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Quantum Griffiths effects in metallic systems
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Elementary analytical extremal statistics arguments are used to analyze the possibility of quantum Griffiths
effects in nearly critical systems with overdamped dynamics, such as arise in conventional theories of metallic
quantum criticality. The overdamping is found to strongly suppress quantum tunneling of rare regions, leading
to superparamagnetic rather than quantum Griffiths behavior. Implications for theories of non-Fermi-liquid
behavior in heavy-fermion materials are discussed.
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I. INTRODUCTION

The interplay of disorder and quantum criticality is a lo
standing and still open problem in condensed-matter the
One aspect of this problem which has received consider
recent attention is the ‘‘quantum Griffiths’’ behavior whic
has been shown to occur near quantum critical points in
tain model systems.1–5 The model systems in which quantu
Griffiths behavior has been unambiguously demonstrated
possess a crucial common feature, namely that in the abs
of disorder the critical degrees of freedom exhibit dissip
tionless, Hamiltonian spin dynamics~indeed typically char-
acterized by dynamical exponentz51). However, many
systems of experimental importance involve magnetic
grees of freedom coupled to conduction electrons,6–9 and
therefore overdampeddynamics implying a pure-system
critical behavior characterized byz.1. Extension of the
theory of quantum Griffiths behavior to this case is theref
an important issue. In a series of papers10–12Castro-Neto and
Jones have argued from various points of view that s
overdamped systems exhibit quantum Griffiths behav
similar to that exhibited by undamped systems, and they
others have further argued that this phenomenon is at
heart of the ‘‘non-Fermi-liquid’’ behavior observed in man
heavy-fermion materials.9,13

In this paper we examine the issue of quantum Griffi
behavior in nearly critical systems exhibiting overdamp
dynamics, finding that it is essentially nonexistent, being
placed instead by ‘‘superparamagnetic’’ behavior. The
sence of our analysis is as follows: in undamped mod
quantum Griffiths effects arise from an interplay between
low probability of nucleating magnetic ‘‘droplets’’ in the
paramagnetic state and a low but non-negligible quan
tunneling of these droplets. In a metallic, dissipative envir
ment there is a strong suppression of tunneling by diss
tion, so that the droplets which dominate the susceptibi
behave more or less classically, leading to superparamag
behavior rather than quantum Griffiths behavior.

Our results amount to an implementation of ideas outlin
in Ref. 14 and to a generalization, to a nonvanishing den
of defects, of a previously reported analysis15 of the ‘‘mag-
netic droplet’’ produced by a single, spatially localized d
fect, and rely heavily on the results of this previous work

The method used to analyze the dynamics of a drople
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y.
le

r-

ll
ce
-

-

e

h
r
d

he

s
d
-
-

ls
e

m
-
a-
y
tic

d
ty

-

is

similar to that used in Ref. 11 and the broad qualitative f
tures of the results we obtain are very similar to those
tained in that work. However, the specifics and the phys
implications seem rather different. The issue is discusse
more detail in the conclusion.

The outline of this paper is as follows. In Sec. II w
present the model and the method used in our analysis
Sec. III we show that the approach reproduces results pr
ously obtained in the dissipationless case. Section IV p
sents our new results concerning Griffiths-like behavior
systems with overdamped dynamics. Section V is a su
mary, comparison to other work, and conclusion, and is w
ten so that readers uninterested in the details of the der
tions may obtain from it the essence of our results.

II. MODEL AND METHOD OF SOLUTION

A. Model

The canonical quantum Griffiths problem concerns the
fect of weak disorder added to a ‘‘pure’’~nondisordered! sys-
tem which possesses an Ising symmetry and is tuned to
near a quantum critical point. We consider a system in ima
nary time and three spatial dimensions~differences occurring
for two spatial dimensions warrant a separate treatm
which will be presented elsewhere!. The model is described
by the action

S5Sstatic1Sdyn1Sdisorder, ~1!

with

Sstatic5
E0

8pE0

b

dtE d3x

j0
3 F j0

2

j2
f2~x,t!1j0

2@“f~x,t!#2

1
1

2
f4~x,t!G . ~2!

Heref is a dimensionless scalar order parameter,E0 is the
basic energy scale of the theory~perhaps of the order of the
mean Kondo temperature for a heavy-fermion system!, j0 is
the basic length scale~typically of the order of a lattice con
stant!, j is the magnetic correlation length, andb is the
inverse temperature. It is convenient to define a param
©2002 The American Physical Society33-1
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r 5(j0 /j)2.0 which measures distance from criticality. W
consider only parameters such that the pure system is in
paramagnetic phase.

We take the disorder to couple to the square of the or
parameter via

Sdisorder5
E0

8pE0

b

dtE d3x

j0
3

V~x!f2~x,t!, ~3!

and assume it to be Gaussian distributed with correla
(^•••& represents average over configurations of the dis
der!

^V~x!V~y!&5V0
2KS x2y

j0
D , ~4!

where the kernelK(u) decays on the scaleu;1 and satisfies
*d3uK(u)51. Because we are interested only in leng
scalesx2y.j0, we will take K to be ad function. The
dimensionless quantityV0 parametrizes the strength of th
disorder. Weak disorder corresponds toV0!1.

