. Achary,¹ G. D. Mukherjee,² A. K. Tyagi,¹ and B. K. Godwal²

¹Applied Chemistry Division, Bhabha Atomic Research Center, Mumbai, 400 085, India

²High Pressure Physics Division, Bhabha Atomic Research Center, Mumbai, 400 085, India

(Received 3 July 2002; published 18 November 2002)

We report the synthesis and characterization of a new polymorph (β) of HfMo₂O₈. This phase is synthesized from the trigonal (α) HfMo₂O₈ by application of high pressures and high temperatures. The sample obtained is characterized by powder x-ray diffraction (XRD) and the details of high-pressure and hightemperature phase are explained. The Rietveld analysis of the powder XRD data reveals that the β -HfMo₂O₈ crystallizes in a monoclinic lattice with unit cell parameters a = 11.4138(6), b = 7.9105(4), c = 7.4395(3), Å and $\beta = 122.35(0)^{\circ}$. The β -HfMo₂O₈ is found to be isostructural to the room-temperature phase of β -ZrMo₂O₈. The coordination numbers of Hf and Mo atoms with oxygen atoms are eight and five, respectively. The nature and sharing of Hf and Mo polyhedra are entirely different in β modification compared to that in the α phase.

DOI: 10.1103/PhysRevB.66.184106

I. INTRODUCTION

Recently compounds having the framework structures, such as MX_2O_8 ($M = Zr^{4+}$ and Hf^{4+}) and $M'_2(XO_4)_3$ (M'= trivalent cations, $X = Mo^{6+}$ and W^{6+}) have drawn considerable research interest due to their structural flexibility to facilitate the negative thermal expansion.^{1,2} The compound ZrW₂O₈ is reported to exhibit a large isotropic negative thermal expansion over a wide temperature range (0.3-1050 K).³ Such framework materials are used as components of the composites for attaining tunable thermal expansion values. The preparation and applications of these composites sometimes change the local pressures inside the composites, which may affect the stability of the above materials. Therefore, high-pressure studies of these negative thermal expansion materials have acquired a significant importance. Cubic ZrW₂O₈ undergoes an irreversible transformation to the orthorhombic phase at about 0.2 GPa, and amorphizes under further compression above 1.5 GPa.^{4,5} Under the application of both pressure and temperature, the cubic ZrW₂O₈ transforms to an $\alpha - U_3O_8$ type phase.⁶ ZrMo₂O₈ and HfMo₂O₈ in general do not crystallize in the cubic phase. However, they have cubic metastable modifications,^{7,8} in which they show a negative thermal expansion behavior. ZrMo₂O₈ exists in a monoclinic lattice, which undergoes a reversible transition to the trigonal phase at about 913 K.9 The monoclinic $ZrMo_2O_8$ (β form) (Ref. 10) is found to be denser than the high temperature, trigonal $ZrMo_2O_8$ (α form).¹¹ The trigonal (α) form is found to be the only stable modification as far as $HfMo_2O_8$ is concerned.¹²

The structural and phase evolution of α -ZrMo₂O₈ have been extensively studied at various pressures.^{13–15} But no reports pertaining to the high pressure study on α -HfMo₂O₈, are available so far. Lind *et al.*⁸ have reported that cubic (γ) HfMo₂O₈ undergoes a first order phase transition to a monoclinic modification on compression. But no detailed information of the high pressure phase is given. In this paper, we report the results of the high-pressure and high-temperature experiments carried out on α -HfMo₂O₈. PACS number(s): 62.50.+p, 81.40.Vw, 61.50.Ks

