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Bose-Einstein condensation and superfluidity of a dilute Bose gas in a random potential

Michikazu Kobayashi and Makoto Tsubota
Department of Physics, Osaka City University, Sumiyoshi-Ku, Osaka 558-8585, Japan

~Received 15 February 2002; revised manuscript received 12 August 2002; published 18 November 2002!

There is a growing interest in the relation between Bose-Einstein condensation~BEC! and the superfluidity.
A Bose system confined in random media such as porous glass is suitable for studying this relation because
BEC and superfluidity can be suppressed and controlled in such a disordered environment. However, it is not
clear how this relation is affected by disorder and there are few theoretical studies that can be quantitatively
tested by experiment. In this work we develop a dilute Bose gas model with a random potential that takes into
account the pore-size dependence of porous glass. Then we compare our model with the measured low-
temperature specific heat, condensate density, and superfluid density of4He in Vycor glass. This comparison
uses no free parameters. We predict phenomena at low temperatures: First, the random potential causes a
T-linear specific heat instead of theT3 dependence that is usually caused by phonons. Second, the BEC can
remain even when the superfluidity disappears at low densities. Third, the system makes a reentrant transition
at low densities; that is, the superfluid phase changes to the normal phase again as the temperature is reduced.
This reentrant transition is more likely to be observed when the strength of the random potential is increased.

DOI: 10.1103/PhysRevB.66.174516 PACS number~s!: 67.40.2w, 05.30.Jp, 64.60.Cn
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I. INTRODUCTION

Bose-Einstein condensation~BEC! and the superfluidity
of liquid 4He in random environments including Aerogel a
Vycor glass are active problems in quantum fluid research
particular, finding out how spatial confinement affects t
Bose fluid has stimulated both experimental and theoret
studies.

Below thel temperature of 2.17 K, liquid4He enters a
superfluid state and behaves as though it has no visco
Superfluidity is a macroscopic quantum phenomenon as
as superconductivity, and understanding both has been o
the major goals of quantum statistical physics. The vari
observations of superfluidity was successfully explained
the phenomenological two fluid model,1 which is based on
the idea that the system consists of an inviscid superfluid
a viscous normal fluid. On the other hand, the lambda tr
sition had been thought to be caused by BEC, which w
confirmed by neutron scattering experiments.2 With a BEC, a
macroscopic number of particles occupies a single part
ground state and is described by a macroscopic wave f
tion. The inviscid superflow can be described by this wa
function.3 However, the relation between BEC and superfl
idity is not completely understood. Although superfluidi
and BEC are closely related to each other, one is not ne
sary or sufficient for the other. For example, in a tw
dimensional Bose system, Kosterlitz and Thouless pro
that superfluidity can exist even without BEC,4 and the su-
perfluidity was actually observed in4He films.5 The Bose
system in a random environment might be another good
ample for studying the relation between BEC a
superfluidity.6,7 This system has received considerable att
tion because localization effects allow condensed particle
belong to the normal fluid rather than to the superfluid, a
BEC can separate from the superfluid. The phase diagra
this system has been discussed, showing a specific nons
fluid phase. Thus studies of this system can reveal a rela
between BEC and superfluidity.

Porous glass such as Vycor is often used as a ran
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media in experimental studies. Vycor glass is porous fr
30% to 70%, containing wormholelike pores, the charac
istic diameters of which vary from 30 to 100 Å. By adjustin
the pore size and the adsorbed4He coverage, we can chang
the density of 4He and the superfluid transition. By usin
torsional oscillators, Reppy and co-workers8,9 showed inter-
esting features as various pore sizes of Vycor glass or co
ages were observed, particularly the behavior of the su
fluid critical temperature and the temperature dependenc
the superfluid density. The superfluid component has a t
dimensional behavior when the pore size of Vycor glass
large, and becomes three dimensional as the pore siz
reduced. The superfluid density in such porous glass
smaller than that of bulk4He and its critical temperature
decreases with the coverage. Below a certain coverage
superfluid density can no longer exist, even near 0 K. Th
results show that superfluidity is broken by the random
vironment. It is also important to find out how disorder a
fects the BEC. BEC and its elementary excitation in liqu
4He can be observed by neutron scattering. Bulk4He has
typical excitations such as those of phonons, maxons,
rotons.1 There are collective excitations on BEC, all excit
tions except for phonons being absent above the critical t
perature. Dimeoet al.10 and Plantevinet al.11 used neutron
scattering and a torsional oscillator to measure the elem
tary excitations and the superfluid transition, respectively
4He in porous glass. Surprisingly, the dispersion curve
porous glass was the same as that in the bulk, which me
that the disorder does not affect the elementary excitatio
Furthermore, these elementary excitations were obse
even above the superfluid critical temperature. Hence
BEC might persist in a disordered system even above
superfluid critical temperature. These results are not yet
derstood completely; thus the exact relationship betw
BEC and superfluidity remains puzzling.12

