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In order to interpret recent experimental observations of superconducting vortices interacting with tilted
columnar defects in high-temperature superconducting materials, we have extended to the case of anisotropic
materials our Fourier space approach for the calculation of the electron optical phase shift experienced by the
high-energy electrons in a transmission electron microscope. The case of a London vortex having its core not
perpendicular to the specimen surfaces is considered. The same configuration is also analyzed in the frame-
work of a simplified pancake model and the influence of the number of stacks on the phase shift and images
is investigated. The results obtained by the two models are compared between them and with the experimental
results. The agreement between theory and experiment confirms that anisotropy plays a major role in affecting
the electron microscopy images.
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[. INTRODUCTION and, on the other hand, extended the pancake model calcula-
tions by increasing the number of layers. The obtained re-
Recently it has been shown that the Fourier space apsults are presented, discussed, and compared to experimental
proach, formerly introduced to cope with vortéx fluxon) results taken in a variety of different conditions. The applied
lattices? can be usefully applied for the calculation of the magnetic field was low enough to make sure that the vortices
phase shift and Corresponding phase contrast images of Sgan be considered isolated. In faCt, a!: h|gher fields and in.the
perconducting vortices observed by transmission electroRrésence of columnar defects, the distortion of the flux line
microscopy techniquesin that paper, hereafter referred to Iatt|c¢ and the resulting loss of periodicity make the use of
as paper |, the basic ideas of the approach were introducdgcPUrier methods rather troublesome.
and applied to the investigation of a few problems. First, the 't Will be shown that the satisfying agreement between

case of a London vortex having its core perpendicular to théheggs ?2? tﬁ;‘?ﬁ{gigiﬂgﬂng;?hse t(;]aetasgﬁgdt?:tf:r glfa:i?iiss’e
specimen surfaces has been considered, and the analyti:g'%lg P

results obtained in the Fourier space compared with the ap- role played by anisotropy.
proximated ones obtained by means of the former real space
approach. Then, the limiting case of a specimen whose IIl. GENERAL CONSIDERATIONS

t_hick_ness is much smaller than the London penetration depth, | ¢t us first introduce the main conventions regarding the
first introduced by Peafihas been analyzed and extended tocoordinate systems and the basic formulas describing the in-
the case of a stack of three layérs useful simple model for  teraction of the electron beam with the magnetic field asso-
the interpretation of vortex images in high critical tempera-ciated with the pinned vortex, where the assumption is made
ture, T¢, layered materials. that the normal core lies along the columnar defect. As the
In this paper the Fourier approach is applied to modeldatter is tilted with respect to the surfaces, and the specimen
which are suggested by the latest experiméniiere super- itself can in turn be rotated around its normal in the cooling
conducting specimens irradiated with heavy ions in a direcstage in order to vary the overall geometry of the experiment,
tion different from the normal have been studied in order towe should slightly change the notation with respect to paper
directly observe the pinning of the vortices at columnar ded in order to take into account these new experimental fea-
fects. In particular, the first analysis of the contrast featuresures.
strongly suggests that anisotropy plays an important role in Therefore our starting points are the same two coordinate
determining the outcome of transmission electron microssystems introduced in paper I, namely: the microscope
copy experiment$?® coordinate system having tteaxis parallel to the electron
Therefore, in order to interpret the experimental results irbeam and aligned in the same direction, wihy() being the
the most accurate and appropriate way and to properly takeoordinates in the object plane, perpendicular to the optical
into account the influence of anisotropy we have investigatedxis z, and (ii) the specimen reference systemy(ys,zs),
the model of a tilted London vortex in a thin anisotropic slabhaving its zg axis, of unit vectorkg, coincident with the
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scope and specimen systems are given by

@ is=icosa cosB+j sinB+k sina cosg,

js=icosasinB—j cosB+k sinasing, D

ks=isina—k cose,

whereas corresponding relations hold between coordinates.
In order to describe the interaction between the electron

beam and the magnetic field associated with the vortex, the

standard high-energy or phase object approximation is used,

according to which the vortex is a pure phase objestth

the magnetic phase shift given by

e e[+=
‘P(X,Y)Z—%LA-dI:—%f mAZ(x,y,z)dz, 2)

where A is the vector potentiale and 7z are the absolute
value of the electron charge and the reduced Planck constant,
respectively, anck andy are kept fixed since we consider an
electlroon trajectory parallel and in the same direction azthe
axis:

This trajectory passes through the regions above, within,
and below the specimen, thus crossing three separated space
domains. For the calculation of the phase shift by means of
Eq. (2), in order to avoid unwanted extra terms arising from
contour integrals on the domain boundary, it is essential to
choose a vector potential continuous in its components par-
allel to the boundaries.

