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Elementary analytical extremal statistics arguments are used to analyze the possibility of quantum Griffiths
effects in nearly critical systems with overdamped dynamics, such as arise in conventional theories of metallic
qguantum criticality. The overdamping is found to strongly suppress quantum tunneling of rare regions, leading
to superparamagnetic rather than quantum Griffiths behavior. Implications for theories of non-Fermi-liquid
behavior in heavy-fermion materials are discussed.
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[. INTRODUCTION similar to that used in Ref. 11 and the broad qualitative fea-
tures of the results we obtain are very similar to those ob-
The interplay of disorder and quantum criticality is a long tained in that work. However, the specifics and the physical
standing and still open problem in condensed-matter theorymplications seem rather different. The issue is discussed in
One aspect of this problem which has received considerabl@ore detail in the conclusion.
recent attention is the “quantum Griffiths” behavior which ~ The outline of this paper is as follows. In Sec. Il we
has been shown to occur near quantum critical points in ceRresent the model and the method used in our analysis. In
tain model system’:® The model systems in which quantum Sec. lll we show that the approach reproduces results previ-
Griffiths behavior has been unambiguously demonstrated afusly obtained in the dissipationless case. Section IV pre-
possess a crucial common feature, namely that in the absen8@nts our new results concerning Griffiths-like behavior in
of disorder the critical degrees of freedom exhibit dissipa-Systems with overdamped dynamics. Section V is a sum-
tionless, Hamiltonian spin dynami¢imdeed typically char- mary, comparison to other work, and conclusion, and is writ-
systems of experimental importance involve magnetic defions may obtain from it the essence of our results.
grees of freedom coupled to conduction electfdiisand
therefore overdampeddynamics implying a pure-system II. MODEL AND METHOD OF SOLUTION
critical behavior characterized by>1. Extension of the
theory of quantum Griffiths behavior to this case is therefore A. Model
an important issue. In a series of pap@r& Castro-Neto and The canonical quantum Griffiths problem concerns the ef-
Jones have argued from various points of view that suclfect of weak disorder added to a “purériondisordereysys-
overdamped systems exhibit quantum Griffiths behaviotem which possesses an Ising symmetry and is tuned to be
similar to that exhibited by undamped systems, and they andear a quantum critical point. We consider a system in imagi-
others have further argued that this phenomenon is at theary time and three spatial dimensiguéfferences occurring
heart of the “non-Fermi-liquid” behavior observed in many for two spatial dimensions warrant a separate treatment,
heavy-fermion materia$® which will be presented elsewhe¢r&he model is described
In this paper we examine the issue of quantum Giriffithsby the action
behavior in nearly critical systems exhibiting overdamped
dynamiqs, finding that it is essentially nonexistent, being re- S= Sqatic™ Saynt Sdisorden (1)
placed instead by “superparamagnetic” behavior. The es-
sence of our analysis is as follows: in undamped modelsvith
guantum Giriffiths effects arise from an interplay between the
low probability of nucleating magnetic “droplets” in the Eo (A d3x 5(2)
paramagnetic state and a low but non-negligible quantum Sstatic=8—J drf — _2¢2(X,T)+§3[V¢(X,T)]2
tunneling of these droplets. In a metallic, dissipative environ- mJo o L€
ment there is a strong suppression of tunneling by dissipa-
tion, so that the droplets which dominate the susceptibility + 1¢4(x 7)
behave more or less classically, leading to superparamagnetic 2 ’
behavior rather than quantum Griffiths behavior.
Our results amount to an implementation of ideas outlinedere ¢ is a dimensionless scalar order parameigrjs the
in Ref. 14 and to a generalization, to a nonvanishing densitpasic energy scale of the thedpyerhaps of the order of the
of defects, of a previously reported analy3isf the “mag- mean Kondo temperature for a heavy-fermion systeis
netic droplet” produced by a single, spatially localized de-the basic length scalgypically of the order of a lattice con-
fect, and rely heavily on the results of this previous work. stany, ¢ is the magnetic correlation length, aml is the
The method used to analyze the dynamics of a droplet igwverse temperature. It is convenient to define a parameter
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r=(£&,/&)2>0 which measures distance from criticality. We modeled on those of Ref. 1. We note that the effective di-
consider only parameters such that the pure system is in theensionality of the model defined by EQ.) is deg=d+z.

paramagnetic phase. In this paper we consider only the spatial dimensien3 so
We take the disorder to couple to the square of the ordewe are concerned only with models at and above the upper
parameter via critical dimensiond.=4, so that quantal and thermal fluc-

tuations of the order parameter in a fixed disorder configu-
Eo (8 d®x ) ration can be treated by an essentially mean-field approxima-

Sdisorderzgjo dTJ ?V(X)‘ﬁ (x,7), (3 tion. The usual fluctuation analysis which justifies the mean-

0 field approximation fordes>d. involves a translation-

and assume it to be Gaussian distributed with correlatomnvariant model and fluctuations for which momentum is a
((---) represents average over configurations of the disorgood quantum number. Here we must deal with fluctuations
den in a system whose translation invariance is broken. These
were investigated in Refs. 16 and 15 and were found not to

