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Heisenberg dimer single molecule magnets in a strong magnetic field

Dmitri V. Efremov* and Richard A. Klemm†

Max-Planck-Institut fu¨r Physik komplexer Systeme, No¨thnitzer Strasse 38, D-01187 Dresden, Germany
~Received 21 June 2002; published 15 November 2002!

We calculate the static and dynamic properties of single crystal, single molecule magnets consisting of equal
spin S51/2 or 5/2 dimers. The spins in each dimer interact with each other via the Heisenberg exchange
interaction and with the magnetic inductionB via the Zeeman interaction, and interdimer interactions are
negligible. For antiferromagnetic couplings, the static magnetization and specific heat exhibit interesting low-
temperatureT and strongB quantum effects. We calculate the frequency spectrum of the Fourier transform of
the real part of the time autocorrelation functionC11(t) for arbitraryT, B, and compare our results with those
obtained for classical spins. We also calculate the inelastic neutron magnetic dynamical structure factorS(q,v)
at arbitraryT, B.
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I. INTRODUCTION

Recently, there has been a considerable interest in
physics of single molecule magnets~SMM’s!, or magnetic
molecules.1–12 These consist of small clusters of magne
ions embedded within a nonmagnetic ligand group, wh
may crystallize into large, well-ordered single crystals of s
ficient quality for neutron scattering studies. Usually, t
spins within a single molecule interact mainly via th
Heisenberg exchange interaction. In the simplest SMM
V2, Cu2, two examples of Yb2, Cr2, and four examples
Fe2, the magnetic cores of the molecules consist of dimer
spin S51/2 V41, Cu21, or Yb31, S53/2 Cr31, or S55/2
Fe31 spins, respectively.5,8–11 Low-field magnetization,
nuclear magnetic resonance~NMR! and electron paramag
netic resonance~EPR! experiments, and zero-field inelast
neutron scattering experiments were made on some of t
dimers.5–12 Theoretically, zero-field results for the time d
pendence of the autocorrelation function of the quantumS
51/2 andS55/2 dimers were presented.13

Here we study the simplest model of interacting Heis
berg spins in a magnetic fieldH. We assume only two spins
which interact with each other via the ordinary Heisenb
exchange interactionJ, and also with a constant magnet
inductionB induced by the application ofH. For simplicity,
we limit our discussion to the spin valuesS51/2 and S
55/2.

We first evaluate the static magnetizationM and specific
heatCV as functions ofT andB. We find that for ferromag-
netic~FM! exchange couplingsJ.0, bothM andCV behave
at low T as for a single paramagnetic ion with spin 2S,
qualitatively similar to that expected from a classical tre
ment. For antiferromagnetic~AFM! exchange couplingsJ
,0, however, forkBT!uJu, the low-T results are very non
classical, even forS55/2. M (B) for the AFM spin-S dimer
exhibits 2S discrete steps, reminiscent of the transverse c
ductivity in the integer quantum Hall effect. In additio
CV(T,B) exhibits 2S doublet peaks centered about the c
responding magnetization step fields, the splitting of which
proportional toT.

At arbitrary T,B, we then evaluate the real part of th
0163-1829/2002/66~17!/174427~12!/$20.00 66 1744
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time autocorrelation functionC11(t), and focus upon its Fou
rier transformC̃11(v), which is applicable to inelastic neu
tron scattering experiments. ForB50, C̃11(v) for the spin-S
dimer has 4S11 equally-spaced modes with frequenci
vS,n

0 5nuJu, where n522S,22S11, . . . ,2S21,2S. De-
pending uponT and the sign ofJ, the relative importance o
these modes varies significantly. ForBÞ0, each of these
vS,n

0 modes is split into 3 modes. We study theT and B
dependence of the most important of these modes foS
51/2 and 5/2, for both FM and AFM exchange coupling
For the FM case, only a few modes are important at lowT,
and their relative strength is nearly independent ofuBu. For
the AFM case, however, the situation is more complicated
many modes can be important at rather lowT, and their
relative importance shifts withuBu. For comparison, we also
present the analogous results for classical spins. Finally
arbitraryT,B, we evaluate the magnetic dynamical structu
factor S(q,v) measurable with inelastic neutron scatterin
and identify a method by which it can measureC̃11(v).

II. THERMODYNAMIC PROPERTIES

A. Partition function

Here we derive the partition functionZ for the quantum
dimer forBÞ0 , with spini 51,2 represented by the operat
Si , and set\51 for convenience. The Hamiltonian is

H52JS1•S22gB•~S11S2!, ~1!

where g5gmB is the gyromagnetic ratio. Letting the tota
spin operators5S11S2 , H is rewritten as

H52J~s22S1
22S2

2!/22gBsz . ~2!

The dimer quantum states are then indexed by the quan
numberss andm, where

s2usm&5s~s11!usm&, ~3!

szusm&5musm&, ~4!
©2002 The American Physical Society27-1
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and sinceSi
2usm&5S(S11)usm&, whereS(S11) is a con-

stant for all measurable quantities, we drop the terms pro
tional to S1

2 andS2
2 in H for convenience.

Letting b51/(kBT), a5bJ/2, b5bgB, and
B̄5gmBB/uJu5b/(2uau), the partition function
Z5Tr@exp(2bH)# for the Heisenberg dimer is simply

Z5(
s50

2S

(
m52s

s

eas(s11)1bm5(
s50

2S

Ds~a,b!, ~5!

where

DS~a,b!5eas(s11)
sinh@~2s11!b/2#

sinh~b/2!
. ~6!

B. Magnetization

The magnetizationM5b21¹WB(ln Z) for the spin-S dimer
in a field is then easily found to be

M ~a,b!5
g B̂

Z (
s50

2S

Ds~a,b!Bs~b! ~7!

[gB̂^Bs~b!&, ~8!

where

Bs~b!5~s11/2!coth@~s11/2!b#2
1

2
coth~b/2! ~9!

is the standard Brillouin function for a spin-s paramagnet in
a magnetic field. We note that^ . . . & represents a thermody
namic average over the dimer quantums values, evaluated
using the weighting functionDs(a,b).