In the specimen system, the above trajectory is character-
ized by the parametric equation

FIG. 1. Schematic view of the geometry involved) specimen

reference systemxg,ys,zs); (b) microscope reference system |_— (Xs— W tana cosp)ig+ (ys—wtana sinB)j s+ wkg,
(x,y,2). TA: tilt axis; OA: optical axis; CD: columnar defect; PCD 3)

projected columnar defect on the object plane; specimen tilt

angle; 8: specimen azimuth rotation anglé; columnar defect tilt where w ranges between+{o,—). The correspondence

angle. between the coordinates of the intersection of the trajectory
with the object planex,y) and with the specimen midplane

specimen normanh and oriented in the opposite direction as (Xs:¥s) is given by
z, the xg axis, of unit vectorig, having initially the same cosp sing
direction asx, and theyg axis determined by the requirement X=X +ysinB, ys=x———ycosB (4
of left-handedness, i.e., oppositeyto Cosa Cosa
We assume that the columnar defé€D) lies initially in ) )
the (xs,z¢) plane[shadowed in Fig. ()] and forms an angle Therefore, the phase ;hlft E@) can bg calculated in the
6 with the z axis. The specimen, assumed of constant thick SPECImen system according to the relation
nesst, is then inclined of an anglee with respect to the e (-
electron beam, around the tilt ax(¥A), coincident with the @(Xs,Ys) = _f A(Xs—Wtana cosg,ys
y (andyg) axis, as indicated in Fig.(b). In addition, as h) e
mentioned, it is also rotated of an azimuth anglaround its

normaln, coincident with the tiltedzg axis. This means that tana cosp
the new configuration is like the one sketched in the upper —wtana sing,w)- | tanasing [dw (5)
part of Fig. 1b). Although, strictly speaking, the origin of -1

the two systems coincides with the intersection of the optical

axis (OA) with the midplane of the specimen, for clarity and converted finally in the microscope reference system

purposes, the object plaf®P), (x,y), is displayed in Fig. through the indicated coordinate transformations.

1(b) in the lower part and slightly offset. Also the projection  Once the object phasg(x,y) is calculated for a specimen

of the columnar defedtPCD), which is rotated with respect tilted at an anglex, and rotated by an azimuth angk it

to thex axis of an angle dependent anand B, is sketched. may be displayed by means of ideal amplified contour maps,
The new relations between the unit vectors of the microwhere the intensity(x,y) is given by
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I(x,y)=1+codne(x,y)] (6) from the object phase the out of focus images in the obser-
. - vation plane, located at a distanZerom the object plane,
with n the amplification factor. can be calculated by means of the Kirchhoff-Fresnel

As regards the Fresnel phase contrast method, startirigtegral®

1 T 2
1(X,Y,Z2)= EJ jexp[hp(x,y)]exp(ﬁ (x—X)2+(y—Y)?] |dx d){ , (7)

whereX andY are the coordinates in the out-of-focus plane,the general solution of the homogeneous equation, is a sur-
andX. is the de Broglie wavelength of the incident electrons.face correction term necessary to satisfy the boundary con-

ditions.
lll. TILTED LONDON VORTEX IN AN ANISOTROPIC ~Let us analyze these problems separately by using two-
THIN FILM dimensional Fourier methods, suggested by the presence of

flat boundaries parallel to thex,ys) planel? according to

In this section we follow the general scheme introducecthe general expressions
by Kogan, Simonov, and Ledwif,in order to generalize the
results of paper | to the case of a straight tilted London ~ _
vortex in an anisotropic uniaxial thin film, having itsaxis A(kx,ky,Z)=J J dx dyA(x,y,z)e” 0EYR) - (11)
perpendicular to the film surfaces, so that the anisotropy ten-
sor L in the specimen coordinate systery(ys,zs) is diag-  and
onal, having elements2,, A2, and\? respectively.

