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We analyze the symmetry and nodal structure of the superconducting order parameter in a cubic ferromag-
net, such as Zrzn We demonstrate how the order parameter symmetry evolves when the electromagnetic
interaction of the conduction electrons with the internal magnetic induction and the spin-orbit coupling are
taken into account. These interactions break the cubic symmetry and lift the degeneracy of the order parameter.
It is shown that the order parameter which appears immediately below the critical temperature has two
components, and its symmetry is describedcbyepresentationsf the magnetic point groups. This allows us
to make predictions about the location of the gap nodes.
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I. INTRODUCTION devoted to a detailed demonstration of these results.
Recent discoveries of coexistence of superconductivity

A metallic ferromagnet is characterized by the fact that itswith itinerant ferromagnetism in ZrZn(Ref. 3, and UGg
electronic energy bands are split by the exchange interactiofRef. 4 have renewed interest in the old problem of the
between the electrons so that the spin-up bands have diffeinterplay between the two phenomena. These materials ex-
ent energies from the spin-down bands. This has importartibit a number of peculiar properties. First, in contrast to all
consequences for the symmetry and the gap structure of popreviously known examples of ferromagnetic superconduct-
sible superconducting states. In this article, we study thers, such as ternary rare-earth compounds, ruthenocuprates,
symmetry properties of the superconducting order parametetc., the same band electrorgs€lectrons in ZrZn or f elec-
in a cubic ferromagnetic superconductor, such as ZrZm  trons in UGg) are responsible for both the superconductivity
the limit of weak spin-orbit coupling, thus complementing anand ferromagnetism. Second, the superconductivity occurs
earlier study by the authdrgarried out in the strong spin- only in the ferromagnetic phase. While the exchange split-
orbit coupling limit. ting of the Fermi surfaces suppresses singlet Cooper pairing,

The formation of spin-singlet Cooper pairs in a ferromag-it was shown that the exchange by spin fluctuations can lead
net is strongly inhibited because electrons with opposite moto a triplet pairing both in the paramagnetic and the ferro-
menta and spin have energies differing by the exchange splithagnetic phasespor to the enhancement of the supercon-
ting of the energy bandsTherefore we consider here only ducting critical temperatur€, on the ferromagnetic sideA
the case of spin-triplet pairing. In triplet superconductivity, prominent feature of the phase diagram of Zrds that T,
the order parameter has three componefis: correspond-  grows as pressure moves away from the ferromagnetic quan-
ing to the pairing of electrons in the spin-up baad, cor-  tum critical point, which can be explained by the exchange-
responding to the pairing of electrons in the spin-down bandtype interaction of the magnetic moments of the Cooper pairs
andA | corresponding to the pairing of one spin-up and onewith the magnetization densify.
spin-down electron. Thé, component is expected to be  Even though the microscopic mechanism of pairing is not
very small for the same reasons that inhibit the possibility ofcompletely understood, one can use symmetry analysis to
singlet superconductivity in a ferromagnet, and thus we genidentify the possible order parameters and determine the
erally neglect it. In the case of zero spin-orbit coupling, therestructure of the superconducting gap. The symmetry gepup
is no coupling between the three components of the ordedf the system in the normal state is defined as a group of
parameter and thus, according to the Landau theory ofransformations which leave the system Hamiltonkégin-
second-order phase transitions, only one of them will bevariant. If the spin-orbit coupling is sufficiently strong,
come nonzero immediately below the superconducting traneontains the operations which affect both the coordinate and
sition temperature. The turning on of a weak spin-orbit couthe spin degrees of freedom. In nonmagnetic superconduct-
pling has two effects(i) there will be changes to each of the ors, time reversal symmett{ is not broken, andj=SXK
three components of the order parameter resulting from th&x U(1), whereSis the space group of the crystal, aldd1)
lowering of the symmetry by the presence of the spin-orbitis the gauge group.In magnetic superconductors, time-
interaction, andii) the three components of the order param-reversal symmetry is broken, agd= Sy, XU (1), whereS
eter will be mixed together by the presence of the spin-orbiis the magnetic space group whose elements leave both the
interaction. It will turn out that for the ferromagnetic mag- microscopic charge density and the magnetization deivity
netization directed along any high-symmetry axis and for alinvariant’ For example, if there is a crystal point group op-
possible symmetries of the superconducting gap function, adration R which transformsM to —M, then the combined
least one of the dominant componedts, andA || has ei- operationKR will be an element 0By, , because time rever-
ther line nodes or point nodes in the momentum space. Thessal restores the origind not affecting the lattice symmetry.
zeros will become deep minima in the energy gap in theThe combined operatiolKR is antilinear and antiunitary,
presence of the componeat, | . The bulk of this paper is which brings about a number of novel features in the sym-
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metry analysis compared to the nonmagnetic case. The symwhich does not vary in the crystallographic unit cell. We also
metry properties of the superconducting state in 4rZs- assume thaB is uniform and there is no external magnetic
suming strong spin-orbit coupling have been studied in Reffield (otherwiseB=H,+47M), so that the vector potential
1 (see also Refs. 10—12, where various aspects of the theopan, for example, be written #&fr)=[BXr]/2. In principle,
of ferromagnetic superconductors have been consiglerecthe magnetic induction varies both in magnitude and direc-
However, a rather weak magnetic anisotropy in ZrZRef.  tion in the crystallographic unit cell, and oBris the unit cell
3) and also the results of the de Haas—van Alpheraverage of the microscopic magnetic induction. If the varia-
measurements point out that the spin-orbit coupling might tion of the magnetic induction in the unit cell were taken into
be small, which requires a modification of the analysis ofaccount, it would change the symmetry analysis given below.
Ref. 1. A peculiar feature of ferromagnetic superconductorsHowever, sinceB (approximately 400 G at zero pressuie
which was first emphasized by Ginzbuftjis that the inter-  much smaller than the exchange field in ZgZand since a
nal magnetic induction in the normal state is always nonzerospatial average of magnetic induction over the unit cell is
This means that the orbital motion of electrons and therefor@sually assumed to be appropriate in the calculation of the
the symmetry of the superconducting order parameter will beffects of the magnetic induction on the orbital motion of the
affected by the ferromagnetic magnetization even in the abelectrons, the approximation of a unifoinis sufficient. The
sence of spin-orbit coupling. Another consequence is that thexchange fielch,,, the magnetization densityl, and the
system undergoes the superconducting phase transition inton@agnetic inductiorB all have a common direction.
mixed state, even in the absence of an external field. The spin-orbit coupling in not included in Edl). It
The paper is organized as follows. In Sec. Il, the normal-should be noted that when we refer to spin-orbit coupling in
state symmetry groups are derived assuming that spin-orbihis article, we mean the single-particle spin-orbit coupling
coupling is neglibly small, focusing on the cubic crystal which is shown explicitly in Eq(25) below. In principle, the
symmetry relevant for ZrZn In Sec. lll, the effect of the microscopic magnetic dipole-dipole interaction that gives
electromagnetic interaction on the symmetry of the spintise to the internal magnetic inductid=4=M couples the
triplet order parameters is analyzed, and predictions arepin and orbital motions, but because we assume a uniform
made about the location of gap zeros. The lattice periodicitys, this does not affect our symmetry analysis. Even in the
is taken into account properly, which allows us to list all absence of the spin-orbit coupliri@5), there is an effect of
possible gap nodes, including those at the surface of the firghe ferromagnetic magnetization density on the orbital mo-
Brillouin zone. In Sec. IV, the evolution of the order param-tion of the electrons, which we refer to as the electromag-
eter symmetry in the presence of spin-orbit coupling is studnetic interaction. This means that the symmetry and free en-
ied, and it is shown how the order parameter is induced oRrgy of the superconducting state will depend on the
both sheets of the Fermi surface. In Sec. V, the Ginzburgdirection of M.
Landau free energy functionals are derived for different mag- At zero spin-orbit coupling, the symmetry operations act
netic symmetries. Section VI concludes with a discussion ofndependently in the redbrbital) space and the spin space,
our results and their implications for the experiment. so that the full symmetry group ¢, is a direct product

