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There is a growing interest in the relation between Bose-Einstein conden@E@) and the superfluidity.
A Bose system confined in random media such as porous glass is suitable for studying this relation because
BEC and superfluidity can be suppressed and controlled in such a disordered environment. However, it is not
clear how this relation is affected by disorder and there are few theoretical studies that can be quantitatively
tested by experiment. In this work we develop a dilute Bose gas model with a random potential that takes into
account the pore-size dependence of porous glass. Then we compare our model with the measured low-
temperature specific heat, condensate density, and superfluid denékie af Viycor glass. This comparison
uses no free parameters. We predict phenomena at low temperatures: First, the random potential causes a
T-linear specific heat instead of tA€ dependence that is usually caused by phonons. Second, the BEC can
remain even when the superfluidity disappears at low densities. Third, the system makes a reentrant transition
at low densities; that is, the superfluid phase changes to the normal phase again as the temperature is reduced.
This reentrant transition is more likely to be observed when the strength of the random potential is increased.
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I. INTRODUCTION media in experimental studies. Wcor glass is porous from
30% to 70%, containing wormholelike pores, the character-
Bose-Einstein condensatigBEC) and the superfluidity istic diameters of which vary from 30 to 100 A. By adjusting
of liquid “He in random environments including Aerogel and the pore size and the adsorb&de coverage, we can change
Wcor glass are active problems in quantum fluid research. lthe density of*He and the superfluid transition. By using
particular, finding out how spatial confinement affects thetorsional oscillators, Reppy and co-worketshowed inter-
Bose fluid has stimulated both experimental and theoreticatsting features as various pore sizes of Wcor glass or cover-
studies. ages were observed, particularly the behavior of the super-
Below the\ temperature of 2.17 K, liquidHe enters a fluid critical temperature and the temperature dependence of
superfluid state and behaves as though it has no viscositthe superfluid density. The superfluid component has a two-
Superfluidity is a macroscopic quantum phenomenon as wetlimensional behavior when the pore size of Wcor glass is
as superconductivity, and understanding both has been one leffge, and becomes three dimensional as the pore size is
the major goals of quantum statistical physics. The variouseduced. The superfluid density in such porous glass is
observations of superfluidity was successfully explained bysmaller than that of bulk*He and its critical temperature
the phenomenological two fluid modelhich is based on decreases with the coverage. Below a certain coverage, the
the idea that the system consists of an inviscid superfluid anguperfluid density can no longer exist, even near 0 K. These
a viscous normal fluid. On the other hand, the lambda tranresults show that superfluidity is broken by the random en-
sition had been thought to be caused by BEC, which wasironment. It is also important to find out how disorder af-
confirmed by neutron scattering experimenwith a BEC, a  fects the BEC. BEC and its elementary excitation in liquid
macroscopic number of particles occupies a single particléHe can be observed by neutron scattering. Bt#le has
ground state and is described by a macroscopic wave fundypical excitations such as those of phonons, maxons, and
tion. The inviscid superflow can be described by this waverotons! There are collective excitations on BEC, all excita-
function® However, the relation between BEC and superflu-tions except for phonons being absent above the critical tem-
idity is not completely understood. Although superfluidity perature. Dimeat all® and Planteviret al!! used neutron
and BEC are closely related to each other, one is not neceseattering and a torsional oscillator to measure the elemen-
sary or sufficient for the other. For example, in a two-tary excitations and the superfluid transition, respectively, of
dimensional Bose system, Kosterlitz and Thouless provedHe in porous glass. Surprisingly, the dispersion curve in
that superfluidity can exist even without BEGnd the su- porous glass was the same as that in the bulk, which means
perfluidity was actually observed ifHe films® The Bose that the disorder does not affect the elementary excitations.
system in a random environment might be another good ex-urthermore, these elementary excitations were observed
ample for studying the relation between BEC andeven above the superfluid critical temperature. Hence the
superfluidity®’ This system has received considerable attenBEC might persist in a disordered system even above the
tion because localization effects allow condensed particles teuperfluid critical temperature. These results are not yet un-
belong to the normal fluid rather than to the superfluid, andlerstood completely; thus the exact relationship between
BEC can separate from the superfluid. The phase diagram &EC and superfluidity remains puzzlifg.
this system has been discussed, showing a specific nonsuper-This problem is also interesting from the following theo-
fluid phase. Thus studies of this system can reveal a relatioretical standpoint. In a Bose system confined in a random
between BEC and superfluidity. media, the long-range-order correlation due to BEC can
Porous glass such as Wcor is often used as a randoepmpete with the disorder, so that the BEC critical tempera-
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ture can be reduced. Huang and Meng proposed a model foeentrant phase to be detected experimentally