The dynamic termSdyn is crucial to the quantum critical
ity described by Eq.~1! and to our subsequent discussion
We consider two cases:

~i! dissipationless, z51 dynamics, as is usually assume
in studies of quantum Griffiths behavior, with

Sdyn
(z51)5

E0

8pE0

b

dtE d3x

j0
3 S j0

c D 2S ]f~x,t!

]t D 2

. ~5!

Here c is a characteristic velocity of the undamped exci
tions, such thatc/j0 is an energy presumably of the order
E0.

~ii ! Hertz antiferromagnet, z52 dynamics, corresponding
to the generic antiferromagnetic transition in a Fermi liqu

Sdyn
(z52)5Sdyn

(z51)1
T

E0
(
vn

uvnu
G E d3x

j0
3

uf~r ,v!u2, ~6!

where

f~r ,vn!5E0E
0

b

dt f~r ,t! eivnt, ~7!

andSdyn
(z51) provides an upper frequency cutoff if needed.

In these conventions the dynamics are dissipative~i.e.,
dominated by theG-term! if v,v* [c2/(j0G) and nondis-
sipative at higher frequencies. One expects in most syst
~and finds, for example, in a weakly coupled Fermi liquid
in the slave boson theory of the Kondo lattice! that all scales
are roughly equal:E0'c/j0'G.

B. Method

1. Overview

The dissipative term in Eq.~6! corresponds to a long
ranged interaction in time and renders available numer
methods prohibitively difficult to apply. To analyze th
model defined by Eq.~1! we use simple analytical argumen
17443
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modeled on those of Ref. 1. We note that the effective
mensionality of the model defined by Eq.~1! is deff5d1z.
In this paper we consider only the spatial dimensiond53 so
we are concerned only with models at and above the up
critical dimensiondc54, so that quantal and thermal fluc
tuations of the order parameter in a fixed disorder confi
ration can be treated by an essentially mean-field approxi
tion. The usual fluctuation analysis which justifies the me
field approximation for deff.dc involves a translation-
invariant model and fluctuations for which momentum is
good quantum number. Here we must deal with fluctuatio
in a system whose translation invariance is broken. Th
were investigated in Refs. 16 and 15 and were found no
affect the structure of the static mean-field solution wh
deff>dc ~except for some insignificant changes in some c
stants!.

As noted for example by Ref. 14, in the presence of
random potential, the crucial feature of the mean-field so
tion is the presence ofdroplets: regions in which the order
parameter is locally nonvanishing. Quantum Griffiths effe
then arise from dynamical fluctuations of these droplets
study them one must estimate the droplet density and tun
ing rate. We use statistical arguments and mean-field ana
to estimate the density and an adaptation to the present
of the analysis presented for a droplet produced by a sin
point defect in Ref. 15 to estimate the tunneling rate.

2. Probability for the existence of a droplet

The assumption that the model is at or above its up
critical dimension means that mean-field theory is a go
starting point.15,16 We therefore consider static configur
tions,f(x), which minimize the combination of Eqs.~2! and
~3!. These satisfy

j0
2¹2f~x!1rf~x!1f~x!352V~x!f~x!. ~8!

If V(x)50, then because we assumer .0 the minimum cor-
responds tof(x)50; however, regions in whichV(x),0
can lead tof(x)Þ0. In the regions whereV(x)5const.
,0, f(x) is roughly constant whereas in between these
gions f(x) decays exponentially. We refer to the regio
wheref is not exponentially small as droplets. If the dro
lets are reasonably dilute, one may setf50 in the exponen-
tial tail regions16 and estimate the density of droplets of
given size and mean amplitude.

To motivate our estimate we first consider solving Eq.~8!

if V(x)5V̄ for uxu,R and V050 otherwise. A previous
paper15 considered a special case of this equation, w
V0(x)5Vd (d)(x) and the solutions found in that work ma
easily be modified for the present case. Ind53 one finds
that the solution is, roughly~and neglecting unimportan
logarithmic factors in thex dependence!

f~x!5H f0 for x,R

f0R

x
e2~x2R!/j for R,x.

~9!

In other words, the magnetic order induced by the region
attractive is roughly constant inside the region and dec
3-2
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QUANTUM GRIFFITHS EFFECTS IN METALLIC SYSTEMS PHYSICAL REVIEW B66, 174433 ~2002!
outside it, as 1/x in a shell of width set by the correlatio
length and exponentially for larger lengths. Inserting t
above ansatz, Eq.~9!, into Eqs.~2! and ~3!, and minimizing
the resulting action with respect tof0 yields

2V̄5
j0

2

j2
a~R/j!1f0

2b~R/j!, ~10!

with a(x)5113/x13/x2 and b(x)5113/(11x). These
particular forms fora, b depend on the specific potenti
configuration studied~hereV̄5const forx,R andV̄50 oth-
erwise! and on the variational approximation used; but
argue that a generic droplet is described by a similar equa
with a,b functions that vary on the scaleR/j;1 and which
tend to unity asR/j→`. Also in three dimensionsa(x)
;1/x2 as x→0 while b(x) tends to a constant forx,1.15

The precise forms ofa,b affect only nonuniversal detail
such as widths of crossover regions. In this paper we s
assume

a~x!5113x22 ~11a!

b~x!51 ~11b!

where the 3 arises from the difference in integrating a c
stant or 1/r 2 over r 2dr.

