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Thermodynamics of ®He in He-*He thin films: The Fermi gas limit
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We examine the thermodynamics of a two-dimensional Fermi gas model describing ad¥aebieda thin
superfluid “He film. The ®He system is characterized by both a hydrodynamic effective mass and a set of
discrete transverse single-particle states that model the effects of the interaction with the substrate that supports
the film. We show that the magnetization steps seen in experiment are a simple manifestatiom-eDttke
equation of state. We prove that perfectly horizontal magnetization steps rigorously disappear at any finite
temperature. We show that the thermal stability of the steps is determined by the latgép pbne-half of the
level spacing, ang.,H,, the magnetic energy. We derive the conditions under which there exist points in the
phase spacéermed invariant poinjsthrough which all low-temperature isotherms pass exponentially close.
The invariant points appear for magnetization verdde coverage, chemical potential versus magnetization,
magnetic susceptibility versus coverage, and speed of sound squared versus coverage. We compare our calcu-
lated invariant points for the magnetization versus coverage with experiment and find good agreement. We
show that there exist small regions of thermodynamic phase space in which the temperature derivative of the
pressure is negative. We explain these anomalous regions as the ré$tgt afoms “spilling over” from a full
Fermi sea to an empty Fermi sea upon the application of a small increase in temperature. Through a Maxwell
relation, this behavior can also be seen as in the appearance of a local peak in low-temperature entropy
isotherms versus coverage. In the limit of a two state model, we calculate the specific heat and show that a
Schottky peak develops in the loWHe coverage limit. We calculate the magnetic susceptibility and predict
that it should exhibit a steplike structure versie coverage similar to that of the magnetization. We calculate
the speed of sound and show that it should exhibit zero-temperature discontinuities at the points where new
Fermi seas begin to be occupied. Both the steplike structure in the magnetic susceptibility and the
discontinuity-type structure in the speed of sound persist to temperatures on the order of 100 mK, and are
analyzed in terms of invariant points in their respective phase diagrams. We show explicitly that, in the Fermi
gas limit, the zero-field magnetic susceptibility is simply proportional to the isothermal compressibility.
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[. INTRODUCTION behavior is to be expected in the absence of interactions, in
the limit that the 3He atoms are treated as ideal fermion
In 1989, an important advance in the understanding of theuasiparticles. In that limit, much of the analysis can be per-
properties of thin®*He-*He mixture films was made by Hig- formed analytically and we will show that this model is ca-
ley, Sprague, and Hallock by their discovery of steps in thegpable of qualitatively explaining the behavior of the true
magnetic equation of statenagnetization isotherms versus mixture film. In Sec. Il, we will derive the ground-state prop-
coveragg? In these systems, thtHe atoms reside near the erties and show why a stepped structure in the magnetization
upper surface of the superfluftHe film and are localized in  versus areal density is to be expected. We will also examine
the direction transverse to the film by the external potential$n detail the behavior of the chemical potential and spreading
due to the*He film and the solid substrate that supports thepressure. In particular, we point out that the ground-state
combined helium systems. As pointed out by Hallock andpressure and chemical potential are continuous but not dif-
Higley et al.? the steps are direct evidence of the existencderentiable at those densities corresponding to the beginning
of this set of discretéHe states and, further, the experimen-and end of the steps and the speed of sound is discontinuous
tal data can be analyzed to yield properties of the statest those points. In Sec. Ill, we shall derive the relevant sta-
These states were first predicted and examined by Gasparitistical mechanics of this two-dimensional ideal Fermi gas
and co-workers in a pioneering series of heat capacity exmodel. In Sec. IV, we discuss the finite temperature behavior
periments on the mixture films.> In both the Hallock and in terms of the numerical solution of a two-state model. The
Gasparini experiments, the solid substrate was Nuclepore, parameters for the model are determined by experiment. We
polycarbonate material threaded by roughly cylindrical pasexamine isotherms of the magnetization verste cover-
sages of nominal diameter 2000 A. age, and show that there exist points in the phase diagram
The 3He subsystem forms a quasi two-dimensional Fermihrough which all low-temperature isotherms pass exponen-
system whose properties have been examined by a number tidlly close. We denote such pointsiasariant points These
author~° In Ref. 2, Higley, Sprague, and Hallock showed invariant points are also found in the phase diagrams of
that a Fermi gas model with the effects of interaction in-chemical potential versus magnetization, magnetic suscepti-
cluded through the use of phenomenological Fermi liquidbility versus coverage and speed of soysduaredl versus
parameters enable them to obtain excellent fits to their dataoverage. The existence of these invariant points determines
In this paper, we take a step back, in a sense, and ask whatalitatively the energy scale over which the phase diagram
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TABLE |. The values of various parameters used for the numerical calculations.

Quantity Symbol Value
Single particle ground state eg 00K
Single particle first excited state e‘f 1.8K

He effective mass m* 1.38m,

3He magnetic moment A 7.7824<10 4 KIT
Applied magnetic field Ho 2T
Density of *He at monolayer completion n, 0.0647 A2
Fermi energy of’He at monolayer completion €/ 237K

Onset coverage for first excited state occupation 0.761

nonset

retains its global structure. This analysis explains why theparticle states.In the numerical work to be described below,
relevant energy scale for the magnetization steps is the levele shall us¢4,=2 T to agree with the NMR experiments of
spacing(1.8 K) and not the magnetic enerd80 mK). We  Ref. 2. The values of the parameters in E2.1) are col-
show that the zero-temperature kinklike structure for thdected together in Table I.

ground-state pressure versus density has the interesting con-We begin the ground-state analysis by imagininHe
sequence at finite temperature of leading to regions in whicffilm with one 3He atom present. We turn on the external field
the pressure has a negative temperature derivative. This re¢,, then each®He single particle Ievekg is split by an
sult is also explained in terms of a physical model based oamount 2umHo. We begin adding’He atoms to the system.
the “spilling over” of *He atoms from a filled Fermi sea to The interaction in Eq(2.1) is attractive for parallel spins and
an empty Fermi sea upon the application of a small increasghe first *He atoms begin filling the Fermi sefx=0s

in temperature. In Sec. 1V, we obtain analytic expressions foe= +1. Each atom contributes a magnetic momeptand so,
the heat capacity at constant area and constant pressure, §fer A" atoms have been added, the magnetization in this
magnetic susceptibility, the isothermal compressibility, andregime is simplyVu,. That is, the magnetization increases
the thermal expansion coefficient. Further, we show that th@nearly with the number ofHe atoms that are added. This is
magnetic susceptibility versus coverage will exhibit a stepthe first ramp and is illustrated in Fig. 1.

like structure similar to the magnetization and also that the At the densityn,, the bottom of thes,_ band is reached.
speed of soundsquaredl will show a discontinuity—type Fyrther addition offHe atoms fills both bands jointly, and so

structure as a function of coverage. Both phase diagrams at@ntributes zero net magnetization. This creates the first step
analyzed in terms of their invariant points. Section V is the

conclusion.