a three-dimensional dilute Bose gas in a random potéhtial A brief summary of our paper is as follows. In Sec. II, we
that assumed a small coverage e in Wcor glass . Be- describe our model of the dilute Bose gas in a random po-
cause it is difficult to formulate the random potential for thetential, and derive the partition function. Section Il tests our
porous glass, they used a delta-functional impurity potentialinodel by quantitatively comparing calculated to experimen-
and that analyzed their model using the Bogoliubov transforial specific heats. In Sec. IV, the BEC density and the super-
mation and taking an ensemble average. They found th4tuid density are obtade and .the|r c_:haracterlstlcs are dis-
both BEC and superfluidity are depressed by the randorfuUssed. Section V contains a discussion and conclusions.
potential, and that the superfluidity disappears below a criti-

cal density, even at 0 K, which is qualitatively consistent ll. MODEL

with the observations by Reppy and co-workers. They also
predicted a reentrant transition at low densities; that is, th%
superfluid phase enters a normal phase again with decreas(iﬁét
temperatures. However, the random potential of their mod
does not include the pore size, and thus it is difficult to A
guantitatively compare to experimental results for a range of H—uN=K= f dx3¥T(x)
pore sizes. Another model is the Bose Hubbard model with

the random potential. By considering the transfer energy, the vo ~ ~ ~ .
on-site repulsion, and the random potential, Fisaeall* +§f ;T )W ()P ()P (x), (1)
found that the Bose glass phase can exist with the superfluid

phase and the Mott insulating phase. The Bose glass phasejfiere ¥/ (x) is the field operator for Bose particles of mass

similar to the Anderson insulating phasén metal. In the m N=fdx3\iﬁ(x)‘if(x) is the number operatoy is the

Bose glass phase, the condensed particles are localized a(r:]rqlemical potential, and (x) is the external random potential

thus do not cpntnbute to superflu_ldlty. Thug the Bose glas?hat represents the effect of Wcor glass. The first term of the
phase could influence the collective excitations even abov amiltonian is the kinetic energy and the external potential

the superfluid critical temperature. However, the theoreucawhereas the second term refers to the hard-sphere interaction

excitation energ}f for the Bose glass phase disagrees W'thbetween particles, withy,=4ma#2/m being the coupling

measurements from neutron scattering expenm’érﬁe,lt IS 8 nstant with thes-wave scattering Iengtb. This repulsive

not yet clear whether the Bose glass phase has actually bem eraction prevents all particles from being localized at the
detected. Finally, it should be noted that Huang and Meng’s . P P 9

model cannot describe the Bose glass phase because the gyhimum ofU(x). This has similarities to the Fermi system

P IRE 15,17,18 ; _
semble average makes the system uniform. with disorder, for example, fermions cannot be local
Few theoretical studies of this random system can be

ized in a single orbital in space due to the Pauli exclusion
quantitatively compared to the experiment. Thus, in thisprinciple. Therefore, 'ghe f_ermion_system is stable even if it is
work, we improve Huang and Meng's mo&fsby adding the free from the repulsive |nteract|o_n. Qn the othe_r.hand, to
size dependence of the random potential instead of usin revent the system from coIIap_smg into the minimum of
their the delta-functional potentials. The strength of the ran-; (), the Bose system should include a_repulswe Interac-
dom potential can be estimated by comparing calculated antthon' Th's. makes the problem more complicated than that of
experimental critical coverages below which the superﬂuioI e Fermi system. . .
density disappears, even at 0 K. As a result, our model has no P'roceed|r.1g' |n. a standard f'ashlon, weAmtrodlﬂc;‘e the free
free parameters and can be used for quantitative comparisoRgticle annihilation and creation operatass and a, . We
to experimental data. This enables us to determine wheth@ssume that the level witk=0 is macroscopically occupied
or not our picture of the three-dimensional dilute Bose gas irwith an occupation numbé,, soa, andag are replaced by
a random potential is applicable to a real system. Our formua ¢ number\/N_O. By making a Fourier transformation and
lation cannot address this question at high temperatures dll'?eglecting all  off-diagonal  terms Ukélrék” and
to the high number of thermally excited quasiparticles. As far ~i~t ~ - .
as the condensate density is almost independent of temperde2kk &k &, We obtain
ture at low temperatures, however, our formulation works 1 n
well, leading to the following resultg1) The specific heat Reﬁ:\/( — pung+ —vonSJr—Uo)
agrees quantitatively with experimental data at low tempera- 2 \