Il. DERIVATION OF THE SYMMETRY GROUP AT ZERO G=GorpX Gspinx U(1), (2

PIN-ORBIT PLIN i [
SPIN-O cou G whereU (1) is the gauge group composed of phase rotations

We consider the case of cubic symmetry appropriate fofP ¢, (r)® t=€'?y,(r). In the presence of the vector poten-
ZrZn,, which has the cubic Laves phase structure. Also, wdial, the usual lattice translations should be replaced by mag-
consider a single spin-degenerate electron band which is splitetic translations? and Cooper pairing occurs between the
by an exchange field in the ferromagnetic state. The symmeeigenstates of the normal-state Hamiltonfap which are no
try of the normal(i.e., nonsuperconductingtate will be ana- longer Bloch functions characterized by the wave vektor
lyzed in terms of the effective single-particle Hamiltonian We neglect these complications here and make a usual as-
sumption that thek dependence of the order parameter is
determined by the point symmetry of the crystal lattice.
Thus, G, contains only orbital rotationR,y,,

Rorb#a(NRob= a(Robr), &)

. 1[ o e 2
H0=fdrwa(r) >m —|ﬁ§+EA(r) Sap

+U(r)Su5—[hexr) +9ugBl- U'aﬁJ bp(r). (D)
and inversion

Here e is the absolute value of the electron chargér) is

the periodic crystal lattice potentialy=(0q,0,,03) are L (D) " t=4 (—T1). 4

Pauli matrices, andhe,(r) is the exchange field. The mag- , i ,

netic induction inside the ferromagnéh the assumed long Also, the effects of time-reversal symmetry are included in

cylinder geometry is B=curlA(r)=4xM, and g is the Gorp - Below we shall use the notiaticmkn for the rotations
Landeg factor for electrons, which determines the ZeemarPy an angle z/k about the axisn in orbital space. The
splitting. In the case of a collinear ferromagnet, which isgroup Ggi, contains spin rotationBgpin:

assumed herd,(r) =hyf(r), wheref(r) has the same pe- . o

riodicity as U(r), and h, is the exchange field direction, Repinta(NDRspin=[DY?(Rgpin) 1aptrs(r), 5
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whereDY2(R) is the spinor {=1/2) representation of ro- Gapin=Cke, )
tations: for a rotatiorR by an angled aroundn, DY2(R) o _ _ .
—ex —i(02)(o-n)]. It is convenient to introduce an or- 1hiS Spin-space symmetry group will be combined with a
thogonal basis of unit vector ,&,,&, in spin space, such number of orbital symmetry groups to describe a number of

- o , different cases corresponding to different orientations for the
thates||B. We shall use the notatioBy, for the rotations by  ferromagnetic magnetization density. The different cases will

an angle 2r/k about the axis in spin space. be called case A, case B,. ., case E. The appropriate sym-
A standard representation for the time-reversal opetator metry groups will be described immediately, and the order-
is K=C§ezKo, whereK, is the complex conjugation opera- parameter symmetries for each of the cases will be described

tor associated with the representatipns,}.'® The antiuni-  later in Sec. lil.

tary operatoiK, is defined more explicitly by the equation Case AThe orbital symmetry of the system is determined
by the electromagnetic interaction of the conduction elec-

trons with the inductiorB via the vector potentiad. If this
interaction can be neglected, which amounts to setéing
—0 in Eqg. (1), then the Hamiltonian is real, so that the
orbital symmetry is independent bf and is described by the
cubic groupOy,, i.e.,

Kol Cha(1) JKo=C" tho(T), (6)

wherec is an arbitraryc number. In the momentum repre-
sentation K, also reverses the sign &f It should be noted
that, in the decompositioK=C§e2Ko, while C§e2 is an op-
erator in spin space onli{, operates in both spin and orbital Gorp=O0pXKo=0X1XKj. (8)
space[as indicated, for example, by the resiis K, _ _ _ _ _
= —s,, wheres,=(#/2)o, is they component of the elec- In this case, which m|ght pe appropnate fqr a.neutral Fermi
tron spin operatdr Nevertheless, in discussing the symmetrysystem, such as the liquidHe in magnetic field or the
properties of the Hamiltoniai, given by Eq.(1) for the ~ “cold” atomic gases, only the spin symmetry is influenced
case where the common direction of, and B is alonge, oY the presence of ferromagnetic magnetization. o
(so that the Hamiltonian does not contaig), it is useful to In ferromagnet metals, the electromagnetic interaction is

considerK, together with the symmetry operations in orbital alwgys present, and th? presence of magne_tizatiqn affec;s the
space orbital symmetry even in the absence of spin-orbit coupling.

