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Thermodynamics of 3He in 3He-4He thin films: The Fermi gas limit

R. H. Anderson and M. D. Miller*
Department of Physics, Washington State University, Pullman, Washington 99164-2814
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We examine the thermodynamics of a two-dimensional Fermi gas model describing adsorbed3He in a thin
superfluid 4He film. The 3He system is characterized by both a hydrodynamic effective mass and a set of
discrete transverse single-particle states that model the effects of the interaction with the substrate that supports
the film. We show that the magnetization steps seen in experiment are a simple manifestation of theT50 K
equation of state. We prove that perfectly horizontal magnetization steps rigorously disappear at any finite
temperature. We show that the thermal stability of the steps is determined by the larger ofDe/2, one-half of the
level spacing, andmmH0, the magnetic energy. We derive the conditions under which there exist points in the
phase space~termed invariant points! through which all low-temperature isotherms pass exponentially close.
The invariant points appear for magnetization versus3He coverage, chemical potential versus magnetization,
magnetic susceptibility versus coverage, and speed of sound squared versus coverage. We compare our calcu-
lated invariant points for the magnetization versus coverage with experiment and find good agreement. We
show that there exist small regions of thermodynamic phase space in which the temperature derivative of the
pressure is negative. We explain these anomalous regions as the result of3He atoms ‘‘spilling over’’ from a full
Fermi sea to an empty Fermi sea upon the application of a small increase in temperature. Through a Maxwell
relation, this behavior can also be seen as in the appearance of a local peak in low-temperature entropy
isotherms versus coverage. In the limit of a two state model, we calculate the specific heat and show that a
Schottky peak develops in the low3He coverage limit. We calculate the magnetic susceptibility and predict
that it should exhibit a steplike structure versus3He coverage similar to that of the magnetization. We calculate
the speed of sound and show that it should exhibit zero-temperature discontinuities at the points where new
Fermi seas begin to be occupied. Both the steplike structure in the magnetic susceptibility and the
discontinuity-type structure in the speed of sound persist to temperatures on the order of 100 mK, and are
analyzed in terms of invariant points in their respective phase diagrams. We show explicitly that, in the Fermi
gas limit, the zero-field magnetic susceptibility is simply proportional to the isothermal compressibility.

DOI: 10.1103/PhysRevB.66.174511 PACS number~s!: 67.70.1n, 67.60.Fp, 64.30.1t
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I. INTRODUCTION

In 1989, an important advance in the understanding of
properties of thin3He-4He mixture films was made by Hig
ley, Sprague, and Hallock by their discovery of steps in
magnetic equation of state~magnetization isotherms versu
coverage!.1,2 In these systems, the3He atoms reside near th
upper surface of the superfluid4He film and are localized in
the direction transverse to the film by the external potent
due to the4He film and the solid substrate that supports
combined helium systems. As pointed out by Hallock a
Higley et al.,2 the steps are direct evidence of the existen
of this set of discrete3He states and, further, the experime
tal data can be analyzed to yield properties of the sta
These states were first predicted and examined by Gasp
and co-workers in a pioneering series of heat capacity
periments on the mixture films.3–5 In both the Hallock and
Gasparini experiments, the solid substrate was Nuclepo
polycarbonate material threaded by roughly cylindrical p
sages of nominal diameter 2000 Å.

The 3He subsystem forms a quasi two-dimensional Fe
system whose properties have been examined by a numb
authors.6–9 In Ref. 2, Higley, Sprague, and Hallock showe
that a Fermi gas model with the effects of interaction
cluded through the use of phenomenological Fermi liq
parameters enable them to obtain excellent fits to their d
In this paper, we take a step back, in a sense, and ask
0163-1829/2002/66~17!/174511~16!/$20.00 66 1745
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behavior is to be expected in the absence of interactions
the limit that the 3He atoms are treated as ideal fermio
quasiparticles. In that limit, much of the analysis can be p
formed analytically and we will show that this model is c
pable of qualitatively explaining the behavior of the tru
mixture film. In Sec. II, we will derive the ground-state pro
erties and show why a stepped structure in the magnetiza
versus areal density is to be expected. We will also exam
in detail the behavior of the chemical potential and spread
pressure. In particular, we point out that the ground-st
pressure and chemical potential are continuous but not
ferentiable at those densities corresponding to the begin
and end of the steps and the speed of sound is discontin
at those points. In Sec. III, we shall derive the relevant s
tistical mechanics of this two-dimensional ideal Fermi g
model. In Sec. IV, we discuss the finite temperature beha
in terms of the numerical solution of a two-state model. T
parameters for the model are determined by experiment.
examine isotherms of the magnetization versus3He cover-
age, and show that there exist points in the phase diag
through which all low-temperature isotherms pass expon
tially close. We denote such points asinvariant points. These
invariant points are also found in the phase diagrams
chemical potential versus magnetization, magnetic susce
bility versus coverage and speed of sound~squared! versus
coverage. The existence of these invariant points determ
qualitatively the energy scale over which the phase diag
©2002 The American Physical Society11-1
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TABLE I. The values of various parameters used for the numerical calculations.

Quantity Symbol Value

Single particle ground state e0
0 0.0 K

Single particle first excited state e1
0 1.8 K

3He effective mass m* 1.38m3
3He magnetic moment mm 7.782431024 K/T
Applied magnetic field H0 2 T
Density of 3He at monolayer completion nl 0.0647 Å22

Fermi energy of3He at monolayer completion eFl 2.37 K
Onset coverage for first excited state occupation n̄onset

0.761
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retains its global structure. This analysis explains why
relevant energy scale for the magnetization steps is the l
spacing~1.8 K! and not the magnetic energy~30 mK!. We
show that the zero-temperature kinklike structure for
ground-state pressure versus density has the interesting
sequence at finite temperature of leading to regions in wh
the pressure has a negative temperature derivative. Thi
sult is also explained in terms of a physical model based
the ‘‘spilling over’’ of 3He atoms from a filled Fermi sea t
an empty Fermi sea upon the application of a small incre
in temperature. In Sec. IV, we obtain analytic expressions
the heat capacity at constant area and constant pressur
magnetic susceptibility, the isothermal compressibility, a
the thermal expansion coefficient. Further, we show that
magnetic susceptibility versus coverage will exhibit a st
like structure similar to the magnetization and also that
speed of sound~squared! will show a discontinuity–type
structure as a function of coverage. Both phase diagrams
analyzed in terms of their invariant points. Section V is t
conclusion.

II. GROUND STATE

We consider a system ofN 3He atoms in an areaA. The
spin-12 atoms have a magnetic momentmm and are subject to
an applied magnetic fieldH0. The spin state will be labeled
by the indexs56 where we can arbitrarily chooses51 to
represent the low energy configuration. The3He atoms are
adsorbed onto a film of4He which is itself adsorbed onto
solid substrate. All information in the3He system concern
ing the 4He film and the substrate is contained in a set
transverse single-particle states whose energy levels are
noted$ea

0%. Thus the energy of a3He quasiparticle in state
$a,s,k%, where k is the two-dimensional wave vector,
given by

ek
a,s5ea

01
\2k2

2m*
2mmH0s. ~2.1!

m* 51.38m3 is the hydrodynamic effective mass determin
by Higley, Sprague, and Hallock,2 and mM57.7824
31024 K/T. It is at this stage that interactions between t
quasiparticles are neglected. We note that DiPirro and G
parini were the first to describe the adsorbed3He system as
an ideal Fermi gas with a discrete set of transverse sin
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particle states.3 In the numerical work to be described below
we shall useH052 T to agree with the NMR experiments o
Ref. 2. The values of the parameters in Eq.~2.1! are col-
lected together in Table I.