This problem is also interesting from the following the
retical standpoint. In a Bose system confined in a rand
media, the long-range-order correlation due to BEC c
compete with the disorder, so that the BEC critical tempe
©2002 The American Physical Society16-1
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ture can be reduced. Huang and Meng proposed a mode
a three-dimensional dilute Bose gas in a random potent13

that assumed a small coverage of4He in Vycor glass . Be-
cause it is difficult to formulate the random potential for t
porous glass, they used a delta-functional impurity poten
and that analyzed their model using the Bogoliubov trans
mation and taking an ensemble average. They found
both BEC and superfluidity are depressed by the rand
potential, and that the superfluidity disappears below a c
cal density, even at 0 K, which is qualitatively consiste
with the observations by Reppy and co-workers. They a
predicted a reentrant transition at low densities; that is,
superfluid phase enters a normal phase again with decrea
temperatures. However, the random potential of their mo
does not include the pore size, and thus it is difficult
quantitatively compare to experimental results for a range
pore sizes. Another model is the Bose Hubbard model w
the random potential. By considering the transfer energy,
on-site repulsion, and the random potential, Fisheret al.14

found that the Bose glass phase can exist with the super
phase and the Mott insulating phase. The Bose glass pha
similar to the Anderson insulating phase15 in metal. In the
Bose glass phase, the condensed particles are localized
thus do not contribute to superfluidity. Thus the Bose gl
phase could influence the collective excitations even ab
the superfluid critical temperature. However, the theoret
excitation energy16 for the Bose glass phase disagrees w
measurements from neutron scattering experiments,11 so it is
not yet clear whether the Bose glass phase has actually
detected. Finally, it should be noted that Huang and Men
model cannot describe the Bose glass phase because th
semble average makes the system uniform.

Few theoretical studies of this random system can
quantitatively compared to the experiment. Thus, in t
work, we improve Huang and Meng’s model13 by adding the
size dependence of the random potential instead of u
their the delta-functional potentials. The strength of the r
dom potential can be estimated by comparing calculated
experimental critical coverages below which the superfl
density disappears, even at 0 K. As a result, our model ha
free parameters and can be used for quantitative compari
to experimental data. This enables us to determine whe
or not our picture of the three-dimensional dilute Bose ga
a random potential is applicable to a real system. Our form
lation cannot address this question at high temperatures
to the high number of thermally excited quasiparticles. As
as the condensate density is almost independent of temp
ture at low temperatures, however, our formulation wo
well, leading to the following results.~1! The specific heat
agrees quantitatively with experimental data at low tempe
tures.~2! Because of the random potential, the specific h
is not proportional toT3, as occurs for phonons, but toT.
Furthermore, by obtaining the condensate density and
superfluid density, we found the following.~3! When the
total density is sufficiently low, BEC can persist even wh
the superfluid density disappears below that critical cov
age.~4! The random potential causes a reentrant transitio
the superfluid phase. Finally, we show why decreasing
open pore density of the Vycor glass should allow t
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reentrant phase to be detected experimentally
A brief summary of our paper is as follows. In Sec. II, w

describe our model of the dilute Bose gas in a random
tential, and derive the partition function. Section III tests o
model by quantitatively comparing calculated to experime
tal specific heats. In Sec. IV, the BEC density and the sup
fluid density are obtained and their characteristics are
cussed. Section V contains a discussion and conclusions

II. MODEL

Superfluid 4He adsorbed in Vycor glass can be model
by a three-dimensional dilute Bose gas in a random exte
potential.13 The grand canonical Hamiltonian is

Ĥ2mN̂[K̂5E dx3Ĉ†~x!F2
\2

2m
“

21U~x!2mGĈ~x!