Xy affect the structure of the static mean-field solution when

_\/2

<V(x)V(y))—V0K( & | ) deg=d. (except for some insignificant changes in some con-
o stants.

where the kerneK (u) decays on the scale~1 and satisfies As noted for example by Ref. 14, in the presence of the

Jd®uK(u)=1. Because we are interested only in lengthrandom potential, the crucial feature of the mean-field solu-
scalesx—y>¢,, we will take K to be a¢é function. The  tjon is the presence afroplets regions in which the order
dimensionless quantity, parametrizes the strength of the parameter is locally nonvanishing. Quantum Griffiths effects
disorder. Weak disorder correspondsvip<1. then arise from dynamical fluctuations of these droplets; to
The dynamic ternBgy, is crucial to the quantum critical-  study them one must estimate the droplet density and tunnel-
ity described by Eq(1) and to our subsequent discussions.ing rate. We use statistical arguments and mean-field analysis

We_cor?sic_jer '_fWO cases: _ _ to estimate the density and an adaptation to the present case
~ (i) dissipationlessz=1 dynamics as is usually assumed of the analysis presented for a droplet produced by a single
in studies of quantum Griffiths behavior, with point defect in Ref. 15 to estimate the tunneling rate.

2 2. Probability for the existence of a droplet

©)

S(Z:1)=EdeTJ ﬂ(@)z(w
w8 o glc ar The assumption that the model is at or above its upper
critical dimension means that mean-field theory is a good

Here c is a characteristic velocity of the undamped eXCita‘starting point>16 We therefore consider static configura-
tions, such that/&, is an energy presumably of the order of tions, ¢(x), which minimize the combination of Eq€2) and

Eo- . ) ) , (3). These satisfy
(i) Hertz antiferromagnetz=2 dynamics corresponding
to the generic antiferromagnetic transition in a Fermi liquid, EV2H(X)+1 Ph(X)+ d(X) 3= —V(X) h(X). (8)
g3 If V(x)=0, then because we assume0 the minimum cor-
=2)_ =1, 1 5 l@nl X 2 ey e mit
Stiyn = Stiyn +E— > T f —lo(r,®)|?  (6) responds top(x)=0; however, regions in which(x)<0
0 @n & can lead to¢(x)#0. In the regions wheré/(x)=const.

<0, ¢(x) is roughly constant whereas in between these re-
gions ¢(x) decays exponentially. We refer to the regions
B _ where ¢ is not exponentially small as droplets. If the drop-
(1, wn) = Eof dr ¢(r,7) €, (7)  lets are reasonably dilute, one may get 0 in the exponen-
0 tial tail regions® and estimate the density of droplets of a
and s, Y provides an upper frequency cutoff if needed.  given size and mean amplitude.

In these conventions the dynamics are dissipative, To motivate our estimate we first consider solving E8).
dominated by thd™-term) if w<w*=c?(&I') and nondis- if V(x)=V for |x|<R and Vo=0 otherwise. A previous
sipative at higher frequencies. One expects in most systenpmpet® considered a special case of this equation, with
(and finds, for example, in a weakly coupled Fermi liquid orV,(x) =V ¥ (x) and the solutions found in that work may
in the slave boson theory of the Kondo latfitkat all scales easily be modified for the present case.ds 3 one finds
are roughly equalEy~c/éy~T. that the solution is, roughlyfand neglecting unimportant
logarithmic factors in thex dependenge

where

B. Method
o for x<R
1. Overview
L. . . ¢(X): ¢0R —(x=R)/& f R (9)
The dissipative term in Eq(6) corresponds to a long- ~ ¢ or R<X.

ranged interaction in time and renders available numerical
methods prohibitively difficult to apply. To analyze the In other words, the magnetic order induced by the region of
model defined by Eq1) we use simple analytical arguments attractive is roughly constant inside the region and decays
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outside it, as X in a shell of width set by the correlation considerations will require an estimate of the preexponential
length and exponentially for larger lengths. Inserting thefactors, we present the following arguments to fix them.

above ansatz, Eq9), into Egs.(2) and(3), and minimizing We begin by making a rough estimate of the fraction of
the resulting action with respect b, yields sites contained in dropletse., the fraction of sites having a
¢§>0) as a function of distance from criticality. To do this
_ g 5 we coarse grain the theory to the scéleA given correlation
—V= ?a( RI§)+ ¢gb(R/€), (10 volume £ will have a nonvanishingp? if the potential av-

eraged over the droplet volum¥g,., is larger thanV (¢)

with a(x)=1+3/x+3/x? and b(x)=1+3/(1+x). These %a(l)éﬁélgz- From Eq.(13) we see that the probabilitiy,
particular forms fora, b depend on the specific potential that a given correlation volume will have a nonvanishifyg

configuration studie¢hereV = const forx<R andV=0 oth- 1€ @8V<V¢(£), is (recall V<0)

erwise and on the variational approximation used; but we

argue that a generic droplet is described by a similar equation 1 £\32v (&)
with a,b functions that vary on the scakR’é~1 and which P¢=§( 1—er€[(§—> V; “
tend to unity asR/é—o. Also in three dimensiong(x) 0 0
~1/x? asx—0 while b(x) tends to a constant for<1.'®
The precise forms o&,b affect only nonuniversal details
such as widths of crossover regions. In this paper we shalé0
assume