We begin the ground-state analysis by imagining a4He
film with one 3He atom present. We turn on the external fie
H0, then each3He single particle levelea

0 is split by an
amount 2mmH0. We begin adding3He atoms to the system
The interaction in Eq.~2.1! is attractive for parallel spins an
the first 3He atoms begin filling the Fermi sea$a50,s
51%. Each atom contributes a magnetic momentmm and so,
after N atoms have been added, the magnetization in
regime is simplyNmm . That is, the magnetization increas
linearly with the number of3He atoms that are added. This
the first ramp and is illustrated in Fig. 1.

At the densityn0L the bottom of thee02 band is reached
Further addition of3He atoms fills both bands jointly, and s
contributes zero net magnetization. This creates the first

FIG. 1. The main plot shows single particle energies as a fu
tion of wave vectork. The bands forming out of the two transvers
states,e0

0 ande1
0, are split by 2mmH0. For k,k0L

01 only the lowest
statee01 is occupied. In this regime, the magnetization grows l
early with the number of3He atoms as shown in the inset. Addin
more 3He fills the two statese01 ande02 jointly, and thus there is
no change in the overall magnetization. These branches reach
bottom of thee11 band at the wave vectors denoted byk0R

02 and
k0R

01 . This region of unchanging magnetization thus forms the fi
step as indicated in the inset for densities betweenn0L and n0R .
Additional ramps and steps are formed in the same manner.
1-2
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as shown in the inset of Fig. 1. When the density reac
n0R , the bottom of thee11 band is reached and so a line
magnetization regime is produced. This is the second ra
shown in the inset of Fig. 1. In this manner, the magneti
tion versus density relation is created in a stepped structu
zero temperature. In the following, we shall derive the qu
titative properties of these magnetization steps.

The number of atoms in occupied level$a,s% is given by

Nas5
kFas

2

4p
A. ~2.2!

Thus the Fermi wave vector for each level is given by

kFas
2 54pnas , ~2.3!

wherenas5Nas /A. The total density is given by

n̄5(
a,s

nas

nl

, ~2.4!

where the dimensionless density, called thecoverage n̄, is
measured in units of one complete3He monolayernl

50.0647 Å22 ~see Ref. 2 and Table I!.
The internal energyU is given by

U5(
a,s

Fea
02mmH0s1

1

2
eFasGNas , ~2.5!

where eFas is the partial Fermi energy~i.e., 1
2 eFas is the

kinetic energy contribution! for the level $a,s%, and is de-
fined by

eFas5
\2kFas

2

2m*
5

\2

2m*
~4pnas!. ~2.6!

The chemical potentialm for occupiedlevel $a,s% is given
by

m5S ]U
]Nas

D
A

5ea
02mmH0s1eFas , ~2.7!

and the spreading pressureP is therefore

P52S ]U
]AD

N
5

1

2(a,s
eFasnas . ~2.8!

By inspection of Eqs.~2.5! and ~2.8! we find

U5(
a,s

@ea
02mmH0s#Nas1PA. ~2.9!

Using Eq.~2.9!, the enthalpy,H5U1PA, can be written as

H5(
a,s

@ea
02mmH0s#Nas12PA. ~2.10!

Both Eqs.~2.9! and~2.10! are also valid at finite temperatur
if Nas is interpreted as an average occupation number;
Eq. ~3.1! below. In the ground state, we can use Eq.~2.8! to
simplify Eq. ~2.10!
17451
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H5(
a,s

@ea
02mmH0s1eFas#Nas . ~2.11!

Finally, from Eq. ~2.7!, we find that Eq.~2.11! reduces to
H5mN, the expected result at absolute zero.

Referring to the inset of Fig. 1, we define the densities
the beginning~left hand side! and the end~right hand side! of
the first step asn0L andn0R , respectively. The densities ar
determined by equating the chemical potentials for the oc
pied bands at those points. Thus, atn5n0L , we havem(0,
1,n0L)5m(0,2,n0L), which yields

n0L5
m* mmH 0

p\2
. ~2.12!

In terms of the coverage we can write

n̄0L5
mmH0

eFl

, ~2.13!

andeFl 52.37 K is the Fermi energy of a completed mon
layer:

eFl 5
\2

2m*
~2pnl !. ~2.14!

At the density n0R , we set m(0,1,n0R)5m(0,2,n0R)
5m(1,1,n0R) to find

n̄0R1n̄0L5n̄onset, ~2.15!

where,n̄0L is defined in Eq.~2.13! and

n̄onset5
De0

eFl

. ~2.16!

The quantityDe05e1
02e0

0 is the level spacing andn̄onset is
the onset coverage. This is the coverage at which the
excited state would begin to be occupied in theabsenceof an
external field. For a given external field, the width of th
step,n̄0R2n̄0L , is proportional to the level spacing.

The total magnetization is defined by

M5mm(
a

~Na,12Na,2!. ~2.17!

Using Eq.~2.12!, the value of the magnetization at the fir
step is given by

M05
m* mm

2 H0A
p\2

. ~2.18!

This result can be generalized to any step. If we tempora
introduce a state dependent effective mass,ma* , then the
increasein magnetization at the end of theath ramp is given
by

DMa5
ma* mm

2 H0A
p\2

. ~2.19!
1-3
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TABLE II. Pressure and partial densities for the first two ramps and steps in the ground-state m
zation equation of state.

Density range Partial densities Pressure

0<n<n0L n015n P5\22p(n2)/2m*
n0L<n<n0R n015

1
2 (n1n0L) P5\22p( 1

2 n21
1
2 n0L

2 )/2m*
n025

1
2 (n2n0L)

n0R<n<n1L n015
1
3 (n1n0L1

1
2 nonset) P5\22p( 1

3 n21
1
3 (2n0L

2 2n0Lnonset

1
1
2 nonset

2))/2m*
n025

1
3 (n22n0L1

1
2 nonset)

n115
1
3 (n2n0R)

n1L<n<n1R n015
1
4 (n12n0L1nonset) P5\22p( 1

4 n21n0L
2 1

1
4 nonset

2)/2m*
n025

1
4 (n22n0L1nonset)

n115
1
4 (n12n0L2nonset)

n125
1
4 (n2n1L)
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Thus the ratio of the increase in magnetization at theath step
relative to the magnetization of the first step,a50, is simply
the ratio of the effective masses:

DMa /M05ma* /m0* . ~2.20!

The experiment of Ref. 2 provides a data point that is
inconsistent with equal magnetization jumps at the first a
second steps.~We note that the authors of Ref. 2 definedM0
using thebare 3He mass, and therefore their magnetizatio
did not fall on steps with integer values.! As indicated in
Table I, in this paper we shall use a single state indepen
effective mass set equal to the hydrodynamic mass as d
mined in Ref. 2. We introduce a dimensionless magnetiza
m̄, defined by

m̄5
M
M0

, ~2.21!

that is essentially the magnetization per unit area.
With a state independent effective mass, we can strai

forwardly generalize the above analysis of the first magn
zation step to an arbitrary step. We examine theath step
~that is, the step where the states$a,6% are being jointly
filled!. In order to determine the density at the left hand ed
naL , we need to equate the 2a12 chemical potentials
m($n50,1,. . . ,a%,6,n0L). This set of equations yields

n̄aL5
1

eFl
(
n50

a21

~ea
02en

0!1~a11!n̄0L . ~2.22!