In Fig. 1, we plottedM /(2SgmB) as a function ofB̄ for
the AFM S55/2 andS51/2 dimers ata520.1,21, and
210, respectively. At highkBT/uJu (uau!1), the dotted
curves fora520.1, S51/2, 5/2 are smooth functions ofB̄,
not too different from the analogous results obtained for c

FIG. 1. Plots of the static magnetizationM normalized to

2SgmB versus B̄5gmBB/uJu for the AFM S51/2 and S55/2
dimers ata5J/(2kBT)520.1,21,210, as indicated.
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sical spins. Ata521, the dashed curves remain smoo
but are shifted over to smaller field values, with hints of
kink just below the saturation magnetization value. Most
teresting are the low-T effects. Ata5210, M has 2S steps
at integral values ofB̄, as shown by the solid curves forS
51/2,5/2 in Fig. 1. Since these steps are thermodynam
they are reversible. However, a measurement at fixedB near
to a step value can lead to interesting, nonmonotonic beh
ior of M (T) at low T.

These thermodynamic steps inM are a consequence o
quantum level crossing due to the strongB.3 The energyEsm
of the stateusm& is given by

Esm52Js~s11!2mB̃. ~10!

where B̃5gB and B̄5B̃/uJu. For the AFM case,J52uJu,
the lowest energy state for eachs value isEsm,min5Ess. The
difference in energy between the lowest energy state w
quantum numbers and that with the next highest quantu
number,s11, is then

DEss5Es11,s112Ess5uJu~s112uB̄u!, ~11!

which vanishes atuB̄u5s11. ForS51/2, there will only be
one step, as this crossing can only occur between states
responding to thes50 and s51 quantum numbers. Simi
larly, for S55/2, there will be 5 level crossings, correspon
ing to s50, . . . ,4.

For the FM case, the situation is rather boring by co
parison. We found that for bothS51/2,5/2, M (a,b)/g is
closely approximated byB2S(b). For a50.1, this approxi-
mation is accurate to a few percent, but fora510, the cor-
responding curves forM andB2S are indistinguishable. This
is because thes52S term in both the numerator and th
denominator of̂ Bs& is dominant forJ.0.

C. Specific heat

The specific heatCV is given by

kBT2CV5
]2ln Z

]b2 , ~12!

leading to

CV /kB5b2@^s~s11!&2coth~b/2!^Bs~b!&2^Bs~b!&2#

12ab@^s~s11!Bs~b!&2^Bs~b!&^s~s11!&#

1a2@^@s~s11!#2&2^s~s11!&2#. ~13!

In numerical evaluations ofCV , we checked that Boltz-
mann’s law,*0

`dTCV /T52kBln(2S11), is satisfied. As for
the FMM, CV for the FM spin-S dimer is rather boring. It is
closely approximated by thes52S terms in each of the
sums. In this approximation, only the first term proportion
to b2 survives, soCV reduces to the standard Schottky res
for a spin 2S-paramagnet,

CV /kBa@1
→

C2S~b! ~14!
7-2
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5b2S 2S~2S11!1
1

4
coth2~b/2!

2~2S11/2!2coth2@~2S11/2!b# D . ~15!

Numerically, forS55/2, the FMCV is nearly indistinguish-
able fromC2S(b) for a>1. We note thatC2S(b) grows as
2S(2S11)b2/3 for b!1, decays asb2exp(2b) for b@1,
and has a maximum forb'1. For S55/2, the maximum
occurs atb'0.78.

On the other hand,CV for the AFM spin-S dimer is much
more interesting. In Figs. 2 and 3, we plottedCV /kB versus
B̄ at a520.1,21,23,210, for dimers of spinS51/2 and
5/2, respectively. The curves fora520.1 have broad
maxima at fields too high to appear in these figures. But
T is lowered toa521, Fig. 2 illustrates that this broa
maximum develops into two peaks centered atB̄'0,2, re-
spectively. Then, asT is lowered further,CV for S51/2 be-
comes two well-defined peaks symmetrically centered ab
B̄51, with a splitting between them proportional toT.

FIG. 2. Plots ofCV /kB versusB̄ at a520.1,21,23,210, as
indicated, for theS51/2 AFM dimer.

FIG. 3. Plots ofCV /kB versusB̄ at a520.1,21,23,210, as
indicated, for theS55/2 AFM dimer.
17442
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In Fig. 3, the analogous AFMCV for S55/2 is shown. For
a521, instead of two broad peaks, as in Fig. 2, forS
55/2 there is an irregular pattern resulting from ma
accessible energy levels. The situation becomes cleare
a523, with six rather symmetric peaks roughly centered
half-integral values ofB̄. However, as forS51/2, the low-T
limiting behavior is not reached untila5210. ForS55/2,
Fig. 3 shows thatCV consists of five double peaks symmet
cally centered aboutB̄5s11 for s50, . . . ,4, andnearly
vanishes at those points.

We note that this multiplicity of double peaks at lowT is
also a consequence of quantum level crossing. At lowT, the
energy difference between the two lowest states is given
Eq. ~11!. At the exact level crossing, these levels are deg
erate, leading to an exponentially small value ofCV

@}exp(2a)# . Just away from these points, excitations fro
the ground state to the first excited state can occur forkBT

*uJis112uB̄i . This should lead to a peak on each side
the level crossing points, with a splittingDB̄ of the double
peaks approximately equal to 1/uau. From the data in Figs. 2
and 3 foruau53,10, the splitting is'2.4/uau, which is}T,
but 2.4 times as large as in the above crude estimate.

We remark that the 2S double peak structures inCV
shown in Figs. 2 and 3 comprise a new quantum effect.
though it may be difficult to increaseB to 40 T while holding
T fixed at &1 K, it might be easier to lowerT in a fixed,
strong B. From Figs. 2 and 3, forB̄ fixed at 0.8 or 1.2,
nonmonotonicCV(T) behavior upon loweredT is predicted.
However, atB̄51, the behavior at lowT is very different, as
CV at a5210 is vanishingly small. This striking sensitivit
to the precise value ofB is pictured in Fig. 4 forS55/2. In
Fig. 4, for kBT/uJu.1, the T, B dependencies ofCV are
monotonic. Aside from the rather ordinary peak forB50,
the unusual behavior is illustrated by comparing the cur
for B̄50.8,1.0,1.2 for kBT/uJu,0.5 The curves forB̄
50.8,1.2 both have peaks at lowT, but the curve for the
intermediate valueB̄51.0 does not. This highly sensitiv
dependence ofCV uponT,B is a new quantum level crossin
effect.