(14)

where erf is the error function.
Clearly, a picture of independent droplets must break
wn if P, exceeds the percolation probabilifye. at
which the set of correlation volumes with nonvanishihg
_ -2 percolate. Use of Eq(14) and the estimate for three-
a(x)=1+3x (113 dimensional cubic latticeB pe,~0.2 shows that percolation
will have occurred by the timeé exceeds &per
~2.8a(1)2/V§. (&perc is an underestimate because droplets
where the 3 arises from the difference in integrating a conlarger thané may occuy. These estimates also show that the
stant or 72 overr2dr. natural scale fo€ is ng and strongly suggest that the prob-
One sees from E10) that in order to obtain a solution at ability that a given site is in a droplgbf any siz¢ is a

i ; b2
all the average potential/, must be smaller than @ega-  function only of the combinatiogVg.

b(x)=1 (11b

tive) R-dependent critical value, We therefore argue that the prefactors in the droplet den-
sity must be such that the total probability of finding a site in
& a droplet,Pyo= &, *fdR3d$2R3N(R®, 42) must be a func-
Ve=——a( R/¢), (120  tion only of gvg and must be of the order &, when¢ is

& of the order ofé,ec. This implies
which tends tag3/ €2 asR— o and to a number of order 1 as
R—&,. As is evident from these formulas, the natural scale R972 R3(¢2+V (R/§))

. . . 3 ,27_ 0" Yc 2
of the droplets is the correlation lenggtthat diverges as the N[R® ¢5]l= Cu Vo exp — V2 , (19
0 0

guantum critical point is approached.

Equations(10) and (12) thus imply that one obtains a
droplet in a region of linear dimensidRonly if the average Where the factor oR™%2 ensures the correct scaling wi¢h
valueV of the potential in that region is larger than a value@nd the numerical facto€y ~11.25 ensures that whef
of the order otV (R/¢) (V. is not an exact estimate because = épere, We haveP =P ... We emphasize that these formu-
it pertains to the idealized disorder configuration discusseths are phenomenological and must, in particular, break
above. The standard estimate of the probability of a regiondown whené approacheg .

of linear dimensiorR with mean potentiaV is It is convenient to adopt a dimensionless system of units
in which
5\ 2
— (RI&)%? R\3V
B\)~e — 227 =] [ —
P(R3,V) N=VA ex ARTARE (13 R=y¢, (16)
and we therefore argue that the den$i§R>, ¢§) of droplets ¢
of amplitude qﬁé and core sizeR, must be proportional to ¢o=f?, (17)
1IN gexp(— R (#a+V(RI)IVZ). This argument does not de-
termine the preexponential factofwhich involve, e.g., the
issue of whether the region of siiconsidered in Eq(13) &
. L . . 0
is part of a larger region which can sustain a droplet and §=u—, (18
numerical factors arising from the difference between ideal- 0

ized disorder configuration and typical one, which we have
absorbed intd/, andV.). Because some of our subsequentfor which
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y 92 value ofS;controls the width of the crossover regime before
N(y3,f2)dy3df2=W the universal behavior is reached, and is linearly proportional
Cy,u™¢ to Epé&y/C.

The tunneling rate is then given by
3 f2+a 2
xex;{ - w) dysdfz.

Wiynz=1— W€ Sinst70), (25

(29 Here, wq is an attempt frequency presumably of ordgy
whose value is beyond the scope of this theory.
The factor ofé~® expresses the fact that if the probability  To conclude this section we briefly estimate the action
of a given site being in a droplet is a function onlywfthen  associated with a different tunneling mechanism, namely,
the density of droplets must be smaller by an extra factor ofycleation of a domain wall. For small droplétsore size”

the typical droplet volume?, R less thané) the important process was shown to be col-
_ _ lapse and reformation of the entire dropietWe therefore
3. Tunneling of the droplet for undamped,=21, dynamics need consider only the cag> & We observe that by ex-

We now estimate the rate,,, at which a droplet charac- panding about the static uniform solution one obtains a do-
terized by the mean amplituds, and length scal® tunnels main wall with widthW~ (f)al The kinetic term associated
in the case of undamped=1 dynamics by performing a Wwith the domain-wall motion, therefore, has one fewer factor
variational instanton calculation using Eq®) and (5), and  of the small quantity¢o~f/§~vgf, leading to a larger ac-
the solution Eq.(9). In the simplest estimate one assumestion and hence a smaller rate, in the weak disorder, near
that the droplet maintains its shape while collapsing and reeriticality limit. We note in passing that fogo~1 the pow-
forming. To estimate the action associated with this processrs ofR will be the same as we have considered, but the extra
we write the droplet solution as factor of ¢51 will work in the other direction, favoring

domain-wall motion.
d(X,7)=p(X) (7). (20)