Whereas identical in the basic approach, our analysis dif- dk.dk, ~ .
fers from that of Kogan, Simonov, and Led¥ipecause the A(x,y,z)=f J 4_2_y A(kx,ky,z)e'(xkxwky). (12
emphasis is put on the vector potential, which is the basic &
quantity for the calculation of the electron optical phase
shift, and not on the magnetic field.

The vector potential must satisfy in the vacuum region
above and below the specimen the Laplace equation

In this way, since both the Londoffor the supercon-
S'ductor) and the Laplacéfor the external spagequations are
of the second order, the remaining dependence on thezhird
coordinate contains simple exponential functions.
V2A=0 (8) In the following, as the intermediate and final expressions
are very lengthy and cumbersome, we will outline only the
and the modified London equation within the specimen  main steps and assumptions of the derivation.

rexk ;
A—LVXVXA= gy F . F =d, (9) A. The bulk vortex solution
e The Fourier transform of the London vectd; is given
in the S coordinate system by

The second member of E(Q) (P, is defined as the Lon-
don vectoy shows that the case of a London vortex with its

core and its magnetic flux aligned alokg is being consid- ) kyscosz 4
ered; rg represents a two-dimensional position vector per- (ke ky.z ):@ —k, e~ izsketand
pendicular to the directiorkg of the core. Finally, ¢q L Tye 7S k% _ S
=h/2e is the superconducting flux quantum. —kySind cosd
Since the specimen can be freely rotated, and a uniaxial 13
anisotropic materialX,=\p=A\,p,) is investigated, the com- 5 o o
ponents ok in the specimen reference system can be choWhereky=K + ky COS .
sen as (sim,0,cost), whered is the angle of the core with In order to evaluate the Fourier transform of the particular
the zg-axis, without loss of generality. solution of the inhomogeneous equatidfl we can use the
The solution in the filmA™ can be written as the sum of fact that for the infinite straight vortex in the bulk it does not
two terms: depend on the longitudinal coordinate along the vortex direc-

tion kg, so thatA® should have the same, dependence as
the Fourier transform of the London vector.

The first, AB, which is a particular solution of the inhomo- e therefore look for a solution in the form
geneous equation, is identical to the London solution for the o
anisotropic bulk superconductor. The secoAd, which is AB=Ave~izshan? (14)

AM=AB+AS (10)
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By multiplying the former expression bg sxs™Yskyg Ky
and inserting the result in the London equation, it results in — k_s
an algebric system of equations for the unknowi A@=c, s , (22)
= (AL Ay ,A}) which can be easily solved.

It can be ascertained that the resulting vector poteAftal 0

gives the correct magnetic field associated with the bulk
London vortex but it is not divergence-free. This additional, Napk, (1+A2k2)12
but not essential requirement, can be easily met, so that we ab™xs ¢S
can finally express, after some simplifications, the Fourier )\gké
transform ofAP as

;‘\(3):03 )\abkys(l"")\gké)llz , (23
AB(k,_k,.z
( Xg' g s) )\(Z:ké
Ky (COS' 6+ \2K5) 1
i
ZWOkZ —ky [ 1+ NG+ N2 tar? 6)k7] and
122R¢ .
—Alkyssmacosa )\abkxs(lJr)\gkg)l/z
—izgky_ tang -
X @iz tand, (15 Neks
where A=cy  Napky (1+42AKE2 | . (24
Ay=1H+N2KE +NEpkS + N2k tarf 6, (16) A2Kk3
1
Ap=1+NZKE +N2KS_+ N2k tarf 6. 17

The coefficientsc; will be determined by the boundary
) conditions of the internal field with that in the vacuum.
B. The homogeneous solution
We look now for a solution of the Fourier transform of the C. Vacuum solutions and boundary conditions
vector potential satisfying the homogeneous London equa-
tion in the form of a linear combination of exponential func-
tions of zg:

The next problem is to find the vector potential outside

the sampleA(") in the regiornzs>1t/2 andA(™) in the region

zg<—1t/2. By imposing that also the conditioVi-A=0 is

_ _ satisfied and that the vector potential vanishes-at, the

AS(kyg, kySaZS)ZE AMgans, (18 following expressions are obtained for the two-dimensional
" Fourier transforms