1
v0

2 E dx3Ĉ†~x!Ĉ†~x!Ĉ~x!Ĉ~x!, ~1!

whereĈ(x) is the field operator for Bose particles of ma
m, N̂5*dx3Ĉ†(x)Ĉ(x) is the number operator,m is the
chemical potential, andU(x) is the external random potentia
that represents the effect of Vycor glass. The first term of
Hamiltonian is the kinetic energy and the external potent
whereas the second term refers to the hard-sphere intera
between particles, withv054pa\2/m being the coupling
constant with thes-wave scattering lengtha. This repulsive
interaction prevents all particles from being localized at
minimum ofU(x). This has similarities to the Fermi syste
with disorder;15,17,18for example, fermions cannot be loca
ized in a single orbital in space due to the Pauli exclus
principle. Therefore, the fermion system is stable even if i
free from the repulsive interaction. On the other hand,
prevent the system from collapsing into the minimum
U(x), the Bose system should include a repulsive inter
tion. This makes the problem more complicated than tha
the Fermi system.

Proceeding in a standard fashion, we introduce the f
particle annihilation and creation operatorsâk and âk

† . We
assume that the level withk50 is macroscopically occupied
with an occupation numberN0, soâ0 andâ0

† are replaced by
a c numberAN0. By making a Fourier transformation an
neglecting all off-diagonal terms Ukâk8

† âk9 and

v0âk
†âk8

† âk9âk- , we obtain

K̂eff5VS 2mn01
1

2
v0n0

21
n

V
U0D

1(
kÞ0

F\2k2

2m
2m1v0~n1n0!G âk

†âk

1An0

V (
kÞ0

~Ukâk
†1U2kâk!

1
1

2
v0n0(

kÞ0
~ âk

†â2k
† 1âkâ2k!, ~2!
6-2
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BOSE-EINSTEIN CONDENSATION AND . . . PHYSICAL REVIEW B66, 174516 ~2002!
whereV is the volume of the system,n05N0 /V is the num-
ber density of condensate, andUk is the Fourier transforma
tion of U(x). By neglecting the off-diagonal terms, we a
neglecting the interactions between the excited particle
the random potential and that between pairs of excited
ticles; these become important as the temperature rises
the condensate density decreases. Hence this approxim
is poor when many particles are thermally excited. Nevert
less, this approximation is useful at low temperatures wh
the condensate density is almost independent of the temp
ture. All results here are obtained for these low temperatu

This Hamiltonian can be diagonalized by the Bogoliub
transformation

âk5
ĉk1gkĉ2k

†

A12gk
2

1gk . ~3!

Then the coefficientsgk and gk and the quasiparticle spec
trum vk are given by

gk52j211Aj~j12!, ~4a!

gk52An0

V

Uk

~j12!v0n0
, ~4b!

vk5v0n0Aj~j12!, ~4c!

j5
\2k2

2mv0n0
1D, D5

v0n02m

v0n0
. ~4d!

Next, we take an ensemble average to quench the ran
potential. The random potential simulates Vycor glass wit
characteristic pore sizer p as follows. The quenched potenti
Uk may decay above the characteristic wave numberkp
52p/r p . Thus we assume the averaged potential

1

V
^UkU2k&av5R0expF2

k2

2kp
2G , ~5!

where av denotes the ensemble-average.R0, with dimension
(energy)2(length)3, is the characteristic strength of the ra
dom potential. Equation~5! makes our model completel
different from Huang and Meng’s, and we will show that t
results are also different. The coherence length of the BE
thought to be from hundreds to thousands of Å, whereas
spatial scale of disorder is the pore size in the glass, whic
dozens of Å. Hence the macroscopic wave function of B
is not sensitive to disorder in and between pores, but ins
depends on the disorder averaged over the coherence le
Hence the ensemble-averaged system can become n
uniform. For a uniform Bose system, it has been proven
the elementary excitation spectrum becomes the gap
Goldstone mode.19 Thus we setD50 in Eq. ~4d!.