If R, leaves the periodic potential(r) and the ex- The strL_lctu_re of the _orbital group depends on th_e directiqn of
change fieldhg,(r) invariant, then the transform of the magnetization densny. In Zrénthe magnetic anisotropy 1s
Hamiltonian H,, namely, RorbHoR_%, is the same asi, sufflmgntly weak that it should pe poss]ble to a!|gn the mag-
except that the vector potential(?)r is replaced byA’(r) netlzatlon density along an arblt_rary direction in thg cry_stal
=R7tA(Rorbf)-17 This means that the transformation rule by applying an external magnetic f|_eld an_ng th_at direction.
for %e magnetic induction undeR,,, is B(r)=curlA(r) We now consider a num_ber_ of p055|_ble orientations.
—B7(0) ~CulA (1) =Ry iB(Rour) ~RydB).  ASO.  girecton. the onbital ymmetry group 6
KoHoK is the same ably except thatA(r) is replaced by ’ Y y group
—A(r), so that the transformation rule for the magnetic in- G ., =D,(C,) X
duction underKy is simply B— —B. Thus, if R,,, leaves
U(r) andhey(r) invariant andR,,;,B= — B, thenKoR,,}, is a ={E,C47,C2,,Cs;" \KoCax,KoCay ,KoCra ,KoCop}
member of the symmetry group ¢i,. For convenience, <1 )
such combined symmetry elements will be included with ’
purely orbital elements in the definitions of the various or-
bital symmetry groups below.

In the nonmagnetic case, i.e., lat,=B=M=0, the or-
bital symmetry ofH, is determined by the symmetry of the
lattice potentialU(r). Since ZrZnp has a cubic Laves phase
structure, G, = Op X Kg=0X1XK,, wherel={E,l} and
Ko={E,Kg}. In addition,H is invariant under arbitrary ro-
tations in spin space, so th@t,;,=SU(2).

In the ferromagnetic case, whek&, h.,, andB are all
nonzero, time-reversal symmetry is broken, and as note
above, the symmetry group &f, contains elements of the

form.KOR‘”b as well as purely orbi_tal trans_formatio_ns. In Case C.When the magnetization density lies along the
addition, the symmetry group @i, will contain operations [111] direction, the orbital symmetry group is

that are purely spin-space rotations. More precisely, it is evi-
dent from Egs.(1) and (?) that HQ is invariant under thg Gorp=Ds(Cs) X|
operators of the group:me3 describing the set of all spin

where a= (x+Y)/\/2, and b=(x—Yy)/\2. Here we use a
standard notation for the magnetic gro@gH),8 where the
subgroupH in parentheseséthe unitary subgroupincludes
all elements ofc which are not multiplied by the antiunitary
operationK,. A useful observation is that any magnetic
group G(H) can be expressed in terms of left cosets with
respect to the unitary subgrowp: G(H)=H+AH, where
all elements of the cos&H are antiunitary. The choice of
the antiunitary group elemer& is arbitrary and does not
ffect the final results, but once chosen it remains fixed. For
the groupD,(C,), we chooseA=K,C,, .

A~ = 71 li "
rotations about the axig;, which, as always, is taken to lie {E.Cac.Cac /KoCap,KoCabr  KoCopr} X1,
along the common direction dfl, h,, andB. Therefore, (10
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where e=(x+y+2)/\3, b'=Cab=(y-2)/y2, and b  Wherea=* 3, andDM)(R) is the vector [=1) represen-

=C31h=(2-%)/\2. For this magnetic group, we choose ation of rotations. . .
A= SKEOCZb( N2 g group Sinceg is a direct product of the independent orbital and

Case D.When the magnetization density lies along the.Spin symmetry group(:?), the pasis functions of the irreduq—
[110] direction, the orbital symmetry group is ible representations df are given by products of the basis
' functions ofG,,, andGg,i,. An important point here is that,

Gorp=D2(Cp) X 1 ={E,Cpa,KoCop,KoCpst X 1. (11)  because of the presence of the antiunitary operatigi%,,
in Gy, the symmetry analysis should be modified. The or-

In this case, we also chooge=K,C,,. der parameter should transform according to one of the irre-
Case E.For the magnetization along a general direction,ducible corepresentationsf G,,,= G(H), which can be de-
the orbital symmetry group is rived from the irreducible representations of the unitary

subgroupH.*®
Gorp=Ci=Cy X1, (12 At M=0, Ggpin=SU(2), andd transforms according to

where C, consists of the unity operatiofi. This group is e three-dimensional vector representation $8(2),
trivial and does not contain antiunitary elements. whose basis functions aee. ande;. All three spin compo-

In the next section, we study the symmetry properties ofnentsd. andds have the same critical temperature. Mt
the superconducting order parameterMa# 0 using Ggpi, ~ #0, the spin symmetry is reduced @pin= C§e3 [see Eq.
from Eq.(7), andG,,;, from Eqgs.(8)—(12). The microscopic  (7)], and the vector representation is split into three one-
origins of the ferromagnetism and the superconductivity argjimensional representations of the gm@ées' The spin

not important for the symmetry analysis. componentd.. andds have different critical temperatures,
and we assume that the maximurp is achieved ford _ .
IIl. SUPERCONDUCTING ORDER PARAMETER AT Thus, the order parameter can be represented as an expansion
ZERO SPIN-ORBIT COUPLING

nr

In ZrZn,, the exchange band splitting Bq,=5 MRy -
=800 K,'° which greatly exceeds the superconducting criti- dr(k,r)=|e+i21 7i(Dfr,i(k). (15)
cal temperaturel .=0.2 K. In these conditions, the usual
Chandrasekhar-Clogston a.rgum_éntaak.e any pairing of  peref,. (k) are the odd basis functions ofng-dimensional
electrons with opposite spins, in particular in the S'ngl‘?tirreduci'ble corepresentatidhof G,;, (the parity of the spin-
channel, strongly suppressed. The general form of a spinginiet order parameter is fixed, and the inversion operation
triplet - superconducting order parameter &a4(k")  can be omitted fronG,,,). The action of the orbital symme-
=(ioay)apd(kr)." It is convenient to use the following {r glements on the functiorf ;(k) in the momentum space
representationd(k) =e, d_(k) +e_d, (k) + e;ds(k), where s defined as follows: under the crystal rotatiofs,f (k)
e.=(e;xiey)/\2 andd. = (d;+id,)/ /2. =f(R,k), under the combined operationoRq,pf (k)

According to the Landau theory of phase transitions, the=f*(— R;rtk), The expansion coefficients;(r) play the
spin vectord, which appears at the critical temperatdig,  role of the order parameter components, which enter the
should correspond to an irreducible representation of th&inzburg-Landau free energy functional. The fagton the
normal-state symmetry grou@. The easiest way to obtain right-hand side of Eq(15) is introduced so that, as we shall
the transformation properties of the order parameter undegee in Sec. IV, the antiunitary combined operati#® are
the operations frong, i.e., the orbital and the spin rotations equivalent to complex conjugation when acting gn
and also the operatidfy, is to use the mean-field expression  The physical meaning of E¢15) is that the order param-
for the pairing Hamiltonian: eter appears only on the spin-up sheet of the Fermi surface,
while the spin-down sheet remains nornffar the order pa-
rameter on the spin-down sheet, one would héwe: 0, i.e.,

dxe_). It should be mentioned here that the band structure
_ of ZrZn, is quite complex®?° but we neglect such a com-

