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Heisenberg dimer single molecule magnets in a strong magnetic field
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We calculate the static and dynamic properties of single crystal, single molecule magnets consisting of equal
spin S=1/2 or 5/2 dimers. The spins in each dimer interact with each other via the Heisenberg exchange
interaction and with the magnetic inducti@ via the Zeeman interaction, and interdimer interactions are
negligible. For antiferromagnetic couplings, the static magnetization and specific heat exhibit interesting low-
temperaturdl and strongB quantum effects. We calculate the frequency spectrum of the Fourier transform of
the real part of the time autocorrelation functién(t) for arbitrary T, B, and compare our results with those
obtained for classical spins. We also calculate the inelastic neutron magnetic dynamical structuf& dgetpr
at arbitraryT, B.
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. INTRODUCTION time autocorrelation functiod,;(t), and focus upon its Fou-

rier transformCyy(w), which is applicable to inelastic neu-

hRgcentlly, _thTre ha}s b:aen a co%sgf&fable Interest n tht?on scattering experiments. FBFO,Ell(w) for the spinS
physics of single molecule magnet s), or magnetic dimer has &+1 equally-spaced modes with frequencies

molecules:™'2 These consist of small clusters of magnetic o . _
ions embedded within a nonmagnetic ligand group, whic ©sa=n|J|, where n=-25,-25+1,...,5-125 De-
o . ’ ending uporl and the sign of], the relative importance of
may crystal!lze into large, WeII—ordgred smglle crystals of SUf'these modes varies significantly. FBr0, each of these
ficient quality for neutron scattering studies. Usually, '[hew%n modes is split into 3 modes. We study tieand B

spi_ns within a_single _molecu_le interact ”.‘ai”'y via the dependence of the most important of these modesSfor
Heisenberg exchange interaction. In the simplest SMM's,_ 1/2 and 5/2, for both FM and AFM exchange couplings.

V2, Cu2, two examples of Yb2, Cr2, and four examples ofgq; the FM case, only a few modes are important at Tow
Fe2, the magnetic cores of the molecules consist of dimers ¢fq their relative strength is nearly independeniBif For

spin S=1/2V**, CU#*, or Yb*", S=3/2 CP", or S=5/2  the AFM case, however, the situation is more complicated, as
Fe* spins, respectively®*" Low-field magnetization, many modes can be important at rather Idwand their
nuclear magnetic resonan¢dMR) and electron paramag- relative importance shifts wittB|. For comparison, we also
netic resonanc¢EPR experiments, and zero-field inelastic present the analogous results for classical spins. Finally, at
neutron scattering experiments were made on some of thesgbitraryT,B, we evaluate the magnetic dynamical structure
dimers>~*2 Theoretically, zero-field results for the time de- factor S(q,w) measurable with inelastic neutron scattering,
pendence of the autocorrelation function of the quanBim ang identify a method by which it can measitg(w).

=1/2 andS=5/2 dimers were presentéd.

Here we study the simplest model of interacting Heisen-
berg spins in a magnetic field. We assume only two spins,
which interact with each other via the ordinary Heisenberg A. Partition function
exchange interactiod, and also with a constant magnetic
inductionB induced by the application dfi. For simplicity,
we limit our discussion to the spin valu&=1/2 and S
=5/2.

We first evaluate the static magnetizatighand specific
heatC, as functions off andB. We find that for ferromag- H==0S 5= 7B (51S), @
netic (FM) exchange coupling$>0, bothM andC,, behave
at low T as for a single paramagnetic ion with spirg,2
qualitatively similar to that expected from a classical treat-
ment. For antiferromagnetiCAFM) exchange couplingd
<0, however, folkgT<|J|, the low-T results are very non- H==J(S=S]-S)/2~ yBs;. 2
classical, even fo5=5/2. M(B) for the AFM spinS dimer : .
exhibits 2S discrete steps, reminiscent of the transverse con-—rhe dimer quantum states are then indexed by the quantum
ductivity in the integer quantum Hall effect. In addition, humberss andm, where
Cy(T,B) exhibits 2S doublet peaks centered about the cor-