By imposing the condition that each term is also solution

of the homogeneous London equation, we obtain a homoge- Cs
neous linear system of equations, which has nonvanishing N — Cs
solutions provided its determinant vanishes. It turns out that ATI=e TS Csky_+Ceky_ | (29
all possible values of, are given by i Sk Ys
S
1+22K2)
=+ ( —zabs) (19 Cy
)\ab Cg
A7) = gZsks
and ATT=e - Crkog + Caky 26
14223\ Y Ks
az=F| ——5— (20
Nab So we are left with eight coefficients to be determined
wherek2=Kk2 + K2 by the boundary conditions at the uppes€t/2) and the
ST TXs Vs lower (zs= —1/2) surfaces: the eight necessary equations can
S
Correspondingly, we have be obtained by the continuity of the tangential components of
K the vector potential and of the magnetic field.
s Needless to say, calculations are very cumbersome, and
~ Ky the use of a computer algebra system likaHEMATICA 14 is
A(l)=C1 s ) (21 of an invaluable help. Also in this case, however, it is con-
1 venient first to use the boundary conditions relative to the
0 vector potential to obtain a reduced system in the unknowns
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ci—C4. The symmetry of the resulting system makes it
rather easy to reduce it again into a system of two equation
in the unknowng,; andc, and this last system can finally be
solved to get the desired solution.

Going back, all the coefficients can be obtained and hencg ;
the complete solution for the vector potential which, al- ] D))" (€
though very complicated, is nonetheless analytical in the|
Fourier space.

The correctness of this solution and of the method of ob-
taining it has been tested by calculating the vector potential
and the magnetic field for the case of an anisotropic super
conductor filling a half-space: our solution is identical to that | ¢¢) @)
found by Kogan, Simonov, and LedV.To have still more
confidence, we have also reversed the procedure, startin @

from the solution of the magnetic field and by obtaining from
it the vector potential, under the constramtA=0: the re-

sult differs from the previous one by the gradient of a func-
tion, meaning that both vector potentials are equivalent re-

garding the field and the phase shift.
N N
X xs
D. Phase shift

It is helpful to present maps of the phase shifts, i.e., of the FIG. 2. Contour line plots representing the phase shift, or pro-
projected magnetic field, experienced by a coherent electrojacted magnetic flux, in three orthogonal directions(a), ys (b),
plane wave in an ideal experiment where the beam directioindzg (c),(d). (a)—(c) Isotropic casey=1; (d) medium anisotropy
is parallel to one of the coordinate system axis and the apsasey=5. The contour lines represent phase shifts of 200 mrad in
parent infinite thickness of the specimen is overlooked.  (a) and(b) and of 30 mrad ir(c) and(d). Simulation parameters: tilt

In the case of a phase map calculated along/thaxis the  angle #=45°\,,=200 nm, plot region &m.
following expression will be employed:

. alistic case can be up to 200 or mprthe phase shift is on
I e . the order of some microradians, well below the detectabilit
b(Xs,25)= ¢_Ofo Ay(ke 02g)sinxsky)dkyg,  (27) jimit of 7/100=30 mrad’® ’
To better clarify the situation, we have calculated the ef-
whereas similar expressions are valid for the phase shiftiect of an increasing anisotropy paramegeon the distribu-
calculated along th&g or zg axis. tion of thej. current density flowing along thes axis, and
Figure 2 shows the phase maps calculated in the threge confirmed that the main effect of a larygis a dramatic
orthogonal directionsxs,ys,zs) for a vortex laying on the reduction of this component. While in the isotropic case the
columnar defect which is tilted at an angle=45° with re-  j. component is significant and comparablej{g, as soon
spect to the specimen normalg(axis). The projected view asy>1, j. tend to decrease and, eventually, to disappear.
of the columnar defect is indicated by the short bold lineThe functional behavior of the current density is reported in
[white in Fig. 2c)] in the plots. The first three plots,b,9 Fig. 3, for three values of the anisotropy parameter
correspond to an isotropic material wigh=1 (v is the an- =1,5,10. To represent the three plots using the same vertical
isotropy parameter, defined as the ratio betwegand\ ., scale, the two curves corresponding to the anisotropic cases
i.e., y=N./\,p), While the last ondd) to a medium aniso- ¥=15,10 have been amplified by a factor»5

tropic material withy=5.
In the x5 andyg projections, no visible difference can be
jc(xSVO’O)
(arb. units)
Xg (Agp units)

appreciated between the plots corresponding to different val-
ues ofy. This is because when we calculate the phase shift
in the xg or yg direction, the only significant contribution
comes from the tangential components of the vector poten-
tial, which are independent of.. Therefore, the isotropic
and anisotropic cases are identical in this case and only one
example, the isotropic case, is reported.

