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Order parameter symmetry in ferromagnetic superconductors

K. V. Samokhin* and M. B. Walker
Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A7

~Received 26 June 2002; published 4 November 2002!

We analyze the symmetry and nodal structure of the superconducting order parameter in a cubic ferromag-
net, such as ZrZn2. We demonstrate how the order parameter symmetry evolves when the electromagnetic
interaction of the conduction electrons with the internal magnetic induction and the spin-orbit coupling are
taken into account. These interactions break the cubic symmetry and lift the degeneracy of the order parameter.
It is shown that the order parameter which appears immediately below the critical temperature has two
components, and its symmetry is described bycorepresentationsof the magnetic point groups. This allows us
to make predictions about the location of the gap nodes.
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I. INTRODUCTION

A metallic ferromagnet is characterized by the fact that
electronic energy bands are split by the exchange interac
between the electrons so that the spin-up bands have d
ent energies from the spin-down bands. This has impor
consequences for the symmetry and the gap structure of
sible superconducting states. In this article, we study
symmetry properties of the superconducting order param
in a cubic ferromagnetic superconductor, such as ZrZn2, in
the limit of weak spin-orbit coupling, thus complementing
earlier study by the authors1 carried out in the strong spin
orbit coupling limit.

The formation of spin-singlet Cooper pairs in a ferroma
net is strongly inhibited because electrons with opposite m
menta and spin have energies differing by the exchange s
ting of the energy bands.2 Therefore we consider here on
the case of spin-triplet pairing. In triplet superconductivi
the order parameter has three components:D↑↑ correspond-
ing to the pairing of electrons in the spin-up band,D↓↓ cor-
responding to the pairing of electrons in the spin-down ba
andD↑↓ corresponding to the pairing of one spin-up and o
spin-down electron. TheD↑↓ component is expected to b
very small for the same reasons that inhibit the possibility
singlet superconductivity in a ferromagnet, and thus we g
erally neglect it. In the case of zero spin-orbit coupling, th
is no coupling between the three components of the o
parameter and thus, according to the Landau theory
second-order phase transitions, only one of them will
come nonzero immediately below the superconducting tr
sition temperature. The turning on of a weak spin-orbit co
pling has two effects:~i! there will be changes to each of th
three components of the order parameter resulting from
lowering of the symmetry by the presence of the spin-o
interaction, and~ii ! the three components of the order para
eter will be mixed together by the presence of the spin-o
interaction. It will turn out that for the ferromagnetic ma
netization directed along any high-symmetry axis and for
possible symmetries of the superconducting gap function
least one of the dominant componentsD↑↑ and D↓↓ has ei-
ther line nodes or point nodes in the momentum space. Th
zeros will become deep minima in the energy gap in
presence of the componentD↑↓ . The bulk of this paper is
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devoted to a detailed demonstration of these results.
Recent discoveries of coexistence of superconducti

with itinerant ferromagnetism in ZrZn2 ~Ref. 3!, and UGe2
~Ref. 4! have renewed interest in the old problem of t
interplay between the two phenomena. These materials
hibit a number of peculiar properties. First, in contrast to
previously known examples of ferromagnetic supercondu
ors, such as ternary rare-earth compounds, ruthenocupr
etc., the same band electrons (d electrons in ZrZn2 or f elec-
trons in UGe2) are responsible for both the superconductiv
and ferromagnetism. Second, the superconductivity occ
only in the ferromagnetic phase. While the exchange sp
ting of the Fermi surfaces suppresses singlet Cooper pair
it was shown that the exchange by spin fluctuations can l
to a triplet pairing both in the paramagnetic and the fer
magnetic phases,5 or to the enhancement of the superco
ducting critical temperatureTc on the ferromagnetic side.6 A
prominent feature of the phase diagram of ZrZn2 is that Tc
grows as pressure moves away from the ferromagnetic q
tum critical point, which can be explained by the exchang
type interaction of the magnetic moments of the Cooper p
with the magnetization density.7

Even though the microscopic mechanism of pairing is
completely understood, one can use symmetry analysi
identify the possible order parameters and determine
structure of the superconducting gap. The symmetry grouG
of the system in the normal state is defined as a group
transformations which leave the system HamiltonianH0 in-
variant. If the spin-orbit coupling is sufficiently strong,G
contains the operations which affect both the coordinate
the spin degrees of freedom. In nonmagnetic supercond
ors, time reversal symmetryK is not broken, andG5S3K
3U(1), whereS is the space group of the crystal, andU(1)
is the gauge group.8 In magnetic superconductors, time
reversal symmetry is broken, andG5SM3U(1), whereSM
is the magnetic space group whose elements leave both
microscopic charge density and the magnetization densitM
invariant.9 For example, if there is a crystal point group o
eration R which transformsM to 2M, then the combined
operationKR will be an element ofSM , because time rever
sal restores the originalM not affecting the lattice symmetry
The combined operationKR is antilinear and antiunitary
which brings about a number of novel features in the sy
©2002 The American Physical Society01-1
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metry analysis compared to the nonmagnetic case. The s
metry properties of the superconducting state in ZrZn2 as-
suming strong spin-orbit coupling have been studied in R
1 ~see also Refs. 10–12, where various aspects of the th
of ferromagnetic superconductors have been consider!.
However, a rather weak magnetic anisotropy in ZrZn2 ~Ref.
3! and also the results of the de Haas–van Alph
measurements13 point out that the spin-orbit coupling migh
be small, which requires a modification of the analysis
Ref. 1. A peculiar feature of ferromagnetic superconducto
which was first emphasized by Ginzburg,14 is that the inter-
nal magnetic induction in the normal state is always nonze
This means that the orbital motion of electrons and there
the symmetry of the superconducting order parameter wil
affected by the ferromagnetic magnetization even in the
sence of spin-orbit coupling. Another consequence is that
system undergoes the superconducting phase transition i
mixed state, even in the absence of an external field.

The paper is organized as follows. In Sec. II, the norm
state symmetry groups are derived assuming that spin-o
coupling is neglibly small, focusing on the cubic cryst
symmetry relevant for ZrZn2. In Sec. III, the effect of the
electromagnetic interaction on the symmetry of the sp
triplet order parameters is analyzed, and predictions
made about the location of gap zeros. The lattice periodi
is taken into account properly, which allows us to list
possible gap nodes, including those at the surface of the
Brillouin zone. In Sec. IV, the evolution of the order param
eter symmetry in the presence of spin-orbit coupling is st
ied, and it is shown how the order parameter is induced
both sheets of the Fermi surface. In Sec. V, the Ginzbu
Landau free energy functionals are derived for different m
netic symmetries. Section VI concludes with a discussion
our results and their implications for the experiment.