Here Ay =— }/Ed— , which corresponds to a gap on the pjication here and assume that there are only two exchange-
spin-up Fermi surface | | = \/Zd+ » Which corresponds to @  gpjit pands. This assumption should not affect the essence of
gap on the spin-down Fermi surface; and; =A;=ds,  ouyr results. Experimentally, the absence of a clear specific
which corresponds to a pairing of a spin-up electron with g,e5¢ anomaly af . in ZrZn, (Ref. 3 might be due to the fact

spin-down electron. Because of the Pauli princiles-k)  that a large portion, e.g., one of the sheets, of the Fermi

1
HSCZEE > [Aap(K)Cfeet g+ He] (13
k aB=1,1

= —d(k). From Egs(13), (3), (5), and(6), we obtain surface is not paired. This, together with the magnetic anisot-
-1 ropy and de Haas—van Alphen data mentioned in the Intro-
Rorbda(K) =da(Rorpk), duction, points out that the spin-orbit coupling in this mate-
rial is indeed quite small. In contrast to the strong spin-orbit
Rspinda(K) =[DW(Rspin 1apd(k), (14 coupling case considered in Ref. 1, the interband interactions
CEchkchk,lC_k,,L, which could induce order parameters of
Kod,(k)=d7 (—k), the same symmetry on both sheets of the Fermi surface, are
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TABLE I. The examples of the basis functions for the odd irre-  TABLE Il. The character table and the examples of the basis
ducible representations of the point gro@ from Ref. 22, o functions for the odd irreducible corepresentations of the magnetic

=273, point groupD,(C,). The overall phases of the basis functions are
chosen so thaf,C,,f (k) = f-(k). N1, are arbitrary real constants.
r fr(k)
Ay kkyka(kZ— K2) (k2= K2) (K2~ K2) = G i
A, Kk, A 1 1 k,
E Keky ko (K2+ wk2+ 0¥ K2) Kk k(K2 + 0* K2+ wk?) B 1 -1 KL N1 (Ky+iky) 2+ N (ky —iky)?]
F, Ky Ky 1K, E 1 [ ky+iky
F2 k(5 — K2) ky (KE = K2) ko (K — K7) °E 1o i ky—iky

absent due to the spin conservation. The critical temperatur@ectron wave functions, the cubic symmetry is reduced to
for the order parametet;, which describes the Cooper pair- one of the magnetic groug$), (10), or (11), and the degen-
ing of electrons with opposite spins, is expected to be muci§racy of the two- and three-dimensional order parameters is
smaller than those fail.. , because of the large value of the lifted. Mathematically, this corresponds to the splitting of
exchange splitting in ZrZn mentioned in the beginning of higher-dimensional representations ©f into several one-
this section. For the same reason, we also neglect the posélimensional  corepresentations.  fM[[001] and O

bility of a superconducting state with a nonzero momentum;—D4(Ca), then it is easy to check, using Table I, that

ie, with (cf,,,c", )#0 (Larkin-Ovchinnikov-Fulde-

Ferrell statg?* A=A,
When the symmetry is described by one of the magnetic A.—B
point groups(9), (10), (11), or (12), G,,, has only one- 2
dimensional corepresentatiorisee beloy; therefore Eq. E—A+B, (17)

(15) reduces to the form
. F,—A+E+ %E,
dr(k,r)=ie.n(r)fr(k). (16)

Thus, the order parameter has one component, and the

Ginzburg-Landau functional has the same form as for thdVe also gave here the correspondence between the one-
conventionak-wave pairing. This means that the phase tran-dimensional representations 6f and the corepresentations
sition from the normal ferromagnetic state to the superconof D4(Cy). If M[[111] and O—D3(Cs), then, using Table
ducting state occurs into the usual mixed state with a latticéll,

of the Abrikosov vortices. However, in contrast to theave

F,—B+'E+ 2E.

case, the orbital symmetry is nontrivial; in particular, there A1—A,

are zeros in the spectrum of elementary excitations where

fr(k)=0. Below we examine the order t t A=A,

r . parameter symmetry

for different cases and determine the positions of the gap E_lE+ 2E (18)

zeros dictated by the magnetic symmetry.
F,—A+E+ %E,
A: Gorb=OX | XKO
1 2
In this case, which is relevant for the superconductivity in Fo—A+ E+°E.

a neutral ferromagnetic Fermi system, the orbital symmetrys \|[110] and O— D,(C,), then, using Table IV,
is not affected by the presence of a nonzbto The order

parameter is given by Eq15). The groupO has 2 one- A —A,

dimensional A; and A,), 1 two- dimensional ), and 2

three-dimensional K, and F,) representations. The ex- A,—B,

amples of the basis functions are given in Table I. The one-

component order parametej&l(k) anddAz(k) have line ze- TABLE lll. The character table and the examples of the basis

ros at the Fermi surface, which do not depend on the choicfé‘”C“O”S for the odd irreducible corepresentations of the magnetic
of the basis functions. For the higher-dimensional represer20int 9r0UPDs(Cs). The overall phases of the basis functions are
tations, the form of the order parameter and its gap structur0sen SO thakoCapfr(k) =1r(k).

are obtained by minimizing the free energy in the supercon-

-1
ducting state. The explicit expressions for the Ginzburg- E Cae Cac fr(k)
Landau functionals and the phase diagrams for the multi- A 1 1 1 Kyt ky+ K,
component order parameters can be found, e.g., in Ref. 8. 1g 1 ) o* e 1k, —k,+e ™k,
In a charged Fermi system, where the vector potential 2 1 w* w e ™, —k,+e ™K,

created by the internal magnetization affects the single
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TABLE IV. The character table and the examples of the basis Here we consider only the ca$&|\[001], so thatGg,y
functions for the odd irreducible corepresentations of the magnetie= D,(C,). The critical temperature for the order parameter
point groupD,(Cy). The overall phases of the basis functions arecomponents, can be calculated exactly, while the critical
chosen so that,C,,fr(k)=fr(k). \ is an arbitrary real constant. temperatures fop. = 7, =i 7, can be found using the varia-
tional approach similar to that of Ref. 24, with the result

