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Berry phase and spin quantum Hall effect in the vortex state of superfluid®He in two dimensions
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We show that the spin quantum Hall effect in the vortex state of two-dimensional rotating sup&ruicin
be described as an adiabatic spin transport of Bloch quasiparticles. We show that the spin Hall conductivity is
written by the Berry phase as well as the Chern number. The results have similarity to the adiabatic pumping
of Bloch electrons and the spontaneous polarization in crystalline dielectrics.
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I. INTRODUCTION iy} 2
(A) P™—Pe
e(D) =
P 2m '

The Berry phase(the geometrical phagearises in
guantum-mechanical systems with an adiabatic change ON\Bherep=—iV and the repeated Greek indices are summed

closed loop in a parameter spacin spite of the fact that it _up. We may consider the Fourier transform of the gap matrix

is a phase of the wave function, it could be related to physwn terms of the relative coordinate afandy, i.e
cal effects and, in some cases, has a connection with topo- o

logical numbers. The quantum Hall effect in Bloch electron d®p
systems is described as an adiabatic charge transport whose Aaﬁ(x,y):f ei(x—y)~p3a3(r,p), 2)
process is closed in a parameter space. A Berry phase is (2m)°

generated and the quantized Hall conductivity is written by, h _ /2

the Berry phase as well as the Chern nunféRecently, it * < o (X.+¥) o o )

has bee)rll F;))ointed out that quasiparticles in the vorte)>/< lattice Superfluid “He is |n.the spin '_mplgtp—wavej ,Sta{eé' n

of d,2_,2-wave superconductors are in the Bloch stdése ~ general, the gap function for spin triplet pairing 4<r,p)

spin quantum Hall effect occurs and its conductivity is writ- =ioyo-d(r,p), where d(r,—p)=—d(r,p) is a three-

ten by a Chern numbérThen, one can expect that the spin dimensional3D) vector in the spin space. inrwave states,

Hall conductivity in the vortex state is written by a Berry the magnitude of the relative angular momentum of the Coo-

phase, when the effect can be described as an adiabatic sgier pair|l|=1 andd vectors have a linear dependencepon

transport of a closed process. It is well known that the three phases are observed in the
In this paper, we discuss Bloch quasiparticles in the vorsuperfluid 3He (A, B, and A, phases'® Those phases are

tex state ofp-wave superfluid3He in two dimensions. We represented by the differedtvectors, respectively.

consider a magnetic field with a weak and homogeneous We consider a two dimensions system. To realize 2D, we

gradient. Such a field cannot be introduced in superconducintroduce a strong confine potential along thaxis to avoid

ors due to the Meissner effect. The magnetic field couples tgasiparticle excitations along tizeaxis. The boundary ef-

spin through the Zeeman term and does not to orbital CUrtect introduced by the confine potential locks the relative
rents because of the neut.rahty. of the superfluid. The SPIRngular momentum of all the Cooper pairs in the same di-
Hall current flows as an adiabatic spin transport. Its Conducfection along thez axis!? Then, we takd,=1 (I,: the z

; , 2 2

tivity is written by a Chern number and quantized when an . :
excitation gap exists. We show that the conductivity iscomponent of the angular momentlin the whole region.

closely related to the Berry phase. We also point out that th(::l_ he dlr?CtIO'n Ofé?;d vebctor beco?]tﬁs pafat"e' to tr}ethangular
results have some similarity to the adiabatic pumping innementumi.e., d//e,) because of the existence of the mag-

Bloch electron® and the spontaneous polarization in thene'[iC dipole i_nteractipn which couples spin and ofbithen,
crystalline dielectricd! We seth=c=pug=1, whereug is e d VECtor in our situation is
the Bohr magneton. d(r,p)=e,¢(r)(px+ipy). (3

Il. SUPERFLUID HELIUM 3 IN TWO DIMENSIONS This state corresponds to tephaset? Since the direction
of the d vector and the relative angular momentum are fro-
zen, we may neglect the textures and coreless vortfcEise
Hamiltonian for *He-A is