II. DERIVATION OF THE SYMMETRY GROUP AT ZERO
SPIN-ORBIT COUPLING

We consider the case of cubic symmetry appropriate
ZrZn2, which has the cubic Laves phase structure. Also,
consider a single spin-degenerate electron band which is
by an exchange field in the ferromagnetic state. The sym
try of the normal~i.e., nonsuperconducting! state will be ana-
lyzed in terms of the effective single-particle Hamiltonian

H05E drca
†~r!H 1

2m F2 i\
]

]r
1

e

c
A~r!G2

dab

1U~r!dab2@hex~r!1gmBB#•sabJ cb~r!. ~1!

Heree is the absolute value of the electron charge,U(r) is
the periodic crystal lattice potential,s5(s1 ,s2 ,s3) are
Pauli matrices, andhex(r) is the exchange field. The mag
netic induction inside the ferromagnet~in the assumed long
cylinder geometry! is B5curlA(r)54pM, and g is the
Landég factor for electrons, which determines the Zeem
splitting. In the case of a collinear ferromagnet, which
assumed here,hex(r)5h0f (r), where f (r) has the same pe
riodicity as U(r), and h0 is the exchange field direction
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which does not vary in the crystallographic unit cell. We al
assume thatB is uniform and there is no external magne
field ~otherwiseB5Hext14pM), so that the vector potentia
can, for example, be written asA(r)5@B3r#/2. In principle,
the magnetic induction varies both in magnitude and dir
tion in the crystallographic unit cell, and ourB is the unit cell
average of the microscopic magnetic induction. If the var
tion of the magnetic induction in the unit cell were taken in
account, it would change the symmetry analysis given bel
However, sinceB ~approximately 400 G at zero pressure! is
much smaller than the exchange field in ZrZn2 and since a
spatial average of magnetic induction over the unit cell
usually assumed to be appropriate in the calculation of
effects of the magnetic induction on the orbital motion of t
electrons, the approximation of a uniformB is sufficient. The
exchange fieldhex , the magnetization densityM, and the
magnetic inductionB all have a common direction.

The spin-orbit coupling in not included in Eq.~1!. It
should be noted that when we refer to spin-orbit coupling
this article, we mean the single-particle spin-orbit coupli
which is shown explicitly in Eq.~25! below. In principle, the
microscopic magnetic dipole-dipole interaction that giv
rise to the internal magnetic inductionB54pM couples the
spin and orbital motions, but because we assume a unif
B, this does not affect our symmetry analysis. Even in
absence of the spin-orbit coupling~25!, there is an effect of
the ferromagnetic magnetization density on the orbital m
tion of the electrons, which we refer to as the electrom
netic interaction. This means that the symmetry and free
ergy of the superconducting state will depend on
direction ofM.

At zero spin-orbit coupling, the symmetry operations a
independently in the real~orbital! space and the spin spac
so that the full symmetry group ofH0 is a direct product

G5Gorb3Gspin3U~1!, ~2!

whereU(1) is the gauge group composed of phase rotati
Fca(r)F215eifca(r). In the presence of the vector pote
tial, the usual lattice translations should be replaced by m
netic translations,15 and Cooper pairing occurs between t
eigenstates of the normal-state Hamiltonian~1!, which are no
longer Bloch functions characterized by the wave vectork.
We neglect these complications here and make a usua
sumption that thek dependence of the order parameter
determined by the point symmetry of the crystal lattic
Thus,Gorb contains only orbital rotationsRorb ,

Rorbca~r!Rorb
21 5ca~Rorb

21 r!, ~3!

and inversion

Ica~r!I 215ca~2r!. ~4!

Also, the effects of time-reversal symmetry are included
Gorb . Below we shall use the notationCkn for the rotations
by an angle 2p/k about the axisn̂ in orbital space. The
groupGspin contains spin rotationsRspin :

Rspinca~r!Rspin
21 5@D (1/2)~Rspin!#abcb~r!, ~5!
1-2
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whereD (1/2)(R) is the spinor (j 51/2) representation of ro
tations: for a rotationR by an angleu aroundn̂, D (1/2)(R)
5exp@2i(u/2)(s•n̂)#. It is convenient to introduce an or
thogonal basis of unit vectorsê1 ,ê2 ,ê3 in spin space, such
that ê3iB. We shall use the notationCkn

s for the rotations by

an angle 2p/k about the axisn̂ in spin space.
A standard representation for the time-reversal operatoK

is K5C2e2

s K0, whereK0 is the complex conjugation opera

tor associated with the representation$r,sz%.
16 The antiuni-

tary operatorK0 is defined more explicitly by the equation

K0@cca~r!#K05c* ca~r!, ~6!

wherec is an arbitraryc number. In the momentum repre
sentation,K0 also reverses the sign ofk. It should be noted
that, in the decompositionK5C2e2

s K0, while C2e2

s is an op-

erator in spin space only,K0 operates in both spin and orbita
space @as indicated, for example, by the resultK0syK0
52sy , wheresy5(\/2)s2 is they component of the elec
tron spin operator#. Nevertheless, in discussing the symme
properties of the HamiltonianH0 given by Eq.~1! for the
case where the common direction ofhex and B is along ê3
~so that the Hamiltonian does not contains2), it is useful to
considerK0 together with the symmetry operations in orbit
space.

If Rorb leaves the periodic potentialU(r) and the ex-
change fieldhex(r) invariant, then the transform of th
Hamiltonian H0, namely,RorbH0Rorb

21 , is the same asH0

except that the vector potentialA(r) is replaced byA8(r)
5Rorb

21A(Rorbr).17 This means that the transformation ru
for the magnetic induction underRorb is B(r)5curlA(r)
→B8(r)5curlA8(r)5Rorb

21B(Rorbr)5Rorb
21B(r). Also,

K0H0K0 is the same asH0 except thatA(r) is replaced by
2A(r), so that the transformation rule for the magnetic
duction underK0 is simply B→2B. Thus, if Rorb leaves
U(r) andhex(r) invariant andRorbB52B, thenK0Rorb is a
member of the symmetry group ofH0. For convenience
such combined symmetry elements will be included w
purely orbital elements in the definitions of the various
bital symmetry groups below.

In the nonmagnetic case, i.e., athex5B5M50, the or-
bital symmetry ofH0 is determined by the symmetry of th
lattice potentialU(r). Since ZrZn2 has a cubic Laves phas
structure,Gorb5Oh3K05O3I3K0, where I5$E,I % and
K05$E,K0%. In addition,H0 is invariant under arbitrary ro
tations in spin space, so thatGspin5SU(2).

In the ferromagnetic case, whereM, hex , and B are all
nonzero, time-reversal symmetry is broken, and as no
above, the symmetry group ofH0 contains elements of th
form K0Rorb as well as purely orbital transformations.
addition, the symmetry group ofH0 will contain operations
that are purely spin-space rotations. More precisely, it is e
dent from Eqs.~1! and ~5! that H0 is invariant under the
operators of the groupC`e3

s describing the set of all spin

rotations about the axisê3, which, as always, is taken to li
along the common direction ofM, hex andB. Therefore,
17450
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Gspin5C`e3

s . ~7!