II. EXPERIMENT

Trigonal α -HfMo₂O₈ is prepared by a conventional solid state reaction of HfO₂ and MoO₃ at 650 °C for 18 h. The sample is reground and further heated at the same temperature for 8 h. The product thus obtained is characterized by powder x-ray diffraction (XRD) and found to consist of mainly trigonal HfMo₂O₈ (JC-PDS 38-1467) and a small amount of HfO₂ (JC-PDS 34-104). The high pressure and room temperature experiments are carried out on a Bridgman anvil apparatus (ϕ of face 12.7 mm),¹⁶ in which the sample is pressed inside a pyrophilite gasket by two faces of the anvil. The sample is held at 7 GPa for 44 h and then retrieved after releasing the pressure. The high pressure and high temperature experiments are carried out on toroid anvil (TA) apparatus (ϕ of face 31 mm, ϕ of cavity 13.5 mm).¹⁷ The powdered sample, pressed into a cylindrical pellet of approximately 4 mm diameter and 5.5-mm length, is encapsulated in a alumina (Al₂O₃) sample holder and placed at the center of a graphite heater assembly. The TA apparatus is pressure calibrated using Bi I - II and Yb hcp - bcc transitions at 2.65 and 4 GPa, respectively. In the experiments, the required pressure is attained gradually within a span of about 30 min. Thereafter the temperature is raised slowly at the rate of 10 °C/min. The pressurized sample is held at the required pressure and temperature for 10 min and then quenched by cutting off the heater power. The sample is retrieved by slowly releasing the pressure. The samples thus obtained are characterized by powder XRD, recorded on a Philips x-ray diffractometer (Model PW1710) with monochromatized $CuK\alpha$ radiation, in the two-theta range of $10^{\circ} - 70^{\circ}$.

III. RESULTS AND DISCUSSIONS

All the observed reflections of the starting materials can be indexed on a trigonal lattice with the unit cell parameters: a = 10.100(1) and c = 11.738(1) Å, which are in agreement with the reported unit cell parameters: a = 10.1005 and c= 11.7230 Å.⁹ This phase is iso-structural to α -ZrMo₂O₈

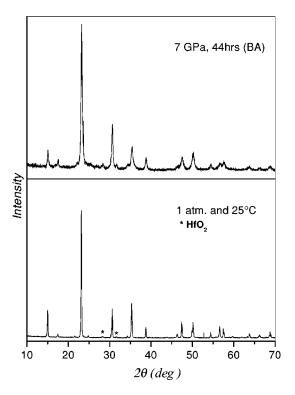


FIG. 1. (a) Powder XRD patterns of the original sample and (b) after compression in Bridgman anvil (BA) at 7 GPa, for 44 h.

reported by Auray *et al.*¹¹ and Serezhkin *et al.*¹⁸ The structure of the trigonal $ZrMo_2O_8$ or $HfMo_2O_8$ consists of ZrO_6 or HfO_6 octahedra, which share all the corners with the MoO_4 tetrahedra. Three of the MoO_4 tetrahedra apices are linked to ZrO_6 or HfO_6 octahedra, while the fourth apex points toward the interlayer region. This kind of framework arrangement of octahedra and tetrahedra makes this structure flexible and comparatively less dense. Such framework structures are highly amenable to transformations to denser phases on compression.

The XRD pattern of the product retrieved from the Bridgman anvil experiment is shown in Fig. 1. The XRD pattern of the starting material is also shown along with it for comparison. The XRD pattern of the retrieved sample shows a significant broadening of the reflections. However, there are no extra features observed, which indicates that there is no change in the unit cell type. The broadening of the reflections indicates that there is a tendency for this compound to undergo amorphization, which may be due to the nonhydrostatic conditions under pressure present in the Bridgeman anvil apparatus. The pressure induced amorphization (PIA) is a very common effect in such framework materials.^{5,8} The present experiment indicates either the possibility of a reversible or kinetically sluggish amorphization in α -HfMo₂O₈. The onset pressure for PIA is reported for cubic ZrMo₂O₈ and cubic ZrW₂O₈ at 1.3 GPa (Ref. 8) and 1.5 GPa,⁵ respectively, whereas the present compound, α -HfMo₂O₈ may amorphize at still higher pressures. A series of pressure induced reversible phase transitions, namely, monoclinic and triclinic are reported in the α -ZrMo₂O₈.^{13,14} Since all these kinds of transitions are reversible, the present