One sees from Eq.~10! that in order to obtain a solution a
all the average potential,V̄, must be smaller than a~nega-
tive! R-dependent critical value,

Vc52
j0

2

j2
a~R/j!, ~12!

which tends toj0
2/j2 asR→` and to a number of order 1 a

R→j0. As is evident from these formulas, the natural sc
of the droplets is the correlation lengthj that diverges as the
quantum critical point is approached.

Equations~10! and ~12! thus imply that one obtains
droplet in a region of linear dimensionR only if the average
value V̄ of the potential in that region is larger than a val
of the order ofVc(R/j) (Vc is not an exact estimate becau
it pertains to the idealized disorder configuration discus
above!. The standard estimate of the probability of a regi
of linear dimensionR with mean potentialV̄ is

P~R3,V̄!;
~R/j0!3/2

ApV0

expF2S R

j0
D 3S V̄

V0
D 2G , ~13!

and we therefore argue that the densityN(R3,f0
2) of droplets

of amplitudef0
2 and core sizeR, must be proportional to

1/V0exp(2R3(f0
21Vc(R/j))/V0

22). This argument does not de
termine the preexponential factors~which involve, e.g., the
issue of whether the region of sizeR considered in Eq.~13!
is part of a larger region which can sustain a droplet a
numerical factors arising from the difference between ide
ized disorder configuration and typical one, which we ha
absorbed intoV0 andVc). Because some of our subseque
17443
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considerations will require an estimate of the preexponen
factors, we present the following arguments to fix them.

We begin by making a rough estimate of the fraction
sites contained in droplets~i.e., the fraction of sites having a
f0

2.0) as a function of distance from criticality. To do th
we coarse grain the theory to the scalej. A given correlation
volume j3 will have a nonvanishingf0

2 if the potential av-
eraged over the droplet volume,Vave, is larger thanVc(j)
'a(1)j0

2/j2. From Eq.~13! we see that the probabilityPf

that a given correlation volume will have a nonvanishingf0,
i.e., aV,Vc(j), is ~recall Vc,0)

Pf5
1

2 H 12erfF S j

j0
D 3/2Vc~j!

V0
G J , ~14!

where erf is the error function.
Clearly, a picture of independent droplets must bre

down if Pf exceeds the percolation probabilityPperc at
which the set of correlation volumes with nonvanishingf0
percolate. Use of Eq.~14! and the estimate for three
dimensional cubic latticesPperc'0.2 shows that percolation
will have occurred by the time j exceeds jperc

'2.8a(1)2/V0
2. (jperc is an underestimate because dropl

larger thanj may occur!. These estimates also show that t
natural scale forj is V0

22 and strongly suggest that the pro
ability that a given site is in a droplet~of any size! is a
function only of the combinationjV0

2.
We therefore argue that the prefactors in the droplet d

sity must be such that the total probability of finding a site
a droplet,Ptot5j0

26*dR3df0
2R3N(R3,f0

2) must be a func-
tion only of jV0

2 and must be of the order ofPperc whenj is
of the order ofjperc. This implies

N@R3,f0
2#5

R29/2

CV0
V0

expS 2
R3~f0

21Vc~R/j!!

V0
2

2D , ~15!

where the factor ofR29/2 ensures the correct scaling withj
and the numerical factorCV0

'11.25 ensures that whenj

5jperc, we haveP5Pperc. We emphasize that these formu
las are phenomenological and must, in particular, br
down whenj approachesjperc.

It is convenient to adopt a dimensionless system of u
in which

R5yj, ~16!

f05 f
j0

j
, ~17!

j5u
j0

V0
2

, ~18!

for which
3-3
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N~y3, f 2!dy3d f25
y29/2

CV0
u1/2j3

3expS 2
y3@ f 21a~y!#2

u Ddy3d f2.

~19!

The factor ofj23 expresses the fact that if the probabili
of a given site being in a droplet is a function only ofu, then
the density of droplets must be smaller by an extra facto
the typical droplet volumej3.

3. Tunneling of the droplet for undamped, zÄ1, dynamics

We now estimate the ratev tun at which a droplet charac
terized by the mean amplitudef0 and length scaleR tunnels
in the case of undamped,z51 dynamics by performing a
variational instanton calculation using Eqs.~2! and ~5!, and
the solution Eq.~9!. In the simplest estimate one assum
that the droplet maintains its shape while collapsing and
forming. To estimate the action associated with this proc
we write the droplet solution as

f~x,t!5f~x!h~t!. ~20!

Substitution into Eqs.~2! and ~5! leads to

Sinst5Skin1Sbarrier, ~21!

Skin involves the integral of (] tf)2 over the droplet and a
noted in Ref. 15 involves the 1/r ‘‘tail’’ of the droplet in a
crucial manner; in contrast, the costSbarrier of creating the
instanton does not. One obtains

Skin
(z51)5Ckinj f 2y3a8~y!E dt

E0
S ]h

]t D 2

, ~22!

Sbarrier5Cbarrierj
21f 4y3b8~y!E E0dt@22h~t!21h~t!4#.

~23!