Let ,(x) stands for the Fermion field with spin
=1,]. The mean-field Hamiltonian for Fermionic superfluid
(or superconductoysn D-dimensional space is written with

the gap matrixA , 4(x,y) as D
gap 1687 HMF=J’ dX g (X) €(P) (%)

Hye= f dPx ! (X) €(P) o X)
. + f d3XdPY[Aa(XY) Pl ¢l (y)+Hel, (@)
+5 ] PPy sy w0k +He),

1 N
0 Aaxy) = ST oA X Y)]-
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. VORTEX STATE IN HELIUM 3 A PHASE WITH A Then, the one to one correspondence can be seen between
ROTATION our system andhargedsuperfluid in a magnetic field with
It is well known that rotating superfluid is direct analogy an infinite London penetration depth, i.e., the strongly type-II

of type-Il superconductors, and actually the vortex states i uperconductors. The vector figRicorresponds to a “vector

superfluid He are detected by the experimehtshen, we poten_t|aIA and Ehe Fer:’mon massn _cor_resp:o_nds to_ the
. L . electric chargee.” And “the magnetic field” is 2=V

consider superfluid in a container that rotates aroundzthe YR

axis with an angular velocity). Hereafter, we use the rotat- '

ing frame which is fixed on the container. In the rotating Let us con3|de_r a vortex state, .€> (), and set up a
. square vortex lattice. We would like to note that our discus-
frame,H e is transformed as

sion is applicable to other types of lattices. In the vortex

Hye—sH=Hy—Q-L, state, the gap function has the singular pha$g) which

satisfies
_J’ d2 T n_ R)— mR2
- Xyl (x)| e(p—mR) 5 o (X) AA(Y) =K A(x,y)e (2100 +em)], (6)
+ (pairing terms, 5
Re Oxx V><V<p(x):2we22i‘, 82(x—ry),

whereL is the total angular momentum of Fermioi$>The B

kinetic energy for the quasiparticle is transformedep)  WhereA,(x,y) is the gauge invariant part of the gap func-
—e(p—mR)—mR?/2. We considerQ~1 rad/s and|r| tion, ri=(el;+en;)a with integersl; andn; is theith lat-
<ro~1 mm (r,: the radius of the containgt® and we can tice point, ande, ande, are the unit vector of the Cartesian
neglect the— mR?/2 term. Otherwise, we can cancel out this coordinate in the rotating frame. Whén~1 rad/s the vor-
term by introducing a parabolic trdfiTo avoid this term is  tex lattice constana=+/#/mQ~102 cm. From Eq.(5),
essential to introduce the translational invariance, as we willthe Hamiltonian density operator can be written in the
discuss below. Nambu representation as

 y) e(p—MR)S(x=y)  Aa(x,y)e (FALeIFe] -
H(p,X,y)= - . . 7
(PXYZ| _5x (xy) i e — (s mR) S(x—y)
|
The Bogoliubov—de Genné8dG) equationd’ is o(x+ea)=e(x)—ae, mR,
9
p(x+ea)=¢(x)—ag, - mR. ©

2 N =
f dYH(PXY) Pe(y) =EPe(X), ® Obviously, it is consistent with Ed6). Then, let us define a

translation operator
De(x)=[Ug(x),—VE(TT, A
Tg=exdior-(p+mRrs3)], (10
where
which is the direct analogy of the magnetic translation op-
" erator. The symbot; denotes the third Pauli matrix in the
l//T(X)Zg [Ue(X) ve;+Ve(X) yg, ], Nambu (particle-hol@ space. The coordinates are translated
by T, asx—x+ 8r andy—y+ r. Then, one can see easily
that the operatof , andTeya commute withH(p,x,y), but
Pl(0)=2 [=VEX) ye +UEX) YL ], does not commute with each other.
. We define a unit cell, in which a “unit flux” 2r/m pen-

and YEa and ye, are the creation and annihilation operatoretrates' It is_ a direct analogy of the magnetic unit cell,uwhere

of the Bogoliubov quasiparticles, respectively. thg magnetic unit flux Z/e penetrates. A vortex has a half
Let us discuss the periodicity of the syst&fThe multi- unit flux” 7r/m and two vortices are contained ina unit cell.