Il. THERMODYNAMIC PROPERTIES

Here we derive the partition function for the quantum
dimer forB+0 , with spini =1,2 represented by the operator
S/, and seth=1 for convenience. The Hamiltonian is

where y=gug is the gyromagnetic ratio. Letting the total
spin operatos=S;+S,, H is rewritten as

responding magnetization step fields, the splitting of which is smy=s(s+1)[sm), 3
proportional toT.
At arbitrary T,B, we then evaluate the real part of the S,|sm)=m|sm), (4)
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FIG. 1. Plots of the static magnetizatiod normalized to

2Squg versus B=gugB/|J| for the AFM S=1/2 and S=5/2
dimers ate=J/(2kgT)=—0.1,—1,—10, as indicated.

and sinceS’|sm)=S(S+1)|sm), whereS(S+1) is a con-

stant for all measurable quantities, we drop the terms propor-

tional to S; and S5 in H for convenience.

- Letting B=1/(kgT), «a=pBJ/2, b=pByB, and
B=gugB/|J|=b/(2|al), the partition function
Z=Tr[exp(—BH)] for the Heisenberg dimer is simply

2S s 2S
7= E 2 eas(s+l)+bm: 2 Ds(a,b), (5)
s=0 m=-—s s=0
where
sinH (2s+1)b/2]
— pas(s+1)
Ds(a,b)=e sinh(b/2) ®

B. Magnetization

The magnetizatioM =ﬁ‘1§B(In Z) for the spinS dimer
in a field is then easily found to be

5 2
M(a,b)="5~ 3, Dy(ab)By(b) ™
=vB(By(b)), t:)
where
B.(b)=(s+ 1/2)cotH (s+ 1/2)b]— %cotl’( b/2)  (9)

is the standard Brillouin function for a spgmparamagnet in

a magnetic field. We note that . .) represents a thermody-
namic average over the dimer quantsmwalues, evaluated
using the weighting functio®( «,b).

In Fig. 1, we plottedM/(2Sgug) as a function oB for
the AFM S=5/2 andS=1/2 dimers ata=—0.1,—1, and
—10, respectively. At highkgT/|J| (Ja|<1), the dotted
curves fore=—0.1, S=1/2, 5/2 are smooth functions &,

not too different from the analogous results obtained for clas-
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sical spins. Ata=—1, the dashed curves remain smooth,
but are shifted over to smaller field values, with hints of a
kink just below the saturation magnetization value. Most in-
teresting are the low- effects. Ata=—10, M has X steps

at integral values 0B, as shown by the solid curves f&
=1/2,5/2 in Fig. 1. Since these steps are thermodynamic,
they are reversible. However, a measurement at fixeear

to a step value can lead to interesting, nonmonotonic behav-
ior of M(T) at low T.

These thermodynamic steps M are a consequence of
quantum level crossing due to the stra&d The energyEq,
of the statgsm) is given by

Eqm=—Js(s+1)—mB. (10)
whereB=yB and B=B/|J|. For the AFM case]J=—|J|,
the lowest energy state for easialue iISEqy, min=Ess. The
difference in energy between the lowest energy state with
guantum numbes and that with the next highest quantum
number,s+1, is then
AE = Es+l,s+l_Ess:|‘J|(S+1_|B|)a (12)
which vanishes a8|=s+ 1. ForS=1/2, there will only be
one step, as this crossing can only occur between states cor-
responding to thes=0 ands=1 quantum numbers. Simi-
larly, for S=5/2, there will be 5 level crossings, correspond-
ing tos=0, ... 4.

For the FM case, the situation is rather boring by com-
parison. We found that for botB=1/2,5/2, M(«a,b)/vy is
closely approximated bB,5(b). For a«=0.1, this approxi-
mation is accurate to a few percent, but o+ 10, the cor-
responding curves fdvl andB,g are indistinguishable. This
is because the=2S term in both the numerator and the
denominator of Bs) is dominant forJ>0.

C. Specific heat
The specific heaCy, is given by

?InZ

kBTZCv=5—’32,

(12

leading to
Cy/kg=b?[(s(s+1))— coth(b/2)(Bg(b)) — (By(b))?]
+2ab[(s(s+1)By(b)) —(By(b))(s(s+1))]
+a?[([s(s+1)]%) = (s(s+1))?]. (13)

In numerical evaluations of,,, we checked that Boltz-
mann’s law, [,dTC,/T=2kgIn(2S+1), is satisfied. As for
the FMM, C,, for the FM spinS dimer is rather boring. It is
closely approximated by the=2S terms in each of the
sums. In this approximation, only the first term proportional
to b? survives, saCy, reduces to the standard Schottky result
for a spin IS-paramagnet,

Cy/Kga>1C,q(b) (14)
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FIG. 2. Plots ofC,,/kg versusB at = —0.1-1,—3,— 10, as
indicated, for theS=1/2 AFM dimer.