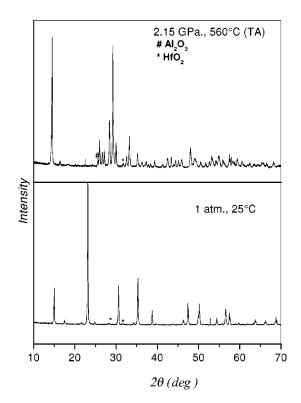


FIG. 2. (a) Powder XRD patterns of the original sample and (b) the retrieved sample from TA experiment at 2.15 GPa and $560 \,^{\circ}$ C.

experimental method is not suitable to detect them, if they are present in the α -HfMo₂O₈.

To study the behavior of α -HfMo₂O₈ under the simultaneous application of pressure and temperature, the experiments are carried out on toroid anvil apparatus. Several trial experiments at different pressures and temperatures are carried out to find the optimum conditions for the phase transformation. The XRD pattern (Fig. 2) of the sample retrieved from 2.15 GPa and the 560 °C toroid anvil experiment shows the presence of completely new reflections, which could not be attributed to the starting trigonal phase, HfO₂ or MoO₃. This indicates the formation of a new phase of HfMo₂O₈, which hereafter will be referred as β -HfMo₂O₈. The XRD pattern of the starting material is also included in Fig. 2 for comparison.

A careful analysis of the XRD pattern indicates the presence of reflections attributable to the Al_2O_3 (corundum) phase, which is used as sample holder. The contamination of sample by the sample holder is often unavoidable due to the difficulty in the physical separation of the sample holder and the sample. All the observed reflections excluding the Al₂O₃ reflections can be indexed on a primitive monoclinic lattice with unit cell parameters: a=9.729(2), b=7.907(2), c =7.435(1) A, and β =97.87(2)°. These unit cell parameters are similar to those reported for monoclinic (β) ZrMo₂O₈.⁹ In addition, a similar satisfactory indexing is possible with a C type monoclinic lattice with unit cell parameters: a =11.415(3), b=7.906(2), c=7.438(2) A, and β $= 122.37(2)^{\circ}$. Both the unit cells have equal volumes and indicate four formula units in the unit cell (i.e., Z=4). Similar two sets of unit cell parameters have been earlier assigned

TABLE I. The details of Rietveld refinement of β -HfMo₂O₈.

Phase	β -HfMo ₂ O ₈		
Preparation condition	2.15 GPa and 560 °C		
	(quenched)		
Data collection conditions	1 atm. and 25 $^{\circ}C$		
Crystal system	Monoclinic		
Space group	C2/c (No. 15)		
a (Å)	11.4138(6)		
b (Å)	7.9105(4)		
c (Å)	7.4395(3)		
eta (°)	122.35(0)		
V and ρ	567.45(5) Å ³ , 5.83 gm/cm ³		
Ζ	4		
Wavelength (Å), $CuK\alpha 1$, and $\alpha 2$	1.5406 and 1.5444		
No. data points	2951		
Two theta range	10-70°		
Step width and step time	0.02° and 1.25 s.		
No. of reflections	232/2		
No of refined parameters	26		
Rp, Rwp, Rexp	8.81%, 11.5%, 8.59%		
χ^2	1.81		
RBragg, RF	5.50%, 4.41%		

to β -ZrMo₂O₈. However, these two unit cells are closely related.⁹ High pressure studies on α -ZrMo₂O₈ reveal new phases, namely, monoclinic (δ) and triclinic (ϵ).^{13–15} The structure of δ -ZrMo₂O₈ is related to the trigonal α -ZrMo₂O₈. The present observed monoclinic phase of HfMo₂O₈ is not similar to the monoclinic δ -ZrMo₂O₈. It may be mentioned here that the crystal structures of α - and β -ZrMo₂O₈ are not closely related, which indicates a reconstructive type phase transformation. The x-ray density of α and β modifications of HfMo₂O₈ are 4.79 and 5.84 gm/cm³, respectively. Thus the density of the phase increases and the molecular volume decreases significantly from 172.8 to 141.7 Å³, in the α to β transformation. This drastic change