valued phase field(x) which satisfies Eq(6) has an ambi- Assume that there.are even _numbers qf vortices, and.one

quity for deformations which does not change the topology™aY choose the unit cell as Fig. 1. Consider the translations

of its configuration, i.e., the ambiguity remains in terms of N €rms of the cell Teq=Teaiqa and Tea=Tea-ca.

the gauge degrees of freedom. So, we may take a constraimhered=\2a. One can see easily that the operators satisfy
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a moment, we consider in the Lagrange formalism. In super-
fluid, the magnetic field couples to spin through the Zeeman
term and does not couple to orbital currents. Then, the La-
grangian is written in the form

czf d2x W T(x){idl dg— (x- VB,I2)} ¥ (x)

_J d?>xd?y W T (x)H(p,x,y) ¥ (y),

W (x) = (g (%), ] ()" (17)

FIG. 1. The unit cells surrounded by dotted lines. Black dotsWe consider a phase transformation of Exj),
denote the vortices. W(x)—ex —itx- VB,/2]W (). (18)
[H(PXY), Ts1=[Teraq, Tergl=0. (11)  Then, the term—(x-VB,/2) is absorbed and the Hamil-
X Y tonian density operator is transformed as
Thereforethe eigenstates d#(p,x,y) are in the Bloch state . .
ie., H(p.x,y)—=H(p—f(t),xy), (19

@1 ()= e u(x), (12  where
where k is in the Brillouin zone(BZ), —m/d<(ky.k,) f(t)=tVB,/2. (20

<7/d. [ i . i .
m/d. Here, we omit the band index. Define By using the analogy of U(1)(electromagnetic gauge

— a—ikxa A ik-y theory, we may regarf(t) as a vector potential that couples

Hixy)=e THpxy) et (13 to the spin current, since it is introduced by the local spin

From Eq.(7), rotation Eq.(18). We assume thd{t) changes adiabatically,
R _ i.e., |VB,<1. For simplicity, we write
Hi(x,y)=H(p+k,x,y)e * ), (14
Then, from Eqgs(8) and(12), one can see that the function H(p= (1), xy)=H(t.Xy). (22)
ui(x) satisfies Then, we solve a time-dependent equation of motion with
the adiabatic parametéft),

f d?yHi(X,Y)uk(y) = Exu(X), (15 5

and its translation in terms of the unit cell satisfies a gener- ot

alized Bloch condition We use the adiabatic approximation and an eigenvalue equa-

u(x+e.d)=exgide,- mRr3]u(x), tion at fixedt is

uk(x+e§d)=ex;:{ide;~mRr3]uk(x). (16) f dZyH(t,x,y)QDE(t)(t,y)=E(t)@E(t)(t,x). (23

The spectrum for lattice quasiparticles in the square vorte . o . . _
array of thep,+ip,-wave superconductors has been inves-)bbv'ousw’ it is equivalent to the BdG equatié® at 1=0.

. k : ' The Hamiltoniar?(t,X,y) has a spatial periodicity as well as
tigated by using the singular gauge transformafibtA zero N . :
energy state and gaps around it are found. In our situatio (t=0x,y) becausé/B, is homogeneous. Then, eigensolu-

the continuum system is considered. There might be som_Ons are written in the Bloch form, i.e.®(tX)

ik-x .
problems to apply the singular gauge transformation ap- © t_Uk(t.X) [see Eq(12)]. The functionu,(t,x) obeys the
proach to the continuum systems. It was pointed out that th&94aton
quasiparticle spectrum depends on the choice of the singular
gauge .transformatior?é.Here, we assume the existence of J' A2y H (1,5, Y) U (1Y) = Ex(D) U (£,%), (24
an excitation gap.