The resultant diagonalized and ensemble-averaged Ha
tonian is

K̂eff5VS 2mn01
n

V
U01e11eRD1(

kÞ0
\vkĉk

†ĉk ,

~6a!
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2m
kAk2116pan0, ~6b!

e15
2pan0

2\2

m F11
128

15Ap
An0a3G , ~6c!

eR5
mAan0

3/2R0

4Ap\2 F2e2a~514a!H 12erf~A2a%

1A 2

pa
~11a!G , ~6d!

a5
4pan0

kp
2

, ~6e!

wheree1 is the hard sphere interaction energy at 0 K, sim
larly, eR is that for the random potential. The quasipartic
spectrumvk is the same as that in the hard sphere Bose
model7 and is independent of the random potential. This
dependence is confirmed by neutron scatter
experiments,11 which justifies the above assumption ofD
50; conversely, ifDÞ0, the spectrum would depend on th
random potential.

This Hamiltonian enables us to obtain the grand partit
function Q5Tr$exp(2bK̂)% and various physical quantities
The condensate density is defined by the relation

n05n2
1

V (
kÞ0

^âk
†âk&, ~7!

wheren is the particle number density. The second term r
resents the noncondensate particle number as

1

V (
kÞ0

^âk
†âk&5n11nR , ~8a!

n15
8

3Ap
~n0a!3/21

4

Apl3
E

0

`

dt
t~ t21u/2!

At21u$etAt21u21%
,

~8b!

nR5
m2R0

8p3/2\4
An0

a Fe2a~114a!$12erf~A2a!%22A2a

p G ,
~8c!

l5A2pb\2

m
, u5

8pa\2bn0

m
, t25

\2b

2m
k2. ~8d!

Here n1 is the noncondensate density excited by the h
sphere interaction,nR is the density due to the scattering
condensate particles with the random potential, andl is the
thermal de Broglie wave length. Whena vanishes,nR be-
comes infinite. This means that the system would collaps
there were no repulsive interactions between particles.

Because superfluidity is described by the two fluid mod
the particle densityn consists of the normal fluid densitynn
and the superfluid densityns . The superfluid densityns can
6-3
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be calculated by linear response theory.20 Because of its vis-
cosity, only the normal fluid responds to a small, appl
velocity field. Thus the normal fluid density can be defin
by the response of the momentum densityj i(x,t) to the ex-
ternal velocity fieldv i(x,t). Linear response theory gives th
relations

j i~x,t !5x i j ~x,t !v j~x,t !, ~9a!

x i j ~x,t !5^@ j i~x,t !, j j~0,0!#&, ~9b!

j i~x,t !5
\

2i H Ĉ†~x,t !
]Ĉ~x,t !

]xi
2

]Ĉ†~x,t !

]xi
Ĉ~x,t !J ,

~9c!

Ĉ~x,t !5ei( Ĥ2mN̂)t/\Ĉ~x!e2 i (Ĥ2mN̂)t/\, ~9d!

where Ĉ(x,t) is the Heisenberg field operator. The sta
susceptibilityx i j (k) is defined as

x i j ~x,t !5E dv

2p

d3k

~2p!3
e2 ivteik•xx i j ~k,v!, ~10a!

x i j ~k!5 lim
v→0

x i j ~k,v!. ~10b!

Because of the rotational invariance, the static susceptib
x i j (k) can be written

x i j ~k!5
kikj

k2
A~k!1S d i j 2

kikj

k2 D B~k!, ~11!

where A(k) and B(k) are the longitudinal and transvers
parts, respectively. The transverse susceptibilityB(0) is the
normal fluid mass density. The superfluid number densityns
is n2B(0)/m. The susceptibilityB(0) can be calculated by
the Bogoliubov transformation in Eq.~3!. After some tedious
calculations, the resultant superfluid density is given by

ns5n2nn12nnR , ~12a!

nn15
8

3Apl3
E

0

`

dt
t4e2tAt21u

~12e2tAt21u!2
, ~12b!

nnR5
4

3
nR , ~12c!