1. GROUND STATE

We consider a system ¢§ 3He atoms in an aread. The 8:, 1
spin4 atoms have a magnetic momeny, and are subject to
an applied magnetic fiel@éil,. The spin state will be labeled

by the indexs= + where we can arbitrarily choose= + to i+ .
represent the low energy configuration. Tfide atoms are i ;
adsorbed onto a film ofHe which is itself adsorbed onto a ! !
solid substrate. All information in théHe system concemn- | 7 Density

ing the *He film and the substrate is contained in a set of o |
transverse single-particle states whose energy levels are d¢®
noted{e’}. Thus the energy of &He quasiparticle in state
{a,s,k}, wherek is the two-dimensional wave vector, is k
given by

K wmmmmmmm e S m =D

[l
1
i
A

O+
koL

FIG. 1. The main plot shows single particle energies as a func-

£2Kk2 tion of wave vectok. The bands forming out of the two transverse
€= €2+ —— — umHoS. (2.1)  stateseg andel, are split by Qu,Ho. Fork<kg only the lowest
* stateey, is occupied. In this regime, the magnetization grows lin-
. . . . . early with the number ofHe atoms as shown in the inset. Adding
m* =1.38mz is the hydrodynamic effective mass determinedmgre 3He fills the two stateg,, ande,_ jointly, and thus there is
by Higley, Sprague, and Hallock,and uy=7.7824 o change in the overall magnetization. These branches reach the
X104 K/T. It is at this stage that interactions between thebottom of thee;, band at the wave vectors denoted kg{{ and
quasiparticles are neglected. We note that DiPirro and Gad, . This region of unchanging magnetization thus forms the first
parini were the first to describe the adsorb#te system as step as indicated in the inset for densities betwegnand ngg.

an ideal Fermi gas with a discrete set of transverse singleAdditional ramps and steps are formed in the same manner.
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as shown in the inset of Fig. 1. When the density reaches
Nor, the bottom of thes;, band is reached and so a linear

magnetization regime is produced. This is the second ramp
shown in the inset of Fig. 1. In this manner, the magnetizaFinally, from Eq.(2.7), we find that Eq.(2.11) reduces to

H=2, [~ pmHoS+ €raslNos. (2.1

tion versus density relation is created in a stepped structure &= uN, the expected result at absolute zero.

zero temperature. In the following, we shall derive the quan-

titative properties of these magnetization steps.
The number of atoms in occupied levet,s} is given by

2

K
J\/as=4F—:A. (2.2

Thus the Fermi wave vector for each level is given by

KE(s=47MN4s, (2.3
wheren =N,/ A. The total density is given by
J— na
n=> —, (2.4
a,S n/

where the dimensionless density, called towverage n is
measured in units of one complettHe monolayern,
=0.0647 A '? (see Ref. 2 and Table.!

The internal energy is given by

1
U= ES eg_MmHOS+ EEFaS Nas= (25)

where eg, is the partial Fermi energy(i.e., 3 er,s is the
kinetic energy contributionfor the level{«,s}, and is de-
fined by

%Ke,s 2

2m* a 2m*

(47 ). (2.6)

€Fas™

The chemical potentiglk for occupiedlevel {«,s} is given
by

au 0
PN AZ €~ MmHoSt €Fus, 2.7
and the spreading pressukeis therefore
ou 1

P= —(ﬂ) szaz,s €FasNas - (2.8

By inspection of Eqgs(2.5) and (2.8 we find
U= [~ umHoSIN st PA. 2.9

a,s

Using Eq.(2.9), the enthalpy}{=U+PA, can be written as
H= > [€2— umHoSIN, s+ 2PA. (2.10
a,s

Both Egs.(2.9) and(2.10 are also valid at finite temperature

if N, is interpreted as an average occupation number; see

Eq. (3.1) below. In the ground state, we can use Ei8) to
simplify Eq. (2.10

Referring to the inset of Fig. 1, we define the densities at
the beginningleft hand sid¢ and the endright hand sidgof

the first step asp andnggr, respectively. The densities are
determined by equating the chemical potentials for the occu-
pied bands at those points. Thus,nat ny , we haveu (0,
+,Ng) = «(0,—,ng.), which yields

m* umH o
Ng=—"7—. (2.12
wh?
In terms of the coverage we can write
—  kmHo
n0L= y (213
€r/

and ep,=2.37 K is the Fermi energy of a completed mono-
layer:

hZ

€, = 27N ,). 2.1
= (2m)) (2.14

At the denSIty nORV we set ,LL(O,+ ,nOR)=,u(O,— ,nOR)
=pu(1,+,ngR) to find

F()R"*'F()L:Honset- (2.15
Where,ﬁoL is defined in Eq(2.13 and
— AEO
Nonse=——- (2.19
€r/

The quantityA ey=€J— €3 is the level spacing andoneeis
the onset coverage. This is the coverage at which the first
excited state would begin to be occupied in #isencef an
external field. For a given external field, the width of the
step,ngr—NgL, IS proportional to the level spacing.

The total magnetization is defined by

M= (Nge =N ). (2.17)
Using Eq.(2.12, the value of the magnetization at the first
step is given by

_ m* ,LLﬁ.]HoA

wh?

0 (2.18
This result can be generalized to any step. If we temporarily
introduce a state dependent effective mas§,, then the
increasein magnetization at the end of theh ramp is given

by

M unHoA

AM
wh?

(2.19

a
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TABLE II. Pressure and partial densities for the first two ramps and steps in the ground-state magneti-
zation equation of state.

Density range Partial densities Pressure
0<n<ng_ Nos =N P=h22m(n?)/2m*

1
NoL SN<NgR No+=73(N+Ng) P=hH22m(3n?+3n3)/2m*

1

No-=73(N—nNgL)

Nor=<N=<n No+ = 5(N+NoL+ 3Nonse) —#22m(En2+ L(2n2 —
OR 1L 0+~ 3 oL T 2MNonse P=r"2m(53n"+ 3(2n§. — NoLNonset

+ 3Monset) )/ 2M*
No-= %(n*lznOL+ %nonse)
N1+ =3(N—nNgRr)
Ny SNsNig No+ = 7(N+2NoL +Nonse) P=122m(3n%+ N2+ FNonser)/2M*
n07=41_1(n_2n0L+nonse)
nl+:%(n+2n0L_nonse)
ni-=z(nN—ny)

Thus the ratio of the increase in magnetization atdtiestep _ a1 Ae

relative to the magnetization of the first step= 0, is simply Nert N =— >, (€,,+e2—2¢°
the ratio of the effective masses: €F/ v=0

(2.29

€r/

AMal Mo=mi/mg . (2.20 whereAe, =€, ,—€2. Equation(2.24 is the desired gen-

The experiment of Ref. 2 provides a data point that is nogralization of Eq(2.15 to steps witha>0.

inconsistent with equal magnetization jumps at the first and The total magnetization at a density corresponding to the
second stepgWe note that the authors of Ref. 2 defingd,  filling of the ath ramp (that is, the unpaired state {s,
using thebare *He mass, and therefore their magnetizations*}) is given by
did not fall on steps with integer valugsAs indicated in

Table 1, in this paper we shall use a single state independent

effective mass set equal to the hydrodynamic mass as deter- m(a)= L‘kij a, (2.295
mined in Ref. 2. We introduce a dimensionless magnetization (2a+1)ng.
m, defined by _
where it is understood that_,3=0, and from Eqs(2.22
_ M and(2.23, we have used
m= M, (22]) B B B
N,i1L—Nr=(2a+3)Nng . (2.26

that is essentially the magnetization per unit area.
With a state independent effective mass, we can straigh
forwardly generalize the above analysis of the first magneti-

zation step to an arbitrary step. We examine tith step f : .