E Coa fr(k)
872 K
A 1 1 kit ky TC,+=TC’0——(K1+K3+—4 M,
B 1 -1 K+ iX (K ky) ad 2
Ll VSV P 22
E—>A+B, (19) c,— '¢c0 aq)o 1 2 7 ’ ( )
F,—A+B+B, 7’
TC,Z:TC,O_ EKlM .
0

Barring accidental degeneracies, these critical temperatures
The physical origin of the order parameter splitting can beare all different, so that, &+ 0, the three-component order

easily traced using the phenomenological Ginzburg-Landaparameter is split. The difference between the critical tem-
theory. For example, consider an uncharged Fermi liquid aperaturesT. . andT, _ is proportional toy, and is entirely
above and lety=(7y,7,,7,) be a three-component order due to the interaction of the orbital pair magnetization with
parameter corresponding to the vector representdipof  B. It is easy to see, using Table Il, that the order parameter
the orbital groupG,,,=0X1XK, and corresponding to a componentsy,, »_, and », correspond to the following
gap function on the spin-up Fermi surface. Then theone-dimensional corepresentations @f(C,): 7,~A, 7.
Ginzburg-Landau free energy describing a homogeous phase 'E, 7_~ ?E. It may be that as the temperature is lowered

is below this critical temperature into the superconducting state
and the fourth-order terms in the free energy become more
F=an* - n+ (5" n)°+ Bl 9 nl? important, there will be a second phase transition that into a
4 4 4 state that does a better job of minimizing the fourth-order
* Ball o |+ 72", (20 contributions to the free ejnergy. ’
wherea=a(T—T,. ), and T, is the critical temperature at
e=0. There are a number of physically different states that B: Gorp=D4(C,) X1 (M|[001])

minimize this free energy, depending on the values of the
parameters of the fourth-order terfifsfor example, one of

these soflutionshhas the f?rl'?: ;70(1’1'1)' Citis i tant order parameterd, (k) anddg(k) vanish on the lin&,=0 at
e e e FE! aurace, iahe() and () vt ot e
terms in the free energy of second order in the order paran—Eo'ms k;=k,=0 [note that here the labdl refers to the
oter becon@ rbital symmetry, whereas in Ref. 1 we labeled the corepre-
sentations by their totdbrbital plus spin symmetry. These
F=a(T-T 24K (D7) (D: 1)+ Ko(D: ) (D e zeros are not accidental in the sense that they are indepen-
(T=Teo) [ 9l*+Ka(Di )" (Dim;) +Ko(Dimi)* (D ) dent of the choice of the basis functions. Indeed, one of the
+K3(Di7))* (Dj5) +Ka(Dim)* (D7) elements of the magnetic point grolp(C,) is the twofold

2 o rotationC,,. Therefore,
=a(T=Teo|n*+iyln* X 5]B
Cofa(K)=fap(—Ky,—Ky,Ky)=—Tap(Ky Ky, —k
+K1(Di77j)*(Di77j)+K23[(Dini)*(Dj77j) 2z A,B( ) A,B( X y z) A,B( X1 Ry z)

=f,(k), 23
+(Dy7)* (D 7)1+ Ka(Dy7)* (D 7). 21 a8l 23
_ . so thatf 5 g(ky,ky,0)=0. Similarly, under a fourfold rotation
HereD=V +i(2m/Pg)A, ®o=wfic/e is the flux quantum, 5.5.nd thez axis

Kos=(K,+K3)/2, and y=m(K;—K,)/®,. In the second

part of Eq.(21), we regrouped the gradient terms using the Cafa(k)=Tfg(ky,—ky,k)=—Tg(k);
identity [D;,Dj]=—(27i/®q)e;xBx. The quantityi[ z* _

X ] can be interpreted, up to a factor, as the density of théhereforefB(O,OkZ)—O. Also,

orbital magnetization of Cooper paftsThe second-order C,.f K) = f ko —k. k)=+if K):

terms given by Eq(21) are sufficient to calculate the critical azt e 26(K) =Tag 2e(ky —o ko) = =T 24k0);
temperature describing the phase transition from the normdiencefig 2(0,0k,) =0.

state to the superconducting mixed state. The free energy of It also follows from Eq.(23) that f (k) and fg(k) go to
the superconducting state will depend on the direction of theero at the surface of the Brillouin zone, i.e. kat = m/a
flux lines (determined by the direction d¥l relative to the (a is the lattice constapt because K,k,,7/a) and
underlying crystal lattice (kx.,ky,—m/a) are equivalent points. In order to take into

The order parameter is given by E46) and the irreduc-
ible corepresentations are listed in Table Il. We see that the
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account thg crystal periodicity leading to the presence Oﬁave zeros. The zeros of¢ 2¢(k) are imposed by symmetry,
these additional gap zeros, one has to represent the bagjs.ause under a threefold rotation about the axis

functions as the lattice Fourier seridgk)=>3,f,e'k Rn,

where summation goes over the sisof the Bravais lat- Cacfig 2e(K) = fig 2e(k, Ky Ky) = €727 3f 1 2¢(K),
tice of the crystal. The expansion appropriate for an odd

order parameter has the form so thatfig 2e(kc=ky=kz;)=0.

We also give expressions for the basis functions of the
) magnetic point grous(C3) in terms of the lattice Fourier
f(k)zz CnSink- Ry, (24 series in the nearest-neighbor approximation:

whereR, are the sites of a fcc cubic lattice, which cannot be fA(K)=S] +S; +S3+iNy(S; +S;, +S3),
transformed one into another by inversion. In the nearest- . o - o
neighbor approximation, we choose the following set of fie(K)=w*S; +S; +S; +iky(0* S + S, +S;5),
Ry's: {R}=(a/2){(101),(101),(011),(01),(110),(110)}. . _ o
Using Table II, we obtain the basis functions which have [2e(K)=wS[ +0*S; + S5 +ikg(wS] +w*S; +S;3),
symmetry-imposed zeros at the surface of the Brillouin ZONey hare St =sinkal2+ kya/2), s: — sin(k,a/2+ k,a/2), s
=sinka/2+k,a/2), and\ , 3 are arbitrary real constants.