Substitution into Eqs(2) and (5) leads to 4. Tunneling of the droplet for overdamped, =2, dynamics
For overdamped dynamics two important differences oc-
Sinst= Skin T Sparrier: (21)  cur. First, as shown in Refs. 15,17 the damping changes the
action associated with a single instanton, strongly suppress-
ing the bare tunneling rate relative to that found for un-
damped dynamics. Essentially, the tunneling is limited by the
droplet’s ability to move through a viscous medium rather
than by its ability to climb over a barrier. Second, and much
dr|an)\? more important, the overdamped dynamics leads to a long-
(iZn:l):Ckinffzysa’(Y)f —(—) , (22)  ranged(in time) instanton-instanton interaction, which re-
Eol\or duces the tunneling rate further and indeed drives it to zero if
the daglpligg exceeds a critical value, as noted by previous
_ ~1£4,,3p 2 4 authors.™
Sharrier= Coariet ~17y"D (y)f Eodrl =2(n)™+ 7(7)7]. To calculate the effects of damping we insert the ansatz,
(23 Eq. (20) into Eq. (6). The new term arising from the over-
damped dynamics is

S«n iNvolves the integral of ¢;¢)? over the droplet and as
noted in Ref. 15 involves the ri/tail” of the droplet in a
crucial manner; in contrast, the cdS,ier Of creating the
instanton does not. One obtains

Here Cy;, and Cy,ier @are nonuniversal constant€,;, in-
volves the square of the ratle,/(c/&y) of the basic energy dn d (7= 7')24 2

scale to the kineticor zone-boundary phonprenergy and Syem Y J drdr—2 27 " (26
Chparrier IS just @ number. In the approximation we have em- 4 dr d7/ Tm

ployed, Cyn=E2¢5/C? and Cpame=1. The functionsa’

= [d3®x¢pp(x)2 and b’ = fd3x¢o(x)* are functions with be-
havior similar toa,b; in our explicit calculations we set’
=al/3 andb’=1/3 for simplicity; again different choices
affect only nonuniversal details.

with 7, a “microscopic” time of the order oEgl. The net
dissipative coefficienty is given for the Hertz antiferromag-
net by

. . . . E dSX
The action associated with one instanton may now be de- __0 ~ 2 b(x)2=c_f2v3a” / 2
termined by a standard minimization of Eq82) and (23) 7" 4aT & Po(X)"=C, Py (y)el&. (27
and is
The approximations employed in the previous section imply
S D =sid(y) 32, (24)  that the nonuniversal constaot=Ey/I' anda’=a’. In a

generic system one expects all scales to be of the same order
For the present model in the present approximation the nonso that in particulac,, is expected to be of order unity.
universal  constant S;=+CyinCpanie/3 and  d(y) The estimate ofy is subject to the important caveat that
=3ya’(y)b’(y)=+a(y), where the last equality follows the electron bath which causes the dissipation can penetrate
from our simplifying assumption®’=1/3, a’=a/3. The the entire droplet. A reasonable estimate of the penetration
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depthL, may be obtained by dividing the electron velocity
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The standard macroscopic quantum tunnelling

ve by the magnitude of the order parameter; in rescaled unitarguments-*>”imply that the instanton-instanton interac-

Lp/é~vel(Eqf). We shall see below Ed48) that the pa-

tion renormalizes the bare tunnelling rate so that<ifl then

rameters are such that the electrons can penetrate the entitee T=0 tunnelling rate is

droplet.

We have not been able to solve analytically for the instan-
ton; instead we estimate the action by inserting the varia-

tional ansatz

dy 20(r5—47)

E ) (28)
into Egs.(6),(23) obtainingS= Sy, + Syisst Sparrier With
2Cyinéyca’(y)f?
o= klngy (Y) ' (29)
Eomoéo
f 347 2
Stiss™ ch_oy a’(y)feIn(cy7o/ Tm), (30)
2 &
Soarrier= Ecbarrier€y3b (y)f4EOTOl (31)

where In¢g)=/Y2, dxdyin[1+(x—y)?]~0.11% . . . .

Minimization over the instanton duration then leads to

' 2
1 Cy Cbarrierb fzgo

:C_kinTOEO 15C,, a & (folf)z(EoTo)z- (32

Whare

Wyn=™ wO(
Wo

1(1=y)
) (36)
whereas ify>1 tunnelling stops aT=0. We see from Eq.
(27) that y is a strong function of the droplet size and am-
plitude; droplets which may tunnéi.e., havey<1) have a
very weak amplitude even in rescaled units: £~ /2.
Equation(36) is a zero-temperature result. At>0 the

“Caldeira-Leggett” renormalization is temperature depen-
dent. The key question for this paper is the temperature at
which o (T)<T. If y>1 thenw,,(T)<T at all T<E,,
implying that the droplet behaves classically at Rlllf y

<1 then the usual arguments shows tat,(T) drops be-

low T whenT becomes greater than,,,(T=0), so that Eq.
(36) gives the temperature scale separating a Aigkgion,

in which the droplet behaves classically, from the [®we-
gion, in which it behaves quantum mechanically.