Similarly, for the density at the right hand edge,naR , we
need to equate the 2a13 chemical potentialsm($n
50,1,. . . ,a%,6,n0R),m(a11,2,n0R). This set of equa-
tions yields

n̄aR5
1

eFl
(
n50

a

~ea11
0 2en

0!2~a11!n̄0L . ~2.23!

Adding Eqs.~2.23! and ~2.22!, we find
17451
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n̄aR1n̄aL5
1

eFl
(
n50

a21

~ea11
0 1ea

022en
0!1

Dea

eFl

,

~2.24!

whereDea5ea11
0 2ea

0 . Equation~2.24! is the desired gen-
eralization of Eq.~2.15! to steps witha.0.

The total magnetization at a density corresponding to
filling of the ath ramp ~that is, the unpaired state is$a,
1%) is given by

m̄~a!5
n̄2n̄a21R

~2a11!n̄0L

1a, ~2.25!

where it is understood thatn̄21R50, and from Eqs.~2.22!
and ~2.23!, we have used

n̄a11L2n̄aR5~2a13!n̄0L . ~2.26!

The density width of theath rampincreaseslinearly with a.
In Table II, we display the partial densities and pressu

for the first and second ramps and steps as sketched in F
We note that the coefficient of the density for the pressure
each region has a term like 1/~number of occupied Ferm
seas!. The pressure is a series of parabolas that are joine
the corners of the steps. The parabolas on the high den
~right hand! side have a smaller curvature than the parab
on the lower density~left hand! side. Thus, the pressure ve
sus density is continuous but not differentiable at the de
ties corresponding to the corners of the steps$n̄aL ,n̄aR ,a
50,1, . . .%. From Eq.~2.9!, the internal energy on the ramp
and steps follows immediately from the entries in Table I

The dependence of the chemical potential on the mag
tization will be a useful quantity for the analysis of the ma
netization equation of state. In Table III we write down e
pressions for the chemical potential along the first two ram
and steps. One can generalize these results to any ramp
step. Thus, the chemical potential along theath step is given
by
1-4
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TABLE III. Chemical potentials and magnetizations for the first two ramps and steps in the ground
magnetization equation of state from Eqs.~2.25!, ~2.27!, and~2.28!.

Density range Magnetization Chemical potential

0<n<n0L m̄5n̄/n̄0L m5e0
012mmH0(m̄21/2)

n0L<n<n0R m̄51 m5e0
01mmH0(n̄/n̄0L)

n0R<n<n1L m̄511(n̄2n̄0R)/3n̄0L) m5e1
012mmH0(m̄23/2)

n1L<n<n1R m̄52 m5
1
2 (e0

01e1
0)1

1
2 mmH0(n̄/n̄0L)
a

-
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m5S 1

11a D F (
n50

en
01mmH0~ n̄/n̄0L!G . ~2.27!

Similarly, the chemical potential along theath ramp is given
by

m5ea
012mmH0S m̄2a2

1

2D ~2.28!

wherea50,1, . . . .

III. FINITE TEMPERATURE

The average number of particles in level$a,s% at tem-
peratureT, b51/kBT, is given by

Na,s5(
k

1

La,s
21 exp~bek!11

, ~3.1!

where we have introduced

ek5\2k2/2m* , ~3.2!

La,s5eb(m2ea
0

1mmH0s). ~3.3!

In two dimensions, the integral in Eq.~3.1! can be done
analytically. It will prove to be useful to mimic the three
dimensional analysis of the ideal Fermi gas by writing

Na,s5A 1

lT
2

G1~La,s!, ~3.4!

where lT
25(2p\2)/(m* kBT) is the thermal de Broglie

wavelength squared, and we have defined a general po
series inLa,s as

Gn~La,s!52(
l 51

`
~2La,s!

l

l n
, n51,2, . . . . ~3.5!

UsingG1(La,s)5 ln(11La,s), the partial density can be writ
ten

nas5
1

lT
2

ln~11La,s!. ~3.6!

We note that this result can be obtained directly from E
~3.1! and is therefore valid at all temperatures.

We can now write down the dimensionless densities
magnetization introduced in Sec. II,
17451
er
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d

n̄5(
a,s

n̄a,s , ~3.7!

n̄a,s5
1

2wl

ln~11La,s!, ~3.8!

wherewl 5beFl , and

m̄5(
a

m̄a , ~3.9!

m̄a5
1

2x
lnS 11La1

11La2
D , ~3.10!

wherex5bmmH0. A summary of the notation used for th
finite temperature problem can be found in Table IV.

Inverting Eq.~3.6! yields

La,s5ebeFas21, ~3.11!

where eFas5(\2/2m* )4pnas(T) is the finite-temperature
generalizationof the quantity that was introduced in Eq
~2.6!. Alternatively, we have the identity

beFas5naslT
2 . ~3.12!

From Eq.~3.11!, the chemical potential can be written

m5ea
02mmH0s1

1

b
ln~ebeFas21!. ~3.13!

For additional discussion concerning the properties of
chemical potential in a two-dimensional polarized fermi

TABLE IV. Summary of the notation used for the finite
temperature system. From Table I, the values of the quantities
for the numerical work aremmH0515.6 mK, De51.8 K, and
eFl 52.37 K.

Symbol Meaning

ya,s b(m2ea
01mmH0s)

La,s exp(ya,s)
x bmmH0

w bDe
wl beFl

eFas (\2/2m* )4pnas(T)
eF0 (\2/2m* )2pn
1-5
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system, see Ref. 10. In the low-temperature regime,beFas
.1, it is convenient to rewrite Eq.~3.13! as

m5ea
02mmH0s1eFas2

1

b (
l 51

`
e2 lbeFas

l
. ~3.14!

In the degenerate limit, withN andA fixed, Eq.~3.14! can
be used to show that finite-temperature corrections for
chemical potential are of exponential order. Here and hen
forth, we shall use the termexponential orderto denote a
quantity that vanishes in the limT→0 in the nonanalytic
form exp(2constant/T).

The pressure can be written

P5
1

bA (
a,s,k

ln~11La,se
2bek!, ~3.15!

that can alternatively be put in the form

P5
1

blT
2 (

a,s
G2~La,s!, ~3.16!

where the sumG2 is defined in Eq.~3.5!. Unfortunately,G2
has no simple analytic form. Further, this series conver
only in the classical regime (La,s,1). One can, however
derive an alternative exact expression that is useful in
quantum regime. Following the low-temperature analysis
troduced in Ref. 11 one begins with Eq.~3.15! in the form

P5
1

blT
2 (

a,s
E

0

`

dx
x

ex2ya,s11
, ~3.17!

where for convenience we have introduced the nota
La,s5eya,s. We now change variables toz5x2ya,s and
separate the expression into two terms

P5
1

blT
2 (

a,s
S E

0

ya,s
dz

~2z1ya,s!

e2z11
1E

0

`

dz
~z1ya,s!

ez11
D .

~3.18!

The first integral can be reduced using the identity

1

e2z11
512

1

ez11
. ~3.19!

We then immediately find

P5
1

blT
2 (

a,s
S 1

2
ya,s

2 1
p2

6
1(

l 51

`

~2 ! l
e2 lya,s

l 2 D .