FIG. 4. Plots ofCV /kB versuskBT/uJu at B̄50,0.4,0.8,1.0,1.2,
as indicated for theS55/2 AFM dimer.
7-3
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III. SPIN DYNAMICS

We now evaluate the time autocorrelation function
both quantum and classical spin dimers forBÞ0.

A. Quantum spin dynamics

The time evolution of quantum spins is given by the co
mutator of the spin operator with the Hamiltonian,

i Ṡi~ t !5@Si ,H#, ~16!

Si5exp~ i tH!Si~0!exp~2 i tH!. ~17!

It is easiest in the quantum case just to keep the time de
dence in this form, and then to letH operate on the eigen
states in the matrix elements of the correlation function. T
total spin operatorss2 andsz are independent oft.

B. Classical spin dynamics

The two classical spinsSi(t) each precess according
classical Heisenberg dynamics,

Ṡi5JSi3S1gSi3B, ~18!

whereuSi(t)u51, for i 51,2, S5S11S2, leading to

Ṡ5gS3B. ~19!

Hence, the total spinS precesses aboutB, and theSi precess
about bothB andS. The solution to these equations is give
in the Appendix.

IV. TIME CORRELATION FUNCTIONS

A. Quantum spins

In this section, we evaluate the time correlation functio
for quantum spins with general spin valueS. Here we calcu-
late the time autocorrelation function for the quantum dim
For easy comparison with the classical results, we norma
the correlation functions such that ReC11(0)51.13 Then
C11(t)5^S1(t)•S1(0)&, or

C11~ t !5(
s50

2S

(
m52s

s

^smueiHtS1~0!e2 iHt
•S1~0!

3e2bHusm&/D, ~20!

5(
s,m

(
s8,m8

(
a51

3

eit (Esm2Es8m8)e2bEsm

3u^smuS1aus8m8&u2/D, ~21!

2bEsm5as~s11!1bm, ~22!

D5S~S11!Z, ~23!

where Z is given by Eq.~5!. In Eq. ~21!, the expectation
values are related to Clebsch-Gordon coefficients.

For quantum spins, the near-neighbor correlation funct
and the autocorrelation function are related by the sum r
17442
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^sz
2&1^s22sz

2&cos~B̃t !5
1

2
^s~ t !•s~0!1s~0!•s~ t !&

52S~S11!Re@C12~ t !1C11~ t !#,

~24!

whereC12(t) is normalized as isC11(t). The thermal average
^s2& and^sz

2& can be written in the notation of Eqs.~6!–~9! as
^s(s11)& and ^s(s11)&2coth(b/2)^Bs(b)&, respectively.

B. Classical spins

It is interesting to compare the quantum time correlat
functions with those obtained from classical spin dynami
For classical spin dimers, one solves the equations of mo
of the spins directly, taking the length of each spin to
unity. We first solve Eq.~19! for S(t), and then Eq.~18! to
obtain theSi(t). We then evaluate the classical autocorre
tion function C11(t)5^S1(t)•S1(0)& by averaging over the
lengthS (0<S<2) of the total spin, the angleu betweenS
and B, and the anglef0 describing the initial relative con
figuration of S1 and S2, and by requiringC11(0)51. Since
the procedure is analogous to that used for the four-s
ring,14 the results are given in the Appendix. Here we on
remark that the classical correlation functions also must
isfy a sum rule,

1

6
@112 cos~B̃t !#^S2&5C11~ t !1C12~ t !. ~25!

V. FOURIER TRANSFORMS

A. Quantum spins

The Fourier transformC̃11(v) of the real part of the auto
correlation functionC11(t) for the quantum dimer of spin-S
spins is given by

C̃11~v!5 (
i 50

6S11

f S,i@d~v2vS,i !1d~v1vS,i !#. ~26!

The discrete mode frequenciesvS,i and their amplitudes
f S,i are given forS51/2 andS55/2 in Tables II and III in
the Appendix.

B. Classical spins

In order to compare the quantum and classical results,
useful to evaluate the Fourier transformC̃11(v)
5*2`

` dt exp(ivt)C11(t) of the classical autocorrelation func

tion. Lettingṽ5v/uJu andB̄5B̃/uJu, we find for positivev
that

C̃11~v!5d~ṽ!C001d~ṽ2B̄!C011d C̃11~ṽ !. ~27!

Exact expressions for the discrete amplitudesC00 and C01,
and for the continuous partd C̃11(ṽ) are given in the Appen-
dix. Then, in order to check the numerical evaluation of t
above quantities, we employ the frequency sum rule
5*0

`dv C̃11(v)/p.
7-4
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We note thatC00 also appears in the expression forC̃11(v)
with v<0. The coefficientsC00 and C01 of the delta func-
tions atv50 andṽ5B̄, respectively, are functions of bot
a andB̄. These quantities arise from the long-time rms lim
of C11(t) and for the long-time oscillatory behavior at th
driving frequency, respectively. This secondd-function oc-
curs at the resonant frequency in an EPR experiment.

VI. NUMERICAL RESULTS

A. Autocorrelation function spectra

In Fig. 5, we plot the amplitudesf 5/2,i of the d-function
modes of the zero-field quantumS55/2 AFM C̃11(v) for
positive v/uJu, at the temperaturesT̄5kBT/@ uJuS(S11)#
5`,1,0.1. The amplitudes of the modes at these threeT̄ val-
ues are indicated by the symbols1, 3, *. For comparison,
we also show the results of the zero-field classical calc
tion C̃11(v). For B̄50, both of thed-function amplitudes
C00 and C01 appear atv50, and their combined weight a
theseT̄ values is indicated by the circle, triangle, and squa
respectively. In addition, the continuous partd C̃11(v) is plot-
ted both by scaling its amplitude by 1/@S(S11)#1/2 and the
frequency by@S(S11)#1/2. This combined scaling allows u
to compare with the quantum results, while preserving
area under the curves. ForS55/2, this scaling changes th
maximum ṽ5v/uJu from 2 to A35'5.91. We note that as
T→`, the quantum and classical delta functions atv50
agree exactly, both having the weightp/2. Also asT→`,
the classicald C̃11(v) forms an envelope for the amplitude
of the quantum delta functions, except for a slight deviat
at the larger frequencies. AtT̄51, the agreement betwee
the quantum and classical results is also pretty good,
though there are deviations at nearly every quantum m
value. These deviations are more pronounced atT̄50.1, but
the overall agreement is still rather good.