Here Ckin and Cbarrier are nonuniversal constants.Ckin in-
volves the square of the ratioE0 /(c/j0) of the basic energy
scale to the kinetic~or zone-boundary phonon! energy and
Cbarrier is just a number. In the approximation we have e
ployed, Ckin5E0

2j0
2/C2 and Cbarrier51. The functionsa8

5*d3xf0(x)2 and b85*d3xf0(x)4 are functions with be-
havior similar toa,b; in our explicit calculations we seta8
5a/3 and b851/3 for simplicity; again different choice
affect only nonuniversal details.

The action associated with one instanton may now be
termined by a standard minimization of Eqs.~22! and ~23!
and is

Sinst
(z51)5S1d~y! f 3y3. ~24!

For the present model in the present approximation the n
universal constant S15ACkinCbarrier/3 and d(y)
53Aa8(y)b8(y)5Aa(y), where the last equality follows
from our simplifying assumptionsb851/3, a85a/3. The
17443
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value ofS1controls the width of the crossover regime befo
the universal behavior is reached, and is linearly proportio
to E0j0/C.

The tunneling rate is then given by

v tun,z515v0e2Sinst(t0). ~25!

Here, v0 is an attempt frequency presumably of orderE0
whose value is beyond the scope of this theory.

To conclude this section we briefly estimate the act
associated with a different tunneling mechanism, nam
nucleation of a domain wall. For small droplets~‘‘core size’’
R less thanj) the important process was shown to be c
lapse and reformation of the entire droplet.15 We therefore
need consider only the caseR@j. We observe that by ex
panding about the static uniform solution one obtains a
main wall with widthW;f0

21 . The kinetic term associate
with the domain-wall motion, therefore, has one fewer fac
of the small quantityf0; f /j;V0

2f , leading to a larger ac-
tion and hence a smaller rate, in the weak disorder, n
criticality limit. We note in passing that forf0;1 the pow-
ers ofRwill be the same as we have considered, but the e
factor of f0

21 will work in the other direction, favoring
domain-wall motion.

4. Tunneling of the droplet for overdamped, zÄ2, dynamics

For overdamped dynamics two important differences
cur. First, as shown in Refs. 15,17 the damping changes
action associated with a single instanton, strongly suppr
ing the bare tunneling rate relative to that found for un
damped dynamics. Essentially, the tunneling is limited by
droplet’s ability to move through a viscous medium rath
than by its ability to climb over a barrier. Second, and mu
more important, the overdamped dynamics leads to a lo
ranged~in time! instanton-instanton interaction, which re
duces the tunneling rate further and indeed drives it to zer
the damping exceeds a critical value, as noted by previ
authors.11,15

To calculate the effects of damping we insert the ans
Eq. ~20! into Eq. ~6!. The new term arising from the over
damped dynamics is

Sdiss5
g

4 E dtdt8
dh

dt

dh

dt8
ln

~t2t8!21tm
2

tm
2 , ~26!

with tm a ‘‘microscopic’’ time of the order ofE0
21. The net

dissipative coefficientg is given for the Hertz antiferromag
net by15

g5
E0

4pGE d3x

j0
3

f0~x!25cg f 2y3a9~y!j/j0 . ~27!

The approximations employed in the previous section im
that the nonuniversal constantcg5E0/G and a95a8. In a
generic system one expects all scales to be of the same o
so that in particularcg is expected to be of order unity.

The estimate ofg is subject to the important caveat th
the electron bath which causes the dissipation can pene
the entire droplet. A reasonable estimate of the penetra
3-4
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QUANTUM GRIFFITHS EFFECTS IN METALLIC SYSTEMS PHYSICAL REVIEW B66, 174433 ~2002!
depthLp may be obtained by dividing the electron veloci
vF by the magnitude of the order parameter; in rescaled u
Lp /j;vF /(E0f ). We shall see below Eq.~48! that the pa-
rameters are such that the electrons can penetrate the e
droplet.

We have not been able to solve analytically for the inst
ton; instead we estimate the action by inserting the va
tional ansatz

dh

dt
5

2Q~t0
224t2!

t0
~28!

into Eqs.~6!,~23! obtainingS5Skin1Sdiss1Sbarrier with

Skin5
2Ckinjy3a8~y! f 2

E0t0j0
, ~29!

Sdiss52cg

j

j0
y3a8~y! f 2ln~cdt0/tm!, ~30!

Sbarrier5
2

15
Cbarrier

j0

j
y3b8~y! f 4E0t0, ~31!

where ln(cd)5*21/2
1/2 dxdyln@11(x2y)2#'0.1152 . . . .

Minimization over the instanton duration then leads to

15
cg

Ckin
t0E01

Cbarrier

15Ckin

b8 f 2j0
2

a8j2 ~j0/j!2~E0t0!2. ~32!

As previously remarked, we expect the ratios of the va
ous dimensional parameters to be of the order of unity; a
as we shall see below, in this problem the important drop
have f ;j21/2, so that providedG is less than a number o
the order unity timesjc/ f j0;j3/2 ~within our approxima-
tions the precise numerical factor isA15! the t0

2 term is
negligible and one has

t05
Gj0

2

c2 ~33!

and thus

Sinst
~z52!5cgC2f 2jj0

21y3a~y!, ~34!

whereC2 ~52.283 . . . in thepresent approximations! is a
numerical factor of the order of unity arising from combinin
the factors in Eqs.~29! and ~30!.