. T or the first and second ramps and steps as sketched in Fig. 1.
(_that is, the step Where_the stat{as,f_f} are being jointly We note that the coefficient of the density for the pressure in
filled). In order to determine the density at the left hand edgeeaCh region has a term like (@imber of occupied Fermi
Mot » _W(;a 1need t0+equateT;hea2:2 fchem;_cal pc_)ttlagnals sea$. The pressure is a series of parabolas that are joined at
m({r=0.1,. .. ,a},%,ng ). This set of equations yields the corners of the steps. The parabolas on the high density

t'I'he density width of thexth rampincreasedinearly with «.
In Table Il, we display the partial densities and pressures

= (right hand side have a smaller curvature than the parabola

- _ on the lower densityleft hand side. Thus, the pressure ver-
=— —€e)+(a+ . L : . T .
Nat €, VZ (6 € ) (a 1)n0,_ 2.22 sus density is continuous but not differentiable at the densi-

o _ ) ties corresponding to the corners of the st¢E§L ,E,R,a
Similarly, for the density at the right hand edge,r, we  _1

: J ,. . .}. From Eq.(2.9), the internal energy on the ramps
need to equate the a2-3 chemical potentialsu({r  ang steps follows immediately from the entries in Table II.

=0,1,....a},%,nor), u(a+1,—,Ngr). This set of equa- The dependence of the chemical potential on the magne-

tions yields tization will be a useful quantity for the analysis of the mag-
netization equation of state. In Table Il we write down ex-
—— 2 (&0 6 ~(a+ . (2.23 pressions for the chemical pptential along the first two ramps
Nar €/ & atl™ oL - ' and steps. One can generalize these results to any ramp and
step. Thus, the chemical potential along tité step is given
Adding Egs.(2.23 and(2.22), we find by
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TABLE lll. Chemical potentials and magnetizations for the first two ramps and steps in the ground-state
magnetization equation of state from E¢@.25), (2.27), and(2.29.

Density range Magnetization Chemical potential
O=n=ng_ m=n/ng, w= €5+ 2umHo(Mm—1/2)
NoL <N<Ngr m=1 w= €3+ wmHo(n/NgL)
Nor=N<ny_ m=1+(n—nNer)/3No.) w= €0+ 2unHo(m—13/2)
Ny <nsng m=2 n=3(ed+ €9) + 3 umHo(n/ngy)
LS @ i, =3, (3.7
M= 1ta P €, +umHo(N/Ngy) |. (2.27 ~ @,s1 :
Similarly, the chemical potential along tlagh ramp is given o 1
by na,s=mln(1+Ams), (3.8)
— 1
u=e+ 2MmHo(m—a— 5) (2.29  wherew,=Ber,, and
wherea=0,1, .. .. m=> m,, (3.9
Ill. FINITE TEMPERATURE
. . - 1 1+ Aa+
The average number of particles in levet,s} at tem- M=o Il T4 | (3.10

peratureZ, B=1/kg7, is given by
wherex= BumnHo. A summary of the notation used for the
N ZZ 1 (3.0 finite temperature problem can be found in Table IV.
s 4 A;é exp(Be)+1 ' Inverting Eq.(3.6) yields

where we have introduced A g = €PFas—1, (3.1
€= 12k?2m* (3.2 where ep,s=(%2/2m*)4mn 4(7) is the finite-temperature
generalizationof the quantity that was introduced in Eq.
A = eBr—€rt nmos) 3.3 (2.6). Alternatively, we have the identity
«,S . -
In two dimensions, the integral in E¢3.1) can be done ﬁepasznasxi. (3.12
analytically. It will prove to be useful to mimic the three-
dimensional analysis of the ideal Fermi gas by writing From Eq.(3.13), the chemical potential can be written
1 0 1 Be
Na,s:AFGl(Aa,s). (3.9 U= €4~ UmHoS+ Eln(e Fas—1). (3.13
T

where A$:(2wh2)/(m*kBT) is the thermal de Broglie For additional discussion concerning the properties of the

wavelength squared, and we have defined a general pOWgpemical potential in a two-dimensional polarized fermion

series inA , s as . -
s TABLE IV. Summary of the notation used for the finite-

* (A, temperature system. From Table [, the values of the quantities used
GV(Aa,s)=—E S =12, (3.5 for the numerical work argunHo=15.6 mK, Ae=1.8 K, and
I=1 IV EF/:2.37 K.
:.‘J:r;ingel(/\ays)= In(1+A,), the partial density can be writ- Symbol Meaning
Vs B(p—€q+ mHos)
1 Aus exp(..s)
= — —+ . . ' i
nas )\-2|-|n(1 Aa,s) (3 6) X BMmHO
w BAe
We note that this result can be obtained directly from Eqw, Ber,
(3.1) and is therefore valid at all temperatures. €Fus (h212m* )47 (7)
We can now write down the dimensionless densities and,, (h%2m*)2mn

magnetization introduced in Sec. Il,
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system, see Ref. 10. In the low-temperature regipw;,s  that can be compared directly with the high-temperature

>1, it is convenient to rewrite Eq3.13 as form [Eq. (3.16]. As expected, if we use Ed3.21) in n
=(dPldu)r, we immediately recoven=2, jn,s With n ¢
0 1 > e !Beras given by Eq.(3.6). o
M= €, umHoST €pas™ B Zl - 14 In the degenerate limit, &>1, the pressure becomes
In the degenerate limit, witth" and A fixed, Eq.(3.14) can i D m 1 1 s
be used to show that finite-temperature corrections for the T|Ln079~ ~ 2 €FasNasT 75" 5 BA2 B ﬁ)\Te

chemical potential are of exponential order. Here and hence-
forth, we shall use the terraxponential orderto denote a
guantity that vanishes in the lifa=0 in the nonanalytic +0(e Yas)|.
form exp(-constant?).

The pressure can be written

(3.22

The leading order correction to the pressure at zero tempera-
1 ture is of orderT? and the corrections to that term are of
p=__ IN(1+A, & A), (3.15  exponential order. The coefficient of the term is a con-

BA isk ' stant, independent of the stdte,s}. The implication is that
the low-temperature pressure should have a stepped structure
with an additional contribution 0&2/(6,8)\$) each time an-
other state is occupied.
P=— 2 Ga(Ags), (3.16 The final fundamental thermodynamic quantity that we

T as shall obtain in this section is the entropy. An expression for

the entropy can be most easily derived from the defining
Sxpression for the Gibbs free energyN/=H—T75):

that can alternatively be put in the form

where the sunG, is defined in Eq(3.5. Unfortunately,G,

has no simple analytic form. Further, this series converge

only in the classical regime/A(, <1). One can, however, 1

derive an alternative exact expression that is useful in the S= ?(H—,u/\/). (3.23

guantum regime. Following the low-temperature analysis in-

troduced in Ref. 11 one begins with E(($.15) in the form Using Eq (21@ for the entha|py and chsla for the
chemical potential, we immediately find

X
D R = SCEC,
BNF s "o Vast 1 Slkg=—2, Yo sNast2BPA. (3.24
where for convenience we have introduced the notation o
A, s=€’=s. We now change variables =x—-vy, s and We can consider this to beS(u,A,7). In the low-
separate the expression into two terms temperature limitn,\#>1, we can use E¢(3.22 for the
pressure to obtain to exponential order,

Yas Z+ a e Z+ a
. EU y'S)+fdz( Yo | kB
BA2 @s \ Jo e ?+1 0 e’+1 lim S/ NVkg~ Vocc 6 (3.2
(3.18 7-0
The first integral can be reduced using the identity wherewv,.. is the number of occupied levels at zero tempera-
ture, and the Fermi energs, is defined by
1 1
=1- . 3.1 =(h2/2m*)2an. 3.2

e “+1 e’+1 (319 €ro=( yom (3.26

In Sec. IV, we shall apply the basic thermodynamic results
from this section to calculate the magnetic equation of state,
'yas> equation of state and chemical potential using a two-state

We then immediately find

model that mimics the experiment of Higley al? We shall

also derive general expressions for the heat capacity, mag-
(3.20 netic susceptibility, the isothermal compressibility, and the
thermal expansion coefficient, and compute numerical results
"or the two—state model.