FIG. 5. Plots of the AFM quantumS55/2 modes ofC̃11 versus

v/uJu at B̄50 at T̄5kBT/@ uJuS(S11)#50.1,1,̀ , and for the com-
bined discrete classical modes atv50. The curves represen

d C̃11(v)/@S(S11)#1/2 versusv@S(S11)#1/2/uJu.
17442
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In Fig. 6, we show the corresponding curves for theS

55/2 AFM dimer at the fieldB̄50.4. ForB̄Þ0, each of the
quantum zero-field modes splits into three modes, and th
fore to compare the continuous partd C̃11(v) with the split
quantum modes, we divide the scaled continuous part ofC̃11

by 3, plotting d C̃11/3@S(S11)#1/2 versus v@S(S
11)#1/2/uJu. As in Fig. 5, the classicald function modes at
ṽ50,B̄ are not scaled, but in this case, they are distinct.
this rather strong-field value,B̄50.4, the agreement betwee
the classical and quantum results is very good asT→`, and
pretty good at the intermediateT̄51. However, atT̄50.1,
these results can differ by more than a factor of two. We n
that the classical curves are piecewise continuous funct
of v, with several discontinuities in slope evident. The
discontinuities in slope generally appear at the the frequ
cies corresponding to rather large jumps in the quant
mode amplitude values. AtT̄ values lower than those pic
tured, the classical curves develop into three distinct mo
with finite widths.

In Figs. 7 and 8, we show the results for the FMS55/2
case atB̄50,0.1, respectively. ChoosingB̄50.1 in Fig. 8
allows us to display all of the results clearly on the sa
figure. Except for the differentB̄ values in Figs. 8 and 6
Figs. 7 and 8 correspond precisely to Figs. 5 and 6, with
same scaling of the continuous part of the Fourier transfo
of the classical correlation function, and the same symb
and linestyles. For the FM case atB̄50,0.1, Figs. 7 and 8
show that the agreement between the classical and qua
modes is excellent asT→`, pretty good atT̄51, but only
qualitative atT̄50.1. In this case, the classicald function at
v50 differs significantly from the quantum one, and th
continuous classical curve cannot be scaled in this way at
As shown for the equivalent neighbor model, the FM clas
cal curves obey a different low-T scaling relation, as the low
T peak center approachesNJ linearly in T from below as
T→0.15 In Fig. 8, the development of the continuous clas

FIG. 6. Plots of the AFM quantumS55/2 modes ofC̃11 versus

v/uJu at B̄50.4 atT̄50.1,1,̀ , and for the discrete classical mode

at v/uJu50,B̄. The curves representd C̃11/3@S(S11)#1/2 versus
v@S(S11)#1/2/uJu.
7-5
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cal curve into three lowT modes is evident, but the fit to th
quantum case atT̄50.1 is not good at all. Not only shoul
the low-T classical curves require a different scaling relatio
similar to those forB50, the order of the relative heights o
the three largest modes at the largest frequencies picture
the classical curves is inverted relative to that for the qu
tum case.

We now consider the caseS51/2. For theB50 AFM and
FM cases, there are two quantum modes for 0<v, at
v/uJu50,1. As T→`, these modes have equal intens
(p/2), for both FM and AFM cases. For the AFM case asT
decreases to 0, the amplitudes of the modes atv/uJu50(1)
decrease~increase! continuously to 0 (p), respectively. For
the FM case, however, these mode amplitude values incr
~decrease! with decreasingT to 2p/3 (p/3), respectively, at
T50. Somewhat surprisingly, for the AFM case, the amp
tude of the combined classical delta functions atv50

FIG. 7. Plots of the FM quantumS55/2 modes ofC̃11 versus

v/uJu at B̄50 at T̄50.1,1,̀ , and for the combined discrete class

cal modes atv50. The curves representd C̃11(v)/@S(S11)#1/2

versusv@S(S11)#1/2/uJu.

FIG. 8. Plots of the FM quantumS55/2 modes ofC̃11 versus

v/uJu at B̄50.1 atT̄50.1,1,̀ , and for the discrete classical mode

at v/uJu50,B̄. The curves representd C̃11/3@S(S11)#1/2 versus
v@S(S11)#1/2/uJu.
17442
,

for
-

se

-

closely tracks that of the quantumv50 mode. For the FM
case, however, this tracking is not so good. However,
best that can be said for the continuous part is that aT
→`, the second quantum mode nearly falls upon the cla
cal curve scaled as in Figs. 5 and 7, for both AFM and F
cases. AtT̄5kBT/@ uJuS(S11)#51,0.1, this agreement be
comes increasingly much worse, respectively. For the
case, the classical treatment fails miserably asT→0, as the
amplitude of the classicald function mode atv50 ap-
proachesp, and the integrated intensity of the continuo
classical mode peak vanishes asT→0. Hence, the classica
treatment does not describe theS51/2 dimer atB50 cor-
rectly, and the correct quantum treatment leads to just
modes forv>0.

For BÞ0, however, there are five modes forv>0 with
S51/2, so a classical treatment can approximate the qu
tum behavior a bit better than forB50. In Figs. 9 and 10,

FIG. 9. Plots of the AFM quantumS51/2 modes ofC̃11 versus

v/uJu at B̄50.4 atT̄50.1,1,̀ , and for the discrete classical mode

at v/uJu50,B̄. The curves representd C̃11/3@S(S11)#1/2 versus
v@S(S11)#1/2/uJu.