ka kya kya
fA(k)=sm7 0037+0037 ,
D: Gorp=D2(C) X1 (M]|[110])
ke k,a kya The order parameter is given by E@6), and the irreduc-
fB(k)=S|n7 0057—0057 ) ible corepresentations are listed in Table IV. The order pa-
rameter dg(k) does not have zeros, bud,(k) has the
k.a k.a k.a symmetry—imposeq lines of zeros where the plage —k, .
flék):cos%(sin%—f—isin% crosses the Fermi surface, because under a twofold rotation
about the axis,
im/4a; kxa kya _ _ _
+Ag €SN 7"_7 C2afA(k)_fA(kyakxa_kz)__fA(_kyi_kXikz)_fA(k).
K K so thatf o(ky=—k,)=0.
— e i7l4gin “a_ Kka The basis functions of the magnetic point grdDg(C;)
2 2/ in terms of the lattice Fourier series in the nearest-neighbor

approximation:

Kz
fop(k)=cos—

al  ka = ka
5| sin5——isin—- ¢ 0o k,a .kanr _kya s kxa+kya
’ ) Al )—0037 sin—-+sin—>- 18in — > |
: a a
+ —imlAg; L+L)
o€ 7sIn = 2 _ka Kya ka| . [ka kya
fg(k)=sin——| cos—— +c0oSs=—| +i\,Sin ——— =],
2 2 2 2 2
_ei77/4sin kx_a_ ky_a
2 2 where\; , are arbitrary real constants.

Here \, , are arbitrary real constants. The polynomial ex-
pressions for the basis functions from Table Il are recovered
in the limit of a “small” Fermi surfacek— 0 [note thatf g(k) The groupC; has single one-dimensional odd representa-
from Table Il can be obtained by including the next nearestion, which is realized by any odd function &f Therefore,
neighbors in the expansiof24)]. It should be noted that there are no symmetry-imposed gap nodes in this case.
these nearest-neighbor results give also gap zeros not re-

quired by symmetry, e.gfg(k)=0 on the planek,=k,.  |v. SUPERCONDUCTING ORDER PARAMETER AT WEAK
These “accidental” zeros will be removed if higher-neighbor SPIN-ORBIT COUPLING

terms are included, but if the nearest-neighbor terms turn out

to be dominant, experiment could find indications of these NOW let us turn on a weak spin-orbit coupling neglected
accidental zeros. in the previous discussion. We shall see that the effect of

spin-orbit coupling is twofold. First, it mixes together the
order parameters on different sheets. Second, similar to the
C: Gory=Ds(Ca) X1 (MI[111]) electropmagnetic interaction studied in the previous sections,
The order parameter is given by E46), and the irreduc- it reduces the symmetry of the order parameter and changes
ible corepresentations are listed in Table Ill. The order pathe gap structure on each sheet of the Fermi surface.
rametersdig(k) and dzg(k) vanish at the points where the In the presence of spin-orbit coupling, the normal-state
line k,=k, =k, crosses the Fermi surface, loli(k) does not Hamiltonian(1) contains an extra term:

E: Gorp=Cy X
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to us, all corepresentations are one dimensional, so that
}-a. (25 np, =nr_=1. As discussed in Sec. Ill, the contribution pro-

Hoso=Ho+ L[VU(r)X p+ EA
’ 4m?c? c A
portional toe; is small because of the large exchange band
Spin is no longer a good quantum number and should beplitting, and is neglected in the second line of E().
replaced by pseudospffiin contrast to Eq(2), the symme- It is instructive to study the evolution of the order param-
try group of Eq.(25) cannot be represented as a product ofeter symmetry in the presence of spin-orbit coupling using
independent orbital and spin groups. Instead, we have, néhe Ginzburg-Landau theory. Let us start by looking at the
glecting the translations, first of the effects mentioned in the beginning of this section
(i.e., the order parameter mixingusing as an example the

G=Gs.oxU(1), (26)  yector representatiof, of O and assumindM|[001]. We
whereG,, consist of rotations which affect both the orbital neglect the electromagnetic interaction and omit the gradient
and the pseudospin degrees of freedom, terms in the free energy. At zero spin-orbit coupling, the

orbital symmetry is cubic, and', =T'_=F,. It is conve-
Riyo(NRI=[DY(R)],z005(R™ M), (270 nient to use the following set of the basis functionsFqf
and also the combined operatiddR, whereK =C3, K, so . .
that i PO AL e
1 \/E ’ 2 \/E 1 3 Z

Klcya(NIK™ =c* (i07) aptrp(r), (28
) . 2lapTh then .= (7+ 1,7+ 2,m+ 3), and the quadratic part of the
wherec is an arbitraryc number(note thatK?=—1). The  free energy is

transformation rules for the order parameter becfofieEq.

(1] Fo=a(T-Te )| n[*+a (T-T, )ln > (32
Rd,(k)=[DM(R)],5d5(R™ k), The critical temperature§, ~ and T, , for the spin-up and
(29 spin-down order parameters are different, in geneval as-
Kdu(k)=—d}(—k)=d} (k). sume thatT, >T. ). There are no mixed terms of the

In this case, as shown in Ref. 1, the symmetry of the systerfP™™ 7%.i7-; in Eq. (32), because of the spin rotation sym-
is reduced to a magnetic point gro@(H), and the super- Metry U(1). Indeed, under a spin rotation by an angle
conducting order parameter transforms according to one diboutes, we haved. —e™'’d.., which can be interpreted as
the one-dimensional irreducible corepresentations. Dependn operation acting on the order parameter componepts:
ing on the direction of the magnetizatioB(H)=D,(C,), —€"'’#.. The mixed terms are not invariant under such
D5(C3), D,(C,), or C; (in Ref. 1, only the first two cases transformations and therefore are not allowed. This is, of
were studie§l The only difference from the previous section course, the same continuous symmetry which is responsible

is that the elements of the magnetic groups now act simultafor the spin conservation.

neously on the orbital and the spin coordinates, [&gs. Now, if a weak spin-orbit coupling is turned on, we can
(27) and (28], and one should repladé,R with KR in the  treatitas a symmetry-breaking perturbation in the phenom-
definitions(9), (10), and (11). enological Ginzburg-Landau functional. The spin rotations

Because of the possibility of the interband pairing inter-are no longer symmetry elements on their own, the symme-
actions of the forncf,c’\ ;¢ c_ |, the superconductiv- 1ry is lowered fromO to D,(C,), and in addition to the
ity is present on both sheets of the Fermi surface. Instead d¢€'ms on the right-hand side of E(32), the free energy
Eq. (15), we have the following general expression for theshould contain other invariants built from the components of

order parameter: (m. ,m_). The magnetic grou,(C,) is generated by the
rotationsC,, and the combined operatioKC,, . According
d(k)=e,d_(k)+e_d, (k) +esds(k) to Egs. (29, Cgd.(K)=+id.(CZ,'k), KCpyd. ()
o o =d* (C,k). In terms ofp.. , we have
~ie 2 ot i0tie 2wy ife (k). Cage 1= F 74 1,
(30 Cazm+ 2= % 7+ 2,
Here I'_(I",) label the irreducible corepresentations of (33
G(H) describing the orbital symmetry of the order parameter Cazns 3= Fins 3,
at the pseudospin-ufpseudospin-downsheets of the Fermi
surface. The choice of these representations is not arbitrary, KCoym-= 75 .