On the contrary, the second row reports a striking differ-
ence between the two cases examined. Each contour line
represents a phase shift of 10 mrad, and when the anisotropy FiG. 3. Current density along the axis as a function ofg, for
parametery is increased, the phase shift decreases drastine y values of 1,5,10. The last two cases are amplified by a factor
cally, as can be seen in the last plot, Figd)2 It can be  15x in order to plot them on the same vertical scale of the isotropic
ascertained that increasing furthermore the valug @ re-  plot y=1.
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Xs

CDZ
'\

jb/?___/
a

FIG. 4. Current density components at various depths. At the FIG. 5. Scheme of a specimen composedhddyers, showing
specimen surfaces, there is po(upper and lower plane circlgs " !

while inside the materig]. forces the current to flow off thab
plane(inner tilted circle.

the relative position of the pancake vortex on {lie layer (having
heightzs=js). Each layer is characterized by the Pearl penetration
depthA=\2,/t, wheret=(n—1)s.

Taking into account the shown results, we can try to pic- A A rex ke
ture the current distribution noting that whep is absent, A(xs,yS,O)—A[ 7l Tl J— 0 5
and onlyj,,jp remain, the currents flow only in thexd,y<) Slo+ Slo- XstYs
plane. This happens at the specimen surfaces independent of (28)

the value of y because no current can flow toward the 2 . i . .
vacuum (to obtain a vanishing current at the surfaces is aWhereA_)‘ab/tL is the Pearl film penetration depth. This

confirmation of the correctness of the boundary conditionequaltlon relates the normal derivatives at the uppay (

chosen. Instead, inside the material, wherghave a nonva- =0") and lower ¢s=07) surfaces with the averaged vector
e ' » Whale otential. When no vortex is present and the layer is per-
nishing value, the currents can flow also across the plan

o howi h q b dicul h ctly superconducting, its diamagnetic response is given by
Zs=const, showing the tendency to be perpendicular to the,, boundary conditions above with the second member put

vortex core, as visualized in Fig. 4. When, on the contrgry, equal to zero.
decreases and it is almost negligible also inside the material, ko, the case of a set of layers, at coordinateﬁszjs (s

the current flow can be considered almost confined in th(—;s the interlayer spacingeach having a London vortex at the
(Xs,Ys) plane. o
This plot assumes an even greater significance when we

compare it with the pancake case, as will be done in Sec. 1V, (a)

because it confirms that the pancake model with no Joseph-

son coupling is the limit of the anisotropic one fpr—«. In —m e —"
fact, the pancake vortices are intrinsically confined in the Y — Il E—=<

copper-oxide planes, and is in this case identically zero
everywhere inside the specimen.

IV. PANCAKE VORTICES

Let us turn to the problem of extending the calculations of ) (b)
paper | to a stack of thin layers, which can mimic well the
structure of highly anisotropic superconductors.

As stressed by Peérin a thin film, or single layer atg Y Y~
=0, all quantities change over distances larger than so e R A S —
that they can be considered approximatively constant across
the film and it is reasonable to average them over the layer
thicknesst, .>*2 Therefore, the problem is reduced to that of
finding the field distribution in the free space, imposed by the
proper boundary conditions at the film surface.