FIG. 10. Plots of the FM quantumS51/2 modes ofC̃11 versus

v/uJu at B̄50.4 atT̄50.1,1,̀ , and for the discrete classical mode

at v/uJu50,B̄. The curves representd C̃11/3@S(S11)#1/2 versus
v@S(S11)#1/2/uJu.
7-6
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the AFM and FMS51/2 results forB̄50.4 at T̄50.1,1,̀
are shown. In both cases, the two quantum modes
v/uJu50,B̄50.4 are compared with the two classical de
functions, and the remaining three quantum modes fo
<v are compared with the continuous classical curves
both cases, asT→`, the five quantum modes have the am
plitudesp/6, p/3, p/6, p/6, andp/6, respectively. The clas
sical results agree precisely with the first two, and form
qualitative envelope similar to the remaining three quant
modes. This agreement is qualitatively preserved atT̄51.
However, asT→0, the classical and quantum cases dif
dramatically. For the AFM case pictured in Fig. 9, the fi
quantum modes for 0<v approach the amplitudes 0, 0
p/3,p/3, andp/3 asT→0, respectively, and the continuou
classical curve develops a strong peak atv50, which is
qualitatively different. The qualitative behavior of the tw
discrete classical AFM modes is not too bad, however.
the FM case pictured in Fig. 10, asT→0, the quantum FM
modes approach the amplitudesp/3,p/3,0,0, andp/3, re-
spectively. That is, the modes atv50, uJ1B̃u increase, the
modes atv5uJu, uJ2B̃u decrease, and the mode atv5B̃
has a nonmonotonicT dependence. The classical treatme
preserves these FM features only qualitatively, and is in
curate forT̄<0.1.

B. Field dependencies of the quantum modes

In Fig. 11, we plotted the amplitudesf 1/2,i of the five FM
quantum modes forS51/2 at T̄50.1 versusB̄. The modes
v1/2,i for i 50, . . . ,4 correspond tov50, uB̃u, uJu, uJ2B̃u,
and uJ1B̃u, respectively. Note that atB50, thev1/2,i for i
50,1 are degenerate but unequal in intensity, and thev1/2,i
for i 52,3,4 are both degenerate and equal in intensity.
each field, the sum of the five intensities isp. From this
figure, it is evident that the crossover from the low-field r
gime to the high-field regime occurs at the rather low-fie
value, B̄'0.1. The high-field regime is clearly consiste

FIG. 11. Plots of the FM quantumS51/2 mode amplitudesf 1/2,i

versusB̄ at T̄50.1 The numerical labels correspond to thei values
in Table I of the Appendix.
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with the mode amplitudes atB̄50.4 pictured in Fig. 10, with
the amplitudes of the modes atv/uJu50,0.4,0.6,1, and 1.4
approximately equal top/3,p/3,0,0, andp/3, respectively.

In Fig. 12, we plotted the amplitudesf 1/2,i of the five
AFM quantum modes forS51/2 at theT̄50.1. From Fig.
12, the five modes are difficult to discern clearly, due to
strong degeneracies involved. Clearly, the crossover from
low-field to the high-field regime occurs atB̄51. In the
low-field regime, the modes atv50,B̃ have nearly zero am
plitudes, and the modes withv5uJu,uJ6B̃u have nearly
equal amplitudep/3. This is the situation pictured forB̄
50.4 in Fig. 9. However, Fig. 12 indicates that drama
changes in the mode amplitudes at lowT should take place
as B̄ is increased from'0.8 to'1.2. Over this field range
the amplitudes of the modes atv5uJu,uJ1B̃u decrease from
nearly p/3 to nearly 0, and the amplitudes of the modes
v50,B̃ increase from nearly zero to nearlyp/3. Meanwhile,
the amplitude of the remaining mode atv5uJu remains con-
stant atp/3. Although not pictured for brevity, atT̄51, all
five AFM modes forS51/2 are clearly evident, and th
crossover from the weak-field regime to the strong-field
gime occurs atB̄'1.5.

The field dependencies of the most important modes
the FM and AFMS55/2 dimers are shown at the rather lo
temperatureT̄50.1 in Figs. 13 and 14, respectively. In Fig
13, the FM modes shown are forv50, B̃, u5J6B̃u, and
5uJu. The crossover from the weak- to strong-field limi
occurs at aboutB̄'0.5. In the weak-field limit, this corre-
sponds to the dominant modes atB̄50.1 shown in Fig. 8, for
which the ranking of the five strongest low-T modes is at
v/uJu50.1,0,5.1,5, and 4.9, respectively. At high fields,B̄

.2, there are only three important modes, atv50,B̃, and
5J1B̃, which have amplitudes that approach 5p/7, p/7,
andp/7, atB→` respectively.

For the AFM case withS55/2, the behavior of the rela
tive mode amplitudes atT̄50.1 is more complicated, a

FIG. 12. Plots of the AFM quantumS51/2 mode amplitudes

f 1/2,i versusB̄ at T̄50.1. The modei values correspond to Table I in
the Appendix.
7-7
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shown in Fig. 14. There we plotted the field dependencie
the eight most important modes, which occur atv50, u2J
6B̃u, 2uJu, uB̃u, uJ6B̃u, anduJu, respectively. From Fig. 14
it is evident that there are essentially three field regimes.
low-field regime occurs forB̄,0.5, the intermediate regim
is for 1.5,B̄,2.2, and the high-field regime forB̄.3, ap-
proximately. An example of the low-field regime at the sam
temperature was shown forB̄50.4 in Fig. 6. In Figs. 6 and
14, the low-field rank-ordering of the six most importa
modes are those atv5uB̃1Ju, uJu, uB̃2Ju, uB̃12Ju, 2uJu,
anduB̃22Ju, whereJ,0. From the intermediate regime pic
tured in Fig. 14, however, the two most important modes
those atv5uB̃12Ju anduB̃1Ju, with the six other modes in
the list contributing lesser, but comparable amounts. Fina
in the high-field regime, the two dominant modes are av
50 anduB̃u, respectively.

VII. DISCUSSION

We remark that there have been some experiments on
or more of the Fe2 single molecule magnet dimers. Le G

FIG. 13. Plots of the dominant FM quantumS55/2 mode am-

plitudes f 5/2,i versusB̄ at T̄50.1. The modei values correspond to
Table II in the Appendix.