IIl. ESTIMATE OF QUANTUM GRIFFITHS BEHAVIOR

A. Overview

The standard Griffiths estimate is that a droplet of mag-
netic momentV 4= [d3r e =2 =" ¢y(r) (—Q is the order-

As previously remarked, we expect the ratios of the variing vectobla.n.d tunnelling f_requencyséun[ R,¢2] gives rise to
ous dimensional parameters to be of the order of unity; alsc® Susceptibilityxy proportional toMg/(wynt T). The sus-
as we shall see below, in this problem the important droplet§eptibility of a system with a distribution of droplets is then
havef~ ¢~ 12, so that provided' is less than a number of given by

the order unity timest./f &y~ £3/2 (within our approxima-

tions the precise numerical factor iél5) the 73 term is
negligible and one has

ré
T0= o7 (33
and thus
SZ?=c,C,f2¢&, tytaly), (34)

whereC, (=2.28 ... in thepresent approximationss a

numerical factor of the order of unity arising from combining

the factors in Eqs(29) and (30).
We observe that for the value a@§ given in Eq.(33), the
term written in Eq.(34) is larger thanS,,qier [EQ. (23)] by

two powers of the correlation lengtprovided that the quan-

N(R, $3) MR, ¢]
oulRGI+T

For a droplet in an antiferromagnetic system, we fiig is
a random function with magnitudé,R—the term propor-
tional to R comes from the boundary of the droplet, where
the order parameter amplitude is dropping and the cancella-
tion over one unit cell of the antiferromagnetic order is not
complete. A different dependence would change prefactors
but not affect our results crucially.

It is convenient to introduce an explicit integral over fre-
quency, writing

X(T):J d*R g (37

I
xm=¢[ do 2, (38)

tity f is of order unity or less, as is the case for the situations ) ] ) )
considered hejeThus, in the metallic case and near to criti- SO that after conversion to dimensionless units we have

cality, the difficulty in tunnelling arises from moving through
the viscous medium, not climbing over the barrier. This re-

sult was noted previously.
The bare tunnelling amplitude is thus

=2
2)— e~ Sret (35)

(z=
Wpare

(w)= f dy3d 2 EN(Y?, 1112y 25(0— wanl Y. ).
39

The prefactoré™2 in y arises because each droplet has
magnetic moment of the order of unity and the density of

and is much smaller than in the dissipationless case, becaudeoplets is¢ 3. The quantityz3N has no explicit dependence

of the factorf¢ in the argument of the exponential.

on ¢ [see Eq(19)].
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We will use theé function to eliminate thé integral inl
and perform the integration over y either numerically or via
an extremal value argument.

B.z
Using Eq.(25) yields

1

| wo 1/3
flw,y)= Lo - (40)
oY\ sdy) )y
Substituting this result into Eq35) yields
2In3(wy/ = E3N(y3,f%(w,y))d
(w)= (wolw) = &N FH(w.y)dy 1)

0

ws41/3 d(y)4/3

whereN(y, f(w,y)) is N(y,f) [Eqg. (15)] with f given by Eqg.
(36).

In the limit of very low frequency one may use
asymptotic methods to analyze the integral in BY); the
extremum is at

|n1/3(@)
-— (42
ymax_—
J3si?
Substitution leads to
(T) ! ! (43
X éSCVO Tl_dasympt
with (restoring unitg
dasymf §) = i (44)
asym 3\/581 gV(Z)
This is the familiar quantum Griffiths result: if one is

sufficiently close to the pure-system critical poird (&)
<1] then the susceptibility diverges, with degree of diver-

gence characterized by an exponent which approaches unity

proportional to one power of the inverse correlation length.
Note that the prefactor in Eq39) rapidly vanishes as
criticality is approached, so although the susceptibility di-

PHYSICAL REVIEW B 66, 174433 (2002

FIG. 1. Solid lines: calculated effective Griffiths exponent for
undamped £=1) case defined in Eq41) plotted vs correlation
length normalized to correlation lengée,. at which droplets per-
colate , with (from top to bottom nonuniversal coefficiens,;
=.1,.3,1 and frequency =10 3w,. Dashed lines: asymptotic re-
sult [Eqg. (40)] for same parameters.

long ¢ the asymptotic limit provides a reasonallait not
perfec) estimate of the effective exponent: relative correc-
tions are of the order df¢/In(wq/w)??]. We see also that
depending on the value of the nonuniversal paranfgtethe
effective exponent may remain above the critical value of
unity (corresponding to a nondivergent susceptibiliintil ¢
becomes of the order @f,¢.c. For ¢ of the order o the
standard quantum Griffiths approximatioindependent
droplets breaks down, and one must deal instead with the
critical singularities appropriate to a phase transition in a
disordered system; in other words, with the still unsolved
problem of the mixing of quantum critical and quantum Grif-
fiths singularities.

C.z=2

For overdamped dynamics, some droplets will have
>1, and therefore will not tunnel at all @t=0. The function
I (w) will thus have a contribution proportional #{ ) lead-

verges more strongly, the amplitude of the divergence deing to the 1T behavior expected of classical droplets. For

creases. Note further that in the asymptotic linfits 1 so

that the mean order-parameter dengittegrated order pa-

rameter divided by droplet volumés of the order of¢ 1.