E( yas+—+2( )

,BAT s

This expression for the pressure is exact and the inner su
mation converges absolutely for, s=8(u— eg+ mmHoS)
>0. Fory, s=0, that sum equals- m?/12. We can also use

Eq. (3.5 to write the low-temperature form as IV. RESULTS

71_2

1 In this section, we examine the equation of state of the
y -G (
27a, s 2 Aa s

. (3.2) ideal Fermi gas model of the adsorb&de system. As sum-
marized in Table |, for the numerical model we have two

P= Z
BA2 @S
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transverse states with energleg§=0,e=1.8K} and an ef- =100 mK despite the fact that that temperature is three
fective massm* =1.38n;, whose values were determined times larger than the magnetic energy. The selection of tem-
experimentally by Higley, Sprague and HalldcKhe mag-  peratures chosen for the isotherms match those in Ref. 2.
netic energy, &nHoy, is approximately 31 mK for a 2-T Although the slopes of the low-temperature isotherms in
field. In Fig. 2, we show the magnetic equation of sf@e-  Fig. 2 seem to be flat in the region of the center of the zero
therms of magnetization versus coveragehe evolution of temperature step, it is straightforward to show that true hori-
the step structure out of the zero temperature results is clearontal steps only occur at absolute zero. The slope of a mag-
We note that the stepped structure is still clear Zat netization isotherm is given by

am ( L )E {[A g (1A, )] ~[Ay /(1A )]}
dn \ng @.1)

o/ > {[Aw/<1+Aa,+>]+[Aa,,/<1+Aa,,>]}’

where the derivative is taken at fixggland Ho. Thus, the  Form=1, Eq.(4.2 can be immediately solved to yield
condition @dm/dn)=0 requiresA, . =A, - Ya. At finite

temperature, these can be equal only whén=0. In the Ag.=e"xt2,
limB—, A, s—%; thus the terms in the numerator cancel w2 4.3
out to exponential order and create steps for each state Aj.=e” :

when both spin states are occupied. Substituting Eas(4.3) | Eq. (4.1 vields the s —
There are two aspects of Fig. 2 that we wish to examine: u .stltutlng gs(4.3) into Eq. (4.1) yields the slope am

The first is the question of the stability of the step feature. It~
is clear that the steps survive fairly intact up to a temperature — _ox
of at least 100 mK. The second is the nature of the (fivite d_m _ 1 1-e
density points through which all isotherms seem to pass. dn — No/ [ 1+e X(eV2+e W2) e 2¢|
In order to examine the stability of the step, we can use (4.4)

Eq. (4.1) to calculate the slope of the isothernmat 1.0. We
first rewrite Eq.(3.10 as a quadratic equation il :

In the low-temperature limit, withh e> u,,H,, for the slope
atm=1 we find

(GZXE_ 1)_|_(1+e—W)(e2X(a_l)—l)A0+ dﬁ 1
i %__efw/2+x_ (45)
dn =1

+e W(eXM-D_1)A2 =0 4.2) NoL

Thus thelarger of u,, o or Ae/2 determines the region of
] ] temperature stability for the step. In the case of Fig. 2,
20T Magnetization isotherms 0 K~—] ] Ae/2=0.9 K andunHo=16 mK.
: 40 1 The points in the thermodynamic phase space that all iso-
mK\ J . . . .
/ ] therms seem to pass through will be called invariant points.

or 1xm In Fig. 2, there are three such points located am()
250l / ] =(0,0), (MNonsef2,1) , (Nonsen 4/3). (We note from Table | that

Nonse= A€/ €, =0.761) From Eqgs.(3.8) and(3.10, we can
write

1+(1+e Wye ZAg, +e Ve A, =eW/ XM,

oo ] (4.6)
In order to obtain the trivial invariant point at (0,0) we sub-
oo ! . . . . LT stitutem=0 into Egs.(4.2 and(4.6) to yield
00 02 04 06 08 1.0 v - o
= 1+(1+e M) Ag, +e YAG =e"" (4.7

FIG. 2. Magnetizatiorm as a function of coverage for tem-  \We note thah=0 is a self-consistent solution since in that
peratures= 0 K, 40 mK, 100 mK, and 250 mK. limit Ao, ~eP*—0, at any temperature.
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For the invariant point am=1, we use Eq(4.39 in Eq. Srvr——— v ¥ T T T 1
(4.6) to yield r
_ 20 - E
2[ coshx) +coshw/2)]=e"". (4.9 <
= 15 | -
The low-temperature limit is controlled by the largenobr %
w/2. For our system we find £ 1.0 L 1
g 1
— 1= —wi2 g
nmznonseﬁ'o(e ). (4.9 E, 05 - 7]
()
Thus, in agreement with Fig. 2, for temperatures much less 00 .
than Ae/2, all magnetization isotherms come exponentially ;
close to this invariant point. 05 - s
For the last invariant point at=ng,,se;and m=4/3 there

does not seem to be a simple expression relating the externi ~ -10 0'0 : 0'4 : 0'8 s 2'0
field, level spacing, and density as E4.8). We note, how- ’ ’ T = ’ ’
ever, that this point is special at zero temperature. From m
Table I1l, the magnetization as a function of density along FG. 3. Chemical potentigk as a function of magnetizatian,
the second ramp is given hy=1+(n—ngg)/3ng. . Thus  for temperatures= 10, 50, 100, 150, 200, and 250 mK.
when evaluated an,,q.=hgo t+Nor all field and level- . . )
spacing dependence cancels out, leaving the pure number The analysis of_the two réamalmng points proceeds analo-
4/3. We shall use a low-temperature expansion to analyz80usly. For the point at.= €;, we have
this point. From Table Il the ground-state chemical potential o o wtx

Aor=¢€", A, =e ,

at m=4/3 is given by,uzef—,umHOIS. Substituting this

into the A’s, [Eq. (3.3)] yields Ag_=e %, Aj_=e WX .19

Agy=eVr2XB A, =ePB The magnetization is, therefore,

Ap_ =gW—4x3 A g 4x/3 (4.10 _ 1 1+e WX

0~ ' 1= ' m=2—In e"ﬁ . (4.13

Then, from Eqs(4.6) and (4.2), we find X l+e

4 In the low-temperature limiBAe>1 we find
m=3 +0(e 2B, (4.11 1
m~ 2 +0(e™"), (4.16
N=Ngnseit O™ >%). (4.12

in agreement with Fig. 3. Similarly, for the point at= e‘f,
These results show the invariant point character in the limitve have
x>1. Figure 2 indicates, however, that this behavior is still

present at higher temperatures. Aoy=e""%, Ay, =€
Invariant points can also be seen in the space of chemical e y (4.17
potential as a function of magnetization. Figure 3 shows Ao-=e""7% Aj_=e".

chemical potential isotherms as a function of magnetizationrhe magnetization is therefore
for 7=10, 50, 100, 150, 200, and 250 mK. There are evi-

dently three invariant points in this region located at the _ 1 1+eWtx
; ; ; _r 01,0 m=—In| e*———|. (4.18
values of the chemical potential given hy=[eg,3(€g 2X 1+ WX
+€2),€9]. The central point an=1 is the most interesting. i the | mBA =1 we find
From Egs.(4.3, we have at this poinf\g, Ag A, A, N he low-temperature imiBAe>1 we fin
=1. Thus from the definition of thd’s [Eq. (3.3)], we find 3
the simple result m~ E+O(e“”), (4.19
1 . . .
w= 5(68+62)' (413  inagreement with Fig. 3.