As shown in paper |, for a single layer these conditions FiG. 6. Contour line plots representing the phase shift calculated
are given by the continuity of the vector potential across th&yith the pancake modeh(=7 layers in two orthogonal directions
layer and by the following equation which has been obtainegg (a) andys (b). The contour lines represent phase shifts of 200
by averaging the modified London equation over the layemrad. Simulation parameters: tilt ange=45°, plot region 4
thickness® X2 um.
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}( FIG. 8. Out-of-focus images, unpinned vort@orresponding to
#=0° and an arbitrary value g8).
wherekg=Kkj +kj_and A now depends on the number of
layers and on the interlayer spaciggaccording to the rela-
tion: A=(n—1)\2,/t. This definition follows from the total
specimen thickness composed rof-1 interlayer spacings:
t=(n—1)s.
In this scheme, each vacuum region between two layers
will be characterized by a vector potential of the form

FIG. 7. Out-of-focus image@eft column and holographic con- A=D"e%Ks+ D g ZKs, (30
tour maps 3X amplified(right column for the following values of
the anisotropic parametef=1,5,50% (from top to bottom. The
columnar defect tilt angle i¥=45° and the specimen rotation is
B=90°.

whereas the external regions are characterized by vector po-
tentials like Eqs(25) or (26), i.e., given by

RO=Ce ks, AO=COles  (31)

position rjz(XJSv}’Js-ZJs): the above mentioned relation can Al these coefficients can be determined by imposing the
be transformed into the following one, rewritten in the two boundary condition Equatiof29) and that of the continuity

dimensional Fourier space: of the vector potential at the films, which, in the case of
interest to us here, can be taken equally spaced in a stack
_ A JA alqng thezg axis, with an interlayer'distancxeand charac-
Ak, Ky o2 —A{ | — _[_ terized by the same Pearl penetration defthThe param-
s 925 2+ 9zs - etersxk,yk are obtained from the condition of considering a
vortex piercing the films obliquely, being pinned at a straight
. I<y3 columnar defectsee Fig. 5.
| itk +vik In order to have some idea about the trend of the field
=— Ky | @ 1(xskegTYskyd (29 T . .
K& S distribution, we can, as in paper | and in Sec. Ill D, show the
0 phase shift calculated following E(R7) along thexs andyg
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FIG. 9. Out-of-focus images}=65°,8=360°. FIG. 10. Out-of-focus image#)=65°,6=315°.

axis. Of course, here it is not necessary to displayzthaxis  tween pancake and continuous anisotropic models is a slight
phase shifts similar to those reported in Fig&)2and 2d),  deformation of the contrast contour lines. In the pancake
because such a phase shift is here identically zero. In facgimulation(d) the globule appears less elongated, with re-
the vector potential has né, component, therefore no cur- Spect to(c) which is a continuous anisotropic simulation cal-
rent density along theg axis will flow. culated for the valuey=50. This discrepancy can be ex-
Figure 6 shows the obtained result witk: 7 layers. Once  plained by the limited number of layers considered. The
again, by means of these plots it is difficult to appreciate theyumbern=7, in fact, is probably not enough to reach a
difference between the isotropic cagéigs. da) and 2b)]  correct description of the flux configuration inside the mate-
and the pancake case reported here. However, referring téal, because the real number of layers is of the order of 200,
Fig. 4 it can be realized that this case corresponds to awith a real interlayer spacing of the order of the nanometer.
infinite anisotropy, where the current density along fae Unfortunately, from the computational point of view, it is not

axis completely disappears. yet possible to increase furthermore the number of layers.
However, the contrast valughumber of contrast contour
V. COMPARISON BETWEEN THE DIEFERENT MODELS lines) and the general image features are well in agreement.

The main consequence is that we cannot obtain an esti-
To better show how the three cases examined—isotropianate of the anisotropic parameter itself from the analysis of
anisotropic and pancake—are indeed different, we have tthe experimental images of strong anisotropic materials.
resort to the calculation of phase contrast images, and finallfpnly an anisotropic superconductor characterized oy
in Sec. VI, to compare these results with the experiment. <10, like YBaCuO;_ 5, (Y—123) for example, could re-
Figure 7 shows a series of out-of-focus and holographiaeal the difference between the two models, for suitably cho-
images calculated for increasingvalues, from 1 to infinity ~sen experimental conditions.
(corresponding to the pancake modeéknalyzing the pro-
gressive disappearance of the apparent vortex tilt, some con-
clusions can be drawn: these phase contrast techniques are
sensitive enough on the variation pfwhen the parameter is Single-crystal BjSr,CaCyOg. 5,(Bi—2212) was grown
close to the unity, but they predict almost indistinguishableat University of Tokyo by using the floating zone technique
images wheny>10. and post annealed to a slightly over-doped oxygen content
The only visible difference which can be appreciated be{T.=85 K).'® Columnar defects with a diameter of about 10

