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Interpretation of Lorentz microscopy observations of vortices in high-temperature
superconductors with columnar defects
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In order to interpret recent experimental observations of superconducting vortices interacting with tilted
columnar defects in high-temperature superconducting materials, we have extended to the case of anisotropic
materials our Fourier space approach for the calculation of the electron optical phase shift experienced by the
high-energy electrons in a transmission electron microscope. The case of a London vortex having its core not
perpendicular to the specimen surfaces is considered. The same configuration is also analyzed in the frame-
work of a simplified pancake model and the influence of the number of stacks on the phase shift and images
is investigated. The results obtained by the two models are compared between them and with the experimental
results. The agreement between theory and experiment confirms that anisotropy plays a major role in affecting
the electron microscopy images.
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I. INTRODUCTION

Recently it has been shown that the Fourier space
proach, formerly introduced to cope with vortex~or fluxon!
lattices,1 can be usefully applied for the calculation of th
phase shift and corresponding phase contrast images o
perconducting vortices observed by transmission elec
microscopy techniques.2 In that paper, hereafter referred
as paper I, the basic ideas of the approach were introdu
and applied to the investigation of a few problems. First,
case of a London vortex having its core perpendicular to
specimen surfaces has been considered, and the anal
results obtained in the Fourier space compared with the
proximated ones obtained by means of the former real sp
approach.3 Then, the limiting case of a specimen who
thickness is much smaller than the London penetration de
first introduced by Pearl,4 has been analyzed and extended
the case of a stack of three layers,5 a useful simple model for
the interpretation of vortex images in high critical tempe
ture,Tc , layered materials.

In this paper the Fourier approach is applied to mod
which are suggested by the latest experiments,6 where super-
conducting specimens irradiated with heavy ions in a dir
tion different from the normal have been studied in order
directly observe the pinning of the vortices at columnar
fects. In particular, the first analysis of the contrast featu
strongly suggests that anisotropy plays an important role
determining the outcome of transmission electron micr
copy experiments.7,8

Therefore, in order to interpret the experimental results
the most accurate and appropriate way and to properly
into account the influence of anisotropy we have investiga
the model of a tilted London vortex in a thin anisotropic sl
0163-1829/2002/66~17!/174518~10!/$20.00 66 1745
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and, on the other hand, extended the pancake model cal
tions by increasing the number of layers. The obtained
sults are presented, discussed, and compared to experim
results taken in a variety of different conditions. The appli
magnetic field was low enough to make sure that the vorti
can be considered isolated. In fact, at higher fields and in
presence of columnar defects, the distortion of the flux l
lattice and the resulting loss of periodicity make the use
Fourier methods rather troublesome.

It will be shown that the satisfying agreement betwe
theory and experiments confirms the soundness of th
models for the interpretation of the data and better clari
the role played by anisotropy.

II. GENERAL CONSIDERATIONS

Let us first introduce the main conventions regarding
coordinate systems and the basic formulas describing the
teraction of the electron beam with the magnetic field as
ciated with the pinned vortex, where the assumption is m
that the normal core lies along the columnar defect. As
latter is tilted with respect to the surfaces, and the specim
itself can in turn be rotated around its normal in the cooli
stage in order to vary the overall geometry of the experime
we should slightly change the notation with respect to pa
I in order to take into account these new experimental f
tures.

Therefore our starting points are the same two coordin
systems introduced in paper I, namely:~i! the microscope
coordinate system having thez axis parallel to the electron
beam and aligned in the same direction, with (x,y) being the
coordinates in the object plane, perpendicular to the opt
axis z, and ~ii ! the specimen reference system (xS ,yS ,zS),
having its zS axis, of unit vectorkS , coincident with the
©2002 The American Physical Society18-1
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specimen normaln and oriented in the opposite direction
z, the xS axis, of unit vectoriS , having initially the same
direction asx, and theyS axis determined by the requireme
of left-handedness, i.e., opposite toy.