wherenn1 is the normal fluid density due to the elementa
excitations, andnnR is that due to scattering with the rando
potential. The densitynn1 can be also obtained using Kha
latnikov’s method that is based on Galilean invariance.21 The
relationnnR54/3nR5nR11/3nR shows that the random po
tential causes the larger normal fluid density than the n
condensate density; some condensate particles are cap
by the random potential to participate in the normal flu
This makes it possible to destroy superfluidity even at 0
whennnR becomes comparable ton. This formulation can be
used to obtain various physical quantities including the c
densate density, the superfluid density, and the specific h
17451
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III. COMPARISON WITH EXPERIMENTS

In this section, we compare the calculated specific h
and the superfluid density with experimental results. Qua
tative agreement is shown to be good at low temperatu
which supports our assumption of a dilute Bose gas in
random potential. Furthermore, we show that the rand
potential leads to as-yet unobserved behavior of the spe
heat.

To make a quantitative comparison, we give the followi
numerical values to the parameters:m.6.6310227 kg and
a.5310210 m are the mass and thes-wave scattering
length of a4He atom. Other parameters are from the expe
ments of Reppy.8 The volumeV of open pores in the Vycor
glass~about 40% of the total volume of the Vycor glass! is
about 1 cm3. The particle densityn of 4He inside the Vycor
glass is estimated as follows. In Vycor glass, the atoms
adsorbed and fully cover the surfaces of the open pores
to the van der Waals attraction. The pore area is ab
108 m2/m3. The rest of the atoms, which do not participa
in the first-layer solid, can behave as a dilute gas inside
pores. The particle densityn of the dilute gas is obtained b
subtracting the adsorbed amount from the total amount. T
density is estimated to be from 0.001% to 70% of the den
of bulk liquid 4He nbulk;2.131028/m3. Because the first
layer of 4He adsorbed on the surfaces cannot move and
haves as a solid, we assume the pore size 30 Å of Vycor g
is effectively reduced by 2a. Thus r p is estimated to be 20
Å. The last parameterR0, which is the strength of the ran
dom potential, can be fixed by comparing to experime
Shown in Fig. 1~a! are the data of zero temperature sup
fluid signals taken in an experiment that used a torsio
oscillator~Fig. 12 of Ref. 8!. Because the superfluid compo
nent does not contribute to the moment of inertia, the re
nant frequency, and the period of oscillation differ fro
those without superfluid. The period differenceDP is ap-
proximately proportional to the superfluid component. He
the superfluid density is nearly proportional toDP and dis-
appears at a coverage of 17.5 mg. Figure 1~b! shows the
superfluid density at 0 K from Eq.~12!. As in the experi-
ment, the superfluid density becomes zero at a certain c
erage that depends onR0. Thus the value ofR0 can be fixed
using the comparison with Fig. 1~a!; i.e., R055
310275 J2 m3. Here we defineRw[AR0n, which is the
single particle energy converted fromR0. In the Vycor glass,
Rw /kB is about 0.001;1 K. Just above the critical coverag
the superfluid density increases linearly for both the exp
ment and the calculation; however, their slopes cannot
compared because the amplitude ofns is unknown in the
experiment.

Because all parameters are now fixed, we will quant
tively compare calculations to experiments. The specific h
can be obtained from temperature differentiation of the f
energy,

V5V11VR , ~13a!

V15V~2mn01e1!1
4V

Apbl3E0

`

dt$t2log@12e2tAt21u#%,

~13b!
6-4
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VR5VS eR1
n

V
U0D . ~13c!

whereV1 is the free energy of the elementary excitation a
the hard sphere interaction, andVR is the free energy from
the random potential. Figure 2 compares our results to d
of low temperature specific heat taken from Fig. 1 of Ref
In Fig. 2~a!, which shows the data for high density, the de
sity n is fixed from the experimental coverage, whereas
fix the density from the superfluid critical temperature in F
2~b! at low density. This is because we have no informat
about the data on the coverage. Figure 2~b! also shows the
superfluid density. The theoretical results agree quan
tively with experiment without using free parameters. Abo
1.0 K in Fig. 2~a!, the calculated condensate density beg
to decrease rapidly; here our criterion of constant conden
density fails, which likely causes the discrepancy with e
periment. However, Fig. 2~b! shows that the calculated sp
cific heat agrees with experiment up to temperatures nea
superfluid critical temperature; in this temperature regi
the calculated condensate density hardly decreases.
means that the system is more dilute than that of Fig. 2~a!
and thus is affected by the random potential rather than

FIG. 1. Superfluid signals of experiments~a! and calculations
~b! near 0 K.DP is the resonant period difference in a torsion
balance experiment, which is approximately proportional to the
perfluid density~Ref. 8!.
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elementary excitations. We discuss this in the next sect
Nevertheless, these comparisons show that our model is
curate at low temperatures.