In Fig. 4, we show the pressure as a function of coverage
. . . . L at 7=0 and 10 mK and note that these are not distinguish-
Since this ch_emlcal potgnh_al value is mdependenﬂ’etn_d able on the scale of the left hand axis in the figure. On the
Ho, all chemllcalopottgnnal isotherms must pass throwgh ight hand axis, we have plotted the pressure differes®e
=1 whenu=;(e&+ €1). For the system of Fig. 2, the point —[p(10 mK)—P(0)]. At low coverages(in the first step
{u=0.9m=1} is the central invariant point in Fig. 3. the pressures differ only by the constant factor
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ootk | ' ' ' ' ] ture isotherms. From Table I, we see that the pressure goes
like N?/ v, in a region wherev,.. number of Fermi seas are

o RS 700000 being filled. Thus the curvature of the equation of state pa-
wsl m raboladecreasesis each new Fermi sea begins to be filled.

l ! The union of the parabolas then has kinklike features where
0.04 |-

%)

two parabolas with differing curvatures are joined. The pres-
sure at finite temperature, however, smoothly joins the two
regions. The kinklike regions stick above the finite tempera-
ture curves and the result is that, in the coverage regime
: immediately surrounding the onset coverage of the filling of
I - 00002 a new Fermi sea, the zero-temperature pressure is greater
000 |- ] than the finite—temperature pressure. This behavior can be
v o2 o v o8 - just barely seen in the equation of state of Fig. 5.

The physical and microscopic basis for this effect is the
availability of a discrete set of statdgse., the transverse

FIG. 4. Pressure as a function of coverage at .0 mK. We  Single—particle statg¢shat allow fermions tespill over from
plot both P(7) from Eq. (3.15 and the zero-temperature pressure a filled Fermi sea into an unfilled Fermi sea under the action
P(0) [Eq. (2.8)], along the left hand ordinate. The difference in the Of a small temperature increase. It is straightforward to write
two pressures are not discernible on the scale of the left hand orddown a model that contains the essence of this behavior.
nate. The differencéP="P(7)—P(0) is plotted against the right For simplicity, we consider a® He system at zero tem-
hand ordinate. In the neighborhood of the denaijy..~0.761, the  perature with no magnetic field. The system is filled to the
pressure at finite temperature is lower than the pressure at ze@ensityn=ng.. That is, the*He atoms occupy the trans-
temperature. verse ground-state up to the bottom of the band correspond-
ing to the first excited state. We then increase the temperature

EQ,SWZ/(GBA$)=4.5>< 1078 K—A~2 see Eq(3.22. In the slightly to 67, keeping the number of particles fixed. A small

coverage region near the end of the step where an additionnfmeer of particlesf/ will be promoted above the zero-

agereg . i P L Femperature Fermi energy. These atoms will then distribute
Fermi sea will begin to be filled, we see from examinifig ; .

- themselves equally over the occupied Fermi seas.

that the pressure at finite temperature drbpk)w_the zero First, we will calculate an explicit expression foW,
temperature pressure. Thus we have the amazing result tht%te nur'nber of particles in statw,s} that are prom%st;ad
for.this system, an ideal .Fer.mi gas, there is a regime. I bove the zero-temperature Ferm7i—level at temperafdte
which the temperature derivative of the pressure is negativ rom Eq.(3.1) we find )
This effect persists to surprisingly high temperatures as seen q.(5.
in the 7=100 mK data in Fig. 5.

L T~ sp - -0.0001:
0.03 | |

Pressure (K A?)

5P (KA

*He coverage

One way to understand the source of this effect is to ex- zi m_*ffgas 1— 1
amine the shape of the zero-temperature and finite tempera- S 2w 52 Jo eBle- €0 rmHo— 1) 4 1)’
(4.20
T T T T T T 0w1 0 . .
007 T =100 mK ] where er,; is the zero-temperature Fermi level, amgl
I 1 =1/kgd7. This expression can be integrated to yield
0.06 - B
‘."': 0.05 - _- 0.000 A m* 1 l+eXF
X ] SNys=5—— —=In , 4.2)
o oo ‘.,." 2m 42 B\ 1+eXo
s A <
@ X
g 0.03 | i where
- 40001 ® . .
0ot |- Xp=B(€ras™ €2~ mHo— 1), (4.22
000 - : Xo=B(— €q— umMo— ). (4.23
1 1 1 1 1 1 _owz

o0 o2 o4 o8 o8 10 In the low-temperature limit, we can use H.14) for the

chemical potential to obtaix:-=0 andxy= — 362%, both to
FIG. 5. Pressure as a function of coverage at T00 mK. We ~ €Xponential order. Thus we find the simple result

plot both P(7) from Eq. (3.15 and the zero-temperature pressure

P(0) [Eq. (2.8)], along the left hand ordinate. The zero temperature (ONs! ANF=In(2). (4.24

pressure is plotted as a dashed line. The differedfe=P(7)

—P(0) is plotted against the right hand ordinate. In the neighbor- We setH,=0 and assume that we are at low enough

hood of the densityi,,er=0.761, the pressure at finite temperature temperature so that Ed3.22 accurately determines the

is lower than the pressure at zero temperature. pressure

*He coverage
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T =100 mK

055 -

0.000 - !
L 0.50 -

8P (n

(exact)

onset)

5P (model) 040 |

5P (KA
SINK,

-0.001 -
035 |-

0.30 -

-0.002 -
L 0.25 |-

100 200 300 400 0.20 1 M (] M 1 " (] M (] M 1 " 1 M (] M 1
02 03 04 05 06 07 08 09 10
8T (mK)

o

*He coverage
FIG. 6. Pressure change as a function of temperatura at . )
=Ngneer We show the exact numerical results from E@s8) and FIG. 7. The entropy per par.tlcle as a function®fe coverage

(3.20, and also the prediction of the simple model E§27). The at 7=100 mK. The local maximum in the entropy between the

good qualitative agreement is in strong support of the explanatiooveragesi=0.654 and 0.888 corresponds to the regime of nega-

of the negative temperature derivative region as being dutHt  tive temperature derivative for the pressure.