We observe that for the value oft0 given in Eq.~33!, the
term written in Eq.~34! is larger thanSbarrier @Eq. ~23!# by
two powers of the correlation length~provided that the quan
tity f is of order unity or less, as is the case for the situatio
considered here!. Thus, in the metallic case and near to cri
cality, the difficulty in tunnelling arises from moving throug
the viscous medium, not climbing over the barrier. This
sult was noted previously.15

The bare tunnelling amplitude is thus

vbare
~z52!5v0e2Sinst

~z52!
~35!

and is much smaller than in the dissipationless case, bec
of the factorf j in the argument of the exponential.
17443
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The standard macroscopic quantum tunnelli
arguments11,15,17 imply that the instanton-instanton intera
tion renormalizes the bare tunnelling rate so that ifg,1 then
the T50 tunnelling rate is

v tun5v0S vbare

v0
D 1/~12g!

~36!

whereas ifg.1 tunnelling stops atT50. We see from Eq.
~27! that g is a strong function of the droplet size and am
plitude; droplets which may tunnel~i.e., haveg,1! have a
very weak amplitude even in rescaled units:f ;j21/2.

Equation~36! is a zero-temperature result. AtT.0 the
‘‘Caldeira-Leggett’’ renormalization is temperature depe
dent. The key question for this paper is the temperature
which v tun(T),T. If g.1 thenv tun(T),T at all T,E0,
implying that the droplet behaves classically at allT. If g
,1 then the usual arguments shows thatv tun(T) drops be-
low T whenT becomes greater thanv tun(T50), so that Eq.
~36! gives the temperature scale separating a high-T region,
in which the droplet behaves classically, from the low-T re-
gion, in which it behaves quantum mechanically.

III. ESTIMATE OF QUANTUM GRIFFITHS BEHAVIOR

A. Overview

The standard Griffiths estimate is that a droplet of ma
netic momentMd5*d3r ei→Q•→rf0(r ) (→Q is the order-
ing vector! and tunnelling frequencyv tun@R,f0

2# gives rise to
a susceptibilityxd proportional toMd

2/(v tun1T). The sus-
ceptibility of a system with a distribution of droplets is the
given by

x~T!5E d3R d2f0

N~R3,f0
2! Md

2@R,f0#

v tun@R,f0
2#1T

. ~37!

For a droplet in an antiferromagnetic system, we findMd is
a random function with magnitudef0R—the term propor-
tional to R comes from the boundary of the droplet, whe
the order parameter amplitude is dropping and the cance
tion over one unit cell of the antiferromagnetic order is n
complete. A different dependence would change prefac
but not affect our results crucially.

It is convenient to introduce an explicit integral over fr
quency, writing

x~T!5j23E dv
I ~v!

v1T
, ~38!

so that after conversion to dimensionless units we have

I ~v!5E dy3d f2@j3N~y3, f 2!# f 2y2d„v2v tun~y, f !….

~39!

The prefactorj23 in x arises because each droplet h
magnetic moment of the order of unity and the density
droplets isj23. The quantityj3N has no explicit dependenc
on j @see Eq.~19!#.
3-5
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We will use thed function to eliminate thef integral in I
and perform the integration over y either numerically or v
an extremal value argument.

B. zÄ1

Using Eq.~25! yields

f ~v,y!5S lnS v0

v D
S1d~y!

D 1/3

1

y
~40!

Substituting this result into Eq.~35! yields

I ~v!5
2 ln 1/3~v0 /v!

vS1
4/3 E

0

` j3N„y3, f 2~v,y!…dy

d~y!4/3
, ~41!

whereN(y, f (v,y)) is N(y, f ) @Eq. ~15!# with f given by Eq.
~36!.

In the limit of very low frequency one may us
asymptotic methods to analyze the integral in Eq.~37!; the
extremum is at

ymax5

ln1/3S v0

v D
A3S1

1/3
~42!

Substitution leads to

x~T!;
1

j3CV0

1

T12dasympt
~43!

with ~restoring units!

dasymp~j!5
16

3A3S1

1

jV0
2

. ~44!

This is the familiar quantum Griffiths result: if one
sufficiently close to the pure-system critical point@d(j)
,1# then the susceptibility diverges, with degree of div
gence characterized by an exponent which approaches
proportional to one power of the inverse correlation leng

Note that the prefactor in Eq.~39! rapidly vanishes as
criticality is approached, so although the susceptibility
verges more strongly, the amplitude of the divergence
creases. Note further that in the asymptotic limit,f '1 so
that the mean order-parameter density~integrated order pa
rameter divided by droplet volume! is of the order ofj21.
Thus the picture that emerges is of large, weak droplets.

We have evaluated

deff~v!511
d ln@ I ~v!#

d ln~v!
~45!

via a numerical computation of Eq.~37!. Figure 1 shows
deff(j,v) as a function ofj for v50.001v0 and several
different values of the nonuniversal parameterS1 ~solid
lines! along with the asymptotic limit estimates from E
~40!. We observe that for these low frequencies and not
17443
-
ity
.

-
e-

o

long j the asymptotic limit provides a reasonable~but not
perfect! estimate of the effective exponent: relative corre
tions are of the order of@j/ ln(v0 /v)2/3#. We see also tha
depending on the value of the nonuniversal parameterS1, the
effective exponent may remain above the critical value
unity ~corresponding to a nondivergent susceptibility! until j
becomes of the order ofjperc . Forj of the order ofjperc the
standard quantum Griffiths approximation~independent
droplets! breaks down, and one must deal instead with
critical singularities appropriate to a phase transition in
disordered system; in other words, with the still unsolv
problem of the mixing of quantum critical and quantum Gr
fiths singularities.