We assume that the columnar defect~CD! lies initially in
the (xS ,zS) plane@shadowed in Fig. 1~a!# and forms an angle
u with thezS axis. The specimen, assumed of constant thi
nesst, is then inclined of an anglea with respect to the
electron beam, around the tilt axis~TA!, coincident with the
y ~and yS) axis, as indicated in Fig. 1~b!. In addition, as
mentioned, it is also rotated of an azimuth angleb around its
normaln, coincident with the tiltedzS axis. This means tha
the new configuration is like the one sketched in the up
part of Fig. 1~b!. Although, strictly speaking, the origin o
the two systems coincides with the intersection of the opt
axis ~OA! with the midplane of the specimen, for clarit
purposes, the object plane~OP!, (x,y), is displayed in Fig.
1~b! in the lower part and slightly offset. Also the projectio
of the columnar defect~PCD!, which is rotated with respec
to thex axis of an angle dependent ona andb, is sketched.

The new relations between the unit vectors of the mic

FIG. 1. Schematic view of the geometry involved:~a! specimen
reference system (xS ,yS ,zS); ~b! microscope reference syste
(x,y,z). TA: tilt axis; OA: optical axis; CD: columnar defect; PCD
projected columnar defect on the object plane;a: specimen tilt
angle;b: specimen azimuth rotation angle;u: columnar defect tilt
angle.
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scope and specimen systems are given by

iS5 i cosa cosb1 j sinb1k sina cosb,

jS5 i cosa sinb2 j cosb1k sina sinb, ~1!

kS5 i sina2k cosa,

whereas corresponding relations hold between coordinat
In order to describe the interaction between the elect

beam and the magnetic field associated with the vortex,
standard high-energy or phase object approximation is u
according to which the vortex is a pure phase object,9 with
the magnetic phase shift given by

w~x,y!52
e

\El
A•dl52

e

\E2`

1`

Az~x,y,z!dz, ~2!

where A is the vector potential,e and \ are the absolute
value of the electron charge and the reduced Planck cons
respectively, andx andy are kept fixed since we consider a
electron trajectory parallel and in the same direction as thz
axis.10

This trajectory passes through the regions above, wit
and below the specimen, thus crossing three separated s
domains. For the calculation of the phase shift by means
Eq. ~2!, in order to avoid unwanted extra terms arising fro
contour integrals on the domain boundary, it is essentia
choose a vector potential continuous in its components
allel to the boundaries.2

In the specimen system, the above trajectory is charac
ized by the parametric equation

l 5~xS2w tana cosb!iS1~yS2w tana sinb!jS1wkS ,
~3!

where w ranges between (1`,2`). The correspondence
between the coordinates of the intersection of the trajec
with the object plane (x,y) and with the specimen midplan
(xS ,yS) is given by

xS5x
cosb

cosa
1y sinb, yS5x

sinb

cosa
2y cosb ~4!

Therefore, the phase shift Eq.~2! can be calculated in the
specimen system according to the relation

w~xS ,yS!5
e

\E1`

2`

A~xS2w tana cosb,yS

2wtana sinb,w!•S tana cosb

tana sinb

21
D dw ~5!

and converted finally in the microscope reference sys
through the indicated coordinate transformations.

Once the object phasew(x,y) is calculated for a specime
tilted at an anglea, and rotated by an azimuth angleb, it
may be displayed by means of ideal amplified contour ma
where the intensityI (x,y) is given by
8-2
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I ~x,y!511cos@nw~x,y!# ~6!

with n the amplification factor.
As regards the Fresnel phase contrast method, sta
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from the object phase the out of focus images in the ob
vation plane, located at a distanceZ from the object plane,
can be calculated by means of the Kirchhoff-Fres
integral:11
I ~X,Y,Z!5U 1

leZ
E E exp[iw(x,y)]expS ip

leZ
@~x2X!21~y2Y!2# Ddx dyU2

, ~7!
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whereX andY are the coordinates in the out-of-focus plan
andle is the de Broglie wavelength of the incident electron

III. TILTED LONDON VORTEX IN AN ANISOTROPIC
THIN FILM

In this section we follow the general scheme introduc
by Kogan, Simonov, and Ledvij,12 in order to generalize the
results of paper I to the case of a straight tilted Lond
vortex in an anisotropic uniaxial thin film, having itsc axis
perpendicular to the film surfaces, so that the anisotropy
sorL in the specimen coordinate system (xS ,yS ,zS) is diag-
onal, having elementslab

2 , lab
2 andlc

2 respectively.
Whereas identical in the basic approach, our analysis

fers from that of Kogan, Simonov, and Ledvij12 because the
emphasis is put on the vector potential, which is the ba
quantity for the calculation of the electron optical pha
shift, and not on the magnetic field.