FIG. 14. Plots of the dominant AFM quantumS55/2 mode

amplitudesf 5/2,i versusB̄ at T̄50.1. The modei values correspond
to Table II in the Appendix.
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et al. measured the four Fe2 dimers they made, and fo
that the zero-field magnetic susceptibility could be fit w
the Heisenberg model, with exchange constants ranging f
15 to 19 cm21 ~22 to 27 K, which corresponds toB̄51 at
B'16222 T). A slightly different fit was made by Lascial
fari et al., obtaining uJu'22K for the Fe2 dimer,
@Fe(OMe)(dpm)2#2.11 Those authors also refer to EPR me
surements that give rise to a zero-field splitting anisotropy
about 7 K in the first excited state, which would complicat
the analysis performed here. Such a zero-field splitt
would still allow quantum level splitting, but the magnetiz
tion steps and the specific heat double peaks would not a
regularly spaced. We remark that these level crossing eff
are purely quantum in nature, as the analogous classical
culations do not give rise to such effects, and hence are o
approximate foruau*1. Nevertheless, the quantum effec
predicted for the magnetization and specific heat ought to
observable with presently available facilities, as one sho
be able to see one or two magnetization steps, and one or
specific heat double peaks.

In addition, inelastic neutron scattering would see sligh
different results from those presented here. In this situat
the classical envelope curves might be quite useful, as t
can serve as a guide to the behavior that might be expe
with specific zero-field splitting values. More important, i
elastic neutron scattering can be used to probe the detai
the magnetic interactions within an individual dimer. Pr
vided that a single crystal of sufficient size for such stud
can be obtained, one would perform the experiments at
wave vectors specific to the crystal structure. More precis
the unpolarized inelastic neutron magnetic dynamical str
ture factorS(q,v) for a single crystal of equal-spin dimers
given by4,8,16,17

S~q,v!5 (
a,b51

3

~dab2q̂aq̂b!

3E
2`

` dt

2p
eivt^Qa

†~q,t !Qb~q,0!&, ~28!

where the q̂a5sinuqcosfq ,sinuqsinfq , and cosuq for a
51,2, and 3, respectively,uq , fq are the angles the scatte
ing wave vectorq makes with the spin quantization coord
nates, and̂ . . . & represents a thermal average, as in E
~20!. The dimer structure operator

Qa~q,t !5 f ~q!@eiq•dS1a~ t !1e2 iq•dS2a~ t !#, ~29!

where 2d is the displacement vector between the dim
spins, andf (q) is the atomic magnetic form factor.8,17 The
low T, B50 transitions inS51/2 Cu21 and Yb31 and inS
53/2 Cr31 dimer powders were treated previously.8–10 For
B50, the quantization axis is arbitrary, souq5p/2 was
chosen.8 For BÞ0, the quantization axis is parallel toB, so
uq andfq are the anglesq makes with the coordinatesẑiB
and x̂3 ŷ5 ẑ. For scattering wave vectorsqc directed along
the special angle

uq
c5sin21~2/3!1/2, ~30!
7-8
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the components of eachC̃i j (v) are sampled equally, and

S~qc ,v!5
2

3p
f 2~qc!@ C̃11~v!1 C̃12~v!cos~2qc•d!#

~31!

5
2

3
f 2~qc!F C̃11~v!@12cos~2qc•d!#/p

1
cos~2qc•d!

S~S11! S ^sz
2&d~v!1

1

2
^s22sz

2&

3@d~v2B̃!1d~v1B̃!# D G , ~32!

where we have employed the Fourier transform of the s
rule in Eq. ~24!. For powder samples, one can still use t
special angle technique with a field to obtainC̃11(v), but
since the direction ofd is random, one obtains

cos~2qc•d!5
sin~2qcd!

2qcd
, ~33!

where•••̄ is a spatial average.17

For the general case ofuqÞuq
c , however,S(q,v) cannot

be written simply in terms of theC̃i j (v). There are four
factorshi for i 50, . . . ,3,listed in the Appendix, that depen
uponq•d and sinuq . We then find

S~q,v!5
f 2~q!

2p (
i 51

6S11

f S,ihS,i@d~v2vS,i !1d~v1vS,i !#,

~34!

where hS,i is the appropriatehi for the modes6vSi , as
indicated forS51/2 and 5/2 in the Appendix. The factorsh0
and h1 are } cos2(q•d), and correspond respectively to th
v50 and 6B̃ modes. The factorsh2 and h3 are } sin2(q
•d), and correspond respectively to the modes at6nJ and
6unJ6B̃u, for n51, . . . ,2S11. Sinceh0 and h2 are also
} sin2uq , whereash1 andh3 are}(12 1

2 sin2uq), the experi-
menter can fine tune the single crystal data by rotatingB and
q relative tod.

Neutron powder data on the deuteratedS51/2 dimer
single molecule magnet VODPO4•

1
2 D2O (V2) were taken,

resulting in a fit to the AFM Heisenberg model ofuJu
57.81(4) meV,6 close to the value 7.6 meV found in th
susceptibility fit.18 This corresponds toB̄51 at B'66 T,
which is too large for thermodynamic studies. However,
elastic neutron scattering at 0.1-0.2B̄ ought to be possible fo
this material. Single crystal data could be particularly int
esting. For the Fe2 dimers, inelastic neutron scattering
field of B̄&0.420.5 should be possible, which would not s
any level crossing effects, but could prove interesting,
indicated in Fig. 6.
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APPENDIX

1. Classical time correlation function

From the classical equations of motion,

S~ t !5B̂Si1S'@ x̂cos~B̃t !2 ŷsin~B̃t !#, ~A1!

whereB̃5gB, B̂ is a unit vector parallel toB, andx̂, andŷ
are orthogonal unit vectors satisfyingx̂3 ŷ5B̂. SinceSi5S
•B̂, we haveSi5Scosu and S'5Ssinu, and henceS2

5Si
21S'

2 . S1(t) is then found to be

S1,i~ t !5S1,i1S1,'cos~JSt2f0!, ~A2!

S16~ t !5e6 igBtFS1,iS'

Si
1

S1,'S'

2 S exp@7 i ~JSt2f0!#

Si2S

1
exp@6 i ~JSt2f0!#

Si1S D G , ~A3!

whereS165S1x6 iS1y , andf0 fixes the initial relative con-
figuration of the two spins. SinceS25S2S1, we haveS1,i
5S2,i5Si/2 and S1,'52S2,'5(S' /S)@12S2/4#1/2. After
averaging overf0,

C11~ t !5
1

4 K Si
212

S'
2

S2 ~12S2/4!cos~SJt!1S'
2 cos~B̃t !