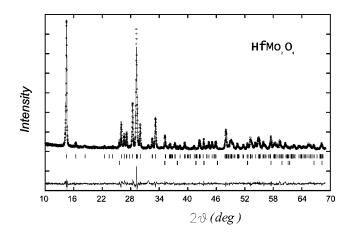


FIG. 3. The observed and calculated diffraction pattern for β -HfMo₂O₈. The difference plot is shown at the bottom. The vertical bars indicate the Bragg position of β -HfMo₂O₈ (upper) and α -Al₂O₃ (lower).

TABLE II. Fractional atomic coordinates of various atoms in β -HfMo₂O₈.

Atom	Site	x	у	Ζ	B^{a}
Hf	4 <i>e</i>	0	0.9825 (5)	0.25	0.003
Mo	8 <i>f</i>	0.2184(6)	0.2795(5)	0.2615(9)	0.005
01	8 <i>f</i>	0.082(2)	0.098(3)	0.073(4)	0.007
O2	8f	0.168(2)	0.161(3)	0.439(4)	0.008
03	8 <i>f</i>	0.349(2)	0.291(3)	0.226(4)	0.011
O4	8 <i>f</i>	0.125(2)	0.454(3)	0.173(3)	0.018

^aFixed during the refinement.

in the unit cell volume implies the possibility of a first order reconstructive type phase transition. A comparison of these volumes to that of the cubic HfMo₂O₈ (molar volume 190 Å³),⁸ shows that the α (trigonal) and β (monoclinic) modifications of HfMo₂O₈ are the denser phases.

The detailed structural analysis of β -ZrMo₂O₈ is reported on the basis of the settings of the unit cell parameters a= 11.433, b = 7.935, c = 7.460 Å, and $\beta = 122.3^{\circ}$.¹⁰ A theoretical pattern calculated using the observed unit cell parameters of β -HfMo₂O₈ and the position coordinates of β -ZrMo₂O₈,¹⁰ appears similar to the experimentally observed XRD pattern, which indicates that the β -HfMo₂O₈ is isostructural to β -ZrMo₂O₈. The structural analysis is carried out by Rietveld refinement using the FULLPROF-2K Rietveld refinement program.¹⁹ The position coordinates and thermal parameters of the starting model are taken from β -ZrMo₂O₈.¹⁰ Scale and background parameters are refined during the initial cycles of Rietveld refinements. The profile is fitted using pseudo-Vogt function. The half-width parameter, mixing parameters and unit cell parameters of both β -HfMo₂O₈ and Al₂O₃ phases are also refined. The preferred orientation correction is applied by Rietveld function option provided by FULLPROF package. Finally the position coordinates of both phases along with scale and unit cell parameters are refined. The goodness of the refinement is amply reflected from the observed R values (Table I). The observed and calculated profiles along with the difference plot are given in Fig. 3. It can be mentioned here that without refining the thermal parameters a good fit could be obtained. Further refinements of these thermal parameters are not successful, and hence they are kept fixed at their original values. The refined position parameters are given in Table II.

TABLE III. Typical interatomic distances (in Å) in β -HfMo₂O₈.