C. zÄ2

For overdamped dynamics, some droplets will haveg
.1, and therefore will not tunnel at all atT50. The function
I (v) will thus have a contribution proportional tod(v) lead-
ing to the 1/T behavior expected of classical droplets. F
those droplets which do tunnel we must use Eq.~32! in Eq.
~35!. We write

I ~v!5I 0d~v!1I rest~v!, ~46!

with I rest given by Eq.~39! and I 0 by

I 05E dy3d f2f 2y2N~y3, f 2!Q„g~y, f !21… ~47!

From Eq. ~38! we see that ifI 0 is appreciable, thenx
;1/T: this is the superparamagnetism expected from es
tially classical droplets.

We begin by estimatingI 0. The Q function limits thef
integration to

FIG. 1. Solid lines: calculated effective Griffiths exponent f
undamped (z51) case defined in Eq.~41! plotted vs correlation
length normalized to correlation lengthjperc at which droplets per-
colate , with ~from top to bottom! nonuniversal coefficientS1

5.1,.3,1 and frequencyv51023v0. Dashed lines: asymptotic re
sult @Eq. ~40!# for same parameters.
3-6



r

-

r

in
o

an

l to
e of
op-
ara-

re

mic

to

of
s-
ith
llel
n
a-
ing
el

p

)

n

n-

QUANTUM GRIFFITHS EFFECTS IN METALLIC SYSTEMS PHYSICAL REVIEW B66, 174433 ~2002!
f 2. f min
2 ~y!5

j0

cgjy3a~y!
~48!

Note that for largej, f min!a(y). Further, the typical scale fo
f is j21/2 so that the penetration depthLp of electrons into
the droplet is large:Lp /j;j1/2 so the assumption that elec
trons penetrate the droplet is indeed self-consistent.

Use of Eq.~48! in Eq. ~47! gives

I 0~j!5
3Ap

2CV0

E
0

`

y22dyH Auexp@2y3~ f min
2 ~y!1a~y!!2/u#

Apy3/2

1a~y!FerfS y3/2~ f min
2 ~y!1a~y!!

u1/2 D 21G J , ~49!

I 0, normalized to the total weight inI, *dvI (v) is plotted in
Fig. 2 as a function ofj for different values of the disorde
strengthV0. We see that the factor ofj21 in Eq. ~44! means
that as criticality is approached, almost all of the weight
the droplet probability distribution is in droplets which d
not tunnel.

For the droplets which are able to tunnel at frequencyv,
we find from Eqs.~34! and ~36! that

f z52
2 ~y!5

j0

cgjy3a~y!

lnS v0

v D
C21 lnS v0

v D . ~50!

Note that in contrast the expression forf in the z51 case
shown in Eq. 39, in thez52 case,f doesnot diverge asv

FIG. 2. Ratio of density of magnetization of nontunneling dro
lets I 0 @Eq. ~43!# to total density of dropletsI tot5*dvI (v) for
overdamped case and nonuniversal constantcg50.1 ~larger values
of cg lead to anI 0 /I tot'1 even for much smaller values ofj, as a
function of correlation length(not normalized to disorder strength
for dimensionless disorder strengthV051, ~top curve! .7,.5,.3.
Note that for all reasonable parameters a non-negligible fractio
droplets do not tunnel at all.
17443
→0. As in thez51 case considered above, one obtains
expression forI rest(v) by substituting the result forf into Eq.
~35! yielding

I rest~v!5
3j0

3

vCVcg
3j3

C2lnS v0

v D
FC21 lnS v0

v D G3

3E dyy21/2expF2
y3~ f z52

2 ~y!1a~y!!2

u G
@y3a~y!#2

~51!

The resulting expression is to good accuracy proportiona
1/v times logarithms. The physics is that even the averag
droplets which are able to tunnel is dominated by those dr
lets on the verge of freezing, leading again to a superp
magnetic contribution to the susceptibility.

We have numerically evaluated the integral in Eq.~51! for
parameters such thatI 0 is not too large. Sample results a
shown in Fig. 3, which plots the quantityJrest5vI rest . The
frequency dependence is a consequence of the logarith
factors in Eq. ~51!; the nonvanishing intercept asv→0
means that up to logarithmic corrections the contribution
the susceptibility arising from this term is;1/T.

IV. CONCLUSION

This paper presents an investigation of the possibility
quantum Griffiths effects in three-dimensional metallic sy
tem near an antiferromagnetic quantum critical point w
Ising symmetry. For comparison we present also a para
investigation of quantum Griffiths effects in a model of a
insulating system near a similar critical point. The key fe
ture of metallic systems is the dissipative dynamics aris
from the particle-hole continuum of electrons; in the mod

-

of

FIG. 3. ContributionJrest(v)5vI rest(v) @Eq. ~47!# of tunnel-
ing droplets to susceptibility integral, plotted vs frequency for no
universal constantsV050.5, C251, and cg50.1 at j55 ~top
curve! andj520 ~bottom curve!.
3-7
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insulating system the dynamics are undamped. Compar
of the two calculations shows that dissipation suppres
quantum Griffiths effects completely, leaving instead an
fectively superparamagnetic behavior.