Superfluid “He adsorbed in Wecor glass can be modeled
a three-dimensional dilute Bose gas in a random external
ential’®> The grand canonical Hamiltonian is

ﬁZ
—__y? _ J
5= VU0~ | T (x)

tures.(2) Because of the random potential, the specific heat 722

. . 3 AgAa

is not proportional toT*, as occurs for phonons, but o + 2 ———u+vg(nN+ng) alak
Furthermore, by obtaining the condensate density and the k7o [ 2m

superfluid density, we found the following3) When the

total density is sufficiently low, BEC can persist even when + \/EZ (Uidf+U_ )

the superfluid density disappears below that critical cover- VZo

age.(4) The random potential causes a reentrant transition of 1

the superfluid ph_ase. Finally, we show why decreasing the + —Uonoz (élétﬂ' aa_y), )
open pore density of the Wcor glass should allow the 2 k%0
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whereV is the volume of the systemgy=Ny/V is the num- 3
ber density of condensate, al is the Fourier transforma- w=5 KV k®+ 16man, (6b)
tion of U(X). By neglecting the off-diagonal terms, we are
neglecting the interactions between the excited particle and 2 222
. . . manyh 128
the random potential and that between pairs of excited par- €= 1+ Jnea|, (60)
ticles; these become important as the temperature rises and m 15V
the condensate density decreases. Hence this approximation
is poor when many particles are thermally excited. Neverthe- m ang’ZRo )
less, this approximation is useful at low temperatures where ER:W —e““(5+4a)) 1—erf( \/ﬂ}
the condensate density is almost independent of the tempera- ™
ture. All results here are obtained for these low temperatures. 2
This Hamiltonian can be diagonalized by the Bogoliubov +\/—(1+a)|, (6d)
transformation Ta
~ E:k—f— yk(A:T_k — 47Tan0

, (6e)

A="— T ) “ 2
Vi—vi kg

Then the coefficients, and g, and the quasiparticle spec- Whereel_is the hard sphere interaction energy at 0 K, si_mi—
trum w, are given by larly, eg is that for the random potential. The quasiparticle

spectrumw, is the same as that in the hard sphere Bose gas

Y=—E—1+VE(E+2), (43  model and is independent of the random potential. This in-
dependence is confirmed by neutron scattering
No Uy experiments? which justifies the above assumption Af
0= Vm, (4b) =0; conversely, ifA#0, the spectrum would depend on the
random potential.
or=voNoVEET2), (40) Th|s Hamiltonian eniables us to.obtaln th('é grand p:?lr.tmon
function Q= Tr{exp(—BK)} and various physical quantities.
h2k? voNo— The condensate density is defined by the relation
&= +A, A=———. (4d)
ZmUOnO Uono
no=n- o . (ala) (7)
Next, we take an ensemble average to quench the random 0 V (G KIS

potential. The random potential simulates Wecor glass with a . . .

characteristic pore sizg, as follows. The quenched potential Wwheren |shthe partlc:je number dgnlsny. Thbe second term rep-

Uy may decay above the characteristic wave numkger resents the noncondensate particle number as

=2mlr,. Thus we assume the averaged potential 1

ATA N\

1 k2 \_/ k;o (akak>—nl+ I’]R, (83)

V<Uku—k>av: ROeX[{ - 2_kp o 2y gl
. . . — (noa)3/2+ J'mdt t(t +o )

where av denotes the ensemble-aver&ge with dimension Ny ,

(energyf(lengthy’, is the characteristic strength of the ran- 3‘/; \/;)‘3 RV G ﬂém— 1}

dom potential. Equatior{5) makes our model completely (8b)

different from Huang and Meng’s, and we will show that the
2a
e (1+4a){1—erf(y2a)}—2 \/7}