becausee,d_ ande_d, should have the same symmetry

properties. Thus, the order parameter has+n; compo- [Note that, because of our choice of the basis functions and
. , S B

] h N q the presence of the overall factaren the right-hand side of
nents: (7. ,%-), where 7, =(7.1, ... "7+'“r+) and 7- Egq.(29), the action ofKC,, on the order parameter compo-
=(n_q1,... -y ). For the magnetic groups of interest nents is equivalent to complex conjugatibdsing Eqs(33),
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we obtain quadratic terms which are invariant under allform (15) with I'=F;, np=3, and the basis functions given
transformations fronD,(C,) and should therefore be added by Egs. (31). The quadratic part of the Ginzburg-Landau
to the free energy32): functional is

3 Fo=an (T—Tp)|€?+ar (T—Tg)| 72 (37)

o=aa A F F )
Feo=Fot 2 (il mailP+N_il - i)+ ya(n* 174 § o ’ ' .
=1 There are no mixed terms in E@7) because of the different

transformation properties @f and » with respect to the ele-
ments of the cubic group. We assuihg >Tg , SO that only

The coefficientsk .. ; and y, , are small at weak spin-orbit ¢ is nonzero immediately below the critical temperature.
coupling. The model of Eq432) and (34) can have a rich From Table I, the order parametd;gl has six line nodes
phase structure, depending on the relation between thgnere the planek, =0, k,=0, k,=0, k,=k,, k,=k,, and
“bare” critical temperature§ ¢, andT. , and other param-  —y cross the Fermi surface. However, according to Table
eters. In order to work out the whole phase diagram and thg"™ )| these gap nodes, except from that on the plape
structure of successive superconducting phases, one shoulty gre incompatible with the magnetic symmedy(C.).
include fourth-order terms in the free ener@?) and (34), | ¢t us now see how the extra nodes disappear when the
which we shall not do here. Instead, we concentrate on f'”dépin-orbit coupling is taken into account.

ing the maximum critical temperature. The spin-orbit coupling reduces the cubic symmetry to

The components #,1,7- 2, (7+2,7-1, 7+3 and  p (c,), whose action on the componenjé=7._) is given
7_ 3 can be considered separately. For example, the crmcegy Egs.(33), and oné by

temperature for §, »,7_ 1) is given by

SR/ ) ok D €/ WY/ NUP T o /R P B (3%

T, +T 1 4y5 S
ST ¥? 38
TC=+T+§\/(T+,2_T_,1)2+ a,a’ (395 KCoé=¢&* %

where T, (=T, .—\. ;/a.. Both componentsy, , and [here we used Eq(29) and the identitieszl(nglk)
-4 are nonzero belowl, so that superconductivity ap- =fa (k) and le(—Cz_Xlk)=—fAl(k)]. Since the compo-
pears simultaneously on both sheets of the Fermi surfac@ents¢ and 75 have the same transformation properties un-

The order parameter can be obtained from €6): der all operations fronD,(C,), the free energy, which is
. . invariant with respect to the magnetic group, should contain
ky+iky ~ ky—ik mixed terms in addition to E37):

dik)=ie, >—="7n_,+ie

X
\/5 \/E N+ 2-

(36)
Foo=Fot ¥(£* n3t 73 8), (39

?&g?;ktssrl;orplty]cou/ﬂlngoca;a%z-(I)—(r:d;’r gz;rgr:e;g;g)h where y is small at weak spin-orbit coupling. The critical
-1 +,2 -1 1- .
has point nodes at the poles of the Fermi surfaces and, a&qmperature is changed comparedl’ypl,

cording to the classification of Ref. 1, corresponds to the T. 4T >
irreducible corepresentatiohof D4(C,). Similarly, one can _ MR 1 _ ., 4y

. T + (Ta.—Tg)o+ , (40
deriveT, for the order parameteny, ;,7_ ,) and check that 2 2 1 1 aa ar,
it corresponds to the corepresentati®n )

The critical temperatures forp. ; are T.a=T.. and the order parameter on the pseudospin-up sheet now has
—\. 3/a. . The corresponding order parametestill van- the form
ishes on one of the sheets of the Fermi surface, which is an Ca N
artifact of our model, based on the representafigrof O. If d(k)=ie.[£fa (k) + nsfe s(k)]xek,. (41)

one mclgg)es{lklll re%esenyatlorgstof theI.CUb'C grlc:juP In dtft\e ILeeThis order parameter corresponds to the corepresentation
energy(32), then the Spin-orbit coupling would jead 1o Ine ¢ D4(C,). Thus, the only line node that survives the pres-
appearance of a variety Of quadrat_lc terms which mix tO'ence of the spin-orbit coupling is located on the pldnpe
gether different representations on different sheets, similar tgo However. if the spin-orbit counling is weak. then the
Eq. (34). In this case, the order parameter will always bes bdominant c;om one?ﬁ is small gndgthe other,five line
present on both sheets of the Fermi surface, and the results 3F P 3 S
: nodes off 5 (k) are just slightly filled, so that we shall have

Ref. 1 will be recovered. L L

Now we study how the nodal structure of the superconde€p minima in the gap. At not very low temperatures, these
ducting order parameter on a single shesay, the “quasinodes” cannot be distinguished experimentally from
pseudospin-up sheeevolves with spin-orbit coupling. We true line nodes.

consider only the cagd||[001], neglect the electromagnetic

interaction, and start from the representatidnsand F, of V. GINZBURG-LANDAU THEORY FOR
the groupO at zero spin-orbit coupling. The order param- FERROMAGNETIC SUPERCONDUCTORS
eters corresponding 8 is da (k,r)=ie. &(r)fa (k) [see We have seen in the previous sections that both the elec-

Eqg. (16)]. The order parameter correspondingRp has the tromagnetic interaction and the spin-orbit coupling break the
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TABLE V. The pairs of orbital corepresentations corresponding
to the same symmetry of the order paramé4® on both sheets of Fgrad=. Z+ [Kilj(Dl 7)* (D, 7))+ Kizj (Dy7i)* (D7) 1,
the Fermi surface. bl==

(45
G(H) (I'y.I'2) whereD, stands for D,,D,), andK;; andK?, are real sym-
D,4(C,) (A,B), (B,A), (1E,2E), (%E,'E) gIbestggcrgitfn;:eisr;_(\;\;gﬁssogﬁl-i(rj]lagonaI elements vanish in the
D3(Cs) (A,2E), (*E,A), (%E,'E) o p gl —DpC g. ) A f
D,(C,) (A,B), (B,A) n the case of5(H)=D3(C;3), we can make a change o

coordinates after whiclte is directed along[111]: r—r’

=Rr, whereR is the matrix of a three-dimensional rotation
cubic symmetry, lift the degeneracy of the order parametey an angled=arccos(14/3) about the axi®. Omitting the

and change the gap structure. In addition, the spin-orbit couprimes, the gradient terms in the new coordinates have the
pling induces nonzero order parameters on both sheets of tlseme form as Eq45).