The vector potential must satisfy in the vacuum regio
above and below the specimen the Laplace equation

“

2A50 ~8!

and the modified London equation within the specimen

A2L“3“3A5f0

rF3kF

r F
2

[FL ~9!

The second member of Eq.~9! (FL is defined as the Lon
don vector! shows that the case of a London vortex with
core and its magnetic flux aligned alongkF is being consid-
ered; rF represents a two-dimensional position vector p
pendicular to the directionkF of the core. Finally,f0
5h/2e is the superconducting flux quantum.

Since the specimen can be freely rotated, and a unia
anisotropic material (la5lb5lab) is investigated, the com
ponents ofkF in the specimen reference system can be c
sen as (sinu,0,cosu), whereu is the angle of the core with
the zS-axis, without loss of generality.

The solution in the filmA int can be written as the sum o
two terms:

A int5AB1AS ~10!

The first,AB, which is a particular solution of the inhomo
geneous equation, is identical to the London solution for
anisotropic bulk superconductor. The second,AS, which is
,
.

d

n

n-
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ic

s

-
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-

e

the general solution of the homogeneous equation, is a
face correction term necessary to satisfy the boundary c
ditions.

Let us analyze these problems separately by using t
dimensional Fourier methods, suggested by the presenc
flat boundaries parallel to the (xS ,yS) plane,12 according to
the general expressions

Ã~kx ,ky ,z!5E E dx dyA~x,y,z!e2 i (xkx1yky) ~11!

and

A~x,y,z!5E E dkxdky

4p2 Ã~kx ,ky ,z!ei (xkx1yky). ~12!

In this way, since both the London~for the supercon-
ductor! and the Laplace~for the external space! equations are
of the second order, the remaining dependence on the thz
coordinate contains simple exponential functions.

In the following, as the intermediate and final expressio
are very lengthy and cumbersome, we will outline only t
main steps and assumptions of the derivation.

A. The bulk vortex solution

The Fourier transform of the London vectorF̃L is given
in the S coordinate system by

F̃L~kxS
,kyS

,zS!5
if0

ku
2 S kyS

cos2 u

2kxS

2kyS
sinu cosu

D e2 izSkxS
tanu

~13!

whereku
25kxS

2 1kyS

2 cos2 u.

In order to evaluate the Fourier transform of the particu
solution of the inhomogeneous equationÃB we can use the
fact that for the infinite straight vortex in the bulk it does n
depend on the longitudinal coordinate along the vortex dir
tion kF , so thatÃB should have the samezS dependence as
the Fourier transform of the London vector.

We therefore look for a solution in the form

ÃB5Ãve2 izSkxS
tanu ~14!
8-3
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By multiplying the former expression byei (xSkxS
1ySkyS

)

and inserting the result in the London equation, it results
an algebric system of equations for the unknownÃv

5(Ax
v ,Ay

v ,Az
v) which can be easily solved.

It can be ascertained that the resulting vector potentialAB

gives the correct magnetic field associated with the b
London vortex but it is not divergence-free. This addition
but not essential requirement, can be easily met, so tha
can finally express, after some simplifications, the Fou
transform ofAB as

ÃB~kxS
,kyS

,zS!

5
if0

D1D2ku
2S kyS

~cos2 u1lc
2ku

2!

2kxS
@11~lc

21lab
2 tan2 u!ku

2#

2D1kyS
sinu cosu

D
3e2 izSkxS

tanu, ~15!

where

D1511lab
2 kxS

2 1lab
2 kyS

2 1lab
2 kxS

2 tan2 u, ~16!

D2511lc
2kxS

2 1lc
2kyS

2 1lab
2 kxS

2 tan2 u. ~17!

B. The homogeneous solution

We look now for a solution of the Fourier transform of th
vector potential satisfying the homogeneous London eq
tion in the form of a linear combination of exponential fun
tions of zS :

ÃS~kxS
,kyS

,zS!5(
n

Ã(n)eanzS. ~18!

By imposing the condition that each term is also solut
of the homogeneous London equation, we obtain a homo
neous linear system of equations, which has nonvanish
solutions provided its determinant vanishes. It turns out t
all possible values ofan are given by

a1,256S 11lab
2 kS

2

lab
2 D 1/2

~19!

and

a3,456S 11lc
2kS

2

lab
2 D 1/2

~20!

wherekS
25kxS

2 1kyS

2 .