IV. THE ADIABATIC PROCESS AND THE BERRY PHASE Hi(t,%,Y) = Hy—1(1y (X,Y), (25
Let us introduce a magnetic field, which is directed to theand hence
z axis and has a homogeneous gradient in the rotating frame, U6 X) = Uy (). 28

which is writtenB,(x) =x- VB, and VB, is a constant vec-
tor. The field will be a driving force of the spin transport. For The solution of Eq(22) in the adiabatic approximation is
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t 2
\Ifk(t,x)=exp( [ fodt'[Ek(t/)+yk(tf)])q)k(t,x), (5(t))= % EO JBZ (ZTk)z<\Iflk(t)%[r,H(t)]’\Ifnk(t)>
t 9 | dzk < . &Unk(t)> }
’)/k(t)zlfodt <(Dk(t ) E (I)k(t )> 2 nzo fBZ (277_)2 Unk(t) ok H.c.
t =— 0 VB, Xe,], (32
zif dt’<uk(t’) — uk(t’)>. (27
0 at’ 1
Uiyzs_ g]h )

The reciprocal-lattice vector for the square vortex array is 7 n<o
written G= (I, + ne)) (27/d) with integers andn. We note  \yhere
that it is possible to compactify the Hamiltonian as
H (t,x,¥)~H, . c(t,X,y), because they give the equivalent - d%k
eigensolutions. Also we note that the paramé(e) varies Neh= fBzm[VkX an(k) ]z, (33

on the Brillouin zondsee Eq(25)]. Therefore wheri(t)//G
we have a periodl for a closed loop on the parameter is the Chern number for theth band and, (k) is equivalent

space?® For example, to the Berry connection for thath band. The detailed cal-
culation is written, for example, in Ref. 7.
T=4x/(|VB,d) (28 The Chern number takes an integer. The reason is based

on the fact that, (k) is defined on the torughe B2) and the
for f(t)//e e, and the Berry phases are defined asChern number becomes finite if and only&f has a non-
odty(t) for each casé.We introduce the Berry connec- trivial topology. The nature of the Chern number has been
tion, a(k) = (u,| ViJu,), which is a gauge field defined on the discussed in detail in Ref. 3.
parameter spaceBy using Eq.(26), the Berry phases forthe ~ Then, Eq.(32) shows that a stationary spin Hall current
parametef(t)//€] e{, are written as flows as an adiabatic spin transport and its conductivity is
quantized as an integer multiple of ¥8The same result for
27/d the conductivity in the vortex state dfwave superconduct-
Iy(ky) =i f dk.a, (k) (29 ors have been obtainédChe discrete conductance change is
0 expected to occur when one vari@sand pg.
Here, we calculated the expectation value of the total spin
current directly by using the adiabatic approximation and
- obtained thg spin Hall conducti_vity. One can see_the fact in
Ty(k) =i J' dk,a,(k), (30)  the calculations of E¢(32) that this approach is equivalent to
0 calculate the Kubo formula for the spin Hall conductivity
i argued in Ref. 9.
respectively. . Finally, we show that=3, could be written in terms of the
Whenf(t)//G, we could write down the Berry phase as perry phasé=” By using Stokes’ theorem, we have the rela-
tion [see Eqs(29), (30), (32), and(33)]

and

Iy=i ﬁ:(f)dk'a(k)’ (31 .1 fzw/dd dI)(ky) _wa/d ) dI'}(ky)
Y 1672 n<o | Jo *dky 0 Y odk, -

whereC(f) is a closed loop on whicf(t) moves. In general, (34)

the Berry phase depends aqf).!

VI. RELATIONS TO THE OTHER ARGUMENTS
V. SPIN QUANTUM HALL EFFECT AND THE BERRY

PHASE The effect has some similarity to the adiabatic pumping

_ _which is originally argued by Thouless and discussed ac-
_ Letus calculate the spin current. file-A, the system s tively at present® In pumping, an adiabatic ac perturbation
mveilgant under the spin r%atmn arou_nig theaxis ©(t)  yields a dc current, and the charge transfer per a cycle is
—e"®(t) andH(t,x,y)—e"H(t,x,y)e"'". The spin cur- jydependent of the period of the perturbation. The charge
rent j* is defined by the spin conservation I&wj.e., p*  transfer is quantized when the ac perturbation is commensu-
+V.js=0, where p° is the spin density (2)2p%(X) rate with the lattice in one dimension. As we mentioned be-
=(1/2)2ngofBZdzk‘I';k(x)\Ifnk(x) and we introduce the fore, the Hamiltonian in our systerH,(t) is compactified
band indexn. The label O denotes the zero energy. As weand moved periodically by the adiabatic paramefs.
mentioned before, we assume an excitation gap, i.e., therEhen, the Hamiltonian changes ac-like, and the change
are no partially filled bands. Then, the response of the spigields a dc spin Hall current. To make a correspondence to
current for the uniform field(t) is the Thouless arguments, one calculates a spin transfer per
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period T. Assume thaf(t)ze;t|VBz|/2. The spin Hall cur- unit cell is quantized and related to the Berry phase. The
rent flows along the’ axis (see Fig. 1and the spin transfer results remind us of the adiabatic pumping, which was intro-