Our model predicts an effect at low temperature that
due to the random potential but has not yet been obser
This is shown in Fig. 3, which is the log-log plot of Fig. 2~a!.
When the system is free from the random potential, the s
cific heat should increase toT3 because of the contribution
from the phonons. However, with a random potential, t

FIG. 3. The log-log plot of Fig. 2~a!. Data of the specific heat a
R050(n/nbulk50.35). Two lines for}T and}T3 are added.

l
-

FIG. 2. The specific heat data from in experiments~plot! and
calculations~line!. In ~a!, experimental data are given by Fig. 1 o
Ref. 8. The circles, triangles, and squares, respectively, corres
to full pores (s51), s50.780 and 0.636. Heres is the ratio of the
coverage to the full pore coverage. In~b!, calculated and experi-
mental superfluid densities are compared (Tc50.163 K).
6-5
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dependence is linear inT at low temperatures. This mean
that at low temperatures, the contribution from the rand
potential is larger than that from the elementary excitatio
~phonons!. The free energyVR in Eq. ~13! depends on the
temperature only through the condensate densityn0 . VR is
the energy from the scattering of the condensate parti
with the random potential, and the resultant specific hea
given by the energy that the condensate particles need to
out of the random potential. An experimental observation
this T-linear dependence might clearly identify the influen
from the random potential.

IV. CONDENSATE DENSITY AND SUPERFLUID DENSITY

This section describes some characteristic behavior of
condensate densityn0 and the superfluid densityns derived
from our model. Figure 4 shows the dependence ofn0 andns
on temperature and density. Bothn0 and ns decrease with
decreasing density, even at 0 K. This means that the effe
the random potential onn0 and ns becomes larger as th
density is reduced. Figure 4 clearly shows the difference
tweenns and n0. Below the critical density, the superflui

FIG. 4. Temperature and density dependence ofn0 ~a! andns ~b!
at R055.0310275 J2 m3.

FIG. 5. Temperature dependence ofns at low temperature and
low density. In this regime, the superfluid densityns goes to zero
with a decrease of temperature~reentrant transition!.
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density disappears, although the condensate persists.
situation indicates that the condensate particles cannot m
as a superfluid because they are trapped by the random
tential. We expect that this theoretical result will be co
firmed by measurements of condensate density.

Figure 5 shows the temperature dependence of the su
fluid density just before superfluidity disappears. This figu
shows the reentrant transition at which the superfluid den
ns goes to zero with a decrease of temperature. In this t
perature region, the condensate density is almost cons
hence our formulation should work well in accordance w

FIG. 6. Temperature dependence ofnn1 andnnR near the reen-
trant distribution atn56.2531025 nbulk ~dashed line in Fig. 5!.

FIG. 7. Density dependence ofTmax andDns for two values of
R0 . Tmax is the temperature that maximizes the superfluid den
ns , andDns5ns(T5Tmax)2ns(T50).
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the criterion described in Sec. II. This reentrant transition
understood as follows. The condensate depletionnR of Eq.
~8c! comes from the scattering of the condensate parti
with the random potential. This decreases withn0 as the
temperature rises, so thatnnR54/3nR of Eq. ~12c! also de-
creases. As shown in Fig. 6, the magnitude of this decre
in nnR exceeds the increase innn1 of Eq. ~12b!, which is the
normal fluid density due to the elementary excitations, in
very low temperature regionT<0.5 mK. In other words,
condensate particles that are trapped by the random pote
at lower temperatures can escape at higher temperature
thus participate in the superfluidity. This reentrant transit
has not been observed experimentally, probably becau
should only occur at very low densities and low tempe
tures. However, large values ofR0 can make the reentran
transition observable as follows. We define the tempera
Tmax as that which maximizes the superfluid densityns , and
define Dns[ns(T5Tmax)2ns(T50). Figure 7 shows the
density dependence ofTmax and Dns . Both variables in-
crease withR0. Therefore, the reentrant transition is mo
likely to be measured at largerR0. The parameterR0 is the
strength of the random potential over the entire space,
one way to increaseR0 is to decrease the open pore dens
of the Vycor glass.