atoms spilling over from a filled Fermi sea into an empty Fermi sea

upon the application of a small increase in temperature. (4.27), proportional toAe, the level spacing. For the exact
calculation,5P goes through zero at approximately 387 mK
w2 1 whereas, for the model§P goes through zero at approxi-
P= E EFa (DNT+ 5 —5|. (4259  mately 353 mK.
'BAT We can generalize this approach by assuming a variable

where in an obvious notation, eq,(7) = (A 2%/2m*) fraction, X, of the particles promoted above the zero-
x[27n,(7)] andn(7)=3n,s. We now increase the tem- temperature Fermi Ieygl are pli;tributed between th.e two
perature slightly tas7. This drivess\ of the particles above —States. Thus, the densities at finite temperature are given by
the zero-temperature Fermi level and from E@.24,  No(7)=NonserXo(ONTA) andny(7) = (1—Xo) (SNA). For
SNIA=2In(2)A2. The pressure chang&P=P(7)— P(0) the calculation shown in Fig. 6 we sej=3. We note, how-

is given by ever, that the choic&,=0.605 yields excellent agreement
with the exactsP.
2 , a2 1 There is an alternative way that this phenomenon can be
oP== 2 o ——[2m(ny(7) n0+ n1(7)]+ 3 ,6')\? examined. From a Maxwell relation
(4.26
L JIP IS A(SIN)
In this simple model, we shall set the zero-temperature den- (— ) —nz(—) ,  (4.28
sity atng=ngnser and choose the densities at finite tempera- 9T, dA Mt
ture to be given byny(7)=ngnsei 5 (SN.A) and n,(7)
=3(8NA). Thus we find we see that the information that is present in the temperature
derivative of the pressure also appears in the density deriva-
1 In(2)?2 7\m* ) tive of the entropy per particle. In Fig. 7, we show the en-
oP=— EI”(Z)”onsengMH( A g)ﬁ(kB‘Sﬂ ' tropy per particle as a function ofHe coverage atl
(4.27) =100 mK. The entropy per particle is not monotonic. The

region of negative temperature derivative for the pressure
The leading order term, corresponding to the decrease ioreates a bumplike feature in the entropy versus coverage.
pressure in the ground-state Fermi sea, is negative and donihe coverage interval over which the temperature derivative
nates at very low temperature. In Fig. 6, we p&f at n of the pressure is negative occurs between the local mini-
=Nonset@S @ function of temperaturéZ. At every tempera- mum and maximum as indicated on the figure. The possible
ture, the exactP is a minimum at this densitysee, e.g., importance of this observation is that the entropy can be
Figs. 4 and b The agreement between the parabola of theobtained indirectly from experiment by integrating measured
simple model and the exact calculation is qualitatively goodheat capacities, i.eG /7.
providing strong evidence that the picture dfe atoms Measurements of the mixture film heat capacities pro-
spilling over the filled Fermi sea into the empty Fermi seavided the first glimpse of the discrete transverse—state exci-
due to a small temperature increase is valid. We note that thetion spectrum for théHe component:2 By definition, the
temperature range over whicfP is negative is, from Eg. heat capacity at a constant area is

174511-10
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Ju
-7

. (4.29 15
T, N, A

C.A:

It is convenient to study the dimensionless specific heat at
constant areaC 4/Nkg since the high-temperature asymp- 107
totes are independent of coverage. The specific heat can be Z —
straightforwardly computed by numerically differentiating 5}

the internal energy from Eq2.9). Formally we can write

0.57

1
n

JP

7) N A 0.0

(4.30

1 an,
CA/A/kB:ﬁ aES [Gg—MmHoS](&—TS

NA

[T

One might hope that the explicit appearance of the/(7) % 0.5
term in Eq.(4.30 might allow the specific heat to be a probe a 5 2.0
of the anomalous low-temperature behavior predicted for this [} 1.0 '
quantity. Unfortunately, this is not the case as we shall now 2 er

show. At low temperatures,Beg*>1), we use Eq(3.22 @ TempP

for the pressure. The low-temperature specific heat can then g g, specific heat at constant area as a function of tempera-

1.0%75 ature N

be written ture and coverage shown in stepsiai=0.05. The disappearance
1 P of the Schottky peak fon>n,,.is due to the use of a two-state
— 0 Nas del
CalNkg== 2, €= pmHoS+ €ras]| — model.
n s T NA
2 m* As seen from Eq(4.32), the low-temperature heat capaci-
+—=— ——keT. (4.31) ties have a dramatic dependence on the number of occupied
6 #2q states. This behavior was seen by Dann, kily€owan, and

. . Saunder$® and discussed by Anderson, Miller, and
At low temperature, to exponential order, the term in Square - iiock 24 in Fig. 9, we show the specific heat as a function

brackets is just the chemical potentiake Eq(2.7)]; thus it of 3He coverage. The specific heat is normalized to

i(:sir(]esbeTLaills(?ga?/:ts ct);;hv(\a/efll-lgg@m?mind the first term van( m?16€ry) T, the value of the specific heat for a single state
' being occupied. The ordinate is then effectively the number

72 ( kBT) of occupied states. It is seen that in the regienn gee there

limC 4/ Nkg~ Vocc g™ G_Fo ' (4.32 are two occupied statdshe first step and in the regiom
=0 >ngnsetthere are four occupied statéhe second step
where we remind the reader, thgt,=(%2/2m*)2sn, and
Voce IS the number of occupied Fermi seas at zero tempera — 7777
ture. This is of course equal to the low-temperature limit of
the entropy, Eq(3.25.

In Fig. 8, we show the calculated specific heats as a func- - A
tion of temperature and coverage. The specific heat at cov

erages less tham,, exhibit Schottky peaks. The peak
structure becomes quite dramatic in the limit of low cover- @
ages. At the lowest coverage there is an interesting interplay§ 5,
between the Schottky peak at0.7 K and the very large
low—temperature slope from E.32. The Schottky peak
is a maximum at lowest coverage where the spacing betweeg. ;5
the chemical potential and the first excited state is a maxi-
mum. The peak diminishes in size with increasing coverage I A

and disappears for>ng,ce This latter behavior is the result 711 SV VVVVVVVVVVYVY S -
of the use of a two-state model. The availability of additional L ey
low-lying discrete levels could serve to wash out the 060 085 070 075 080 08 090
Schottky peak. The actual system also has available a con
tinuum set of states representing promotion out of the film
into the vacuum. We note, however, that at low coverage, the F|G. 9. The low-temperatureZic10 mK) specific heat as a
first excited state seems to be located approximately 3 Kunction of *He coverage. The specific heat is normalized to
below the vacuum level as illustrated in Figs. 45 and 46 of(#%/6er)kgZ. Thus the ordinate is a direct measure of the number
Ref. 1 and Table | of Ref. 4. of occupied Fermi seas.

40 |- aAAAAAALAALL -
A

35| -

tio

ecific h
>

®*He coverage
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Exact closed forms for both the heat capacity at constant
area and the heat capacity at constant pressure can be ob-
tained. We first consider the heat capacity at constant area.