: ©)

results are also different. The coherence length of the BECis m’Ry \/@
thought to be from hundreds to thousands of A, whereas tth_Sﬂ_s/ZhA a

spatial scale of disorder is the pore size in the glass, which is (80)
dozens of A. Hence the macroscopic wave function of BEC

is not sensitive to disorder in and between pores, but instead [27p#H? 8mrahi2pn, 728
depends on the disorder averaged over the coherence length. A= o 0= - , t2=%k2. (8d)

Hence the ensemble-averaged system can become nearly
uniform. For a uniform Bose system, it has been proven thaHere n, is the noncondensate density excited by the hard
the elementary excitation spectrum becomes the gaplesphere interactiomg is the density due to the scattering of

Goldstone modé? Thus we set\ =0 in Eq. (4d). condensate particles with the random potential, &ridl the
The resultant diagonalized and ensemble-averaged Hamilhermal de Broglie wave length. Whenvanishesng be-
tonian is comes infinite. This means that the system would collapse if

there were no repulsive interactions between particles.
Because superfluidity is described by the two fluid model,

the particle densityr consists of the normal fluid density,

(68 and the superfluid densitys. The superfluid densitpg can

~ n A
Keﬁ:V —,LLno+ vUO‘l‘Gl‘l’ER +Z ﬁwkaCk,
k#0
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be calculated by linear response the@rgecause of its vis- Ill. COMPARISON WITH EXPERIMENTS
cosity, only the normal fluid responds to a small, applied

velocity field. Thus the normal fluid density can be definedand the superfluid density with experimental results. Quanti-

by the response of the momentum dengjt,t) to thg EX-  tative agreement is shown to be good at low temperatures,
ternal velocity fieldv;(x,t). Linear response theory gives the \yhich supports our assumption of a dilute Bose gas in the

In this section, we compare the calculated specific heat

relations random potential. Furthermore, we show that the random
. otential leads to as-yet unobserved behavior of the specific
106D =x3 (D%, ©a o Y P
e . To make a quantitative comparison, we give the following
Xii (D) =([i(x.1),];(0.01), OB umerical values to the parametens=6.6x 10~ 2’ kg and

. - a=5x10"m are the mass and thewave scattering

IV (x1) _ v (X't)\if(x t) length of a*He atom. Other parameters are from the experi-
X X Y ments of Repp§.The volumeV of open pores in the Wcor

(90 glass(about 40% of the total volume of the Wcor glass

A o L about 1 cm. The particle densityl of “He inside the \Wcor

W (x,t) = el(H=#Ninp (x) @I (H=pN)UA (9d)  glass is estimated as follows. In \Wcor glass, the atoms are

adsorbed and fully cover the surfaces of the open pores due

to the van der Waals attraction. The pore area is about

108 m?/m®. The rest of the atoms, which do not participate

do d% in the first-layer solid, can behave as a dilute gas inside the

Xij (= f - e—lwtelk-x)(ij(k’w), (103 pores. The particle densityof the dilute gas is obtained by

_ fi | .
Ji(x,t)=§|\1”<x,t)

where \if(x,t) is the Heisenberg field operator. The static
susceptibility x;; (k) is defined as

27 (277)3 subtracting the adsorbed amount from the total amount. This
density is estimated to be from 0.001% to 70% of the density
xij (K) = lim xi;(k, ). (100 of bulk liquid *He nyy~2.1x 10?¥m3. Because the first
©—0 layer of “He adsorbed on the surfaces cannot move and be-
Because of the rotational invariance, the static susceptibilit}/@ves as a solid, we assume the pore size 30 A of Vycor glass
xij(K) can be written Is effectively reduced by & Thusr , is estimated to be 20

A. The last parameteR,, which is the strength of the ran-
kik; kikj dom potential, can be fixed by comparing to experiment.
xij(K)=—A(K) +| 6= — | B(k), (11)  Shown in Fig. 1a) are the data of zero temperature super-
k k fluid signals taken in an experiment that used a torsional
where A(k) and B(k) are the longitudinal and transverse oscillator(Fig. 12 of 'Ref. 8. Because the superflujd compo-
parts, respectively. The transverse susceptibBit@) is the ~nent does not contribute to the moment of inertia, the reso-
normal fluid mass density. The superfluid number density hant frequency, and the period of oscillation differ from
is n—B(0)/m. The susceptibilityd(0) can be calculated by those without superfluid. The period differendé is ap-
the Bogoliubov transformation in E¢B). After some tedious proximately proportional to the superfluid component. Here

calculations, the resultant superfluid density is given by ~ the superfluid density is nearly proportional 46> and dis-
appears at a coverage of 17.5 mg. Figutb) shows the