Thus the picture that emerges is of large, weak droplets.
We have evaluated

din[l(w)]

de(w)=1+ din(w)

(45)
via a numerical computation of Eq37). Figure 1 shows
des(€,0) as a function of¢ for w=0.00lw, and several
different values of the nonuniversal parame®r (solid
lineg along with the asymptotic limit estimates from Eq.

those droplets which do tunnel we must use 82) in Eq.
(35). We write

l(w)=1g6(w)+]esd @), (46)

with |,es; given by Eq.(39) andl by

|o=fdy3df2f2y2N(y3,f2)(7(y,f)—l) (47)

From Eq. (38) we see that ifl, is appreciable, thery
~1/T: this is the superparamagnetism expected from essen-
tially classical droplets.

We begin by estimating,. The ® function limits thef

(40). We observe that for these low frequencies and not toéntegration to
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FIG. 2. Ratio of density of magnetization of nontunneling drop-  F|G. 3. ContributionJ,os(w) = wl es{@) [EQ. (47)] of tunnel-
lets 1o [Eq. (43)] to total density of dropletso;=/dwl(@) for ing droplets to susceptibility integral, plotted vs frequency for non-
overdamped case and nonuniversal constgrt0.1 (larger values  ypjversal constant&/;=0.5, C,=1, and c,=0.1 até=5 (top
of ¢, lead to anlg/l,~1 even for much smaller values 6f as @  cyrve and £=20 (bottom curve.
function of correlation lengtlinot normalized to disorder strength)

for dimensionless disorder strengiWy=1, (top curve .7,.5,.3. —0. As in thez=1 case considered above, one obtains an
Note that for all reasonable parameters a non-negligible fraction Oéxpression fof (@) by substituting the result fdrinto Eq
res .

droplets do not tunnel at all. (35) yielding
wo
o C In(—)
2>y = ——— (48) 38 o
c,éy-a(y) Ires{ @)= Cucdsd PRNE
. OCVCE | ¢, 4 1| 20
Note that for large, f,,<<a(y). Further, the typical scale for 2

fis ¢ 2 so that the penetration depth, of electrons into
the droplet is larget ,/ ¢~ &2 so the assumption that elec-

dyy mexp[ ~ y3<f§2(y)+a<y>>2}

trons penetrate the droplet is indeed self-consistent. u 5
Use of Eq.(48) in Eq. (47) gives Xf
3w (=, Vuexd —y3(fa,(y) +a(y))?/u] The resulting expression is to good accuracy proportional to
lo(§) = 2Cy Jo? dy Sy 1/w times logarithms. The physics is that even the average of
0 droplets which are able to tunnel is dominated by those drop-
3i2§2. + lets on the verge of freezing, leading again to a superpara-
Y (Fain(y) +a(y)) . v - 2
+a(y)| erfl 7 =1, (49 magnetic contribution to the susceptibility.
u We have numerically evaluated the integral in Ex{) for

parameters such thag is not too large. Sample results are
shown in Fig. 3, which plots the quantifyes= ol est. The
frequency dependence is a consequence of the logarithmic
factors in Eq.(51); the nonvanishing intercept as—0
means that up to logarithmic corrections the contribution to
the susceptibility arising from this term is 1/T.

Iy, normalized to the total weight ih fdwl (w) is plotted in
Fig. 2 as a function of for different values of the disorder
strengthV,. We see that the factor & ! in Eq. (44) means
that as criticality is approached, almost all of the weight in
the droplet probability distribution is in droplets which do

not tunnel.
For the droplets which are able to tunnel at frequeacy
we find from Eqs(34) and(36) that IV. CONCLUSION
® This paper presents an investigation of the possibility of
|n(_°) quantum Giriffiths effects in three-dimensional metallic sys-
&o w tem near an antiferromagnetic quantum critical point with

fﬁzz(y)= 3 (50 Ising symmetry. For comparison we present also a parallel
c,éya(y) CytIn w g sy Y. p p p