1
~12S2/4!

S2 $~S1Si!
2 cos@~JS1B̃!t#1~S2Si!

2

3 cos@~JS2B̃!t#%L . ~A4!

ReplacingS with s for elegance, these classical averages
evaluated from

^ . . . &5Z21E
0

2

sdsE
0

psinudu

2
eas21bs cosu . . . , ~A5!

Z5E
0

2

sdsE
0

psinudu

2
eas21bs cosu. ~A6!

The integrals overu can then be written in terms ofF0(x)
5sinh(x)/x and its first and second derivatives,F1(x)
5F08(x)5@cosh(x)2sinh(x)/x#/x and F2(x)5F09(x)5F0(x)
22F1(x)/x, respectively. We note thatF1(x)/F0(x)5L(x)
5coth(x)21/x is the Langevin function. We find
7-9
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C11~ t !5
1

8ZE0

2

sdseas2
$2s2G1~bs,B̃t !1~42s2!

3@cos~sJt!G2~bs,B̃t !1G3~bs,B̃t !sin~sJt!#%,

~A7!

G1~x,y!5F2~x!1@F0~x!2F2~x!#cos~y!, ~A8!

G2~x,y!5F0~x!2F2~x!1@F0~x!1F2~x!#cos~y!,
~A9!

G3~x,y!52F1~x!sin~y!. ~A10!

As T→`. we sett* 5uJut, and obtain,

lim
T→`

C11~ t !5
@112cos~B̃t !#

6
f ~ t* !, ~A11!

f ~ t* !512
@112cos~2t* !#

t* 2 1
3sin~2t* !

t* 3 2
3@12cos~2t* !#

2t* 4 .

~A12!

We note thatf (t* ) was obtained previously for the zero-fie
case.19 We also have lim

T→`
C12(t)512 lim

T→`
C11(t).

These forms clearly satisfy the requirement lim
T→`

C11(0)

51.

2. Quantum frequency spectrum

The Fourier transformC̃11(v) of the real part of the auto
correlation functionC11(t) for the quantum dimer of spin-S
spins is given by

C̃11~v!5 (
i 50

6S11

f S,i@d~v2vS,i !1d~v1vS,i !#, ~A13!

f S,i5paS,i /C S~b,a!. ~A14!

For bothS51/2 andS55/2, C S(b,a) is given by

C S~b,a!54S~S11!e2S[b2(2S11)a]Z. ~A15!

We note thatD5S(S11)Z and thatC S(0,0)54S(S11)
3(2S11)2.

The factorshi that weight the modes inS(q,v) given by
Eq. ~34! can be derived from Eqs.~28! and~29!. In Eq. ~28!,
the off-diagonal terms inS(q,v) with a,b51,2 sum to zero,
and the remaining off-diagonal terms all vanish. Hence,
only require the matrix elements

Msm,a
s8m85~12q̂a

2 !u^smuQa
†~q,0!us8m8&u2/ f 2~q!. ~A16!

From Eq. ~4! and s6usm&5Asm
6 us,m61&, where Asm

6

5@s(s11)2m(m61)#1/2, we write20

^smuSnzus8m8&5dm8,m@mds8,s/21~21!n21

3~Bsmds8,s111Csmds8,s21!#,

~A17!
17442
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^smuSn6us8m8&5dm8,m61@Asm
6 ds8,s/21~21!n21

3~Bsm
6 ds8,s111Csm

6 ds8,s21!#,

~A18!

for n51,2, respectively. We note thatsz5S1z1S2z , s6

5S161S26 . We find

Msm,a
s8m85dm8,m@ds8,sm

2h014h2~Bsm
2 ds8,s111Csm

2 ds8,s21!#

1dm8,m61$h1~Asm
6 !2ds8,s/212h3

3@~Bsm
6 !2ds8,s111~Csm

6 !2ds8,s21#%, ~A19!

where thehi and the changesDs5s82s and Dm5m82m
in the matrix elements for which they occur are listed
Table I. For arbitraryS, each of thehS,i is equal to one of the
four hi listed in Table I. ForS51/2 and 5/2, the appropriat
choices of thehSi are listed in Tables II and III, respectively
We remark that by settingf (q)51 and each of thehi51,
S(q,v)→C̃11(v)/(2p).

a. Quantum frequencies for SÄ1Õ2

For S51/2, we have

C 1/2~b,a!53~11eb1e2b1eb22a!, ~A20!

The mode frequenciesv1/2,i , their relative amplitudes
a1/2,i , and the factorsh1/2,i appearing inS(q,v) are given in
Table II.

b. Quantum frequencies for SÄ5Õ2

For simplicity, we set

As~b!5
~2s11!sinh@~2s11!b/2#

sinh~b/2!
, ~A21!

TABLE I. Factorshi that appear inS(q,v), Eq. ~31!, and their
associated transition quantum number changes.

i Ds Dm hi

0 0 0 sin2uqcos2(q•d)

1 0 61 (12
1
2 sin2uq)cos2(q•d)

2 61 0 sin2uqsin2(q•d)

3 61 61 (12
1
2 sin2uq)sin2(q•d)

TABLE II. FrequencyvS,i and weighting factorhS,i spectra of
the S51/2 Heisenberg dimer in a magnetic field.

i v1/2,i h1/2,i a1/2,i

0 0 h0 11e2b

1 uB̃u h1 (11eb)2

2 uJu h2 eb(11e22a)
3 uJ2B̃u h3 eb(eb1e22a)

4 uJ1B̃u h3 11eb22a
7-10
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Xs~b!5
e2b/2

4sinh3~b/2!
@esbsinh~sb!2ssinh~b!

24s2sinh2~b/2!#, ~A22!

Ys~b!5Xs~2b!5
eb/2

4sinh3~b/2!
@e2sbsinh~sb!2ssinh~b!

14s2sinh2~b/2!#. ~A23!

We note that X1(b)5Y1(b)51 and that Xs(0)5Ys(0)
5s(4s221)/3. The mode frequenciesv5/2,i , their relative
amplitudesa5/2,i , and theh5/2,i factors are given in Table III.
In evaluating the coefficientsa5/2,i at a5b50, it is useful to
employ the relations

(
n51

2S

(
s51

n

s25
S~S11!~2S11!2

3
, ~A24!