V. CONCLUSIONS

The present paper describes the dilute Bose gas syste
a random potential. The outcomes of our studies are as
lows. By including the pore size dependence of Vycor gl
,

te

py

.
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in the random potential, our model could closely match
experimental conditions of liquid4He in Vycor glass. We
fixed the strength of the random potential by equating
theoretical and experimental critical coverages below wh
the superfluid density at 0 K vanishes. No other paramete
could be adjusted, and thus we could quantitatively comp
theory to experiment for other physical quantities.

First, we showed that the calculated specific heat for V
cor glass quantitatively agrees with measurements. This
dicates that liquid4He in Vycor glass behaves as a dilu
Bose gas in a random potential. For low temperatures,
calculated specific heat was linear inT because of the ran
dom potential. Second, the BEC was shown to persist e
when superfluidity disappears below the critical density.
nally, we showed that a reentrant transition of the superfl
phase is more likely to be observed experimentally by
creasing the strength of the random potential.

Because we neglected interactions between pairs of
cited particles and between excited particles and the ran
potential, this model does not apply to systems at high te
peratures. To overcome this limitation, we are improving
model to include these interactions, and will report on t
more general model in the near future.

ACKNOWLEDGMENTS

M.T. acknowledges support by a Grant-in-Aid for Scie
tific Research~Grant No. 12640357! by the Japan Society fo
the Promotion of Science.
-

e

er,

.

1D.R. Tilley and J. Tilley,Superfluidity and Superconductivity, 3rd
ed. ~Institute of Physics Publishing, Bristol, 1990!.

2P.E. Sokol, inBose-Einstein Condensation, edited by A. Griffin,
D.W. Snoke, and S. Stringari~Cambridge University Press
Cambridge, 1995!, p. 51.

3K. Huang, Statistical Mechanics, 2nd ed. ~Wiley New York,
1987!.

4J.M. Kosterlitz and D.J. Thouless, J. Phys. C6, 1181~1973!.
5D.J. Bishop and J.D. Reppy, Phys. Rev. Lett.40, 1727~1978!.
6N. Trivedi, in Computer Simulation Studies in Condensed Mat

Physics V~Springer, Berlin, 1993!; W. Krauth, N. Trivedi, and
D. Ceperley, Phys. Rev. Lett.67, 2307~1991!.

7K. Huang, inBose-Einstein Condensation~Ref. 2!, p. 31.
8J.D. Reppy, J. Low Temp. Phys.87, 205 ~1992!.
9B.C. Crooker, B. Hebral, E.N. Smith, Y. Takano, and J.D. Rep

Phys. Rev. Lett.51, 666 ~1983!.
10R.M. Dimeo, P.E. Sokol, C.R. Anderson, W.G. Stirling, K.H

Andersen, and M.A. Adams, Phys. Rev. Lett.81, 5860~1998!.
r

,

11O. Plantevin, B. Fa˚k, H.R. Glyde, N. Mulders, J. Bossy, G. Cod
dens, and H. Schober, Phys. Rev. B63, 224508~2001!.

12C.J. Pethick and H. Smith,Bose-Einstein Condensation in Dilut
Gases~Cambridge University Press, Cambridge, 2002!.

13K. Huang and H.F. Meng, Phys. Rev. Lett.69, 644 ~1992!.
14M.P.A. Fisher, P.B. Weichman, G. Grinstein, and D.S. Fish

Phys. Rev. B40, 546 ~1989!.
15P.W. Anderson, Phys. Rev.109, 1492~1958!.
16W. Krauth, N. Trivedi, and D. Ceperley, Phys. Rev. Lett.67, 2307

~1991!.
17J.S. Langer and T. Neal, Phys. Rev. Lett.16, 984 ~1966!.
18L.P. Gor’kov, A.I. Larkin, and D.E. Khmel’nitskii, Pis’ma Zh
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