A simple precis of our results follows. Quantum Griffith
effects are a consequence of randomness: essentially,
random system which is on average in the paramagn
phase, regions~‘‘droplets’’ ! may occur in which the random
ness pushes the system locally to the ordered side of
phase diagram, so that local formation of an order param
is favored. In certain circumstances~first noted by McCoy2!
these droplets may dominate the response. In this situa
one may approximately write the susceptibilityx as an av-
erage over droplets times a susceptibiltiy for each drop
i.e.,

x5E
droplets

P~droplet!xdroplet. ~52!

We have used simple extremal statistics arguments~similar
to those used by Thill and Huse1! to estimate the drople
probability distributionP(droplet) and an extension of ea
lier work which studied a particular class of droplets15 to
obtain the susceptibilityxdroplet of a given droplet. We were
then able to perform the average over droplets and obtai
estimate for the susceptibility.

This method reproduces the essential features of the s
dard results for quantum Griffiths effects in undamped~insu-
lating! systems, namely, that the lowT behavior of the sus-
ceptibility is governed by a new exponentdeff given by the
product of the inverse correlation lengthj21 and inverse
mean-square disorder amplitudeV0

22 and a nonuniversa
number~which we estimate for the particular model we co
sider!. A divergent susceptibility results whendeff becomes
less than unity, and the results are functions only ofjV0

2. We
note one additional interesting finding. The standard ar
ments which produce the standard quantum Griffiths res
are based on a picture of dilute droplets and apply only if
j is not too large~otherwise the droplets percolate, and
isolated droplets picture fails!. For the model we consider w
obtain an estimate for the critical value ofj, and find that
depending on the value of the nonuniversal factor indeff ,
droplets may reach the percolation point before the Griffi
exponent drops below unity. In other words, in the mod
we consider the existence of a quantum Griffiths regi
~which one may somewhat imprecisely define as a diverg
susceptibility arising from isolated droplets! is not
guaranteed—it may or may not occur depending on the va
of a nonuniversal coefficient. Sufficiently near a critical po
a regime of divergent susceptibility does of course occur,
the proper theory of this regime would have to go beyond
model of isolated droplets and treat correctly the mixing
critical and Griffiths singularities.

We also found that for systems near antiferromagn
critical points theamplitudeof the divergent term in the sus
ceptibility vanishes rapidly as criticality is approached,
deed asj23, essentially because each relevant droplet ha
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magnetic moment of the order of unity and as criticality
approached the droplets get larger in size but fewer in nu
ber.

The main new result of our work, however, pertains
metallic systems with overdamped~dissipative! dynamics.
For these systems~i.e., for quantum critical phenomena i
metals! the answer is entirely different. The physics in th
undamped case is a balance between the probability
droplet occurring~which vanishes rapidly as the droplet siz
or amplitude increases! andxdroplet, which is of the order of
the inverse of the quantum tunneling rate of the droplet a
diverges rapidly as the droplet size or amplitude increas
The effect of dissipation is to strongly decrease the tunne
rate, and indeed to drive it to zero for droplets larger tha
particular, amplitude dependent, size. For relevant par
eters we find that a nonvanishing density of droplets does
tunnel atT50; these give rise to a superparamagneticx
;1/T) susceptibility rather than a quantum Griffiths~con-
tinuously varying exponent! behavior. For those droplet
which do behave quantum mechanically, the effect of dis
pation on the tunneling rate is found to change the bala
between probability andxdroplet dramatically. We find that
even considering only the droplets which can tunnel qu
tum mechanically, those which dominate the integral forx
are those which are right on the edge of classical~nontun-
neling! behavior, leading again to superparamagnetism ra
than to quantum Griffiths behavior. We also find that t
dependence on parameters is different: in the undam
case, apart from prefactors the mean-square disorder stre
V0

2 and the correlation length enter via the combinationjV0
2.

In the damped case additional factors ofj occur which drive
the system more rapidly to classical behavior.

Our results cast doubt on the claims9–12 that quantum
Griffiths effects are important in heavy-fermion materia
which are precisely three-dimensional metals with Isi
symmetry, typically near antiferromagnetic quantum critic
points. Ref. 9 contains a phenomenological description
data. If the theoretical results presented here are acce
then these data require a different, non-Griffiths interpre
tion. Reference 10 argued that a disordered system ne
quantum critical point could be mapped onto thedisspation-
less Ising model in a transverse field; the results of t
present paper and of Ref. 15 indicate on the contrary
dissipation is essential.