(
s50

n

~2s11!25
~n11!~2n11!~2n13!

3
~A25!

3. Classical frequency spectrum

From Eq.~27! and lettingṽ5v/J andB̄5B̃/J, the clas-
sical spin Fourier transformC̃11(v) has the following dis-
crete and continuous contributions,

C̃11~v!5d~ṽ!C001d~ṽ2B̄!C011d C̃11~ṽ !, ~A26!

d C̃11~ṽ !5(
i 51

4

Ci~ṽ !, ~A27!

TABLE III. FrequencyvS,i and weighting factorhS,i spectra of
the S55/2 Heisenberg dimer in a magnetic field.

i v5/2,i h5/2,i a5/2,i

0 0 h0 2e5(b26a)(n51
2S ean(n11)(s51

n s2cosh(sb)
1 uJu h2

35
3 (11e22a)e5b228a

2 2uJu h2
32
15 e5b224a(11e24a)(s50

1 As(b)
3 3uJu h2

27
35e5b218a(11e26a)(s50

2 As(b)
4 4uJu h2

140
441e5b210a(11e28a)(s50

3 As(b)
5 5uJu h2

1
9 (11e210a)e5b(s50

4 As(b)
6 uB̃u h1 2coth(b/2)e5(b26a)(n51

2S ean(n11)(s51
n ssinh(sb)

7 uB̃1Ju h3
35
3 (11eb22a)e4b228aX1(b)

8 uB̃12Ju h3
32
15 e3b224a(11eb24a)X2(b)

9 uB̃13Ju h3
27
35e2b218a(11eb26a)X3(b)

10 uB̃14Ju h3
140
441 eb210a(11eb28a)X4(b)

11 uB̃15Ju h3
1
9 (11eb210a)X5(b)

12 uB̃2Ju h3
35
3 e5b228a(eb1e22a)Y1(b)

13 uB̃22Ju h3
32
15e6b224a(eb1e24a)Y2(b)

14 uB̃23Ju h3
27
35e7b218a(eb1e26a)Y3(b)

15 uB̃24Ju h3
140
441e8b210a(eb1e28a)Y4(b)

16 uB̃25Ju h3
1
9 e9b(eb1e210a)Y5(b).
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p

4ZuJu E0

2

s3dseas2
F2~bs!, ~A28!

C015
p

4ZuJu E0

2

s3dseas2
@F0~bs!2F2~bs!#, ~A29!

C1~ṽ !5
p

4ZuJu
Q~22ṽ !2ṽ~12ṽ2/4!eaṽ2

3@F0~bṽ !2F2~bṽ !#, ~A30!

C2~ṽ !5
p

4ZuJu
Q~22B̄2ṽ !~ṽ1B̄!@12~ṽ1B̄!2/4#

3ea(ṽ1B̄)2
$F0@b~ṽ1B̄!#1F2@b~ṽ1B̄!#

12F1@ ubu~ṽ1B̄!#% , ~A31!

C3~ṽ !5
p

4ZuJu
Q~B̄2ṽ !Q~ṽ122B̄!~B̄2ṽ !

3@12~ṽ2B̄!2/4#ea(B̄2ṽ)2
$F0@b~B̄2ṽ !#

1F2@b~B̄2ṽ !#12F1@ ubu~B̄2ṽ !#%, ~A32!

C4~ṽ !5
p

4ZuJu
Q~ṽ2B̄!Q~21B̄2ṽ !~ṽ2B̄!

3ea(ṽ2B̄)2
$F0@b~ṽ2B̄!#1F2@b~ṽ2B̄!#

22F1@ ubu~ṽ2B̄!#%. ~A33!

4. Low temperature classical modes

We now investigate the low-T behavior of the various
contributionsCi(v) to the classicalC̃11(v). We follow the
procedure used for the isosceles triangle and equiva
neighbor models in zero field.~Refs. 15 and 21!

The FM modal spectrum asT→0 is given by

V1~B̄!5uB̄22u, ~A34!

V2~B̄!52, ~A35!

V3~B̄!5B̄12. ~A36!

We note thatC1 leads toV2 , C2, andC3 combine to create
V1, andC4 leads toV3.

As T→0, the AFM mode frequencies satisfy

V1~B̄!50Q~22B̄!1~B̄22!Q~B̄22!, ~A37!

V2~B̄!5B̄Q~22B̄!12Q~B̄22!, ~A38!

V3~B̄!52B̄Q~22B̄!1~B̄12!Q~B̄22!. ~A39!

In V1(B̄), the 0 indicates that the maximum of the mode
at ṽ50, the same position as forC00.
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10H.U. Güdel, A. Furrer, W. Bu¨hrer, and B. Ha¨lg, Surf. Sci.106,
17442
.

.

r-

a,

432 ~1981!.
11A. Lascialfari, F. Tabak, G.L. Abbati, F. Borsa, M. Corti, and D

Gatteschi, J. Appl. Phys.85, 4539~1999!.
12F. Le Gall, F. Fabrizi de Biani, A. Caneschi, P. Cinelli, A. Corni

A.C. Fabretti, and D. Gatteschi, Inorg. Chim. Acta262, 123
~1997!.

13D. Mentrup, J. Schnack, and M. Luban, Physica A272, 153
~1999!.

14R. Klemm and M. Luban, Phys. Rev. B64, 104424 ~2001!;
cond-mat/0105050~unpublished!.

15R.A. Klemm and M. Ameduri, Phys. Rev. B66, 012403~2002!;
cond-mat/0112236~unpublished!.

16R. M. White,Quantum Theory of Magnetism~McGraw-Hill, New
York, 1970!, pp. 207–225.

17A. Furrer and H.U. Gu¨del, Phys. Rev. Lett.39, 657 ~1977!.
18J.W. Johnson, D.C. Johnston, A.J. Jacobson, and J.F. Brod

Am. Chem. Soc.106, 8123~1984!.
19G. Müller, J. Phys.~Paris! 8, 1403~1988!.
20E. U. Condon and G. H. Shortley,The Theory of Atomic Spectra

~Cambridge University Press, Cambridge, 1964!.
21M. Ameduri and R. Klemm, cond-mat/0108213~unpublished!.
7-12