~3.20!

This expression for the pressure is exact and the inner s
mation converges absolutely forya,s5b(m2ea

01mmH0s)
.0. Forya,s50, that sum equals2p2/12. We can also use
Eq. ~3.5! to write the low-temperature form as

P5
1

blT
2 (

a,s
F1

2
ya,s

2 1
p2

6
2G2S 1

La,s
D G , ~3.21!
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that can be compared directly with the high-temperat
form @Eq. ~3.16!#. As expected, if we use Eq.~3.21! in n
5(]P/]m)T , we immediately recovern5(a,snas with nas
given by Eq.~3.6!.

In the degenerate limit,ya,s@1, the pressure becomes

lim
T→0

P;(
a,s

F1

2
eFasnas1

p2

6

1

blT
2

2
1

blT
2

e2ya,s

1O~e22ya,s!G . ~3.22!

The leading order correction to the pressure at zero temp
ture is of orderT2 and the corrections to that term are
exponential order. The coefficient of theT2 term is a con-
stant, independent of the state$a,s%. The implication is that
the low-temperature pressure should have a stepped stru
with an additional contribution ofp2/(6blT

2) each time an-
other state is occupied.

The final fundamental thermodynamic quantity that w
shall obtain in this section is the entropy. An expression
the entropy can be most easily derived from the defin
expression for the Gibbs free energy (mN5H2TS):

S5
1

T ~H2mN!. ~3.23!

Using Eq. ~2.10! for the enthalpy and Eq.~3.13! for the
chemical potential, we immediately find

S/kB52(
a,s

ya,sNas12bPA. ~3.24!

We can consider this to beS(m,A,T). In the low-
temperature limit,naslT

2@1, we can use Eq.~3.22! for the
pressure to obtain to exponential order,

lim
T→0

S/NkB;nocc

p2

6 S kBT
eF0

D , ~3.25!

wherenocc is the number of occupied levels at zero tempe
ture, and the Fermi energyeF0 is defined by

eF05~\2/2m* !2pn. ~3.26!

In Sec. IV, we shall apply the basic thermodynamic resu
from this section to calculate the magnetic equation of st
equation of state and chemical potential using a two-s
model that mimics the experiment of Higleyet al.2 We shall
also derive general expressions for the heat capacity, m
netic susceptibility, the isothermal compressibility, and t
thermal expansion coefficient, and compute numerical res
for the two–state model.

IV. RESULTS

In this section, we examine the equation of state of
ideal Fermi gas model of the adsorbed3He system. As sum-
marized in Table I, for the numerical model we have tw
1-6
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transverse states with energies$e0
050,e1

051.8 K% and an ef-
fective mass,m* 51.38m3, whose values were determine
experimentally by Higley, Sprague and Hallock.2 The mag-
netic energy, 2mmH0, is approximately 31 mK for a 2-T
field. In Fig. 2, we show the magnetic equation of state~iso-
therms of magnetization versus coverage!. The evolution of
the step structure out of the zero temperature results is c
We note that the stepped structure is still clear atT
e
te

ine
.
tu

.
s

17451
ar.

5100 mK despite the fact that that temperature is th
times larger than the magnetic energy. The selection of t
peratures chosen for the isotherms match those in Ref. 2

Although the slopes of the low-temperature isotherms
Fig. 2 seem to be flat in the region of the center of the z
temperature step, it is straightforward to show that true h
zontal steps only occur at absolute zero. The slope of a m
netization isotherm is given by
dm̄

dn̄
5S 1

n̄0L
D (

a
$@La,1 /~11La,1!#2@La,2 /~11La,2!#%

(
a

$@La,1 /~11La,1!#1@La,2 /~11La,2!#%

, ~4.1!
f
2,

iso-
ts.

b-

at
where the derivative is taken at fixedb and H0. Thus, the
condition (dm̄/dn̄)50 requiresLa,15La,2 ;a. At finite
temperature, these can be equal only whenH050. In the
limb→`, La,s→`; thus the terms in the numerator canc
out to exponential order and create steps for each staa
when both spin states are occupied.

There are two aspects of Fig. 2 that we wish to exam
The first is the question of the stability of the step feature
is clear that the steps survive fairly intact up to a tempera
of at least 100 mK. The second is the nature of the two~finite
density! points through which all isotherms seem to pass

In order to examine the stability of the step, we can u
Eq. ~4.1! to calculate the slope of the isotherm atm̄51.0. We
first rewrite Eq.~3.10! as a quadratic equation inL01 :

~e2xm̄21!1~11e2w!~e2x(m̄21)21!L01

1e2w~e2x(m̄22)21!L01
2 50. ~4.2!

FIG. 2. Magnetizationm̄ as a function of coveragen̄ for tem-
peratures5 0 K, 40 mK, 100 mK, and 250 mK.
l

.
It
re

e

For m̄51, Eq. ~4.2! can be immediately solved to yield

L0,65e6x1w/2,
~4.3!

L1,65e6x2w/2.

Substituting Eqs.~4.3! into Eq. ~4.1! yields the slope atm̄
51:

S dm̄

dn̄
D

m̄51

5S 1

n̄0L
D F 12e22x

11e2x~ew/21e2w/2!1e22xG .

~4.4!

In the low-temperature limit, withDe@mmH0, for the slope
at m̄51 we find

S dm̄

dn̄
D

m̄51

'
1

n̄0L

e2w/21x. ~4.5!

Thus thelarger of mmH0 or De/2 determines the region o
temperature stability for the step. In the case of Fig.
De/250.9 K andmmH0516 mK.

The points in the thermodynamic phase space that all
therms seem to pass through will be called invariant poin
In Fig. 2, there are three such points located at (n̄,m̄)
5(0,0),(n̄onset/2,1),(n̄onset,4/3). ~We note from Table I that
n̄onset5De/eFl 50.761.! From Eqs.~3.8! and~3.10!, we can
write

11~11e2w!e22xL011e2we24xL01
2 5ewl n̄2xm̄.

~4.6!

In order to obtain the trivial invariant point at (0,0) we su
stitutem̄50 into Eqs.~4.2! and ~4.6! to yield

11~11e2w!L011e2wL01
2 5ewl n̄. ~4.7!

We note thatn̄50 is a self-consistent solution since in th
limit L01;ebm→0, at any temperature.
1-7
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For the invariant point atm̄51, we use Eq.~4.3! in Eq.
~4.6! to yield

2@cosh~x!1cosh~w/2!#5ewl n̄. ~4.8!

The low-temperature limit is controlled by the larger ofx or
w/2. For our system we find

n̄'
1

2
n̄onset1O~e2w/2!. ~4.9!

Thus, in agreement with Fig. 2, for temperatures much l
than De/2, all magnetization isotherms come exponentia
close to this invariant point.

For the last invariant point atn̄5n̄onsetandm̄54/3 there
does not seem to be a simple expression relating the exte
field, level spacing, and density as Eq.~4.8!. We note, how-
ever, that this point is special at zero temperature. Fr
Table III, the magnetization as a function of density alo
the second ramp is given bym̄511(n̄2n̄0R)/3n̄0L . Thus
when evaluated atn̄onset5n̄0L1n̄0R all field and level-
spacing dependence cancels out, leaving the pure num
4/3. We shall use a low-temperature expansion to ana
this point. From Table III the ground-state chemical poten
at m̄54/3 is given bym5e1

02mmH0/3. Substituting this
into theL ’s, @Eq. ~3.3!# yields

L015ew12x/3, L115e2x/3,
~4.10!