Correspondingly, we have

Ã(1)5c1S 2
kyS

kxS

1

0

D , ~21!
17451
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Ã(2)5c2S 2
kyS

kxS

1

0

D , ~22!

Ã(3)5c3S labkxS
~11lc

2kS
2!1/2

lc
2kS

2

labkyS
~11lc

2kS
2!1/2

lc
2kS

2

1

D , ~23!

and

Ã(4)5c4S 2
labkxS

~11lc
2kS

2!1/2

lc
2kS

2

2
labkyS

~11lc
2kS

2!1/2

lc
2kS

2

1

D . ~24!

The coefficientsci will be determined by the boundar
conditions of the internal field with that in the vacuum.

C. Vacuum solutions and boundary conditions

The next problem is to find the vector potential outsi
the sample,A(1) in the regionzS.t/2 andA(2) in the region
zS,2t/2. By imposing that also the condition“•A50 is
satisfied and that the vector potential vanishes at6`, the
following expressions are obtained for the two-dimensio
Fourier transforms

Ã(1)5e2zSkSS c5

c6

i
c5kxS

1c6kyS

kS

D , ~25!

Ã(2)5ezSkSS c7

c8

2 i
c7kxS

1c8kyS

kS

D . ~26!

So we are left with eight coefficientsci to be determined
by the boundary conditions at the upper (zS5t/2) and the
lower (zS52t/2) surfaces: the eight necessary equations
be obtained by the continuity of the tangential components
the vector potential and of the magnetic field.

Needless to say, calculations are very cumbersome,
the use of a computer algebra system likeMATHEMATICA 14 is
of an invaluable help. Also in this case, however, it is co
venient first to use the boundary conditions relative to
vector potential to obtain a reduced system in the unknow
8-4
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INTERPRETATION OF LORENTZ MICROSCOPY . . . PHYSICAL REVIEW B66, 174518 ~2002!
c12c4. The symmetry of the resulting system makes
rather easy to reduce it again into a system of two equat
in the unknownsc1 andc2 and this last system can finally b
solved to get the desired solution.

Going back, all the coefficients can be obtained and he
the complete solution for the vector potential which,
though very complicated, is nonetheless analytical in
Fourier space.

The correctness of this solution and of the method of
taining it has been tested by calculating the vector poten
and the magnetic field for the case of an anisotropic su
conductor filling a half-space: our solution is identical to th
found by Kogan, Simonov, and Ledvij.12 To have still more
confidence, we have also reversed the procedure, sta
from the solution of the magnetic field and by obtaining fro
it the vector potential, under the constraint“•A50: the re-
sult differs from the previous one by the gradient of a fun
tion, meaning that both vector potentials are equivalent
garding the field and the phase shift.

D. Phase shift

It is helpful to present maps of the phase shifts, i.e., of
projected magnetic field, experienced by a coherent elec
plane wave in an ideal experiment where the beam direc
is parallel to one of the coordinate system axis and the
parent infinite thickness of the specimen is overlooked.3

In the case of a phase map calculated along theyS axis the
following expression will be employed:

f~xS ,zS!5
i

f0
E

0

`

Ãy~kxS
,0,zS!sin~xSkxS

!dkxS
, ~27!

whereas similar expressions are valid for the phase s
calculated along thexS or zS axis.

Figure 2 shows the phase maps calculated in the th
orthogonal directions (xS ,yS ,zS) for a vortex laying on the
columnar defect which is tilted at an angleu545° with re-
spect to the specimen normal (zS axis!. The projected view
of the columnar defect is indicated by the short bold li
@white in Fig. 2~c!# in the plots. The first three plots~a,b,c!
correspond to an isotropic material withg51 (g is the an-
isotropy parameter, defined as the ratio betweenlc andlab ,
i.e., g5lc /lab), while the last one~d! to a medium aniso-
tropic material withg55.

In the xS andyS projections, no visible difference can b
appreciated between the plots corresponding to different
ues ofg. This is because when we calculate the phase s
in the xS or yS direction, the only significant contribution
comes from the tangential components of the vector po
tial, which are independent oflc . Therefore, the isotropic
and anisotropic cases are identical in this case and only
example, the isotropic case, is reported.