0
:) investigation of quantum Griffiths effects in a model of an
insulating system near a similar critical point. The key fea-
Note that in contrast the expression fiom the z=1 case ture of metallic systems is the dissipative dynamics arising
shown in Eq. 39, in the=2 casef doesnot diverge asw from the particle-hole continuum of electrons; in the model
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insulating system the dynamics are undamped. Comparisamagnetic moment of the order of unity and as criticality is
of the two calculations shows that dissipation suppresseapproached the droplets get larger in size but fewer in num-
quantum Giriffiths effects completely, leaving instead an efher.
fectively superparamagnetic behavior. The main new result of our work, however, pertains to
A simple precis of our results follows. Quantum Griffiths metallic systems with overdampedissipativé dynamics.
effects are a consequence of randomness: essentially, iNFRr these system§.e., for quantum critical phenomena in
random system which is on average in the paramagnetifetaly the answer is entirely different. The physics in the
phase, region&'droplets”) may occur in which the random- yndamped case is a balance between the probability of a
ness pushes the system locally to the ordered side of thgoplet occurringwhich vanishes rapidly as the droplet size
phase diagram, so that local formation of an order parameteyr amplitude increas@snd Y gropiers Which is of the order of
is favored. In certain circumstancé#st noted by McCo§)  the inverse of the quantum tunneling rate of the droplet and
these droplets may dominate the response. In this situatiofiverges rapidly as the droplet size or amplitude increases.
one may approximately write the susceptibiligyas an av-  The effect of dissipation is to strongly decrease the tunneling
erage over droplets times a susceptibiltiy for each dropletsate, and indeed to drive it to zero for droplets larger than a
i.e., particular, amplitude dependent, size. For relevant param-
eters we find that a nonvanishing density of droplets does not
tunnel atT=0; these give rise to a superparamagnegc (
_ ~1/T) susceptibility rather than a quantum Griffitison-
Jdmmetsp(drOpleDXd"’p'Et' 52 tinuously varying exponentbehavior. For those droplets
which do behave quantum mechanically, the effect of dissi-
pation on the tunneling rate is found to change the balance
We have used simple extremal statistics argumeésitsilar  petween probability and dropler dramatically. We find that
to those used by Thill and HuSeto estimate the droplet eyen considering only the droplets which can tunnel quan-
probability distributionP(droplet) and an extension of ear- tym mechanically, those which dominate the integral for
lier work which studied a particular class of dropféti;o are those which are r|ght on the edge of C|ass(ua|ntun-
obtain the susceptibility¢qropiet Of @ given droplet. We were neling) behavior, leading again to superparamagnetism rather
then able to perform the average over droplets and obtain afan to quantum Griffiths behavior. We also find that the
estimate for the susceptibility. dependence on parameters is different: in the undamped
This method reproduces the essential features of the stagase, apart from prefactors the mean-square disorder strength
dard results for quantum Griffiths effects in undam@edu- /2 and the correlation length enter via the combinatiofi.
lating) systems, namely, that the loWbehavior of the sus- | the damped case additional factorstafccur which drive
ceptibility is governed by a new exponetdy given by the  {he system more rapidly to classical behavior.
product of the inverse correlation lengt* and inverse Our results cast doubt on the claffi¥ that quantum
mean-square disorder amplitudé,* and a nonuniversal Griffiths effects are important in heavy-fermion materials,
number(which we estimate for the particular model we con-which are precisely three-dimensional metals with Ising
sidep. A divergent susceptibility results whedy; becomes  symmetry, typically near antiferromagnetic quantum critical
less than unity, and the results are functions only\¢§. We  points. Ref. 9 contains a phenomenological description of
note one additional interesting finding. The standard arguelata. If the theoretical results presented here are accepted,
ments which produce the standard quantum Griffiths resultthen these data require a different, non-Griffiths interpreta-
are based on a picture of dilute droplets and apply only if thaion. Reference 10 argued that a disordered system near a
¢ is not too large(otherwise the droplets percolate, and anquantum critical point could be mapped onto tlisspation-
isolated droplets picture fajlsFor the model we consider we less Ising model in a transverse field; the results of the
obtain an estimate for the critical value 6f and find that present paper and of Ref. 15 indicate on the contrary that
depending on the value of the nonuniversal factodig, dissipation is essential.
droplets may reach the percolation point before the Griffiths Reference 12 uses a novel variant of a technique intro-
exponent drops below unity. In other words, in the modelsduced by DotsenK8 to study essentially the same model as
we consider the existence of a quantum Griffiths regimds studied here but obtaining a rather different result, namely,
(which one may somewhat imprecisely define as a divergerthat quantum Griffiths effects can be important in a reason-
susceptibility arising from isolated droplgtsis not able range of the phase diagram even in the metallic case.
guaranteed—it may or may not occur depending on the valug/e outline the differences between the results found here
of a nonuniversal coefficient. Sufficiently near a critical pointand those of Ref. 12. The method introduced by Dots&hko
a regime of divergent susceptibility does of course occur, buand used by Ref. 12 begins fromckassicaltheory defined
the proper theory of this regime would have to go beyond théy a functional integral with action given by the static term
model of isolated droplets and treat correctly the mixing ofin Eq. (1) and evaluates the disorder average by the replica
critical and Griffiths singularities. method. Whereas other work&ts®then used the replicated
We also found that for systems near antiferromagnetidield theory to derive scaling equations for variables includ-
critical points theamplitudeof the divergent term in the sus- ing the mean disorder strength, Dotsenko argued that one
ceptibility vanishes rapidly as criticality is approached, in-should look for spatially localized energeticallynstable
deed a3, essentially because each relevant droplet has eonfigurations of the replicated field theory, which corre-
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spond to local maxima of the replicated action and are to béere, as well as determination of the damping coefficient
identified with the droplets discussed above. Dotsenko showgalues appropriate to the heavy fermion materials of interest.
that the leading nonanalytic contribution to the free energy in  Our work has the following implications for experiment.

the vicinity of an assumed >0 critical point comes from First, the canonical quantum Griffiths effects are due to weak
droplets with size of the order of the magnetic correlationdisorder added to a pure critical point. We have shown that in
length, £ we refer to these henceforth as typical droplets.ln® limit of weak disorder and a pure critical point described
The authors of Ref. 12 assume that flies0 limit of this DY the Hertz theorg>* the dissipation characteristic of me-

classical theory may be straightforwardly taken, and then adff!lic Systems changes the quantum Griffiths singularities
to this theory estimates of the dynamics of typical droplets.'mo a kind of superparamagnetic behavior. In other words, as