Fermi surface. The symmetry is reduced to a magnetic group Finally, for G(H)=D,(C,), it is convenient to rotate the
Dn(Cr)(n=2,3,4) or C,. All corepresentations of these coordinates in such a way thatis directed alond110]: r
groups are one dimensional, so that the general form of the, ;' =Rr, whereR is the matrix of a three-dimensional ro-
order parameter is given by tation by an angled= 7/2 about the axi®. In this case, the
gradient terms have the following form:

dk.n=ie fr (Ky_(r)+ie_fr (K7.(r). (42
Forad= KX (Dy7i)* (Dy7;) + K (Dy7;)* (Dy 7
The order parameter symmetry should be the same on both =~ 9" i,jE:t (K33 (D)™ (D) + K35 (Dy 7)™ (Dy 7))
sheets, which means thé) both components;_ and 7. , .
have the same transformation properties under the action of +Kij(Dz71)™ (Dzmy) ], (46)

the magnetic group elements afig there are some restric- whereK ¥ are real symmetric matrices which are diagonal

tigns as to the choi.ce ar, a”‘?' r-, stemr.ning ferm the i the absence of spin-orbit coupling. Because of the choice
different transformation properties of the spin vectrsand of coordinatesM =Mz andB=B7 in all three cases.

e_. In Table V, the pairs of orbital corepresentations giving  |f the ferromagnetic magnetization is not directed along a
rise to the same symmetry dfare listed for all three relevant  high-symmetry axis, the®(H)=C;,. In this case, the only
magnetic groups. For instance, the order param@®rcor-  symmetry element is the unity operation, and the gradient
responds tol( . ,I'_)=(?E, 'E). The examples of the basis terms contain all possible real combinations of the compo-
functions fr-_(k), which have only the zeros imposed by nents ofD and 7. . We shall not give these rather cumber-

symmetry, can be found in Tables Il, Ill, and IV. It is easy to some expressions here.
see that the order parameter always has nodes, at least on oneThe expressions for the free energy given above can be
of the sheets of the Fermi surface. used for deriving the phase diagram of a cubic ferromagnetic

The Ginzburg-Landau functional contains all possiblesuperconductor, which can be quite complex. In particular,
uniform and gradient terms which af® invariant with re- one cannot exclude the possibility of extra phase transitions
spect toG(H) and (ii) gauge invariant. The uniform terms in the superconducting state. Also, from E¢3), (44) and
have the same form for all three magnetic groups: (45) or (46), we see that the Ginzburg-Landau theory for

ferromagnetic superconductors with large exchange band
splitting is formally equivalent to a model of a two-band
Funitorm= 2 Aj(T) 7} 7+ Fy, (43)  superconductor with two scalar order parameters of the same
b= symmetry?® Interest in this model has been revived recently
in the context of a “high-temperature” superconductivity in

whereA; is a real symmetric matrix. Above the critical tem- MgB,: see e.g., Ref. 27.

peratureT., A is positive definite, andy, = »_=0. Below

T., both components ofy are nonzero, in general. The co-
efficientsA, _ vanish at zero spin-orbit coupling, due to the VI. CONCLUSIONS
spin rotation symmetry. The fourth order terms in E4Q)

: We have studied the symmetry of the superconducting
are given by

order parameter in a cubic ferromagnetic superconductor. An
experimental example is provided by ZrZrBecause of the
_ k% antiunitarity of time reversal, the usual symmetry analysis of
FA_ijkIE:t By a7 “4 possible superconducting statege Refs. 22, 23, and &
not applicable. In a metallic ferromagnet, when both the
where the matrixB is real and symmetric with respect to electromagnetic interaction and the spin-orbit coupling are
i+ ] andk<l, and satisfies the following conditio;; present, the order parameter symmetry evolves from that ap-

=By, - propriate for the cubic grou@,, to one of the magnetic point
The gradient terms are different for different magneticgroups, which is studied here using the phenomenological
groups. FOIG(H)=D,4(C,), Ginzburg-Landau theory. It is shown that the order parameter
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corresponds to one of the irreducible corepresentations of thef this can be found in Ref.)11t should be noted that, if the
magnetic group and has two components, which describelectromagnetic and spin-orbit interactions are weak, then
pairing on the exchange-split sheets of the Fermi surface; sébe gap nodes appropriate for the underlying cubic symmetry
Eqg. (42). It should be noted that our results follow from would manifest themselves as deep minima of the gap,
general symmetry considerations and do not depend on thehich would also have to be taken into account when ana-
nature of ferromagnetism in the normal statmerant versus lyzing the experimental data.
localized momenfsor the mechanism of superconducting The situation might be complicated by the presence of
pairing. additional phase transitions in the superconducting state,
We have determined tHedependence of the order param- which is a common feature of the systems with multicompo-
eter imposed by the magnetic symmetry for all possible dinent order parameters. Because of the complexity of the
rections of the ferromagnetic magnetization; see Table VGinzburg-Landau functionals derived in Sec. V, the number
The most remarkable result is that there should always bef possible scenarios with different predictions for experi-
zeros in the energy gap, either point nodes or line nodes anent is quite large. In our view, it is still premature to dis-
both, at least on one of the sheets of the Fermi surface, whesuss specific models, because of the lack of experimental
M is directed along any of the high-symmetry axis of thedata in the superconducting phase of ZrZn
cubic lattice. These nodes should give rise to a power-law
behavior of the thermodynamic and kinetic characteristics at
low temperature8. It is expected that such experimental
techniques as ultrasonic attenuation measurements in the su- We are pleased to acknowledge the support from the Ca-
perconducting state might be especially useful in determinnadian Institute for Advanced Research and from the Natural
ing the detailed structure of the order paraméseadiscussion  Sciences and Engineering Research Council of Canada.
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