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Berry phase and spin quantum Hall effect in the vortex state of superfluid3He in two dimensions

Jun Goryo* and Mahito Kohmoto
Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan

~Received 13 June 2002; published 4 November 2002!

We show that the spin quantum Hall effect in the vortex state of two-dimensional rotating superfluid3He can
be described as an adiabatic spin transport of Bloch quasiparticles. We show that the spin Hall conductivity is
written by the Berry phase as well as the Chern number. The results have similarity to the adiabatic pumping
of Bloch electrons and the spontaneous polarization in crystalline dielectrics.
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I. INTRODUCTION

The Berry phase~the geometrical phase! arises in
quantum-mechanical systems with an adiabatic change
closed loop in a parameter space.1 In spite of the fact that it
is a phase of the wave function, it could be related to phy
cal effects and, in some cases, has a connection with t
logical numbers. The quantum Hall effect in Bloch electr
systems is described as an adiabatic charge transport w
process is closed in a parameter space. A Berry phas
generated and the quantized Hall conductivity is written
the Berry phase as well as the Chern number.2–7 Recently, it
has been pointed out that quasiparticles in the vortex lat
of dx22y2-wave superconductors are in the Bloch states.8 The
spin quantum Hall effect occurs and its conductivity is wr
ten by a Chern number.9 Then, one can expect that the sp
Hall conductivity in the vortex state is written by a Ber
phase, when the effect can be described as an adiabatic
transport of a closed process.

In this paper, we discuss Bloch quasiparticles in the v
tex state ofp-wave superfluid3He in two dimensions. We
consider a magnetic field with a weak and homogene
gradient. Such a field cannot be introduced in supercond
ors due to the Meissner effect. The magnetic field couple
spin through the Zeeman term and does not to orbital c
rents because of the neutrality of the superfluid. The s
Hall current flows as an adiabatic spin transport. Its cond
tivity is written by a Chern number and quantized when
excitation gap exists. We show that the conductivity
closely related to the Berry phase. We also point out that
results have some similarity to the adiabatic pumping
Bloch electrons10 and the spontaneous polarization in t
crystalline dielectrics.11 We set\5c5mB51, wheremB is
the Bohr magneton.

II. SUPERFLUID HELIUM 3 IN TWO DIMENSIONS

Let ca(x) stands for the Fermion field with spina
5↑,↓. The mean-field Hamiltonian for Fermionic superflu
~or superconductors! in D-dimensional space is written wit
the gap matrixD̂ab(x,y) as

HMF5E dDxca
†~x!e~ p̂!ca~x!

1
1

2E dDxdDy@D̂ab~x,y!ca
†~x!cb

†~y!1H.c.#,

~1!
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2

2m
,

wherep̂52 i“ and the repeated Greek indices are summ
up. We may consider the Fourier transform of the gap ma
in terms of the relative coordinate ofx andy, i.e.,

D̂ab~x,y!5E dDp

~2p!D
ei (x2y)•pD̂ab~r ,p!, ~2!

wherer5(x1y)/2.
Superfluid 3He is in the spin tripletp-wave states.12 In

general, the gap function for spin triplet pairing isD̂(r ,p)
5 isys•d(r ,p), where d(r ,2p)52d(r ,p) is a three-
dimensional~3D! vector in the spin space. Inp-wave states,
the magnitude of the relative angular momentum of the C
per pairu lu51 andd vectors have a linear dependence onp.
It is well known that the three phases are observed in
superfluid 3He (A, B, and A1 phases!.12 Those phases ar
represented by the differentd vectors, respectively.

We consider a two dimensions system. To realize 2D,
introduce a strong confine potential along thez axis to avoid
quasiparticle excitations along thez axis. The boundary ef-
fect introduced by the confine potential locks the relat
angular momentum of all the Cooper pairs in the same
rection along thez axis.12 Then, we takel z51 (l z : the z
component of the angular momentum! in the whole region.
The direction of thed vector becomes parallel to the angul
momentum~i.e., d//ez) because of the existence of the ma
netic dipole interaction which couples spin and orbit.12 Then,
the d vector in our situation is

d~r ,p!5ezf~r !~px1 ipy!. ~3!

This state corresponds to theA phase.12 Since the direction
of the d vector and the relative angular momentum are f
zen, we may neglect the textures and coreless vortices.12 The
Hamiltonian for 3He-A is

HMF5E d2xca
†~x!e~ p̂!ca~x!