From Eq.(4.30 we have

N, B
_ 0_ as P
cA—%[ea anos]( 7 MA+—KTA, (4.33
where
JIP
7 :'B_P_ (4.34)
Na KT

By is the thermal expansion coefficient argis the isother-
mal compressibility. It is straightforward to derive expres-
sions for both quantities:

_1(aA) (S 1+1E Ags
'BP_A T NP—I’]K N T n)\.zl.’]'a,s 1+Aa,s Yas:
(4.35
and
1Ay 1 s 4a
“TmTA\aP) | 2epon 4\ 14 A, ) (4.36

The temperature derivative of,g, at fixed VV and A4, is
given by

(M) o A N |[ g gf B8
T A T )@ 1+A,s T nkr NJ|
(4.37
where we have used
o Bp S)
— =|——-—]. 4.3
(ﬁT NA Nkr N ( 8)

A simple check of Eq(4.37) is to sum both sides over and
s. The left hand side vanishes and the right hand side reduc

to Eqg.(4.395. Thus the heat capacity at constant area can be

written
.A 0 2 Aa,S
CA_ETDIE,S (Ea_lu’mHOS)( naS)\T_(l_’_Aa,s ya,s
Aa,s 1 IB’P S ﬁp
¥ 1+Aa,s) ke Tv)]*““z (439

We need to check th& 4 has the correct low-temperature
limit [Eq. (4.32]. The low-temperature limit oy, ¢ at fixed
N and A is given by
(4.40

: _ 2
lim Ya,s~ BEFas™ NashT
7—0

to exponential order. The low-temperature limit 8% can
most easily be obtained by rewriting E@.35 in terms of
the enthalpy and using

PHYSICAL REVIEW B66, 174511 (2002

77_2

(kg7)?
u(7=0)+ Vocc? -

H
lim—~ (4.4

T— ON

FO

where we have used E@3.22, and, from Eq.(2.7), the
chemical potential at zero temperature is givenudfy7=0)
= eg— MmmHoST €pqs - We find

(4.42

to exponential order. In this equation, the symBb\ stands
for the low-temperature limit of the entrog¥qg. (3.25]. In
Eqg. (4.42, we have used the low-temperature limit of the
isothermal compressibility:

2n6|:0

1

(4.43

lim KT

7—0 Vocc

This result is valid to exponential order for the limit taken at
fixed A or fixed P. Further, in the liMM—0, A, s— if the
state{«,s} is occupied and is O otherwise. Thus, using Egs.
(4.40 and (4.42), the term in curly brackets in Eq4.39
vanishes in the low-temperature limit. Using E¢&42 and
(3.25, the final term immediately reduces to the correct low-
temperature limifEq. (4.32].

An exact expression for the heat capacity at fixed pressure
can also be obtained. By definition,

JH
T /\/,7?,
whereH=U + PA is the enthalpy. Thus

(4.44

Cfp:

ON s

T +2BpPA, (4.4

NP

Cp=2, [ €= mmHos]

where B is the thermal expansion coefficiefq. (4.35].
The temperature derivative of s at fixed A" andP is given

&

(&Nas> _Nas i Aa,s )(_E_BE)
IT | p T AN2\1H A4 T N,
+ NasBp- (4.49

A simple check of Eq(4.46 is to sum both sides over and

s. The left hand side vanishes and the right hand side reduces
to Eq.(4.35. Thus the heat capacity at constant pressure can
be written

A
Cp=—r O o HoS)| Nh2(1+
P )\-ZI-TaE,S (ea Mm/1lo ) as T( B’PT)
Aas S 2PA 4.4
1+Aa,s ya,S+J\/|_(B +2P. BP' ( . 7)

The low-temperature limit o€, can be obtained by con-
sidering the quantityC,— C 4. From Eqs.(4.45 and(4.33),
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N, N,
_ _ 0_ as _ as
Cp—Cy 2 [0 = mnHos] | —+ o\
+2BpPA— BpAks L, (4.48
Using Eqs.(4.37) and (4.46 we have
N, N,
( (97-5) - ( (97-'3 = BP/\/LIS
NP N.A
'A 1
n)\T 1+Aas BBPKT
(4.49
We immediately find
Cp—C4=AByTrr *, (4.50

which is a well-known thermodynamic identity. In the low-
temperature limit, we find

’772 kB 2
1+Vocc 12 6_|:0

where in this expression, the symb& , is the low-
temperature result given by E@.32 and we have used the
low-temperature limit 085, Eq.(4.42).

Another response function of interest in these systems
the magnetic susceptibility, at fixed system size. By defi-
nition,

, (4.5

lim Cp CA
7—0

3 ( oM 452
* IHyo J\/,A,T. .
This can be written as
Ixo=m+H _) +H aﬂ or
X! Xo=MT Fg ol 5~ - .
IHo/ , a1 I N, Mo/ yrar
(4.53
where x, is the Pauli susceptibility defined as
m* w2 A
)(o:/\/lo”‘fo:—r;1 (4.54
h
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FIG. 10. Magnetic susceptibility in units of the Pauli suscepti-
bility as a function ofHe coverage at temperatures 40, 100, and
250 mK. At 7=0 K the susceptibility would be horizontal steps at

x/xo=1 and 2, with a vertical ramp aTtOR=O.77.

-1

BpT B,

Nk

(4.56

0ya5
I

“Yas{ e TN

N, AH,
if is clear that, in fact, Eq4.59 is well behaved in the limit
of zero applied field. The final component of the third term
can be evaluated using E@®.13 and is also well behaved in
the zero-field limit. Thus only the middle term survives, and
we can write

A

(X X0g=0= 2 T3 (4.57
whereAazexpB(,u—eg). In Fig. 10 we show the magnetic
susceptibility at temperatures 40, 100, and 250 mK. This
figure shows clearly that the magnetic susceptibility exhibits
steps at integer values similar to the magnetization steps of
Fig. 2. In the low-temperature limitA ,~expBu—x; thus
the sum in Eq(4.57) yields a series of steps as each trans-
verse state is occupied.

The magnetic susceptibility has two nontrivial invariant
points. They are, in fact, located at the same values of the

We are interested in the susceptibility in the limit of zero variables as the magnetization invariant points in Fig. 2. The

applied field,Hy—0. The first term in Eq(4.53), the mag-

first is at y/xo=1. From Eq.(4.57), this implies u= 2(60

netization, vanishes in that limit because the system is parat €1), a result that is independent of temperature. The cov-

magnetic. The third term has an explicit factori@§ thus in

order to show that it also vanishes in the zero-field limit, we
only need show that the remaining two components do not

blow up whenH,—0. The second component is

om BT TS\ 1 Ags )
- =m|l—— — -
p NoAH, nkr N 2x IV 1+A L,
ayoﬂr Aa* aya*
x( Ip >_ 1+Aa-)< I ) - 459
Using

erage aty/xo=1 is given by

1= L log(242 costw) ~ <+ 0(e~ ). (4.5
n—W’ og( cos )~26 (e, (4.58
The second invariant point is at/ xo=4/3. In the limit
P ef<, we find
p~el, (4.59
Ae
n~—+O(e‘W). (4.60
€F/
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T T T T T T The |ow coverage invariant point occurs at } € and we
*He Isothermal speed of sound T=10mK | find

— 1 Ae
= E 6_;:/ + O(e—(1/2)Be(1))_ (464)

10k T =250mK i
%_ [ We have assumed> x for both invariant points and for the
g ! latter we have also assumed thaf)> 3.
os| ]
[ V. CONCLUSION
- ] In this paper, we have examined the thermodynamic prop-

erties of an ideal Fermi gas model He in a thin *He
L superfluid film. We introduced a two-state model that is suf-
0.0 0.2 04 0.6 0.8 1.0 .. . . .
. ficient to describe the submonolayer coverage regime of in-
He Coverage terest. The physical parameters describing the system are
FIG. 11. Isothermal speed of sountf ¢2 as a function offHe shown in Table I.and were determined by nuclear Tagnetic
coverage. The low-coverage degenerate region clearly shows a ikesonance eXpe”ment_s on a Nuclepore SUbS%rm_E He
ear coverage dependence. The discontinuity in the speed of soufiOmMs have an effective mass of 1.88 and reside in a
occurs each time a new Fermi sea begins to be occupied. There diwo-State external potential with a level spacing &k

two invariant points located at=Ngneef2Nonser =1.586K. KThe experimental magnetic energy js,Ho
=15.6 mK.