L025ew24x/3, L125e24x/3.

Then, from Eqs.~4.6! and ~4.2!, we find

m̄5
4

3
1O~e22x/3!, ~4.11!

n̄5n̄onset1O~e22x/3!. ~4.12!

These results show the invariant point character in the li
x@1. Figure 2 indicates, however, that this behavior is s
present at higher temperatures.

Invariant points can also be seen in the space of chem
potential as a function of magnetization. Figure 3 sho
chemical potential isotherms as a function of magnetiza
for T510, 50, 100, 150, 200, and 250 mK. There are e
dently three invariant points in this region located at t

values of the chemical potential given bym5@e0
0 , 1

2 (e0
0

1e1
0),e1

0#. The central point atm̄51 is the most interesting
From Eqs.~4.3!, we have at this pointL01L02L11L12

51. Thus from the definition of theL8s @Eq. ~3.3!#, we find
the simple result

m5
1

2
~e0

01e1
0!. ~4.13!

Since this chemical potential value is independent ofT and
H0, all chemical potential isotherms must pass throughm̄
51 whenm5 1

2 (e0
01e1

0). For the system of Fig. 2, the poin

$m50.9,m̄51% is the central invariant point in Fig. 3.
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The analysis of the two remaining points proceeds ana
gously. For the point atm5e0

0, we have

L015ex, L115e2w1x,
~4.14!

L025e2x, L125e2w2x.

The magnetization is, therefore,

m̄5
1

2x
lnFex

11e2w1x

11e2w2xG . ~4.15!

In the low-temperature limitbDe@1 we find

m̄'
1

2
1O~e2w!, ~4.16!

in agreement with Fig. 3. Similarly, for the point atm5e1
0,

we have

L015ew1x, L115ex,
~4.17!

L025ew2x, L125e2x.

The magnetization is therefore

m̄5
1

2x
lnFex

11ew1x

11ew2xG . ~4.18!

In the low-temperature limitbDe@1 we find

m̄'
3

2
1O~e2w!, ~4.19!

in agreement with Fig. 3.
In Fig. 4, we show the pressure as a function of cover

at T50 and 10 mK and note that these are not distingui
able on the scale of the left hand axis in the figure. On
right hand axis, we have plotted the pressure differencedP
5@P(10 mK)2P(0)#. At low coverages~in the first step!
the pressures differ only by the constant fac

FIG. 3. Chemical potentialm as a function of magnetizationm̄,
for temperatures5 10, 50, 100, 150, 200, and 250 mK.
1-8
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(a,sp
2/(6blT

2)54.531026 K2Å22; see Eq.~3.22!. In the
coverage region near the end of the step where an additi
Fermi sea will begin to be filled, we see from examiningdP
that the pressure at finite temperature dropsbelow the zero
temperature pressure. Thus we have the amazing result
for this system, an ideal Fermi gas, there is a regime
which the temperature derivative of the pressure is nega
This effect persists to surprisingly high temperatures as s
in the T5100 mK data in Fig. 5.

One way to understand the source of this effect is to
amine the shape of the zero-temperature and finite temp

FIG. 4. Pressure as a function of coverage at T5 10 mK. We
plot bothP(T) from Eq. ~3.15! and the zero-temperature pressu
P(0) @Eq. ~2.8!#, along the left hand ordinate. The difference in t
two pressures are not discernible on the scale of the left hand
nate. The differencedP5P(T)2P(0) is plotted against the righ

hand ordinate. In the neighborhood of the densityn̄onset'0.761, the
pressure at finite temperature is lower than the pressure at
temperature.

FIG. 5. Pressure as a function of coverage at T5 100 mK. We
plot bothP(T) from Eq. ~3.15! and the zero-temperature pressu
P(0) @Eq. ~2.8!#, along the left hand ordinate. The zero temperat
pressure is plotted as a dashed line. The differencedP5P(T)
2P(0) is plotted against the right hand ordinate. In the neighb

hood of the densityn̄onset'0.761, the pressure at finite temperatu
is lower than the pressure at zero temperature.
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ture isotherms. From Table II, we see that the pressure g
like n2/nocc in a region wherenocc number of Fermi seas ar
being filled. Thus the curvature of the equation of state
raboladecreasesas each new Fermi sea begins to be fille
The union of the parabolas then has kinklike features wh
two parabolas with differing curvatures are joined. The pr
sure at finite temperature, however, smoothly joins the t
regions. The kinklike regions stick above the finite tempe
ture curves and the result is that, in the coverage reg
immediately surrounding the onset coverage of the filling
a new Fermi sea, the zero-temperature pressure is gre
than the finite–temperature pressure. This behavior can
just barely seen in the equation of state of Fig. 5.

The physical and microscopic basis for this effect is t
availability of a discrete set of states~i.e., the transverse
single–particle states! that allow fermions tospill over from
a filled Fermi sea into an unfilled Fermi sea under the act
of a small temperature increase. It is straightforward to w
down a model that contains the essence of this behavior

For simplicity, we consider a 2d 3He system at zero tem
perature with no magnetic field. The system is filled to t
densityn5nonset. That is, the3He atoms occupy the trans
verse ground-state up to the bottom of the band correspo
ing to the first excited state. We then increase the tempera
slightly to dT, keeping the number of particles fixed. A sma
number of particlesdN will be promoted above the zero
temperature Fermi energy. These atoms will then distrib
themselves equally over the occupied Fermi seas.

First, we will calculate an explicit expression fordNas ,
the number of particles in state$a,s% that are promoted
above the zero-temperature Fermi-level at temperaturedT.
From Eq.~3.1! we find

dNas5
A
2p

m*

\2 E0

eFas
0

deS 12
1

eb(e2ea
0

2mmH02m)11
D ,

~4.20!

where eFas
0 is the zero-temperature Fermi level, andb

51/kBdT. This expression can be integrated to yield

dNas5
A
2p

m*

\2

1

b
lnS 11exF

11ex0
D , ~4.21!

where

xF5b~eFas
0 2ea

02mmH02m!, ~4.22!

x05b~2ea
02mmH02m!. ~4.23!

In the low-temperature limit, we can use Eq.~3.14! for the
chemical potential to obtainxF50 andx052beFas

0 , both to
exponential order. Thus we find the simple result

~dNas /A!lT
25 ln~2!. ~4.24!

We setH050 and assume that we are at low enou
temperature so that Eq.~3.22! accurately determines th
pressure

di-

ro

e

r-
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P5(
a

F1

2
eFa~T!na~T!1

p2

3

1

blT
2G , ~4.25!

where in an obvious notation, eFa(T)5(\2/2m* )
3@2pna(T)# andna(T)5(snas . We now increase the tem
perature slightly todT. This drivesdN of the particles above
the zero-temperature Fermi level and from Eq.~4.24!,
dN/A52 ln(2)/lT

2 . The pressure changedP5P(T)2P(0)
is given by

dP5
1

2

\2

2m*
[2p~n0~T!22n0

21n1
2~T!#1

p2

3

1

blT
2

.

~4.26!

In this simple model, we shall set the zero-temperature d
sity atn05nonset, and choose the densities at finite tempe
ture to be given byn0(T)5nonset2

1
2 (dN/A) and n1(T)

5 1
2 (dN/A). Thus we find

dP52
1

2
ln~2!nonset~kBdT!1S ln~2!2

4p
1

p

6 Dm*

\2
~kBdT!2.