VI. EXPERIMENTAL RESULTS
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FIG. 12. Out-of-focus images)=65°,8=225°.

FIG. 11. Out-of-focus image#=65°,8=270°.

nm were obliquely produced &= 65° by irradiation of 240-  independent of the specimen rotation. The simulations are in
MeV Au®®" ions by using the Tandem Accelerator at thegood agreement with the experimental results, especially
Japan Atomic Energy Research Institult8AERI).!” The  considering that the apparent lower contrast of the micro-
specimen, observed in the new high voltage holography elegraph can be explained by the fact that the theoretical simu-
tron microscope, was cooled to 30 K within the magneticlations do not take into account the effects of partial lateral
field at 0.5 mT in order to avoid the effect of intrinsic pin- coherence and inelastic scattering.
ning at lower temperatu®The magnetic field, generated by ~ Then, the image features corresponding to different azi-
the coils of the special magnetic stage, was always kept orimuth angles can be analyzed, in order to check if we can
ented parallel to the columnar defects direction. discriminate between pinned and unpinned vortices. More-
The Bi-2212 superconductor is characterized by an anever, we can also have some hints on the sensitivity of the
isotropy parametey of the order of 200. In this condition, as out-of-focus technique over the vortex orientation.
explained in Sec. 1V, it turns out to be impossible to discrimi- Figures 9, 10, 11, and 12 show out-of-focus images taken
nate between a three dimensional anisotropic structure andad the three different values of defocus at the same specimen
layered one, because of the almost negligible value of theegion, for different azimuth angle8 (8=360°, 3=315°,
current density along theaxis of the material. Therefore, in 8=270°, andB8=225°, respectivelyand for a columnar
the following, only the continuous anisotropic modehich  defect tilt 6=65°.
is convenient from the computational point of view, and does At the highest defocus value of 1300 mm, r¢ay, all the
not require approximations such as the limit in the number of/ortices have a similar appearance of bright-dark globules,
layers will be employed in the image interpretation. i.e., the line dividing the bright and dark regions is roughly
The images in the whole residual figures are presented ialigned along the perpendicular to the tilt axis. This result is
the following scheme: from top to bottom images corre-agreement with former simulatiofishowing that at a suffi-
sponding to the three values of the defocus paraméder: ciently large defocus any kinds of vortices have similar con-
Z=1300 mm,(b) Z=530 mm, andc) Z=420 nm are dis- trast shape independent of their structure. However, it can be
played; then, to the left the experimental images and to thaoticed that the contrast is slightly different.
right the simulated ones. By decreasing defocus to 530 mm, rdt), changes in
In Fig. 8, the case of the unpinned vortex is reported forcontrast and shape can be seen in the image. This difference
reference. In this case, the azimuth anglis not significant, is more evident at the small defocus of 420 mm, r@w(in
as the projection of the vortex core on the object plane igarticular in Fig. 19, where the contrast of vortices becomes
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very weak and the vortex shapes are elongated. pancake vortices, we have been able to interpret the main
In spite of the low contrast value, image noise, and lowfeatures of the experimental data, obtained with the new
sensitivity of the phase contrast technique employed, it iigh-voltage field-emission electron microscope.
possible to distinguish between pinned and unpinned vorti- The agreement between experimental data and theoretical
ces, especially when the experimental conditions are accunterpretation, while demonstrating the ability to distinguish
rately calibrated in order to have the maximum of informa-between pinned and unpinned vortices, a result beyond the
tion. In particular, the specimen should be rotated around itperformance of previous generation instruments, confirms
normaln in such a way to have the projected core alignedthe crucial role played by the anisotropy of the specimen
along the tilt axisy, and the defocus value should be kept as(both in the continuous and layered approagliesnfluenc-
small as possible, compatible with a sufficient contrast, inng the shape and the contrast of the phase-contrast images
order to have the maximum sensitivity on the azimuth angleobtained by means of the Fresnel out-of-focus method.

VII. CONCLUSIONS
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