This spin-space symmetry group will be combined with
number of orbital symmetry groups to describe a numbe
different cases corresponding to different orientations for
ferromagnetic magnetization density. The different cases
be called case A, case B,. . . , case E. The appropriate sym
metry groups will be described immediately, and the ord
parameter symmetries for each of the cases will be descr
later in Sec. III.

Case A.The orbital symmetry of the system is determin
by the electromagnetic interaction of the conduction el
trons with the inductionB via the vector potentialA. If this
interaction can be neglected, which amounts to settine
→0 in Eq. ~1!, then the Hamiltonian is real, so that th
orbital symmetry is independent ofM and is described by the
cubic groupOh , i.e.,

Gorb5Oh3K05O3I3K0 . ~8!

In this case, which might be appropriate for a neutral Fe
system, such as the liquid3He in magnetic field or the
‘‘cold’’ atomic gases, only the spin symmetry is influence
by the presence of ferromagnetic magnetization.

In ferromagnet metals, the electromagnetic interaction
always present, and the presence of magnetization affect
orbital symmetry even in the absence of spin-orbit coupli
The structure of the orbital group depends on the direction
magnetization density. In ZrZn2 the magnetic anisotropy is
sufficiently weak that it should be possible to align the ma
netization density along an arbitrary direction in the crys
by applying an external magnetic field along that directio
We now consider a number of possible orientations.

Case B.If the magnetization density lies along the@001#
direction, the orbital symmetry group is

Gorb5D4~C4!3I

5$E,C4z ,C2z ,C4z
21 ,K0C2x ,K0C2y ,K0C2a ,K0C2b%

3I , ~9!

where â5( x̂1 ŷ)/A2, and b̂5( x̂2 ŷ)/A2. Here we use a
standard notation for the magnetic groupG(H),18 where the
subgroupH in parentheses~the unitary subgroup! includes
all elements ofG which are not multiplied by the antiunitar
operation K0. A useful observation is that any magnet
group G(H) can be expressed in terms of left cosets w
respect to the unitary subgroupH: G(H)5H1AH, where
all elements of the cosetAH are antiunitary. The choice o
the antiunitary group elementA is arbitrary and does no
affect the final results, but once chosen it remains fixed.
the groupD4(C4), we chooseA5K0C2x .

Case C.When the magnetization density lies along t
@111# direction, the orbital symmetry group is

Gorb5D3~C3!3I

5$E,C3e ,C3e
21 ,K0C2b ,K0C2b8 ,K0C2b9%3I ,

~10!
1-3
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where ê5( x̂1 ŷ1 ẑ)/A3, b̂85C3eb̂5( ŷ2 ẑ)/A2, and b̂9

5C3e
21b̂5( ẑ2 x̂)/A2. For this magnetic group, we choos

A5K0C2b .
Case D.When the magnetization density lies along t

@110# direction, the orbital symmetry group is

Gorb5D2~C2!3I5$E,C2a ,K0C2b ,K0C2z%3I . ~11!

In this case, we also chooseA5K0C2b .
Case E.For the magnetization along a general directio

the orbital symmetry group is

Gorb5Ci5C13I , ~12!

where C1 consists of the unity operationE. This group is
trivial and does not contain antiunitary elements.

In the next section, we study the symmetry properties
the superconducting order parameter atMÞ0 using Gspin
from Eq. ~7!, andGorb from Eqs.~8!–~12!. The microscopic
origins of the ferromagnetism and the superconductivity
not important for the symmetry analysis.

III. SUPERCONDUCTING ORDER PARAMETER AT
ZERO SPIN-ORBIT COUPLING

In ZrZn2, the exchange band splitting isEex.5 mRy
.800 K,19 which greatly exceeds the superconducting cr
cal temperatureTc.0.2 K. In these conditions, the usu
Chandrasekhar-Clogston arguments2 make any pairing of
electrons with opposite spins, in particular in the sing
channel, strongly suppressed. The general form of a s
triplet superconducting order parameter isDab(k,r)
5( i ss2)abd(k,r).8 It is convenient to use the following
representation:d(k)5ê1d2(k)1ê2d1(k)1ê3d3(k), where
ê65(ê16 i ê2)/A2 andd65(d16 id2)/A2.

According to the Landau theory of phase transitions,
spin vectord, which appears at the critical temperatureTc ,
should correspond to an irreducible representation of
normal-state symmetry groupG. The easiest way to obtai
the transformation properties of the order parameter un
the operations fromG, i.e., the orbital and the spin rotation
and also the operationK0, is to use the mean-field expressio
for the pairing Hamiltonian:

Hsc5
1

2 (
k

(
a,b5↑,↓

@Dab~k!cka
† c2k,b

† 1H.c.#. ~13!

Here D↑↑52A2 d2 , which corresponds to a gap on th
spin-up Fermi surface;D↓↓5A2 d1 , which corresponds to a
gap on the spin-down Fermi surface; andD↑↓5D↓↑5d3,
which corresponds to a pairing of a spin-up electron with
spin-down electron. Because of the Pauli principle,d(2k)
52d(k). From Eqs.~13!, ~3!, ~5!, and~6!, we obtain

Rorbda~k!5da~Rorb
21k!,

Rspinda~k!5@D (1)~Rspin!#abdb~k!, ~14!

K0da~k!5da* ~2k!,
17450
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wherea56,3, andD (1)(R) is the vector (j 51) represen-
tation of rotations.

SinceG is a direct product of the independent orbital a
spin symmetry groups~2!, the basis functions of the irreduc
ible representations ofG are given by products of the bas
functions ofGorb andGspin . An important point here is that
because of the presence of the antiunitary operationsK0Rorb
in Gorb , the symmetry analysis should be modified. The
der parameter should transform according to one of the i
duciblecorepresentationsof Gorb5G(H), which can be de-
rived from the irreducible representations of the unita
subgroupH.18

At M50, Gspin5SU(2), andd transforms according to
the three-dimensional vector representation ofSU(2),
whose basis functions areê6 and ê3. All three spin compo-
nentsd6 and d3 have the same critical temperature. AtM
Þ0, the spin symmetry is reduced toGspin5C`e3

s @see Eq.

~7!#, and the vector representation is split into three o
dimensional representations of the groupC`e3

s . The spin

componentsd6 and d3 have different critical temperatures
and we assume that the maximumTc is achieved ford2 .
Thus, the order parameter can be represented as an expa

dG~k,r!5 i ê1(
i 51

nG

h i~r! f G,i~k!. ~15!