The results reported in Ref. 12 disagree in a number of spe matter of_ principle the canonically d_efined quantum Grif-
cific details(for example, concerning the tunnelling rates of fiths Pehavior shoulaot be observable in metals near mag-
droplets of given siZewith the results presented here. The N€tic quantum critical points. This suggests that cldios
most important difference, however, is in the interpretation2ve observed quantum Griffiths behavior in heavy-fermion
of the results. Ref. 12 argues that one should identify th&yStems should be treated with cauti@n least for systems
boundary of the Griffiths region with the value &f 2 at with Ising symmetry. Furthe_r,_ we showed that the droplets
which a typical droplet ceases to tunnel. Our analysis, whicfiat dominate the susceptibility can tunnel only when the
involves averaging over all droplets, indicates that indepenSYStem IS not close to criticality, and in these cases the drop-
dent of whether the typical dropléhowever, definedmay let size is not much larger than the basic scale of the theory.

tunnel, the susceptibility is dominated by droplets which arel NUS if the susceptibility is dominated by the tunneling of
at or beyond the edge of ceasing to tunnel; these give afjfoPIets, the picture that emerges is more similar to the
essentially superparamagnetig 1/T) behavior, instead of Kondo disorder picture 6f?*than it is to the conventionally

the continuously varying exponent characteristic of quanturﬁjef.ined. quantum Griffiths _picture. Indeed, the experimental
Griffiths behavior. cla!ms involve heavy—fermlqn systems where the interaction
Reference 11 presents a detailed analysis of a differefNich favors a nonmagnetic phase is the Kondo effect. As

model in which spins are added to a pure system which itseff0t€d by many author, the fact that Kondo temperatures
is far from any critical point. In this model the phase transi-are exponentially sensitive to system parameters means that

tion is disorder driven:it occurs when the density of added & Slight variation in system parameters can lead to a wide
spins is high enough that these order; whereas our interegfl”at'on in Kondo temperatures. The canonical assumption
here has been in models in which even the nondisordere@l Weak disorder which we and othéfs**have made, may

system is near a critical point. Furthermore, in the modef°t Pe valid for these systems. The interplay between quan-

studied in Ref. 11, the way the disorder is introduced meanitm criticality and a broad distribution of disorder should be
that the local spin amplitudé, [cf. our Eq.(9)] is always of treatable by the methods introduced here, and seems worth

order unity, whereas in our treatment the local spin ampIitud(?xarn'n'ng'd it is that th ow d s of th
may be considerably smaller. An approximate mapping be- A secon point is that the very slow dynamics of the
tween the model considered in Ref. 11 and the one Considj_roplets makes it much easier for them to order. Further, in a
ered here may be obtained by setting our parametgrand metallic system the droplet-droplet interactions are of long
& equal to unity and considering the behavior as the disordé}ange(see’ €.9., Ref. 24 for a discussion in the context of the

strengthV, is increasedwhereas we consider a fixath and two-dimensional metal insulator transitjorFor this reason
study the behavior agis increasey we expect that in the presence of disorder the actual phase

Although specific details differ, in a broad qualitative transition at which long ranged order sets in is an essentially

sense results obtained in Ref. 11 are similar to those obtaine‘ﬂass'calI affair, in which droplets lock together when the

here. In particular, Ref. 11 states that at sufficiently low tem-leMperature becomes lower than some droplet-droplet cou-

perature dissipation will suppress the quantum Griffiths bepling.

havior. However, Ref. 11 argued that an extremely wide tem- 'tA‘ .th'trﬁ {)omt, per?aps rele\/lant tI)Eeygndthg prtgsent con-
perature regime could exist in which behavior characteristi ext, is tha ("."S seen for example In .qg )] ISsipation can
ave a crucial effect on bare tunneling rates: in the metallic

of the undamped system occurs, whereas in the model ) e . .
consider, for any reasonable parameters there is no such telW—Oblem we considered the Cr”'c?' |mped|ment to tL_JnneImg
perature regime. A crucial point is that Ref. 11 focused onOf a droplet was found to be the viscosity of the medium, not
model parameters such that the damping coefficient was e}be energy barrier that had to be surmounted.

tremely wealk(i.e., in our notationgsee below Eq(27)] they
took ¢,,<1). In this limit, it is plausible that there is a tem-
perature regime in which behavior characteristic of the un- We thank A. H. Castro-Neto, B. A. Jones, and H. Rieger
damped model may occur, before finally a crossover occurfor very helpful conversations. This work was supported by
to a regime(similar to the one we considereih which  Grant No. NSF-DMR-00081078A.J.M.), the Ames Labora-
damping is important. Important avenues for future investi-tory, operated for the U.S. Department of Energy by lowa
gation include more detailed studies of the crossovers beState University under Contract No. W-7405-Eng-82, and by
tween the weak-damping and order unity damping cases arf@esearch Corporatiod.S). We acknowledge the hospitality
between the disorder driven—criticality effects studied inof the Aspen Center for Physics, where part of this work was
Ref. 11 and the pure system criticality—driven effects studiegperformed.
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