Reference 12 uses a novel variant of a technique in
duced by Dotsenko18 to study essentially the same model
is studied here but obtaining a rather different result, nam
that quantum Griffiths effects can be important in a reas
able range of the phase diagram even in the metallic c
We outline the differences between the results found h
and those of Ref. 12. The method introduced by Dotsenk18

and used by Ref. 12 begins from aclassical theory defined
by a functional integral with action given by the static ter
in Eq. ~1! and evaluates the disorder average by the rep
method. Whereas other workers19,16 then used the replicate
field theory to derive scaling equations for variables inclu
ing the mean disorder strength, Dotsenko argued that
should look for spatially localized energeticallyunstable
configurations of the replicated field theory, which corr
3-8
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QUANTUM GRIFFITHS EFFECTS IN METALLIC SYSTEMS PHYSICAL REVIEW B66, 174433 ~2002!
spond to local maxima of the replicated action and are to
identified with the droplets discussed above. Dotsenko sh
that the leading nonanalytic contribution to the free energy
the vicinity of an assumedT.0 critical point comes from
droplets with size of the order of the magnetic correlat
length, j; we refer to these henceforth as typical drople
The authors of Ref. 12 assume that theT→0 limit of this
classical theory may be straightforwardly taken, and then
to this theory estimates of the dynamics of typical drople
The results reported in Ref. 12 disagree in a number of s
cific details~for example, concerning the tunnelling rates
droplets of given size! with the results presented here. Th
most important difference, however, is in the interpretat
of the results. Ref. 12 argues that one should identify
boundary of the Griffiths region with the value ofj22 at
which a typical droplet ceases to tunnel. Our analysis, wh
involves averaging over all droplets, indicates that indep
dent of whether the typical droplet~however, defined! may
tunnel, the susceptibility is dominated by droplets which
at or beyond the edge of ceasing to tunnel; these give
essentially superparamagnetic (x;1/T) behavior, instead of
the continuously varying exponent characteristic of quant
Griffiths behavior.

Reference 11 presents a detailed analysis of a diffe
model in which spins are added to a pure system which it
is far from any critical point. In this model the phase tran
tion is disorder driven:it occurs when the density of adde
spins is high enough that these order; whereas our inte
here has been in models in which even the nondisorde
system is near a critical point. Furthermore, in the mo
studied in Ref. 11, the way the disorder is introduced me
that the local spin amplitudef0 @cf. our Eq.~9!# is always of
order unity, whereas in our treatment the local spin amplitu
may be considerably smaller. An approximate mapping
tween the model considered in Ref. 11 and the one con
ered here may be obtained by setting our parametersf0 and
j equal to unity and considering the behavior as the diso
strengthV0 is increased~whereas we consider a fixedV0 and
study the behavior asj is increased!.

Although specific details differ, in a broad qualitativ
sense results obtained in Ref. 11 are similar to those obta
here. In particular, Ref. 11 states that at sufficiently low te
perature dissipation will suppress the quantum Griffiths
havior. However, Ref. 11 argued that an extremely wide te
perature regime could exist in which behavior characteri
of the undamped system occurs, whereas in the mode
consider, for any reasonable parameters there is no such
perature regime. A crucial point is that Ref. 11 focused
model parameters such that the damping coefficient was
tremely weak„i.e., in our notations@see below Eq.~27!# they
took cg!1…. In this limit, it is plausible that there is a tem
perature regime in which behavior characteristic of the
damped model may occur, before finally a crossover occ
to a regime~similar to the one we considered! in which
damping is important. Important avenues for future inve
gation include more detailed studies of the crossovers
tween the weak-damping and order unity damping cases
between the disorder driven–criticality effects studied
Ref. 11 and the pure system criticality–driven effects stud
17443
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here, as well as determination of the damping coeffici
values appropriate to the heavy fermion materials of inter

Our work has the following implications for experimen
First, the canonical quantum Griffiths effects are due to we
disorder added to a pure critical point. We have shown tha
the limit of weak disorder and a pure critical point describ
by the Hertz theory,20,21 the dissipation characteristic of me
tallic systems changes the quantum Griffiths singularit
into a kind of superparamagnetic behavior. In other words
a matter of principle the canonically defined quantum G
fiths behavior shouldnot be observable in metals near ma
netic quantum critical points. This suggests that claims9 to
have observed quantum Griffiths behavior in heavy-ferm
systems should be treated with caution~at least for systems
with Ising symmetry!. Further, we showed that the drople
that dominate the susceptibility can tunnel only when
system is not close to criticality, and in these cases the d
let size is not much larger than the basic scale of the the
Thus if the susceptibility is dominated by the tunneling
droplets, the picture that emerges is more similar to
Kondo disorder picture of22,23 than it is to the conventionally
defined quantum Griffiths picture. Indeed, the experimen
claims involve heavy-fermion systems where the interact
which favors a nonmagnetic phase is the Kondo effect.
noted by many authors,23 the fact that Kondo temperature
are exponentially sensitive to system parameters means
a slight variation in system parameters can lead to a w
variation in Kondo temperatures. The canonical assump
of weak disorder which we and others1,4,12,2have made, may
not be valid for these systems. The interplay between qu
tum criticality and a broad distribution of disorder should
treatable by the methods introduced here, and seems w
examining.

A second point is that the very slow dynamics of t
droplets makes it much easier for them to order. Further,
metallic system the droplet-droplet interactions are of lo
range~see, e.g., Ref. 24 for a discussion in the context of
two-dimensional metal insulator transition!. For this reason
we expect that in the presence of disorder the actual ph
transition at which long ranged order sets in is an essenti
classical affair, in which droplets lock together when t
temperature becomes lower than some droplet-droplet c
pling.

A third point, perhaps relevant beyond the present c
text, is that~as seen for example in Eq.~30!# dissipation can
have a crucial effect on bare tunneling rates: in the meta
problem we considered the cruical impediment to tunnel
of a droplet was found to be the viscosity of the medium, n
the energy barrier that had to be surmounted.
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