Here f G,i(k) are the odd basis functions of anG-dimensional
irreducible corepresentationG of Gorb ~the parity of the spin-
triplet order parameter is fixed, and the inversion operat
can be omitted fromGorb). The action of the orbital symme
try elements on the functionsf G,i(k) in the momentum space
is defined as follows: under the crystal rotations,Rorbf (k)
5 f (Rorb

21k), under the combined operations,K0Rorbf (k)
5 f * (2Rorb

21k). The expansion coefficientsh i(r) play the
role of the order parameter components, which enter
Ginzburg-Landau free energy functional. The factori on the
right-hand side of Eq.~15! is introduced so that, as we sha
see in Sec. IV, the antiunitary combined operationsKR are
equivalent to complex conjugation when acting onh i .

The physical meaning of Eq.~15! is that the order param
eter appears only on the spin-up sheet of the Fermi surf
while the spin-down sheet remains normal~for the order pa-
rameter on the spin-down sheet, one would haved1Þ0, i.e.,
d}ê2). It should be mentioned here that the band struct
of ZrZn2 is quite complex,19,20 but we neglect such a com
plication here and assume that there are only two excha
split bands. This assumption should not affect the essenc
our results. Experimentally, the absence of a clear spe
heat anomaly atTc in ZrZn2 ~Ref. 3! might be due to the fac
that a large portion, e.g., one of the sheets, of the Fe
surface is not paired. This, together with the magnetic ani
ropy and de Haas–van Alphen data mentioned in the In
duction, points out that the spin-orbit coupling in this ma
rial is indeed quite small. In contrast to the strong spin-or
coupling case considered in Ref. 1, the interband interact
ck↑

† c2k,↑
† ck8↓c2k8,↓ , which could induce order parameters

the same symmetry on both sheets of the Fermi surface
1-4
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absent due to the spin conservation. The critical tempera
for the order parameterd3, which describes the Cooper pai
ing of electrons with opposite spins, is expected to be m
smaller than those ford6 , because of the large value of th
exchange splitting in ZrZn2, mentioned in the beginning o
this section. For the same reason, we also neglect the p
bility of a superconducting state with a nonzero momentu
i.e., with ^ck1q,↑

† c2k,↓
† &Þ0 ~Larkin-Ovchinnikov-Fulde-

Ferrell state!.21

When the symmetry is described by one of the magn
point groups~9!, ~10!, ~11!, or ~12!, Gorb has only one-
dimensional corepresentations~see below!; therefore Eq.
~15! reduces to the form

dG~k,r!5 i ê1h~r! f G~k!. ~16!

Thus, the order parameter has one component, and
Ginzburg-Landau functional has the same form as for
conventionals-wave pairing. This means that the phase tra
sition from the normal ferromagnetic state to the superc
ducting state occurs into the usual mixed state with a lat
of the Abrikosov vortices. However, in contrast to thes-wave
case, the orbital symmetry is nontrivial; in particular, the
are zeros in the spectrum of elementary excitations wh
f G(k)50. Below we examine the order parameter symme
for different cases and determine the positions of the
zeros dictated by the magnetic symmetry.

A: GorbÄOÃIÃK0

In this case, which is relevant for the superconductivity
a neutral ferromagnetic Fermi system, the orbital symme
is not affected by the presence of a nonzeroM. The order
parameter is given by Eq.~15!. The groupO has 2 one-
dimensional (A1 and A2), 1 two- dimensional (E), and 2
three-dimensional (F1 and F2) representations. The ex
amples of the basis functions are given in Table I. The o
component order parametersdA1

(k) anddA2
(k) have line ze-

ros at the Fermi surface, which do not depend on the ch
of the basis functions. For the higher-dimensional repres
tations, the form of the order parameter and its gap struc
are obtained by minimizing the free energy in the superc
ducting state. The explicit expressions for the Ginzbu
Landau functionals and the phase diagrams for the m
component order parameters can be found, e.g., in Ref.

In a charged Fermi system, where the vector poten
created by the internal magnetization affects the sing

TABLE I. The examples of the basis functions for the odd irr
ducible representations of the point groupO from Ref. 22, v
5e2p i /3.

G f G(k)

A1 kxkykz(kx
22ky

2)(ky
22kz

2)(kz
22kx

2)
A2 kxkykz

E kxkykz(kx
21vky

21v* kz
2),kxkykz(kx

21v* ky
21vkz

2)
F1 kx ,ky ,kz

F2 kx(ky
22kz

2),ky(kz
22kx

2),kz(kx
22ky

2)
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electron wave functions, the cubic symmetry is reduced
one of the magnetic groups~9!, ~10!, or ~11!, and the degen-
eracy of the two- and three-dimensional order parameter
lifted. Mathematically, this corresponds to the splitting
higher-dimensional representations ofO into several one-
dimensional corepresentations. IfMi@001# and O
→D4(C4), then it is easy to check, using Table II, that

A1→A,

A2→B,

E→A1B, ~17!

F1→A1 1E1 2E,

F2→B1 1E1 2E.

We also gave here the correspondence between the
dimensional representations ofO and the corepresentation
of D4(C4). If Mi@111# and O→D3(C3), then, using Table
III,

A1→A,

A2→A,

E→ 1E1 2E, ~18!

F1→A1 1E1 2E,

F2→A1 1E1 2E.

If Mi@110# andO→D2(C2), then, using Table IV,

A1→A,

A2→B,

TABLE II. The character table and the examples of the ba
functions for the odd irreducible corepresentations of the magn
point groupD4(C4). The overall phases of the basis functions a
chosen so thatK0C2xf G(k)5 f G(k). l1,2 are arbitrary real constants

G E C4z f G(k)

A 1 1 kz

B 1 21 kz@l1(ky1 ikx)
21l2(ky2 ikx)

2#
1E 1 i ky1 ikx
2E 1 2 i ky2 ikx

TABLE III. The character table and the examples of the ba
functions for the odd irreducible corepresentations of the magn
point groupD3(C3). The overall phases of the basis functions a
chosen so thatK0C2bf G(k)5 f G(k).

G E C3e C3e
21 f G(k)

A 1 1 1 kx1ky1kz
1E 1 v v* e2 ip/3kx2ky1eip/3kz
2E 1 v* v eip/3kx2ky1e2 ip/3kz
1-5



b
da

a
r

th
ha

t
ha
th

t
th
am

he

th
r
l
m
y
th

ter
al
-

ures
r
m-

ith
ter

ed
tate
ore
o a
er

the

re-

pen-
the

to

si
et
re
.

K. V. SAMOKHIN AND M. B. WALKER PHYSICAL REVIEW B 66, 174501 ~2002!
E→A1B, ~19!

F1→A1B1B,

F2→A1A1B.