1E d2xd2y@DA~x,y!c↑
†~x!c↓

†~y!1H.c.#, ~4!

DA~x,y!5
1

2
Tr@sxD̂~x,y!#.
©2002 The American Physical Society03-1
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III. VORTEX STATE IN HELIUM 3 A PHASE WITH A
ROTATION

It is well known that rotating superfluid is direct analog
of type-II superconductors, and actually the vortex state
superfluid 3He are detected by the experiments.13 Then, we
consider superfluid in a container that rotates around thz
axis with an angular velocityV. Hereafter, we use the rota
ing frame which is fixed on the container. In the rotati
frame,HMF is transformed as

HMF→H5HMF2V•L ,

5E d2xca
†~x!S e~ p̂2mR!2

mR2

2 Dca~x!

1~pairing terms!, ~5!

R5V3x,

whereL is the total angular momentum of Fermions.14,15The
kinetic energy for the quasiparticle is transformed ase(p)
→e(p2mR)2mR2/2. We considerV;1 rad/s and ur u
<r 0;1 mm (r 0: the radius of the container!,13 and we can
neglect the2mR2/2 term. Otherwise, we can cancel out th
term by introducing a parabolic trap.16To avoid this term is
essential to introduce the translational invariance, as we w
discuss below.
or

g
o
ra
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Then, the one to one correspondence can be seen bet
our system andchargedsuperfluid in a magnetic field with
an infinite London penetration depth, i.e., the strongly type
superconductors. The vector fieldR corresponds to a ‘‘vector
potentialA’’ and the Fermion massm corresponds to ‘‘the
electric chargee.’’ And ‘‘the magnetic field’’ is 2V5“

3R.
Let us consider a vortex state, i.e.,V.Vc1 and set up a

square vortex lattice. We would like to note that our discu
sion is applicable to other types of lattices. In the vort
state, the gap function has the singular phasew(x) which
satisfies

DA~x,y!5D̃A~x,y!e2( i /2)[w(x)1w(y)] , ~6!

“3“w~x!52pez(
i

d2~x2r i !,

whereD̃A(x,y) is the gauge invariant part of the gap fun
tion, r i5(exl i1eyni)a with integersl i andni is the i th lat-
tice point, andex andey are the unit vector of the Cartesia
coordinate in the rotating frame. WhenV;1 rad/s the vor-
tex lattice constanta5Ap/mV;1022 cm. From Eq.~5!,
the Hamiltonian density operator can be written in t
Nambu representation as
H~ p̂,x,y!5S e~ p̂2mR!d~x2y! D̃A~x,y!e2( i /2)[w(x)1w(y)]

2D̃A* ~x,y!e( i /2)[w(x)1w(y)] 2e~ p̂1mR!d~x2y!
D . ~7!
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e
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The Bogoliubov–de Gennes~BdG! equation17 is

E d2yH~ p̂,x,y!FE~y!5EFE~x!, ~8!

FE~x!5@UE~x!,2VE* ~x!#T,

where

c↑~x!5(
E

@UE~x!gE↑1VE~x!gE↓
† #,

c↓
†~x!5(

E
@2VE* ~x!gE↑1UE* ~x!gE↓

† #,

and gEa
† and gEa are the creation and annihilation operat

of the Bogoliubov quasiparticles, respectively.
Let us discuss the periodicity of the system.18 The multi-

valued phase fieldw(x) which satisfies Eq.~6! has an ambi-
guity for deformations which does not change the topolo
of its configuration, i.e., the ambiguity remains in terms
the gauge degrees of freedom. So, we may take a const
y
f
int

H w~x1exa!5w~x!2aex•mR,

w~x1eya!5w~x!2aey•mR.
~9!

Obviously, it is consistent with Eq.~6!. Then, let us define a
translation operator

Tdr5exp@ idr•~ p̂1mRt3!#, ~10!

which is the direct analogy of the magnetic translation o
erator. The symbolt3 denotes the third Pauli matrix in th
Nambu~particle-hole! space. The coordinates are translat
by Tdr asx→x1dr andy→y1dr . Then, one can see easi
that the operatorTexa andTeya commute withH(p̂,x,y), but
does not commute with each other.