The final response function, the isothermal compressibil- "€ mﬁgnenzat_lonfas a fun(r:]tlon of cpyera_\g% at zero ti”;)'
ity, «7, is also sensitive to the filling of the Fermi seas. ThePErature has a pair of steps whose position Is determined by

compressibility was introduced in E4.36 during the dis- the rglative sizes of the external fielﬂmHQ, and the level
cussion of the heat capacity. In the following we shall find its_pacmgAg; see Table II. The ramps leading up to the_steps
more useful to refer to the isothermal speed of sound. Th&!9nal regions where the Fermi sea of an unpaired spin state

compressibility and the speed of sound are related pis being filled. On the steps all spin states are paired. In
m* c2= k., 1/n. Thus from Eq.(4.36 we have agreement with experimeftFig. 2 shows that the stepped
T= . (4.

magnetization structure survives through temperatures at
least as high as 100 mK. In the text we show that the char-
2 ZEFO .. . .
m*c2= ) (4.61)  acteristic temperature over which the stepped structure sur
2 [A,J(1+A, ] vives is given by the Ia_rger ake/2 andeHo._
as - " “ The chemical potential versus magnetization and the mag-
netization versus coverage both have invariant points where
At zero temperature, the isothermal speed of sound is giveall isotherms pass exponentially close at low temperatures
by (as derived in the textOne of the chemical potential invari-
ant points is valid at all temperatures and external fields. The
(m* c%)T:(,: 2€ero! Voces (4.62 magnetization versus coverage results are in good qualitative
agreement with the experimental data of Higley, Sprague,
where we remind the reader theg, is defined in Eq(3.26  and Hallock(see Fig. 3 of Ref. 2 The invariant points in the
and v is the number of occupied Fermi seas. Thus7at interacting system appear at the coverages given by Egs.
=0 K, the isothermal speed of sound tdiscontinuousle-  (4.9) and(4.12.
creases at each new ramp or step. In Fig. 11 we shbes We calculated the spreading pressure as a function of cov-
as a function of*He coverage. The discontinuity appears aterage and temperature. The low-temperature results were ob-

Nor~Ny. =0.76; thus the drop in the speed of sound is giverfained from Eq.(3.20, and an exact result valid for low

by Am*c2=2(1.8 K)(1/2-1/4)=0.9 K. We note that the temperaturey,s>0. We found that there exist regions in

drop is calculated from the first step to the second step sincé€ thermodynamic state space for whith/d7<0. These

in this system, the intervening ramp occupies such a narrogions are located near the corners of the magnetization

density range. In terms of units of speeat c2=1 K corre-  St€PS where at zero temperatul®/dn is discontinuous. A

sponds tac,=45 m/s. ’ simple model is introduced that qualitatively explains these
There are two invariant points in this figure. They are@nomalous regions as being due tble atoms “spilling

basically invariant points of the density. Thus the high Cov_gver" a filled lllzermi sea into an availabI(\eNempty Fhermi sea
erage invariant point is characterized fay- 62, and we find ue to a small increase in temperature. We note that experi-
ments on adsorbed films have been reported where spreading

pressure is a variable that can be measured directiwe
+0(e™ ™). (4.63  noted that this behavior is also reflected in the coverage de-
€r/ pendence of isotherms of the entropy per particle, a quantity

— A€
n=—
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that can be indirectly determined from heat capacity meaperatures on the order of 100 mK, as shown in Fig. 11. We
surements. note that a prediction for the zero sound spectra for this
We investigated the behavior of the response functionssystem has been published elsewh@ri.is not clear to us
the heat capacity at fixed area and fixed pressure, the magthether density fluctuations of a normal Fermi liquid which
netic susceptibility, and the isothermal speed of sound. Itloats in an inhomogeneous superfluid film will be isothermal
Eqgs. (4.39, (4.47), (4.57), and (4.61), respectively, we ex- as in a superfluid or adiabatic as in usual media. In any case,
hibit analytic expressions for each of these functions. In adthe adiabatic speed of soura}, can be related to the isother-
dition, in Eq.(4.39, we exhibit an exact expression for the mal speed of sound;;, by means of the thermodynamic
thermal expansion coefficien3,. These expressions, to- identity
gether with the entropy of Eq3.24), exhibit the explicit
dependence of the response functions on the thermodynamic ~_[Cp
fields, 7, P, u, andH,. Cs= Vg o
In the limit of the two-state model, the specific heat at .
constant area exhibits a classical Schottky maximum at apYnereCe andC 4 are heat capacities at constant pressure and
proximately 0.75 K that is very pronounced at low coverage &€& respectively. Thus, from E(4.51, we immediately

The peak diminishes with increasing coverage and disapind the low-temperature relation
pears forn>n,,c.cWhen the chemical potential crosses the w? [kgT|?
bottom of the band of the first excited transverse state. As Ce~|1+ VOCCZE(—T)
discussed above, if in the real system there are additional €Fo

discrete states lying close to the first excited state then thErom Table I, we see that a full monolayer corresponds to a
Schottky peak will tend to get washed out. The slopes of thé-ermi energyego=2.37 K. Thus, over much of the low—
low-temperature specific hedthe specific heat effective temperature phase diagram, there will be little difference in
massep show a steplike change across the corners of théhe sound speeds.

magnetization steps due to the different phase space avail- We note that by inspection of E(4.36) for the isothermal
able on either side. It is important to note that the specificompressibility and Eq4.57) for the zero—field, magnetic
heat that is being discussed is the heat capacity per partickusceptibility, we find the relation

and not the heat capacity per unit area. These two quantities
have qualitatively different dependences on temperature. For (X/XO)H0=0: (2€ron) k7. (5.3

the two-dimensional, ideal Fermi gas, the Iow-temperaturel.hus in the Fermi gas limita measurement of the zero—

slopes for the heat capacity per unit area are constantﬁeld magnetic susceptibility is equivalent to a measurement
whereas for the heat capacity per particle the low- f the isothermal speed of sound

. - .0

temperature slopes go like 1/coverage. S|m|IarIy the high Higley, Sprague and Halloékshowed that good agree-
temperature asymptotes for the heat capacity per area alfent with the magnetization experiment can be achieved by
proportional to the coverage whereas for the heat capacn%/

er particle the hiah-temperature asvmptotes are a consta ?king into account some effects of interactions. In work to
Enit;) 9 P ymp Ve reported elsewhere, we have generalized Landau Fermi

In Fig. 10, we show the magnetic susceptibility versushqu'd theory in the spirit of Quader and Bed8lto the mix-

3He coverage for this system. The susceptibility exhibitsture films in order to include the effects of interactidhs.

steps in the same qualitative fashion as the magnetization.

(5.9

1/2
Crt. (5.2
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