The physical origin of the order parameter splitting can
easily traced using the phenomenological Ginzburg-Lan
theory. For example, consider an uncharged Fermi liquid
above and leth5(hx ,hy ,hz) be a three-component orde
parameter corresponding to the vector representationF1 of
the orbital groupGorb5O3I3K0 and corresponding to a
gap function on the spin-up Fermi surface. Then
Ginzburg-Landau free energy describing a homogeous p
is

F5ah* •h1b1~h* •h!21b2uh•hu2

1b3~ uhxu41uhyu41uhzu4!, ~20!

wherea5a(T2Tc,0), andTc,0 is the critical temperature a
e50. There are a number of physically different states t
minimize this free energy, depending on the values of
parameters of the fourth-order terms;22 for example, one of
these solutions has the formh5h0(1,1,1).

Now, for a charged~metallic! ferromagnet, it is importan
to include the gradient terms in the free energy, so that
terms in the free energy of second order in the order par
eter become23

F5a~T2Tc,0!uhu21K1~Dih j !* ~Dih j !1K2~Dih i !* ~D jh j !

1K3~Dih j !* ~D jh i !1K4~Dih i !* ~Dih i !

5a~T2Tc,0!uhu21 ig@h* 3h#B

1K1~Dih j !* ~Dih j !1K23@~Dih i !* ~D jh j !

1~Dih j !* ~D jh i !#1K4~Dih i !* ~Dih i !. ~21!

HereD5“1 i (2p/F0)A, F05p\c/e is the flux quantum,
K235(K21K3)/2, and g5p(K32K2)/F0. In the second
part of Eq.~21!, we regrouped the gradient terms using t
identity @Di ,D j #52(2p i /F0)ei jkBk . The quantity i @h*
3h# can be interpreted, up to a factor, as the density of
orbital magnetization of Cooper pairs.8 The second-orde
terms given by Eq.~21! are sufficient to calculate the critica
temperature describing the phase transition from the nor
state to the superconducting mixed state. The free energ
the superconducting state will depend on the direction of
flux lines ~determined by the direction ofM relative to the
underlying crystal lattice!.

TABLE IV. The character table and the examples of the ba
functions for the odd irreducible corepresentations of the magn
point groupD2(C2). The overall phases of the basis functions a
chosen so thatK0C2bf G(k)5 f G(k). l is an arbitrary real constant

G E C2a f G(k)

A 1 1 kx1ky

B 1 21 kz1 il(kx2ky)
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Here we consider only the caseMi@001#, so thatGorb
5D4(C4). The critical temperature for the order parame
componenthz can be calculated exactly, while the critic
temperatures forh65hx6 ihy can be found using the varia
tional approach similar to that of Ref. 24, with the result

Tc,15Tc,02
8p2

aF0
S K11K31

K4

2 D M ,

Tc,25Tc,02
8p2

aF0
S K11K21

K4

2 D M , ~22!

Tc,z5Tc,02
8p2

aF0
K1M .

Barring accidental degeneracies, these critical temperat
are all different, so that, ateÞ0, the three-component orde
parameter is split. The difference between the critical te
peraturesTc,1 andTc,2 is proportional tog, and is entirely
due to the interaction of the orbital pair magnetization w
B. It is easy to see, using Table II, that the order parame
componentsh1 , h2 , and hz correspond to the following
one-dimensional corepresentations ofD4(C4): hz;A, h1

; 1E, h2; 2E. It may be that as the temperature is lower
below this critical temperature into the superconducting s
and the fourth-order terms in the free energy become m
important, there will be a second phase transition that int
state that does a better job of minimizing the fourth-ord
contributions to the free energy.

B: GorbÄD4„C4…ÃI „Mi†001‡…

The order parameter is given by Eq.~16! and the irreduc-
ible corepresentations are listed in Table II. We see that
order parametersdA(k) anddB(k) vanish on the linekz50 at
the Fermi surface, whiled1E(k) and d2E(k) vanish at the
points kz5ky50 @note that here the labelG refers to the
orbital symmetry, whereas in Ref. 1 we labeled the corep
sentations by their total~orbital plus spin! symmetry#. These
zeros are not accidental in the sense that they are inde
dent of the choice of the basis functions. Indeed, one of
elements of the magnetic point groupD4(C4) is the twofold
rotationC2z . Therefore,

C2zf A,B~k!5 f A,B~2kx ,2ky ,kz!52 f A,B~kx ,ky ,2kz!

5 f A,B~k!, ~23!

so thatf A,B(kx ,ky,0)50. Similarly, under a fourfold rotation
around thez axis,

C4zf B~k!5 f B~ky ,2kx ,kz!52 f B~k!;

thereforef B(0,0,kz)50. Also,

C4zf 1E,2E~k!5 f 1E,2E~ky ,2kx ,kz!56 i f 1E, 2E~k!;

hencef 1E,2E(0,0,kz)50.
It also follows from Eq.~23! that f A(k) and f B(k) go to

zero at the surface of the Brillouin zone, i.e., atkz56p/a
(a is the lattice constant!, because (kx ,ky ,p/a) and
(kx ,ky ,2p/a) are equivalent points. In order to take in

s
ic
1-6
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account the crystal periodicity leading to the presence
these additional gap zeros, one has to represent the
functions as the lattice Fourier seriesf (k)5(nf neik•Rn,
where summation goes over the sitesRn of the Bravais lat-
tice of the crystal. The expansion appropriate for an o
order parameter has the form

f ~k!5(
n

cnsink•Rn , ~24!

whereRn are the sites of a fcc cubic lattice, which cannot
transformed one into another by inversion. In the near
neighbor approximation, we choose the following set
Rn’s: $Rn%5(a/2)$(101),(1̄01),(011),(01̄1),(110),(1̄10)%.
Using Table II, we obtain the basis functions which ha
symmetry-imposed zeros at the surface of the Brillouin zo

f A~k!5sin
kza

2 S cos
kxa

2
1cos

kya

2 D ,

f B~k!5sin
kza

2 S cos
kxa

2
2cos

kya

2 D ,

f 1E~k!5cos
kza

2 S sin
kya

2
1 isin

kxa

2 D
1l1Feip/4sinS kxa

2
1

kya

2 D
2e2 ip/4sinS kxa

2
2

kya

2 D G ,
f 2E~k!5cos

kza

2 S sin
kya

2
2 isin

kxa

2 D
1l2Fe2 ip/4sinS kxa

2
1

kya

2 D
2eip/4sinS kxa

2
2

kya

2 D G .
Here l1,2 are arbitrary real constants. The polynomial e
pressions for the basis functions from Table II are recove
in the limit of a ‘‘small’’ Fermi surfacek→0 @note thatf B(k)
from Table II can be obtained by including the next near
neighbors in the expansion~24!#. It should be noted tha
these nearest-neighbor results give also gap zeros no
quired by symmetry, e.g.,f B(k)50 on the planekx5ky .
These ‘‘accidental’’ zeros will be removed if higher-neighb
terms are included, but if the nearest-neighbor terms turn
to be dominant, experiment could find indications of the
accidental zeros.