~4.27!

The leading order term, corresponding to the decreas
pressure in the ground-state Fermi sea, is negative and d
nates at very low temperature. In Fig. 6, we plotdP at n
5nonsetas a function of temperature,dT. At every tempera-
ture, the exactdP is a minimum at this density~see, e.g.,
Figs. 4 and 5!. The agreement between the parabola of
simple model and the exact calculation is qualitatively go
providing strong evidence that the picture of3He atoms
spilling over the filled Fermi sea into the empty Fermi s
due to a small temperature increase is valid. We note tha
temperature range over whichdP is negative is, from Eq.

FIG. 6. Pressure change as a function of temperature an
5nonset. We show the exact numerical results from Eqs.~2.8! and
~3.20!, and also the prediction of the simple model Eq.~4.27!. The
good qualitative agreement is in strong support of the explana
of the negative temperature derivative region as being due to3He
atoms spilling over from a filled Fermi sea into an empty Fermi
upon the application of a small increase in temperature.
17451
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~4.27!, proportional toDe, the level spacing. For the exac
calculation,dP goes through zero at approximately 387 m
whereas, for the model,dP goes through zero at approx
mately 353 mK.

We can generalize this approach by assuming a varia
fraction, x0, of the particles promoted above the zer
temperature Fermi level are distributed between the
states. Thus, the densities at finite temperature are give
n0(T)5nonset2x0(dN/A) andn1(T)5(12x0)(dN/A). For
the calculation shown in Fig. 6 we setx05 1

2 . We note, how-
ever, that the choicex050.605 yields excellent agreemen
with the exactdP.

There is an alternative way that this phenomenon can
examined. From a Maxwell relation

S ]P
]T D

N,A
5S ]S

]AD
N,T

52n2S ]~S/N!

]n D
N,T

, ~4.28!

we see that the information that is present in the tempera
derivative of the pressure also appears in the density der
tive of the entropy per particle. In Fig. 7, we show the e
tropy per particle as a function of3He coverage atT
5100 mK. The entropy per particle is not monotonic. T
region of negative temperature derivative for the press
creates a bumplike feature in the entropy versus cover
The coverage interval over which the temperature deriva
of the pressure is negative occurs between the local m
mum and maximum as indicated on the figure. The poss
importance of this observation is that the entropy can
obtained indirectly from experiment by integrating measu
heat capacities, i.e.,CA /T.

Measurements of the mixture film heat capacities p
vided the first glimpse of the discrete transverse–state e
tation spectrum for the3He component.3,12 By definition, the
heat capacity at a constant area is

n

a

FIG. 7. The entropy per particle as a function of3He coverage
at T5100 mK. The local maximum in the entropy between t

coveragesn̄50.654 and 0.888 corresponds to the regime of ne
tive temperature derivative for the pressure.
1-10
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CA5S ]U

]T D
N,A

. ~4.29!

It is convenient to study the dimensionless specific hea
constant areaCA /NkB since the high-temperature asym
totes are independent of coverage. The specific heat ca
straightforwardly computed by numerically differentiatin
the internal energy from Eq.~2.9!. Formally we can write

CA /NkB5
1

n (
a,s

@ea
02mmH0s#S ]nas

]T D
N,A

1
1

n S ]P
]T D

N,A
.

~4.30!

One might hope that the explicit appearance of the (]P/]T)
term in Eq.~4.30! might allow the specific heat to be a prob
of the anomalous low-temperature behavior predicted for
quantity. Unfortunately, this is not the case as we shall n
show. At low temperatures, (bek

a,s@1), we use Eq.~3.22!
for the pressure. The low-temperature specific heat can
be written

CA /NkB5
1

n (
a,s

@ea
02mmH0s1eFas#S ]nas

]T D
N,A

1
p2

6

m*

\2p
kBT. ~4.31!

At low temperature, to exponential order, the term in squ
brackets is just the chemical potential@see Eq.~2.7!#; thus it
can be taken out of the summation and the first term v
ishes. This leaves the well-known limit

lim
T→0

CA /NkB;nocc

p2

6 S kBT
eF0

D , ~4.32!

where we remind the reader, thateF05(\2/2m* )2pn, and
nocc is the number of occupied Fermi seas at zero temp
ture. This is of course equal to the low-temperature limit
the entropy, Eq.~3.25!.

In Fig. 8, we show the calculated specific heats as a fu
tion of temperature and coverage. The specific heat at c
erages less thann̄onset exhibit Schottky peaks. The pea
structure becomes quite dramatic in the limit of low cov
ages. At the lowest coverage there is an interesting inter
between the Schottky peak at'0.7 K and the very large
low–temperature slope from Eq.~4.32!. The Schottky peak
is a maximum at lowest coverage where the spacing betw
the chemical potential and the first excited state is a m
mum. The peak diminishes in size with increasing cover
and disappears forn̄.n̄onset. This latter behavior is the resu
of the use of a two-state model. The availability of addition
low-lying discrete levels could serve to wash out t
Schottky peak. The actual system also has available a
tinuum set of states representing promotion out of the fi
into the vacuum. We note, however, that at low coverage,
first excited state seems to be located approximately 3
below the vacuum level as illustrated in Figs. 45 and 46
Ref. 1 and Table I of Ref. 4.
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As seen from Eq.~4.32!, the low-temperature heat capac
ties have a dramatic dependence on the number of occu
states. This behavior was seen by Dann, Nye´ki, Cowan, and
Saunders,13 and discussed by Anderson, Miller, an
Hallock.14 In Fig. 9, we show the specific heat as a functi
of 3He coverage. The specific heat is normalized
(p2/6eF0)T, the value of the specific heat for a single sta
being occupied. The ordinate is then effectively the num
of occupied states. It is seen that in the regionn̄,n̄onsetthere
are two occupied states~the first step! and in the regionn̄
.n̄onset there are four occupied states~the second step!.

FIG. 8. Specific heat at constant area as a function of temp

ture and coverage shown in steps ofDn̄50.05. The disappearanc

of the Schottky peak forn̄.n̄onset is due to the use of a two-stat
model.

FIG. 9. The low-temperature (T<10 mK) specific heat as a
function of 3He coverage. The specific heat is normalized
(p2/6eF0)kBT. Thus the ordinate is a direct measure of the num
of occupied Fermi seas.
1-11
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Exact closed forms for both the heat capacity at cons
area and the heat capacity at constant pressure can b
tained. We first consider the heat capacity at constant a
From Eq.~4.30! we have

CA5(
a,s

@ea
02mmH0s#S ]Nas

]T D
N,A

1
bP
kT

A, ~4.33!

where

S ]P
]T D

N,A
5

bP
kT

. ~4.34!

bP is the thermal expansion coefficient andkT is the isother-
mal compressibility. It is straightforward to derive expre
sions for both quantities:

bP5
1

A S ]A
]T D

N,P
5nkTS S

ND2
1

T 1
1

nlT
2T (

a,s
S La,s

11La,s
D ya,s ,

~4.35!

and

kT52
1

A S ]A
]PD

N,T
5

1

2eF0n
(
a,s

S La,s

11La,s
D . ~4.36!

The temperature derivative ofNas , at fixed N and A, is
given by

S ]Nas

]T D
N,A

5
Nas

T 1
A
lT

2 S La,s

11La,s
D F2

ya,s

T 1bS bP
nkT

2
S

ND G ,
~4.37!

where we have used

S ]m

]T D
N,A

5S bP
nkT

2
S

ND . ~4.38!