We define a unit cell, in which a ‘‘unit flux’’ 2p/m pen-
etrates. It is a direct analogy of the magnetic unit cell, wh
the magnetic unit flux 2p/e penetrates. A vortex has a ‘‘hal
unit flux’’ p/m and two vortices are contained in a unit ce
Assume that there are even numbers of vortices, and
may choose the unit cell as Fig. 1. Consider the translati
in terms of the cell,Te

x8d5Texa1eya and Te
y8d5Texa2eya ,

whered5A2a. One can see easily that the operators sat
3-2
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@H~ p̂,x,y!,Tdr#5@Te
x8d ,Te

y8d#50. ~11!

Thereforethe eigenstates ofH(p̂,x,y) are in the Bloch state,
i.e.,

Fk~x!5eik•xuk~x!, ~12!

where k is in the Brillouin zone ~BZ!, 2p/d<(kx ,ky)
<p/d. Here, we omit the band index. Define

Hk~x,y![e2 ik•xH~ p̂,x,y!eik•y. ~13!

From Eq.~7!,

Hk~x,y!5H~ p̂1k,x,y!e2 ik•(x2y). ~14!

Then, from Eqs.~8! and ~12!, one can see that the functio
uk(x) satisfies

E d2yHk~x,y!uk~y!5Ekuk~x!, ~15!

and its translation in terms of the unit cell satisfies a gen
alized Bloch condition3

uk~x1ex8d!5exp@ idex8•mRt3#uk~x!,

uk~x1ey8d!5exp@ idey8•mRt3#uk~x!. ~16!

The spectrum for lattice quasiparticles in the square vo
array of thepx1 ipy-wave superconductors has been inv
tigated by using the singular gauge transformation.8,19A zero
energy state and gaps around it are found. In our situat
the continuum system is considered. There might be so
problems to apply the singular gauge transformation
proach to the continuum systems. It was pointed out that
quasiparticle spectrum depends on the choice of the sing
gauge transformations.21 Here, we assume the existence
an excitation gap.

IV. THE ADIABATIC PROCESS AND THE BERRY PHASE

Let us introduce a magnetic field, which is directed to t
z axis and has a homogeneous gradient in the rotating fra
which is writtenBz(x)5x•¹Bz and“Bz is a constant vec-
tor. The field will be a driving force of the spin transport. F

FIG. 1. The unit cells surrounded by dotted lines. Black d
denote the vortices.
17450
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a moment, we consider in the Lagrange formalism. In sup
fluid, the magnetic field couples to spin through the Zeem
term and does not couple to orbital currents. Then, the
grangian is written in the form

L5E d2xC†~x!$ i ]/]02~x•“Bz/2!%C~x!

2E d2xd2yC†~x!H~ p̂,x,y!C~y!,

C~x!5„c↑~x!,c↓
†~x!…T. ~17!

We consider a phase transformation of Eq.~17!,

C~x!→exp@2 i tx•“Bz /2#C~x!. ~18!

Then, the term2(x•“Bz /2) is absorbed and the Hami
tonian density operator is transformed as

H~ p̂,x,y!→H„p̂2f~ t !,x,y…, ~19!

where

f~ t !5t“Bz /2. ~20!

By using the analogy of U(1)~electromagnetic! gauge
theory, we may regardf(t) as a vector potential that couple
to the spin current, since it is introduced by the local sp
rotation Eq.~18!. We assume thatf(t) changes adiabatically
i.e., u“Bzu!1. For simplicity, we write

H„p̂2f~ t !,x,y…[H~ t,x,y!. ~21!

Then, we solve a time-dependent equation of motion w
the adiabatic parameterf(t),

i
]

]t
C~ t,x!5E d2yH~ t,x,y!C~ t,y!. ~22!

We use the adiabatic approximation and an eigenvalue e
tion at fixedt is

E d2yH~ t,x,y!FE(t)~ t,y!5E~ t !FE(t)~ t,x!. ~23!

Obviously, it is equivalent to the BdG equation~8! at t50.
The HamiltonianH(t,x,y) has a spatial periodicity as well a
H(t50,x,y) because“Bz is homogeneous. Then, eigensol
tions are written in the Bloch form, i.e.,Fk(t,x)
5eik•xuk(t,x) @see Eq.~12!#. The functionuk(t,x) obeys the
equation

E d2yHk~ t,x,y!uk~ t,y!5Ek~ t !uk~ t,x!, ~24!

Hk~ t,x,y!5Hk2f(t)~x,y!, ~25!

and hence

uk~ t,x!5uk2f(t)~x!. ~26!