On the contrary, the second row reports a striking diff
ence between the two cases examined. Each contour
represents a phase shift of 10 mrad, and when the anisot
parameterg is increased, the phase shift decreases dra
cally, as can be seen in the last plot, Fig. 2~d!. It can be
ascertained that increasing furthermore the value ofg ~a re-
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alistic case can be up to 200 or more!, the phase shift is on
the order of some microradians, well below the detectabi
limit of p/100.30 mrad.13

To better clarify the situation, we have calculated the
fect of an increasing anisotropy parameterg on the distribu-
tion of the j c current density flowing along thezS axis, and
we confirmed that the main effect of a largelc is a dramatic
reduction of this component. While in the isotropic case
j c component is significant and comparable toj ab , as soon
as g.1, j c tend to decrease and, eventually, to disappe
The functional behavior of the current density is reported
Fig. 3, for three values of the anisotropy parameterg
51,5,10. To represent the three plots using the same ver
scale, the two curves corresponding to the anisotropic ca
g55,10 have been amplified by a factor 153.

FIG. 2. Contour line plots representing the phase shift, or p
jected magnetic flux, in three orthogonal directionsxS ~a!, yS ~b!,
andzS ~c!,~d!. ~a!–~c! Isotropic caseg51; ~d! medium anisotropy
caseg55. The contour lines represent phase shifts of 200 mra
~a! and~b! and of 30 mrad in~c! and~d!. Simulation parameters: tilt
angleu545°,lab5200 nm, plot region 4mm.

FIG. 3. Current density along thezS axis as a function ofxS , for
theg values of 1,5,10. The last two cases are amplified by a fa
153 in order to plot them on the same vertical scale of the isotro
plot g51.
8-5
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Taking into account the shown results, we can try to p
ture the current distribution noting that whenj c is absent,
and only j a , j b remain, the currents flow only in the (xS ,yS)
plane. This happens at the specimen surfaces independe
the value of g because no current can flow toward t
vacuum~to obtain a vanishing current at the surfaces is
confirmation of the correctness of the boundary condit
chosen!. Instead, inside the material, wherej c have a nonva-
nishing value, the currents can flow also across the pla
zS5const, showing the tendency to be perpendicular to
vortex core, as visualized in Fig. 4. When, on the contraryj c

decreases and it is almost negligible also inside the mate
the current flow can be considered almost confined in
(xS ,yS) plane.

This plot assumes an even greater significance when
compare it with the pancake case, as will be done in Sec
because it confirms that the pancake model with no Jos
son coupling is the limit of the anisotropic one forg→`. In
fact, the pancake vortices are intrinsically confined in
copper-oxide planes, andj c is in this case identically zero
everywhere inside the specimen.

IV. PANCAKE VORTICES

Let us turn to the problem of extending the calculations
paper I to a stack of thin layers, which can mimic well t
structure of highly anisotropic superconductors.

As stressed by Pearl4 in a thin film, or single layer atzS
50, all quantities change over distances larger thanlab , so
that they can be considered approximatively constant ac
the film and it is reasonable to average them over the la
thicknesstL .5,12 Therefore, the problem is reduced to that
finding the field distribution in the free space, imposed by
proper boundary conditions at the film surface.

As shown in paper I, for a single layer these conditio
are given by the continuity of the vector potential across
layer and by the following equation which has been obtain
by averaging the modified London equation over the la
thickness:15

FIG. 4. Current density components at various depths. At
specimen surfaces, there is noj c ~upper and lower plane circles!,
while inside the materialj c forces the current to flow off theab
plane~inner tilted circle!.
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A~xS ,yS,0!2LH F ]A

]zS
G

01

2F ]A

] zS
G

02
J 5f0

rS3kS

xS
21yS

2
,

~28!

where L5lab
2 /tL is the Pearl film penetration depth. Th

equation relates the normal derivatives at the upperzS
501) and lower (zS502) surfaces with the averaged vect
potential. When no vortex is present and the layer is p
fectly superconducting, its diamagnetic response is given
the boundary conditions above with the second member
equal to zero.

For the case of a set ofn layers, at coordinateszS
j 5 js (s

is the interlayer spacing!, each having a London vortex at th

FIG. 5. Scheme of a specimen composed ofn layers, showing
the relative position of the pancake vortex on thej th layer~having
heightzS5 js). Each layer is characterized by the Pearl penetrat
depthL5lab

2 /t, wheret5(n21)s.