A simple check of Eq.~4.37! is to sum both sides overa and
s. The left hand side vanishes and the right hand side red
to Eq. ~4.35!. Thus the heat capacity at constant area can
written

CA5
A

lT
2T (

a,s
~ea

02mmH0s!H FnaslT
22S La,s

11La,s
D ya,sG

1S La,s

11La,s
D 1

kB
S bP
nkT

2
S

ND J 1AbP
kT

. ~4.39!

We need to check thatCA has the correct low-temperatur
limit @Eq. ~4.32!#. The low-temperature limit ofya,s at fixed
N and A is given by

lim
T→0

ya,s;beFas5naslT
2 ~4.40!

to exponential order. The low-temperature limit ofbP can
most easily be obtained by rewriting Eq.~4.35! in terms of
the enthalpy and using
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lim
T→0

H
N ;m~T50!1nocc

p2

6

~kBT!2

eF0
, ~4.41!

where we have used Eq.~3.22!, and, from Eq.~2.7!, the
chemical potential at zero temperature is given bym(T50)
5ea

02mmH0s1eFas . We find

lim
T→0

bP
nkT

;
S

N ~4.42!

to exponential order. In this equation, the symbolS/N stands
for the low-temperature limit of the entropy@Eq. ~3.25!#. In
Eq. ~4.42!, we have used the low-temperature limit of th
isothermal compressibility:

lim
T→0

kT21;
2neF0

nocc
. ~4.43!

This result is valid to exponential order for the limit taken
fixed A or fixedP. Further, in the limT→0, La,s→` if the
state$a,s% is occupied and is 0 otherwise. Thus, using E
~4.40! and ~4.42!, the term in curly brackets in Eq.~4.39!
vanishes in the low-temperature limit. Using Eqs.~4.42! and
~3.25!, the final term immediately reduces to the correct lo
temperature limit@Eq. ~4.32!#.

An exact expression for the heat capacity at fixed press
can also be obtained. By definition,

CP5S ]H

]T D
N,P

, ~4.44!

whereH5U1PA is the enthalpy. Thus

CP5(
a,s

@ea
02mmH0s#S ]Nas

]T D
N,P

12bPPA, ~4.45!

wherebP is the thermal expansion coefficient@Eq. ~4.35!#.
The temperature derivative ofNas at fixedN andP is given
by

S ]Nas

]T D
N,P

5
Nas

T 1
A
lT

2 S La,s

11La,s
D S 2

ya,s

T 2b
S

ND
1NasbP . ~4.46!

A simple check of Eq.~4.46! is to sum both sides overa and
s. The left hand side vanishes and the right hand side redu
to Eq.~4.35!. Thus the heat capacity at constant pressure
be written

CP5
A

lT
2T (

a,s
~ea

02mmH0s!FnaslT
2~11bPT!

2S La,s

11La,s
D S ya,s1

S

NkB
D G12PAbP . ~4.47!

The low-temperature limit ofCP can be obtained by con
sidering the quantityCP2CA . From Eqs.~4.45! and~4.33!,
1-12
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CP2CA5(
a,s

@ea
02mmH0s#F S ]Nas

]T D
N,P

2S ]Nas

]T D
N,A

G
12bPPA2bPAkT21, ~4.48!

Using Eqs.~4.37! and ~4.46! we have

S ]Nas

]T D
N,P

2S ]Nas

]T D
N,A

5bPNas

2
A

nlT
2 S La,s

11La,s
DbbPkT21.

~4.49!

We immediately find

CP2CA5AbP2TkT21, ~4.50!

which is a well-known thermodynamic identity. In the low
temperature limit, we find

lim
T→0

CP;CAF11nocc
2
p2

12 S kBT
eF0

D 2G , ~4.51!

where in this expression, the symbolCA is the low-
temperature result given by Eq.~4.32! and we have used th
low-temperature limit ofbP , Eq. ~4.42!.

Another response function of interest in these system
the magnetic susceptibilityx, at fixed system size. By defi
nition,

x5S ]M
]H0

D
N,A,T

. ~4.52!

This can be written as

x/x05m̄1H0S ]m̄

]H0
D

m,A,T
1H0S ]m̄

]m
D

N,A,H0

S ]m

]H0
D

N,A,T
,

~4.53!

wherex0 is the Pauli susceptibility defined as

x05M0 /H05
m* mm

2 A
p\2

. ~4.54!

We are interested in the susceptibility in the limit of ze
applied field,H0→0. The first term in Eq.~4.53!, the mag-
netization, vanishes in that limit because the system is p
magnetic. The third term has an explicit factor ofH0 thus in
order to show that it also vanishes in the zero-field limit,
only need show that the remaining two components do
blow up whenH0→0. The second component is

S ]m̄

]m
D

N,A,H0

5m̄S bPT
nkT

2
TS

N D 21

1
1

2x (
a

F S La1

11La1
D

3S ]ya1

]m D2S La2

11La2
D S ]ya2

]m D G . ~4.55!

Using
17451
is

a-

ot

S ]yas

]m D
N,A,H0

52ya,sS bPT
nkT

2
TS

N D 21

1b, ~4.56!

it is clear that, in fact, Eq.~4.55! is well behaved in the limit
of zero applied field. The final component of the third ter
can be evaluated using Eq.~3.13! and is also well behaved in
the zero-field limit. Thus only the middle term survives, a
we can write

~x/x0!H0505(
a

La

11La
, ~4.57!

whereLa5expb(m2ea
0). In Fig. 10 we show the magneti

susceptibility at temperatures 40, 100, and 250 mK. T
figure shows clearly that the magnetic susceptibility exhib
steps at integer values similar to the magnetization step
Fig. 2. In the low-temperature limit,La'expbm→`; thus
the sum in Eq.~4.57! yields a series of steps as each tran
verse state is occupied.

The magnetic susceptibility has two nontrivial invaria
points. They are, in fact, located at the same values of
variables as the magnetization invariant points in Fig. 2. T
first is at x/x051. From Eq.~4.57!, this impliesm5 1

2 (e0
0

1e1
0), a result that is independent of temperature. The c

erage atx/x051 is given by

n̄5
1

wl

log~212 coshw!'
De

2eFl

1O~e2w/2!. ~4.58!

The second invariant point is atx/x054/3. In the limit

ebe1
0
@ebe0

0
, we find

m'e1
0 , ~4.59!

n̄'
De

eFl

1O~e2w!. ~4.60!

FIG. 10. Magnetic susceptibility in units of the Pauli suscep
bility as a function of3He coverage at temperatures 40, 100, a
250 mK. At T50 K the susceptibility would be horizontal steps

x/x051 and 2, with a vertical ramp atn̄0R50.77.
1-13
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The final response function, the isothermal compressi
ity, kT , is also sensitive to the filling of the Fermi seas. T
compressibility was introduced in Eq.~4.36! during the dis-
cussion of the heat capacity. In the following we shall find
more useful to refer to the isothermal speed of sound.
compressibility and the speed of sound are related
m* cT

25kT21/n. Thus from Eq.~4.36! we have

m* cT
25

2eF0

(
a,s

@La,s /~11La,s!#

. ~4.61!