C: GorbÄD3„C3…ÃI „Mi†111‡…

The order parameter is given by Eq.~16!, and the irreduc-
ible corepresentations are listed in Table III. The order
rametersd1E(k) and d2E(k) vanish at the points where th
line kx5ky5kz crosses the Fermi surface, butdA(k) does not
17450
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have zeros. The zeros ofd1E,2E(k) are imposed by symmetry
because under a threefold rotation about the axisê,

C3e f 1E,2E~k!5 f 1E,2E~kz ,kx ,ky!5e62p i /3f 1E,2E~k!,

so thatf 1E,2E(kx5ky5kz)50.
We also give expressions for the basis functions of

magnetic point groupD3(C3) in terms of the lattice Fourier
series in the nearest-neighbor approximation:

f A~k!5S1
11S2

11S3
11 il1~S1

21S2
21S3

2!,

f 1E~k!5v* S1
11vS2

11S3
11 il2~v* S1

21vS2
21S3

2!,

f 2E~k!5vS1
11v* S2

11S3
11 il3~vS1

21v* S2
21S3

2!,

where S1
65sin(kxa/26kya/2), S2

65sin(kya/26kza/2), S3
6

5sin(kza/26kxa/2), andl1,2,3 are arbitrary real constants.

D: GorbÄD2„C2…ÃI „Mi†110‡…

The order parameter is given by Eq.~16!, and the irreduc-
ible corepresentations are listed in Table IV. The order
rameter dB(k) does not have zeros, butdA(k) has the
symmetry-imposed lines of zeros where the planekx52ky
crosses the Fermi surface, because under a twofold rota
about the axisâ,

C2af A~k!5 f A~ky ,kx ,2kz!52 f A~2ky ,2kx ,kz!5 f A~k!,

so thatf A(kx52ky)50.
The basis functions of the magnetic point groupD3(C3)

in terms of the lattice Fourier series in the nearest-neigh
approximation:

f A~k!5cos
kza

2 S sin
kxa

2
1sin

kya

2 D1l1sinS kxa

2
1

kya

2 D ,

f B~k!5sin
kza

2 S cos
kxa

2
1cos

kya

2 D1 il2sinS kxa

2
2

kya

2 D ,

wherel1,2 are arbitrary real constants.

E: GorbÄC1ÃI

The groupC1 has single one-dimensional odd represen
tion, which is realized by any odd function ofk. Therefore,
there are no symmetry-imposed gap nodes in this case.

IV. SUPERCONDUCTING ORDER PARAMETER AT WEAK
SPIN-ORBIT COUPLING

Now let us turn on a weak spin-orbit coupling neglect
in the previous discussion. We shall see that the effec
spin-orbit coupling is twofold. First, it mixes together th
order parameters on different sheets. Second, similar to
electromagnetic interaction studied in the previous sectio
it reduces the symmetry of the order parameter and chan
the gap structure on each sheet of the Fermi surface.

In the presence of spin-orbit coupling, the normal-st
Hamiltonian~1! contains an extra term:
1-7
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H0,s-o5H01
\

4m2c2 F“U~r!3S p1
e

c
AD G•s. ~25!

Spin is no longer a good quantum number and should
replaced by pseudospin.25 In contrast to Eq.~2!, the symme-
try group of Eq.~25! cannot be represented as a product
independent orbital and spin groups. Instead, we have,
glecting the translations,

G5Gs-o3U~1!, ~26!

whereGs-o consist of rotations which affect both the orbit
and the pseudospin degrees of freedom,

Rca~r!R215@D (1/2)~R!#abcb~R21r!, ~27!

and also the combined operationsKR, whereK5C2e2

s K0, so

that

K@cca~r!#K215c* ~ is2!abcb~r!, ~28!

wherec is an arbitraryc number~note thatK2521). The
transformation rules for the order parameter become@cf. Eq.
~14!#

Rda~k!5@D (1)~R!#abdb~R21k!,
~29!

Kda~k!52da* ~2k!5da* ~k!.

In this case, as shown in Ref. 1, the symmetry of the sys
is reduced to a magnetic point groupG(H), and the super-
conducting order parameter transforms according to on
the one-dimensional irreducible corepresentations. Depe
ing on the direction of the magnetization,G(H)5D4(C4),
D3(C3), D2(C2), or C1 ~in Ref. 1, only the first two case
were studied!. The only difference from the previous sectio
is that the elements of the magnetic groups now act simu
neously on the orbital and the spin coordinates, see@Eqs.
~27! and ~28#, and one should replaceK0R with KR in the
definitions~9!, ~10!, and~11!.

Because of the possibility of the interband pairing int
actions of the formck↑

† c2k,↑
† ck8↓c2k8,↓ , the superconductiv-

ity is present on both sheets of the Fermi surface. Instea
Eq. ~15!, we have the following general expression for t
order parameter:

d~k!5ê1d2~k!1ê2d1~k!1ê3d3~k!

' i ê1(
i 51

nG2

h2,i f G2 ,i~k!1 i ê2(
i 51

nG1

h1,i f G1 ,i~k!.

~30!

Here G2(G1) label the irreducible corepresentations
G(H) describing the orbital symmetry of the order parame
at the pseudospin-up~pseudospin-down! sheets of the Ferm
surface. The choice of these representations is not arbit
becauseê1d2 and ê2d1 should have the same symmet
properties. Thus, the order parameter hasnG1

1nG2
compo-

nents: (h1 ,h2), where h15(h1,1 , . . . ,h1,nG1

) and h2

5(h2,1 , . . . ,h2,nG
). For the magnetic groups of intere
2
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to us, all corepresentations are one dimensional, so
nG1

5nG2
51. As discussed in Sec. III, the contribution pr

portional toê3 is small because of the large exchange ba
splitting, and is neglected in the second line of Eq.~30!.

It is instructive to study the evolution of the order param
eter symmetry in the presence of spin-orbit coupling us
the Ginzburg-Landau theory. Let us start by looking at t
first of the effects mentioned in the beginning of this sect
~i.e., the order parameter mixing!, using as an example th
vector representationF1 of O and assumingMi@001#. We
neglect the electromagnetic interaction and omit the grad
terms in the free energy. At zero spin-orbit coupling, t
orbital symmetry is cubic, andG15G25F1. It is conve-
nient to use the following set of the basis functions ofF1:

f 1~k!5
ky1 ikx

A2
, f 2~k!5

ky2 ikx

A2
, f 3~k!5kz ; ~31!

then h65(h6,1 ,h6,2 ,h6,3), and the quadratic part of th
free energy is

F05a1~T2Tc,1!uh1u21a2~T2Tc,2!uh2u2. ~32!