The solution of Eq.~22! in the adiabatic approximation is

s

3-3
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Ck~ t,x!5expS i E
0

t

dt8@Ek~ t8!1gk~ t8!# DFk~ t,x!,

gk~ t !5 i E
0

t

dt8K Fk~ t8!U ]

]t8
UFk~ t8!L

5 i E
0

t

dt8K uk~ t8!U ]

]t8
Uuk~ t8!L . ~27!

The reciprocal-lattice vector for the square vortex array
written G5( lex81ney8)(2p/d) with integersl andn. We note
that it is possible to compactify the Hamiltonian
Hk(t,x,y);Hk1G(t,x,y), because they give the equivale
eigensolutions. Also we note that the parameterf(t) varies
on the Brillouin zone@see Eq.~25!#. Therefore whenf(t)//G
we have a periodT for a closed loop on the paramet
space.20 For example,

T54p/~ u“Bzud! ~28!

for f(t)//ex8 ,ey8 and the Berry phases are defined
*0

Tdtgk(t) for each case.1 We introduce the Berry connec
tion, a(k)5^uku¹kuuk&, which is a gauge field defined on th
parameter space.1 By using Eq.~26!, the Berry phases for the
parameterf(t)//ex8 ,ey8 are written as

Gx~ky!5 i E
0

2p/d

dkxax~k! ~29!

and

Gy~kx!5 i E
0

2p/d

dkyay~k!, ~30!

respectively.
When f(t)//G, we could write down the Berry phase a

G f5 i R
C(f)

dk•a~k!, ~31!

whereC(f) is a closed loop on whichf(t) moves. In general
the Berry phase depends onC(f).1

V. SPIN QUANTUM HALL EFFECT AND THE BERRY
PHASE

Let us calculate the spin current. In3He-A, the system is
invariant under the spin rotation around thez axis Fk(t)
→eiuFk(t) andH(t,x,y)→eiuH(t,x,y)e2 iu. The spin cur-
rent j s is defined by the spin conservation law,22 i.e., ṙs

1“• j s50, where rs is the spin density (2p)2rs(x)
5(1/2)(n<0*BZd2kCnk

† (x)Cnk(x) and we introduce the
band indexn. The label 0 denotes the zero energy. As
mentioned before, we assume an excitation gap, i.e., t
are no partially filled bands. Then, the response of the s
current for the uniform fieldf(t) is
17450
s
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^ j s~ t !&5
1

2 (
n,0

E
BZ

d2k

~2p!2 K Cnk
† ~ t !U1i @r ,H~ t !#UCnk~ t !L

5
i

2 (
n,0

E
BZ

d2k

~2p!2 F K u̇nk~ t !U]unk~ t !

]k L 2H.c.G
52sxy

s @“Bz3ez#, ~32!

sxy
s 5

1

8p (
n,0

NCh
(n) ,

where

NCh
(n)5E

BZ

d2k

2p i
@“k3an~k!#z , ~33!

is the Chern number for thenth band andan(k) is equivalent
to the Berry connection for thenth band. The detailed cal
culation is written, for example, in Ref. 7.

The Chern number takes an integer. The reason is ba
on the fact thatan(k) is defined on the torus~the BZ! and the
Chern number becomes finite if and only ifak has a non-
trivial topology. The nature of the Chern number has be
discussed in detail in Ref. 3.

Then, Eq.~32! shows that a stationary spin Hall curre
flows as an adiabatic spin transport and its conductivity
quantized as an integer multiple of 1/8p. The same result for
the conductivity in the vortex state ofd-wave superconduct
ors have been obtained.9 The discrete conductance change
expected to occur when one variesV andpF .

Here, we calculated the expectation value of the total s
current directly by using the adiabatic approximation a
obtained the spin Hall conductivity. One can see the fac
the calculations of Eq.~32! that this approach is equivalent t
calculate the Kubo formula for the spin Hall conductivi
argued in Ref. 9.

Finally, we show thatsxy
s could be written in terms of the

Berry phase.4–7 By using Stokes’ theorem, we have the rel
tion @see Eqs.~29!, ~30!, ~32!, and~33!#

sxy
s 5

21

16p2 (
n,0

S E
0

2p/d

dkx

dGy
n~kx!

dkx
2E

0

2p/d

dky

dGx
n~ky!

dky
D .

~34!