At zero temperature, the isothermal speed of sound is g
by

~m* cT
2!T5052eF0 /nocc, ~4.62!

where we remind the reader thateF0 is defined in Eq.~3.26!
and nocc is the number of occupied Fermi seas. Thus, aT
50 K, the isothermal speed of sound hasdiscontinuousde-
creases at each new ramp or step. In Fig. 11 we showm* cT

2

as a function of3He coverage. The discontinuity appears
n̄0R'n̄1L50.76; thus the drop in the speed of sound is giv
by Dm* cT

252(1.8 K)(1/221/4)50.9 K. We note that the
drop is calculated from the first step to the second step si
in this system, the intervening ramp occupies such a nar
density range. In terms of units of speed,m* cT

251 K corre-
sponds tocT545 m/s.

There are two invariant points in this figure. They a
basically invariant points of the density. Thus the high co
erage invariant point is characterized bym5e1

0, and we find

n̄5
De

eFl

1O~e2w!. ~4.63!

FIG. 11. Isothermal speed of soundm* cT
2 as a function of3He

coverage. The low-coverage degenerate region clearly shows a
ear coverage dependence. The discontinuity in the speed of s
occurs each time a new Fermi sea begins to be occupied. Ther

two invariant points located atn̄5n̄onset/2,n̄onset.
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The low coverage invariant point occurs atm5 1
2 e1

0 and we
find

n̄5
1

2

De

eFl

1O~e2(1/2)be1
0
!. ~4.64!

We have assumedw@x for both invariant points and for the
latter we have also assumed that1

2 e1
0.e0

0.

V. CONCLUSION

In this paper, we have examined the thermodynamic pr
erties of an ideal Fermi gas model of3He in a thin 4He
superfluid film. We introduced a two-state model that is s
ficient to describe the submonolayer coverage regime of
terest. The physical parameters describing the system
shown in Table I and were determined by nuclear magn
resonance experiments on a Nuclepore substrate.2 The 3He
atoms have an effective mass of 1.38m3 and reside in a
two-state external potential with a level spacing ofDe
51.8 K. The experimental magnetic energy ismmH0
515.6 mK.

The magnetization as a function of coverage at zero te
perature has a pair of steps whose position is determine
the relative sizes of the external field,mmH0, and the level
spacingDe; see Table II. The ramps leading up to the ste
signal regions where the Fermi sea of an unpaired spin s
is being filled. On the steps all spin states are paired.
agreement with experiment,2 Fig. 2 shows that the steppe
magnetization structure survives through temperatures
least as high as 100 mK. In the text we show that the ch
acteristic temperature over which the stepped structure
vives is given by the larger ofDe/2 andmmH0.

The chemical potential versus magnetization and the m
netization versus coverage both have invariant points wh
all isotherms pass exponentially close at low temperatu
~as derived in the text!. One of the chemical potential invari
ant points is valid at all temperatures and external fields. T
magnetization versus coverage results are in good qualita
agreement with the experimental data of Higley, Sprag
and Hallock~see Fig. 3 of Ref. 2!. The invariant points in the
interacting system appear at the coverages given by E
~4.9! and ~4.12!.

We calculated the spreading pressure as a function of c
erage and temperature. The low-temperature results were
tained from Eq.~3.20!, and an exact result valid for low
temperature:ya,s.0. We found that there exist regions i
the thermodynamic state space for whichdP/dT,0. These
regions are located near the corners of the magnetiza
steps where at zero temperaturedP/dn is discontinuous. A
simple model is introduced that qualitatively explains the
anomalous regions as being due to3He atoms ‘‘spilling
over’’ a filled Fermi sea into an available empty Fermi s
due to a small increase in temperature. We note that exp
ments on adsorbed films have been reported where sprea
pressure is a variable that can be measured directly.15,16 We
noted that this behavior is also reflected in the coverage
pendence of isotherms of the entropy per particle, a quan

in-
nd
are
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that can be indirectly determined from heat capacity m
surements.

We investigated the behavior of the response functio
the heat capacity at fixed area and fixed pressure, the m
netic susceptibility, and the isothermal speed of sound
Eqs. ~4.39!, ~4.47!, ~4.57!, and ~4.61!, respectively, we ex-
hibit analytic expressions for each of these functions. In
dition, in Eq. ~4.35!, we exhibit an exact expression for th
thermal expansion coefficient,bP . These expressions, to
gether with the entropy of Eq.~3.24!, exhibit the explicit
dependence of the response functions on the thermodyn
fields,T, P, m, andH0.

In the limit of the two-state model, the specific heat
constant area exhibits a classical Schottky maximum at
proximately 0.75 K that is very pronounced at low covera
The peak diminishes with increasing coverage and dis
pears forn̄.n̄onset when the chemical potential crosses t
bottom of the band of the first excited transverse state.
discussed above, if in the real system there are additio
discrete states lying close to the first excited state then
Schottky peak will tend to get washed out. The slopes of
low-temperature specific heat~the specific heat effective
masses! show a steplike change across the corners of
magnetization steps due to the different phase space a
able on either side. It is important to note that the spec
heat that is being discussed is the heat capacity per par
and not the heat capacity per unit area. These two quant
have qualitatively different dependences on temperature.
the two-dimensional, ideal Fermi gas, the low-temperat
slopes for the heat capacity per unit area are consta
whereas for the heat capacity per particle the lo
temperature slopes go like 1/coverage. Similarly the h
temperature asymptotes for the heat capacity per area
proportional to the coverage whereas for the heat capa
per particle the high-temperature asymptotes are a cons
unity.

In Fig. 10, we show the magnetic susceptibility vers
3He coverage for this system. The susceptibility exhib
steps in the same qualitative fashion as the magnetiza
The magnetic susceptibility was measured by Valles, Hig
Johnson and Hallock,17 and was calculated for the fully in
teracting system by Krotscheck, Saarela, and Epstein.18

We show that the isothermal speed of sound exhibits
continuities at zero temperature as a function of3He cover-
age. These discontinuities are still readily apparent at t
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peratures on the order of 100 mK, as shown in Fig. 11.
note that a prediction for the zero sound spectra for t
system has been published elsewhere.19 It is not clear to us
whether density fluctuations of a normal Fermi liquid whi
floats in an inhomogeneous superfluid film will be isotherm
as in a superfluid or adiabatic as in usual media. In any c
the adiabatic speed of sound,cS can be related to the isothe
mal speed of sound,cT , by means of the thermodynami
identity

cS5ACP

CA
cT , ~5.1!

whereCP andCA are heat capacities at constant pressure
area, respectively. Thus, from Eq.~4.51!, we immediately
find the low-temperature relation

cS'F11nocc
2
p2

12 S kBT
eF0

D 2G1/2

cT . ~5.2!

From Table I, we see that a full monolayer corresponds t
Fermi energyeF052.37 K. Thus, over much of the low–
temperature phase diagram, there will be little difference
the sound speeds.

We note that by inspection of Eq.~4.36! for the isothermal
compressibility and Eq.~4.57! for the zero–field, magnetic
susceptibility, we find the relation

~x/x0!H0505~2eF0n!kT . ~5.3!

Thus, in the Fermi gas limit, a measurement of the zero
field magnetic susceptibility is equivalent to a measurem
of the isothermal speed of sound.

Higley, Sprague and Hallock2 showed that good agree
ment with the magnetization experiment can be achieved
taking into account some effects of interactions. In work
be reported elsewhere, we have generalized Landau F
liquid theory in the spirit of Quader and Bedell20 to the mix-
ture films in order to include the effects of interactions.21
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