per the boundary of the unit cell along té axis is duced by Thouless with respect to the charge tranéBfﬂiﬁe
result is also similar to the relation between the spontaneous
LI N(Cnﬁ polarization and the Berry phase in the crystalline
ASZ=dfO di(j, (1)) = _nZO o (39 dielectricst Essentially, the similarity comes from the fact

that the effects argued here are caused by the closed adia-

[see Egs(28), (32), and(33)]. The result does not depend on batic change in the Bloch states with the finite energy gap.
T . It comes from the fact that both the magnitude of thewith respect to the charge transport, a parallel discussion has
quantized current and ' are proportional tdVB,|. We  been made in the Bloch electron systems in the presence of
emphasize that the spin transfer is quantized,the.integral  the electromagnetic field.
spin transfer occursThe result is analogous to the Thouless  As we mentioned before, the spin quantum Hall effect in
result!® the vortex state of a,2_,2-wave superconductor has been

The value AS,/d corresponds to the magnetization pointed ouf but there seems to be some difficulty in making
change per the period. From E(B4), the magnetization a parallel discussion of theuperconductorsBecause of the
change is written by the Berry phase. Then, the present resulfieissner effect, it is not possible to have a magnetic field
is also similar to the spontaneous polarization of crystallinewith a finite homogeneous gradient which is essential to de-
dielectrics, which is written by the Berry phase introducedfine the adiabatic process on the closed loop in the parameter
by a closed adiabatic change of the Kohn-Sham potefitial. space. The vortex states fiHe-A are suitable for our argu-

Essentially, the similarity comes from the fact that thements becauskle is the fermionic superfluid in which the
effects argued here are caused by the closed adiabatic changsin current is well defined, i.e., the spin rotation symmetry
in the Bloch states with the finite energy gap. A parallelaround thez axis is retained. In contrast to tlgz_2-wave
discussion for the present arguments have been made in tgate, the spin quantum Hall effect occurs spontaneously in
Bloch electron systems in the presence of the electromagiHe-A | i.e., one obtains a quantized spin Hall conductivity

netic field with respect to the charge transgort. to calculate the Kubo formula in the absence of the vortices.
The effect comes from the broken time-reversal symmetry
VIl. SUMMARY AND DISCUSSIONS and the broken parity in the orbital part of the pairing

symmetry?? But the system does not have the finite spatial
)ﬁaeriodicity and we cannot make a parallel discussion also in
this case.

In summary, we consider Bloch quasiparticles in a vorte
state of superfluifHe-A in two dimensions with a rotation
along thez axis. A magnetic field is along theaxis with a

CESS IS defined on a closed loop in the parameter s(m_hee otational symmetry is needed to obtain well defined spin
Brillouin zone and generates a Berry phase. The spin HaICurrents

culrrent fﬂtﬁwst T Ithe_ process;{ :j/\_/e i?lcgjlateq thteh ex%e_zclgat;pn Several authors have made efforts to find a way to mea-
value ot the total spin current directly by using the adiabalicy, .o spin transpoff Some experimental techniques to detect
approximation and obtain the spin Hall conductivity. This _ ; :

. spin transfer are highly desirable.
approach is equavalent to calculate the Kubo formular for the
spin Hall conductivity’ The conductivity is represented by
the Chern number and quantized when the quasiparticle has
an excitation gap as that in tilewave vortex statéWe have
shown that the spin Hall conductivity is written by the Berry  The authors are grateful to K. Maki, M. Sato, Z. Te-
phase. The spin transfer per a cycle per the boundary of th&novig and F. Zhou for useful discussions.
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