Hf		Мо	
01	2.150(27)×2	01	2.031(21)
O1	2.187(32)×2	O2	1.937(32)
O2	$2.184(20) \times 2$	O2	1.943(25)
O3	$2.232(25) \times 2$	O3	1.646(31)
		O4	1.650(23)
		-	-
Average	2.19	Average	1.84
		O4	3.02

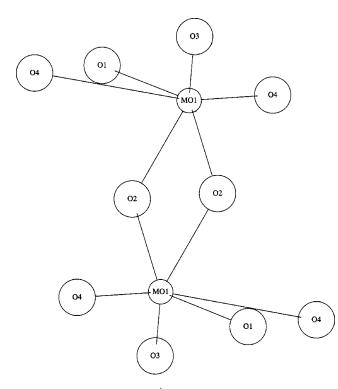


FIG. 4. A typical $[Mo_2O_8]^{4-}$ unit. The long Mo-O₄ bond is also shown.

The crystal structure of β -HfMo₂O₈ has only one kind of Hf and Mo atom each. There are four distinct oxygen atoms in the unit cell. The typical bond lengths of various atoms are given in Table III. The Hf atoms have eight coordinated polyhedra, which seems to be more regular compared to Zr polyhedra in β -ZrMo₂O₈. The Hf-O bond lengths range from 2.15 to 2.23 Å (average distance 2.19 Å). The corresponding Zr-O bond lengths in β -ZrMo₂O₈ range from 2.12 to 2.31 Å.¹⁰ The Mo atoms have fivefold coordination polyhedra with Mo-O bond lengths ranging from 1.65 to 2.03 Å (average of 1.84 Å), which is close to a tetragonal pyramid. The corresponding Mo-O bond lengths in β -ZrMo₂O₈ are ranging from 1.68 to 2.04 Å. One O1 atom and, two O2 and O3 atoms form the distorted irregular tetragonal base of the tetragonal pyramid having O4 as the apex. The MoO₅ poly-

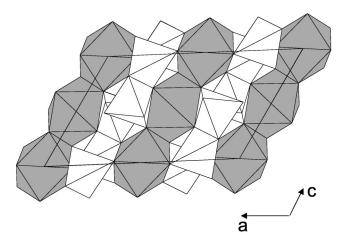


FIG. 6. Projection of β -HfMo₂O₈ along the [010] direction. The HfO₈ polyhedra (dark) and $[Mo_2O_8]^{4-}$ (white) are shown.

hedra can also be explained as a highly distorted octahedra considering O4 of another MoO₅ unit at a relatively longer distance (3.02 A). Two such units are linked together by sharing O2-O2 basal edge forming a $[Mo_2O_8]^{4-}$ dimer, similar to that present in the β -ZrMo₂O₈ (Ref. 10) and $K_2Mo_3O_{10}$.²⁰ A typical dimer unit of $[Mo_2O_8]^{4-}$ with two long distance O4's is shown in Fig. 4. The HfO₈ polyhedra are linked together by sharing one edge forming infinite chains along the c direction. A typical chain of HfO_8 is shown in Fig. 5. A (010) projection of β -HfMo₂O₈ indicating the typical packing of the polyhedra is shown in Fig. 6. The HfO_8 chains and $[Mo_2O_8]^{4-}$ units are shown as dark gray and white polyhedrons, respectively. The HfO₈ polyhedra share two opposite O1-O2 edges with two different MoO₅ tetragonal pyramids. The O3 apex of MoO₅ tetragonal pyramid is connected to the HfO₈ polyhedra of another chain. Thus the $[Mo_2O_8]^{4-}$ units form the link between the HfO₈ chains. The O4 oxygen of MoO₅ unit is free and present inside the space between the $[Mo_2O_8]^{4-}$ units.