The critical temperaturesTc,2 andTc,1 for the spin-up and
spin-down order parameters are different, in general~we as-
sume thatTc,2.Tc,1). There are no mixed terms of th
form h1,i* h2, j in Eq. ~32!, because of the spin rotation sym
metry U(1). Indeed, under a spin rotation by an angleu

aboutê3, we haved6→e6 iud6 , which can be interpreted a
an operation acting on the order parameter components:h6

→e6 iuh6 . The mixed terms are not invariant under su
transformations and therefore are not allowed. This is,
course, the same continuous symmetry which is respons
for the spin conservation.

Now, if a weak spin-orbit coupling is turned on, we ca
treat it as a symmetry-breaking perturbation in the pheno
enological Ginzburg-Landau functional. The spin rotatio
are no longer symmetry elements on their own, the symm
try is lowered fromO to D4(C4), and in addition to the
terms on the right-hand side of Eq.~32!, the free energy
should contain other invariants built from the components
(h1 ,h2). The magnetic groupD4(C4) is generated by the
rotationsC4z and the combined operationsKC2x . According
to Eqs. ~29!, C4zd6(k)56 id6(C4z

21k), KC2xd6(k)
5d6* (C2x

21k). In terms ofh6 , we have

C4zh6,157h6,1 ,

C4zh6,256h6,2 ,
~33!

C4zh6,356 ih6,3 ,

KC2xh65h6* .

@Note that, because of our choice of the basis functions
the presence of the overall factorsi on the right-hand side o
Eq. ~29!, the action ofKC2x on the order parameter compo
nents is equivalent to complex conjugation.# Using Eqs.~33!,
1-8
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we obtain quadratic terms which are invariant under
transformations fromD4(C4) and should therefore be adde
to the free energy~32!:

Fs-o5F01(
i 51

3

~l1,i uh1,i u21l2,i uh2,i u2!1g1~h2,1* h1,2

1h1,2* h2,1!1g2~h2,2* h1,11h1,1* h2,2!. ~34!

The coefficientsl6,i and g1,2 are small at weak spin-orbi
coupling. The model of Eqs.~32! and ~34! can have a rich
phase structure, depending on the relation between
‘‘bare’’ critical temperaturesTc,2 andTc,1 and other param-
eters. In order to work out the whole phase diagram and
structure of successive superconducting phases, one sh
include fourth-order terms in the free energy~32! and ~34!,
which we shall not do here. Instead, we concentrate on fi
ing the maximum critical temperature.

The components (h1,1 ,h2,2), (h1,2 ,h2,1), h1,3 , and
h2,3 can be considered separately. For example, the cri
temperature for (h1,2 ,h2,1) is given by

Tc5
T1,21T2,1

2
1

1

2
A~T1,22T2,1!

21
4g1

2

a1a2
, ~35!

where T6,i5Tc,62l6,i /a6 . Both componentsh1,2 and
h2,1 are nonzero belowTc , so that superconductivity ap
pears simultaneously on both sheets of the Fermi surf
The order parameter can be obtained from Eq.~30!:

d~k!5 i ê1

ky1 ikx

A2
h2,11 i ê2

ky2 ikx

A2
h1,2 . ~36!

At weak spin-orbit coupling andTc,2.Tc,1 , h1,2 is much
smaller thanh2,1 : h1,2 /h2,1}g1. The order parameter~36!
has point nodes at the poles of the Fermi surfaces and
cording to the classification of Ref. 1, corresponds to
irreducible corepresentationA of D4(C4). Similarly, one can
deriveTc for the order parameter (h1,1 ,h2,2) and check that
it corresponds to the corepresentationB.

The critical temperatures forh6,3 are T6,35Tc,6
2l6,3 /a6 . The corresponding order parameterd still van-
ishes on one of the sheets of the Fermi surface, which is
artifact of our model, based on the representationF1 of O. If
one includesall representations of the cubic group in the fr
energy~32!, then the spin-orbit coupling would lead to th
appearance of a variety of quadratic terms which mix
gether different representations on different sheets, simila
Eq. ~34!. In this case, the order parameter will always
present on both sheets of the Fermi surface, and the resu
Ref. 1 will be recovered.

Now we study how the nodal structure of the superc
ducting order parameter on a single sheet~say, the
pseudospin-up sheet! evolves with spin-orbit coupling. We
consider only the caseMi@001#, neglect the electromagneti
interaction, and start from the representationsA1 andF1 of
the groupO at zero spin-orbit coupling. The order param
eters corresponding toA1 is dA1

(k,r)5 i ê1j(r) f A1
(k) @see

Eq. ~16!#. The order parameter corresponding toF1 has the
17450
ll

he

e
uld

d-

al

e.

c-
e

an

-
to

of

-

form ~15! with G5F1 , nG53, and the basis functions give
by Eqs. ~31!. The quadratic part of the Ginzburg-Landa
functional is

F05aA1
~T2TA1

!uju21aF1
~T2TF1

!uhu2. ~37!

There are no mixed terms in Eq.~37! because of the differen
transformation properties ofj andh with respect to the ele-
ments of the cubic group. We assumeTA1

.TF1
, so that only

j is nonzero immediately below the critical temperatu
From Table I, the order parameterdA1

has six line nodes

where the planeskx50, ky50, kz50, kx5ky , ky5kz , and
kz5kx cross the Fermi surface. However, according to Ta
II, all these gap nodes, except from that on the planekz
50, are incompatible with the magnetic symmetryD4(C4).
Let us now see how the extra nodes disappear when
spin-orbit coupling is taken into account.

The spin-orbit coupling reduces the cubic symmetry
D4(C4), whose action on the componentsh(5h2) is given
by Eqs.~33!, and onj by

C4zj52 i j,
~38!

KC2xj5j*

@here we used Eq.~29! and the identities f A1
(C4z

21k)

5 f A1
(k) and f A1

* (2C2x
21k)52 f A1

(k)]. Since the compo-

nentsj andh3 have the same transformation properties u
der all operations fromD4(C4), the free energy, which is
invariant with respect to the magnetic group, should cont
mixed terms in addition to Eq.~37!:

Fs-o5F01g~j* h31h3* j!, ~39!

where g is small at weak spin-orbit coupling. The critica
temperature is changed compared toTA1

,

Tc5
TA1

1TF1

2
1

1

2A~TA1
2TF1

!21
4g2

aA1
aF1

, ~40!

and the order parameter on the pseudospin-up sheet now
the form

d~k!5 i ê1@j f A1
~k!1h3f F1,3~k!#}ê1kz . ~41!