FIG. 6. Contour line plots representing the phase shift calcula
with the pancake model (n57 layers! in two orthogonal directions
xS ~a! and yS ~b!. The contour lines represent phase shifts of 2
mrad. Simulation parameters: tilt angleu545°, plot region 4
32 mm.

e
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position r j5(xS
j ,yS

j ,zS
j ), the above mentioned relation ca

be transformed into the following one, rewritten in the tw
dimensional Fourier space:

Ã~kxS
,kyS

,zS
j !2LH F ]Ã

]zS
G

z
S
j 1

2F ]Ã

]zS
G

z
S
j 2
J

5
if0

kS
2 S kyS

2kxS

0
D e2 i (xS

j kxS
1yS

j kyS
), ~29!

FIG. 7. Out-of-focus images~left column! and holographic con-
tour maps 323 amplified~right column! for the following values of
the anisotropic parameter:g51,5,50,̀ ~from top to bottom!. The
columnar defect tilt angle isu545° and the specimen rotation
b590°.
17451
wherekS
25kxS

2 1kyS

2 and L now depends on the number o

layers and on the interlayer spacings, according to the rela-
tion: L5(n21)lab

2 /t. This definition follows from the total
specimen thickness composed ofn21 interlayer spacings
t5(n21)s.

In this scheme, each vacuum region between two lay
will be characterized by a vector potential of the form

Ã5D1ezSkS1D2e2zSkS, ~30!

whereas the external regions are characterized by vector
tentials like Eqs.~25! or ~26!, i.e., given by

Ã(1)5C̃(1)e2zSkS, Ã(2)5C̃(2)ezSkS. ~31!

All these coefficients can be determined by imposing
boundary condition Equation~29! and that of the continuity
of the vector potential at the films, which, in the case
interest to us here, can be taken equally spaced in a s
along thezS axis, with an interlayer distances and charac-
terized by the same Pearl penetration depthL. The param-
etersxS

j ,yS
j are obtained from the condition of considering

vortex piercing the films obliquely, being pinned at a straig
columnar defect~see Fig. 5!.

In order to have some idea about the trend of the fi
distribution, we can, as in paper I and in Sec. III D, show t
phase shift calculated following Eq.~27! along thexS andyS

FIG. 8. Out-of-focus images, unpinned vortex~corresponding to
u50° and an arbitrary value ofb).
8-7
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axis. Of course, here it is not necessary to display thezS-axis
phase shifts similar to those reported in Figs. 2~c! and 2~d!,
because such a phase shift is here identically zero. In
the vector potential has noAz component, therefore no cu
rent density along thezS axis will flow.

Figure 6 shows the obtained result withn57 layers. Once
again, by means of these plots it is difficult to appreciate
difference between the isotropic case@Figs. 2~a! and 2~b!#
and the pancake case reported here. However, referrin
Fig. 4 it can be realized that this case corresponds to
infinite anisotropy, where the current density along thezS
axis completely disappears.

V. COMPARISON BETWEEN THE DIFFERENT MODELS

To better show how the three cases examined—isotro
anisotropic and pancake—are indeed different, we hav
resort to the calculation of phase contrast images, and fin
in Sec. VI, to compare these results with the experiment

Figure 7 shows a series of out-of-focus and holograp
images calculated for increasingg values, from 1 to infinity
~corresponding to the pancake model!. Analyzing the pro-
gressive disappearance of the apparent vortex tilt, some
clusions can be drawn: these phase contrast technique
sensitive enough on the variation ofg when the parameter i
close to the unity, but they predict almost indistinguisha
images wheng.10.7

The only visible difference which can be appreciated

FIG. 9. Out-of-focus images,u565°,b5360°.
17451
ct,
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tween pancake and continuous anisotropic models is a s
deformation of the contrast contour lines. In the panca
simulation ~d! the globule appears less elongated, with
spect to~c! which is a continuous anisotropic simulation ca
culated for the valueg550. This discrepancy can be ex
plained by the limited number of layers considered. T
number n57, in fact, is probably not enough to reach
correct description of the flux configuration inside the ma
rial, because the real number of layers is of the order of 2
with a real interlayer spacing of the order of the nanome
Unfortunately, from the computational point of view, it is n
yet possible to increase furthermore the number of lay
However, the contrast value~number of contrast contou
lines! and the general image features are well in agreem

The main consequence is that we cannot obtain an e
mate of the anisotropic parameter itself from the analysis
the experimental images of strong anisotropic materi
Only an anisotropic superconductor characterized byg
,10, like YBa2Cu3O72d , (Y2123) for example, could re-
veal the difference between the two models, for suitably c
sen experimental conditions.