IV. CONCLUSIONS

In conclusion we report on a new polymorph of HfMo₂O₈ synthesized from high-pressure and high-temperature TA ex-

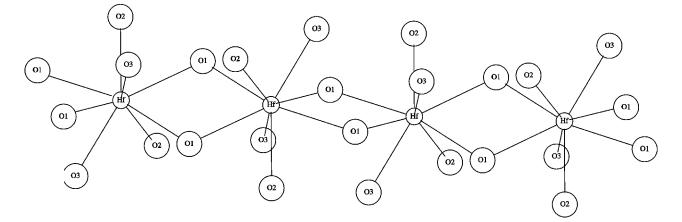


FIG. 5. A typical chain of HfO₈ polyhedra.

periments. The crystal structure of the phase is found to be isostructural to the monoclinic β -ZrMo₂O₈. The new β phase of HfMo₂O₈ is about 20% denser than the original α -HfMo₂O₈ suggesting a possibility of a first order phase transition. The room temperature high-pressure study of the

trigonal HfMo₂O₈ up to 7 GPa indicates the absence of any irreversible phase transition. However, a tendency to amorphization is observed in this compound as against cubic $ZrMo_2O_8$ and ZrW_2O_8 , which amorphize at much lower pressures.

- ¹J.S.O. Evans, T.A. Mary, T. Vogt, M.A. Subramanian, and A.W. Sleight, Chem. Mater. **8**, 2809 (1996).
- ²J.S.O. Evans, T.A. Mary, and A.W. Sleight, J. Solid State Chem. **133**, 580 (1997).
- ³J.S.O. Evans, T.A. Mary, T. Vogt, and A.W. Sleight, Science **272**, 90 (1996).
- ⁴J.S.O. Evans, Z. Hu, J.D. Jorgensen, D.N. Argyriou, S. Short, and A.W. Sleight, Science **275**, 61 (1997).
- ⁵C.A. Perottoni and J.A.H. da Jornada, Science 280, 886 (1998).
- ⁶A. Grzechnik, W.A. Crichton, K. Syassen, P. Adler, and M. Mezouar, Chem. Mater. **13**, 4255 (2001).
- ⁷C. Lind, A.P. Wilkinson, Z. Hu, S. Short, and J.D. Jorgensen, Chem. Mater. **10**, 2335 (1998).
- ⁸C. Lind, D.G. Vanderveer, A.P. Wilkinseon, J. Chen, M.T. Vaughan, and D.J. Weiner, Chem. Mater. **13**, 487 (2001).
- ⁹M. Auray, M. Quarton, and P. Tarte, Powder Diffr. 2, 36 (1987);
 4, 29 (1989).
- ¹⁰R.F. Klevtsova, L.A. Glinskaya, E.S. Zolotova, and P.V. Klevtsov, Dokl. Akad. Nauk SSSR **305**, 91 (1989) [Sov. Phys. Dokl. **34**, 185 (1989)].

- ¹¹M. Auray, M. Quarton, and P. Tarte, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. **42**, 257 (1986).
- ¹²A. Rimsky, J. Thoret, and W. Freundlich, C.R. Seances Acad. Sci., Ser. C 267, 1468 (1968).
- ¹³S. Carlson and A.M. Krogh Andersen, Phys. Rev. B **61**, 11209 (2000).
- ¹⁴A.M. Krogh Andersen and S. Carlson, Acta Crystallogr., Sect. B: Struct. Sci. 57, 20 (2001).
- ¹⁵D.V.S. Muthu, B. Chen, J. Wrobel, A.M. Krogh Andersen, S. Carlson, and M.B. Kruger, Phys. Rev. B 65, 064101 (2002).
- ¹⁶S.N. Vaidya, D.K. Joshi, and C. Karunakaran, Indian J. Technol. 14, 679 (1976).
- ¹⁷C. Karunakaran and S.N. Vaidya, High. Temp. Sci. 26, 393 (1994).
- ¹⁸V.N. Serezhkin, V.A. Efremov, and V.K. Trunvov, Russ. J. Inorg. Chem. **32**, 1568 (1987).
- ¹⁹J. Rodriguez-Carvajal, FULLPROF-2K Versonn 1.6, Jul-2000. Laboratoire Leon Brillouin (CEA/CNRS), France.
- ²⁰B.M. Gatehouse and P. Leverett, J. Chem. Soc. A 1968, 1398.