VI. RELATIONS TO THE OTHER ARGUMENTS

The effect has some similarity to the adiabatic pump
which is originally argued by Thouless and discussed
tively at present.10 In pumping, an adiabatic ac perturbatio
yields a dc current, and the charge transfer per a cycl
independent of the period of the perturbation. The cha
transfer is quantized when the ac perturbation is commen
rate with the lattice in one dimension. As we mentioned b
fore, the Hamiltonian in our systemHk(t) is compactified
and moved periodically by the adiabatic parameterf(t).
Then, the Hamiltonian changes ac-like, and the cha
yields a dc spin Hall current. To make a correspondence
the Thouless arguments, one calculates a spin transfer
3-4
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periodT. Assume thatf(t)5ey8tu“Bzu/2. The spin Hall cur-
rent flows along thex8 axis ~see Fig. 1! and the spin transfe
per the boundary of the unit cell along they8 axis is

DSz5dE
0

T

dt^ j x8
s

~ t !&52 (
n,0

NCh
(n)

2
~35!

@see Eqs.~28!, ~32!, and~33!#. The result does not depend o
T . It comes from the fact that both the magnitude of t
quantized current andT21 are proportional tou“Bzu. We
emphasize that the spin transfer is quantized, i.e.,the integral
spin transfer occurs. The result is analogous to the Thoule
result.10

The value DSz /d corresponds to the magnetizatio
change per the period. From Eq.~34!, the magnetization
change is written by the Berry phase. Then, the present re
is also similar to the spontaneous polarization of crystall
dielectrics, which is written by the Berry phase introduc
by a closed adiabatic change of the Kohn-Sham potentia11

Essentially, the similarity comes from the fact that t
effects argued here are caused by the closed adiabatic ch
in the Bloch states with the finite energy gap. A paral
discussion for the present arguments have been made i
Bloch electron systems in the presence of the electrom
netic field with respect to the charge transport.7

VII. SUMMARY AND DISCUSSIONS

In summary, we consider Bloch quasiparticles in a vor
state of superfluid3He-A in two dimensions with a rotation
along thez axis. A magnetic field is along thez axis with a
weak homogeneous gradient in the rotating frame. The fi
could be represented by an adiabatically changing vector
tential which couples to the spin current. The adiabatic p
cess is defined on a closed loop in the parameter space~the
Brillouin zone! and generates a Berry phase. The spin H
current flows in the process. We calculated the expecta
value of the total spin current directly by using the adiaba
approximation and obtain the spin Hall conductivity. Th
approach is equavalent to calculate the Kubo formular for
spin Hall conductivity.9 The conductivity is represented b
the Chern number and quantized when the quasiparticle
an excitation gap as that in thed-wave vortex state.9 We have
shown that the spin Hall conductivity is written by the Ber
phase. The spin transfer per a cycle per the boundary of

*Present address: Max-Planck Institute for the Physics of Com
Systems, Noethnitzer Street 38, D-01187 Dresden, Germany.
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unit cell is quantized and related to the Berry phase. T
results remind us of the adiabatic pumping, which was int
duced by Thouless with respect to the charge transport.10 The
result is also similar to the relation between the spontane
polarization and the Berry phase in the crystalli
dielectrics.11 Essentially, the similarity comes from the fa
that the effects argued here are caused by the closed
batic change in the Bloch states with the finite energy g
With respect to the charge transport, a parallel discussion
been made in the Bloch electron systems in the presenc
the electromagnetic field.7

As we mentioned before, the spin quantum Hall effect
the vortex state of adx22y2-wave superconductor has bee
pointed out,9 but there seems to be some difficulty in makin
a parallel discussion of thesuperconductors. Because of the
Meissner effect, it is not possible to have a magnetic fi
with a finite homogeneous gradient which is essential to
fine the adiabatic process on the closed loop in the param
space. The vortex states in3He-A are suitable for our argu
ments because3He is the fermionic superfluid in which th
spin current is well defined, i.e., the spin rotation symme
around thez axis is retained. In contrast to thedx22y2-wave
state, the spin quantum Hall effect occurs spontaneousl
3He-A , i.e., one obtains a quantized spin Hall conductiv
to calculate the Kubo formula in the absence of the vortic
The effect comes from the broken time-reversal symme
and the broken parity in the orbital part of the pairin
symmetry.22 But the system does not have the finite spa
periodicity and we cannot make a parallel discussion also
this case.

We would like to comment on the fact that, in our arg
ment, the orbital part of the pairing symmetry is not cruc
as long as the quasiparticle spectrum in the vortex state
an excitation gap. The spin part is crucial because the s
rotational symmetry is needed to obtain well defined s
currents.

Several authors have made efforts to find a way to m
sure spin transport.23 Some experimental techniques to dete
spin transfer are highly desirable.
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