Ng=N—N 1~ NyR, (129  superfluid density at 0 K from Eq12). As in the experi-
ment, the superfluid density becomes zero at a certain cov-
8 the—tNEZ+0 erage that depends &t,. Thus the value oR, can be fixed
Npy= f dt , (12b using the comparison with Fig. (8d); i.e., Ry=5
3ym3Jo (1_e—tm)2 X 107> Pm®. Here we defineR,=Ryn, which is the
single particle energy converted frdRy. In the Wcor glass,
4 Ry /Kg is about 0.00% 1 K. Just above the critical coverage,
Nhr=3NR; (120  the superfluid density increases linearly for both the experi-

ment and the calculation; however, their slopes cannot be
wheren,, is the normal fluid density due to the elementary compared because the amplitude mfis unknown in the
excitations, anah, is that due to scattering with the random experiment.
potential. The density,; can be also obtained using Kha-  Because all parameters are now fixed, we will quantita-
latnikov’s method that is based on Galilean invariaficehe  tively compare calculations to experiments. The specific heat
relationn,g=4/3ng=nr+ 1/3ng shows that the random po- can be obtained from temperature differentiation of the free
tential causes the larger normal fluid density than the nonenergy,
condensate density; some condensate particles are captured
by the random potential to participate in the normal fluid.
This makes it possible to destroy superfluidity even at 0 K

Q=0,+0g, (13a

whenn,,g becomes comparable to This formulation can be Qy=V(— png+e;) + v det{tzmg[l_e—wm]}
used to obtain various physical quantities including the con- \/;,8)\3 0 ’
densate density, the superfluid density, and the specific heat. (13b
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Coverage[m e . .
(b) gelme] FIG. 2. The specific heat data from in experime(pft) and

calculations(line). In (a), experimental data are given by Fig. 1 of
FIG. 1. Superfluid signals of experiment® and calculations Ref. 8. The circles, triangles, and squares, respectively, correspond
(b) near 0 K.AP is the resonant period difference in a torsional to full pores (=1), 0=0.780 and 0.636. Here is the ratio of the
balance experiment, which is approximately proportional to the sucoverage to the full pore coverage. (b), calculated and experi-
perfluid density(Ref. 8. mental superfluid densities are compar@g=0.163 K).

elementary excitations. We discuss this in the next section.
EU ) (139 Nevertheless, these comparisons show that our model is ac-
voo curate at low temperatures.
Our model predicts an effect at low temperature that is
. o due to the random potential but has not yet been observed.
where(), is the frge energy of the glementary excitation andThis is shown in Fig. 3, which is the log-log plot of Fig(a2
the hard sphere Interaction, afitk is the free energy from When the system is free from the random potential, the spe-

of low temperature specific heat taken from Fig. 1 of Ref gé‘ific heat should increase f6° because of the contribution
: - Of he ph . H ith ial, th
In Fig. 2(@). which shows the data for high density. the den- " 1€ Phonons. However, with a random potential, the

sity n is fixed from the experimental coverage, whereas we

QR:V ER+

fix the density from the superfluid critical temperature in Fig. T 0381n, R/ =0.73K
2(b) at low density. This is because we have no information g —0293n R/ =0.40K
about the data on the coverage. Figutb) 2also shows the 2 |0235m, Rk =0.36K
superfluid density. The theoretical results agree quantita- A b 02350 R =0) &
tively with experiment without using free parameters. Above %
1.0 K in Fig. 2a), the calculated condensate density begins = T 1 _7—/'
to decrease rapidly; here our criterion of constant condensate g 01t ,(,;’4‘;/; A
density fails, which likely causes the discrepancy with ex- g == f'"'_,-‘} pd
periment. However, Fig.(®) shows that the calculated spe- @ - 'l AT
cific heat agrees with experiment up to temperatures near the oo =" 7 i
superfluid critical temperature; in this temperature region, 01 T 1
emperature[K]

the calculated condensate density hardly decreases. This
means that the system is more dilute than that of Fig) 2 FIG. 3. The log-log plot of Fig. @). Data of the specific heat at
and thus is affected by the random potential rather than the,=0(n/ny,=0.35). Two lines for<T and=T* are added.
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FIG. 4. Temperature and density dependenag,df) andn, (b)

atRy=5.0x 10" "®* P m?®.
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FIG. 6. Temperature dependencengf andn, near the reen-
trant distribution an=6.25x 10" ° ny, (dashed line in Fig. 6

density disappears, although the condensate persists. This
situation indicates that the condensate particles cannot move
as a superfluid because they are trapped by the random po-

dependence is linear i at low temperatures. This means tential. We expect that this theoretical result will be con-
that at low temperatures, the contribution from the randonfirmed by measurements of condensate density.