This order parameter corresponds to the corepresentatioA
of D4(C4). Thus, the only line node that survives the pre
ence of the spin-orbit coupling is located on the planekz
50. However, if the spin-orbit coupling is weak, then th
subdominant componenth3 is small, and the other five line
nodes off A1

(k) are just slightly filled, so that we shall hav
deep minima in the gap. At not very low temperatures, th
‘‘quasinodes’’ cannot be distinguished experimentally fro
true line nodes.

V. GINZBURG-LANDAU THEORY FOR
FERROMAGNETIC SUPERCONDUCTORS

We have seen in the previous sections that both the e
tromagnetic interaction and the spin-orbit coupling break
1-9
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cubic symmetry, lift the degeneracy of the order parame
and change the gap structure. In addition, the spin-orbit c
pling induces nonzero order parameters on both sheets o
Fermi surface. The symmetry is reduced to a magnetic gr
Dn(Cn)(n52,3,4) or C1. All corepresentations of thes
groups are one dimensional, so that the general form of
order parameter is given by

d~k,r!5 i ê1 f G2
~k!h2~r!1 i ê2 f G1

~k!h1~r!. ~42!

The order parameter symmetry should be the same on
sheets, which means that~i! both componentsh2 and h1

have the same transformation properties under the actio
the magnetic group elements and~ii ! there are some restric
tions as to the choice ofG1 and G2 , stemming from the
different transformation properties of the spin vectorsê1 and
ê2 . In Table V, the pairs of orbital corepresentations givi
rise to the same symmetry ofd are listed for all three relevan
magnetic groups. For instance, the order parameter~36! cor-
responds to (G1 ,G2)5( 2E, 1E). The examples of the basi
functions f G6

(k), which have only the zeros imposed b
symmetry, can be found in Tables II, III, and IV. It is easy
see that the order parameter always has nodes, at least o
of the sheets of the Fermi surface.

The Ginzburg-Landau functional contains all possib
uniform and gradient terms which are~i! invariant with re-
spect toG(H) and ~ii ! gauge invariant. The uniform term
have the same form for all three magnetic groups:

Funi f orm5 (
i , j 56

Ai j ~T!h i* h j1F4 , ~43!

whereAi j is a real symmetric matrix. Above the critical tem
peratureTc , A is positive definite, andh15h250. Below
Tc , both components ofh are nonzero, in general. The co
efficientsA12 vanish at zero spin-orbit coupling, due to th
spin rotation symmetry. The fourth order terms in Eq.~43!
are given by

F45 (
i jkl 56

Bi j ,klh i* h j* hkh l , ~44!

where the matrixB is real and symmetric with respect t
i↔ j and k↔ l , and satisfies the following condition:Bi j ,kl
5Bkl,i j .

The gradient terms are different for different magne
groups. ForG(H)5D4(C4),

TABLE V. The pairs of orbital corepresentations correspond
to the same symmetry of the order parameter~42! on both sheets of
the Fermi surface.

G(H) (G1 ,G2)

D4(C4) (A,B), (B,A), ( 1E, 2E), ( 2E, 1E)
D3(C3) (A, 2E), ( 1E,A), ( 2E, 1E)
D2(C2) (A,B), (B,A)
17450
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Fgrad5 (
i , j 56

@Ki j
'~D'h i !* ~D'h j !1Ki j

z ~Dzh i !* ~Dzh j !#,

~45!

whereD' stands for (Dx ,Dy), andKi j
' andKi j

z are real sym-
metric matrices, whose off-diagonal elements vanish in
absence of spin-orbit coupling.

In the case ofG(H)5D3(C3), we can make a change o
coordinates after whichẑ is directed along@111#: r→r8
5Rr, whereR is the matrix of a three-dimensional rotatio
by an angleu5arccos(1/A3) about the axisB. Omitting the
primes, the gradient terms in the new coordinates have
same form as Eq.~45!.

Finally, for G(H)5D2(C2), it is convenient to rotate the
coordinates in such a way thatẑ is directed along@110#: r
→r85Rr, whereR is the matrix of a three-dimensional ro
tation by an angleu5p/2 about the axisB. In this case, the
gradient terms have the following form:

Fgrad5 (
i , j 56

@Ki j
x ~Dxh i !* ~Dxh j !1Ki j

y ~Dyh i !* ~Dyh j !

1Ki j
z ~Dzh i !* ~Dzh j !#, ~46!

whereKi j
x,y,z are real symmetric matrices which are diagon

in the absence of spin-orbit coupling. Because of the cho
of coordinates,M5M ẑ andB5Bẑ in all three cases.

If the ferromagnetic magnetization is not directed along
high-symmetry axis, thenG(H)5C1. In this case, the only
symmetry element is the unity operation, and the gradi
terms contain all possible real combinations of the com
nents ofD andh6 . We shall not give these rather cumbe
some expressions here.

The expressions for the free energy given above can
used for deriving the phase diagram of a cubic ferromagn
superconductor, which can be quite complex. In particu
one cannot exclude the possibility of extra phase transiti
in the superconducting state. Also, from Eqs.~43!, ~44! and
~45! or ~46!, we see that the Ginzburg-Landau theory f
ferromagnetic superconductors with large exchange b
splitting is formally equivalent to a model of a two-ban
superconductor with two scalar order parameters of the s
symmetry.26 Interest in this model has been revived recen
in the context of a ‘‘high-temperature’’ superconductivity
MgB2; see e.g., Ref. 27.

VI. CONCLUSIONS

We have studied the symmetry of the superconduct
order parameter in a cubic ferromagnetic superconductor
experimental example is provided by ZrZn2. Because of the
antiunitarity of time reversal, the usual symmetry analysis
possible superconducting states~see Refs. 22, 23, and 8! is
not applicable. In a metallic ferromagnet, when both t
electromagnetic interaction and the spin-orbit coupling
present, the order parameter symmetry evolves from that
propriate for the cubic groupOh to one of the magnetic poin
groups, which is studied here using the phenomenolog
Ginzburg-Landau theory. It is shown that the order parame
1-10
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corresponds to one of the irreducible corepresentations o
magnetic group and has two components, which desc
pairing on the exchange-split sheets of the Fermi surface;
Eq. ~42!. It should be noted that our results follow from
general symmetry considerations and do not depend on
nature of ferromagnetism in the normal state~itinerant versus
localized moments! or the mechanism of superconductin
pairing.

We have determined thek dependence of the order param
eter imposed by the magnetic symmetry for all possible
rections of the ferromagnetic magnetization; see Table
The most remarkable result is that there should always
zeros in the energy gap, either point nodes or line node
both, at least on one of the sheets of the Fermi surface, w
M is directed along any of the high-symmetry axis of t
cubic lattice. These nodes should give rise to a power-
behavior of the thermodynamic and kinetic characteristic
low temperatures.8 It is expected that such experiment
techniques as ultrasonic attenuation measurements in th
perconducting state might be especially useful in determ
ing the detailed structure of the order parameter~a discussion
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