VI. EXPERIMENTAL RESULTS

Single-crystal Bi2Sr2CaCu2O81d ,(Bi22212) was grown
at University of Tokyo by using the floating zone techniq
and post annealed to a slightly over-doped oxygen con
(Tc.85 K).16 Columnar defects with a diameter of about 1

FIG. 10. Out-of-focus images,u565°,b5315°.
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nm were obliquely produced atu565° by irradiation of 240-
MeV Au151 ions by using the Tandem Accelerator at t
Japan Atomic Energy Research Institute~JAERI!.17 The
specimen, observed in the new high voltage holography e
tron microscope, was cooled to 30 K within the magne
field at 0.5 mT in order to avoid the effect of intrinsic pin
ning at lower temperature.6 The magnetic field, generated b
the coils of the special magnetic stage, was always kept
ented parallel to the columnar defects direction.

The Bi-2212 superconductor is characterized by an
isotropy parameterg of the order of 200. In this condition, a
explained in Sec. IV, it turns out to be impossible to discrim
nate between a three dimensional anisotropic structure a
layered one, because of the almost negligible value of
current density along thec axis of the material. Therefore, i
the following, only the continuous anisotropic model~which
is convenient from the computational point of view, and do
not require approximations such as the limit in the numbe
layers! will be employed in the image interpretation.

The images in the whole residual figures are presente
the following scheme: from top to bottom images cor
sponding to the three values of the defocus parameter~a!
Z51300 mm,~b! Z5530 mm, and~c! Z5420 nm are dis-
played; then, to the left the experimental images and to
right the simulated ones.

In Fig. 8, the case of the unpinned vortex is reported
reference. In this case, the azimuth angleb is not significant,
as the projection of the vortex core on the object plane

FIG. 11. Out-of-focus images,u565°,b5270°.
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independent of the specimen rotation. The simulations ar
good agreement with the experimental results, especi
considering that the apparent lower contrast of the mic
graph can be explained by the fact that the theoretical si
lations do not take into account the effects of partial late
coherence and inelastic scattering.

Then, the image features corresponding to different a
muth angles can be analyzed, in order to check if we
discriminate between pinned and unpinned vortices. Mo
over, we can also have some hints on the sensitivity of
out-of-focus technique over the vortex orientation.

Figures 9, 10, 11, and 12 show out-of-focus images ta
at the three different values of defocus at the same speci
region, for different azimuth anglesb (b5360°, b5315°,
b5270°, andb5225°, respectively! and for a columnar
defect tilt u565°.

At the highest defocus value of 1300 mm, row~a!, all the
vortices have a similar appearance of bright-dark globu
i.e., the line dividing the bright and dark regions is rough
aligned along the perpendicular to the tilt axis. This resul
agreement with former simulations,8 showing that at a suffi-
ciently large defocus any kinds of vortices have similar co
trast shape independent of their structure. However, it can
noticed that the contrast is slightly different.

By decreasing defocus to 530 mm, row~b!, changes in
contrast and shape can be seen in the image. This differ
is more evident at the small defocus of 420 mm, row~c! ~in
particular in Fig. 10!, where the contrast of vortices becom

FIG. 12. Out-of-focus images,u565°,b5225°.
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very weak and the vortex shapes are elongated.
In spite of the low contrast value, image noise, and l

sensitivity of the phase contrast technique employed, i
possible to distinguish between pinned and unpinned vo
ces, especially when the experimental conditions are a
rately calibrated in order to have the maximum of inform
tion. In particular, the specimen should be rotated around
normal n in such a way to have the projected core align
along the tilt axisy, and the defocus value should be kept
small as possible, compatible with a sufficient contrast,
order to have the maximum sensitivity on the azimuth ang

VII. CONCLUSIONS

It has been shown in this work how the Fourier spa
approach can be usefully applied for the calculation of
phase shift of superconducting vortices observed by ph
contrast electron microscopy techniques.

By this new approach it is possible to evaluate the ph
shift in all those cases where the corresponding problem
the magnetic fields can been solved by Fourier methods
particular, we have been able to obtain in this work the ph
shift for a London vortex in an anisotropic thin film, a pro
lem which could only be approximately treated in the pre
ous real space approach.

With this new model, and the recent one of a stack
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