potential is larger than that from the elementary excitations Figure 5 shows the temperature dependence of the super-
(phonong. The free energy)y in Eq. (13) depends on the fluid density just before superfluidity disappears. This figure

temperature only through the condensate dengjty(Qy is

shows the reentrant transition at which the superfluid density

the energy from the scattering of the condensate particles, goes to zero with a decrease of temperature. In this tem-
with the random potential, and the resultant specific heat iperature region, the condensate density is almost constant;
given by the energy that the condensate particles need to slieence our formulation should work well in accordance with

out of the random potential. An experimental observation of
this T-linear dependence might clearly identify the influence
from the random potential.

IV. CONDENSATE DENSITY AND SUPERFLUID DENSITY

This section describes some characteristic behavior of the
condensate density, and the superfluid density, derived
from our model. Figure 4 shows the dependence,adindng
on temperature and density. Botl3 and ng decrease with
decreasing density, even at 0 K. This means that the effect of
the random potential om, and ng becomes larger as the

0.12
— -78
o1 || R=5x10 [9°m?) |
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= 7
004 .~ ]
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density is reduced. Figure 4 clearly shows the difference be- o
tweenng and ny. Below the critical density, the superfluid @
4 0.016 .
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FIG. 5. Temperature dependencemfat low temperature and

with a decrease of temperatuieentrant transition
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FIG. 7. Density dependence of,,, and Ang for two values of
low density. In this regime, the superfluid density goes to zero Ry. Tax IS the temperature that maximizes the superfluid density
Ng, andAng=ng(T=Ta) —Ns(T=0).



BOSE-EINSTEIN CONDENSATION AND . .. PHYSICAL REVIEW B6, 174516 (2002

the criterion described in Sec. Il. This reentrant transition isgn the random potential, our model could closely match the
understood as follows. The condensate depletigrof Eq.  experimental conditions of liquidHe in Wcor glass. We
(8c) comes from the scattering of the condensate particlefixed the strength of the random potential by equating the
with the random potential. This decreases with as the theoretical and experimental critical coverages below which
temperature rises, so thajgr=4/3ng of Eq. (120 also de- the superfluid densityt&d K vanishes. No other parameters
creases. As shown in Fig. 6, the magnitude of this decreassould be adjusted, and thus we could quantitatively compare
in n,r exceeds the increase i, of Eq. (12h), which is the  theory to experiment for other physical quantities.

normal fluid density due to the elementary excitations, in the First, we showed that the calculated specific heat for \W-
very low temperature regiof<0.5 mK. In other words, cor glass quantitatively agrees with measurements. This in-
condensate particles that are trapped by the random potentidicates that liquid*He in Wcor glass behaves as a dilute
at lower temperatures can escape at higher temperatures aBdse gas in a random potential. For low temperatures, the
thus participate in the superfluidity. This reentrant transitioncalculated specific heat was linear Tnbecause of the ran-
has not been observed experimentally, probably because dom potential. Second, the BEC was shown to persist even
should only occur at very low densities and low tempera-when superfluidity disappears below the critical density. Fi-
tures. However, large values &, can make the reentrant nally, we showed that a reentrant transition of the superfluid
transition observable as follows. We define the temperaturphase is more likely to be observed experimentally by in-
Tmax @S that which maximizes the superfluid densify and  creasing the strength of the random potential.

define Ang=ny(T=T,20 —Ns(T=0). Figure 7 shows the Because we neglected interactions between pairs of ex-
density dependence ofF,,.x and Ang. Both variables in- cited particles and between excited particles and the random
crease withR,. Therefore, the reentrant transition is more potential, this model does not apply to systems at high tem-
likely to be measured at larg&,. The parameteR, is the  peratures. To overcome this limitation, we are improving the
strength of the random potential over the entire space, anchodel to include these interactions, and will report on this
one way to increasR, is to decrease the open pore densitymore general model in the near future.

of the Wecor glass.
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