= 2 1
b2 2S(2S+1)+ 4cothz(b/2)

—(2S+1/2)%cott?[ (2S+1/2)b] |. (15)

Numerically, forS=5/2, the FMCy, is nearly indistinguish-
able fromC,g(b) for a=1. We note thaC,g(b) grows as
2S(2S+1)b?/3 for b<1, decays ab?exp(—b) for b>1,
and has a maximum fob~1. For S=5/2, the maximum
occurs ath~0.78.

On the other handZ, for the AFM spinS dimer is much
more interesting. In Figs. 2 and 3, we plott€g/kg versus
B at «=—0.1-1,—3,— 10, for dimers of spirS=1/2 and
5/2, respectively. The curves fow=-—0.1 have broad

PHYSICAL REVIEW B6, 174427 (2002
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FIG. 4. Plots ofC, /kg versuskgT/|J| at B=0,0.4,0.8,1.0,1.2,
as indicated for th&=5/2 AFM dimer.

In Fig. 3, the analogous AFNZ,, for S=5/2 is shown. For
a=—1, instead of two broad peaks, as in Fig. 2, r
=5/2 there is an irregular pattern resulting from many
accessible energy levels. The situation becomes clearer at
a=—3, with six rather symmetric peaks roughly centered at
half-integral values oB. However, as foS=1/2, the lowT
limiting behavior is not reached untit=—10. ForS=5/2,

Fig. 3 shows tha€C,, consists of five double peaks symmetri-

cally centered abouB=s+1 for s=0,...,4, andnearly
vanishes at those points.

We note that this multiplicity of double peaks at Idwis
also a consequence of quantum level crossing. AtTothe
energy difference between the two lowest states is given by
Eqg. (11). At the exact level crossing, these levels are degen-
erate, leading to an exponentially small value @f,

maxima at fields too high to appear in these figures. But, ak*€xp(2v)]. Just away from these points, excitations from
T is lowered toa=—1, Fig. 2 illustrates that this broad the ground state to the first excited state can occukdr

maximum develops into two peaks centeredBat0,2, re-
spectively. Then, a¥ is lowered furtherC,, for S=1/2 be-

=|J||s+1—|B||. This should lead to a peak on each side of
the level crossing points, with a spllttlrng of the double

comes two well-defined peaks symmetrically centered aboyteaks approximately equal to|&/. From the data in Figs. 2

B=1, with a splitting between them proportional To
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FIG. 3. Plots ofC,,/kg versusB at = — 0.1-1,—3,-10, as
indicated, for theS=5/2 AFM dimer.

and 3 for|a|= 3,10, the splitting is~2.4/«|, which isxT,
but 2.4 times as large as in the above crude estimate.

We remark that the 8 double peak structures i€y,
shown in Figs. 2 and 3 comprise a new quantum effect. Al-
though it may be difficult to increag®to 40 T while holding
T fixed at<1 K, it might be easier to loweT in a fixed,

strong B. From Figs. 2 and 3, foB fixed at 0.8 or 1.2,
nonmonotonicCy(T) behavior upon lowered is predicted.
However, aB=1, the behavior at low is very different, as

Cy at = —10 is vanishingly small. This striking sensitivity
to the precise value @ is pictured in Fig. 4 forS=5/2. In

Fig. 4, for kgT/|J|>1, the T, B dependencies o€, are
monotonic. Aside from the rather ordinary peak ®=0,

the unusual behavior is illustrated by comparing the curves
for B=0.8,1.0,1.2 forkgT/|J|]<0.5 The curves forB
=0.8,1.2 both have peaks at loW but the curve for the

intermediate valueB=1.0 does not. This highly sensitive
dependence oty uponT,B is a new quantum level crossing
effect.
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I1l. SPIN DYNAMICS ) 2 2 _ 1
so)+{(s—ss)codBt)= = (5(t)-5(0)+90)-5(t
We now evaluate the time autocorrelation function for (2 2/ 03 BY) 2<S( )-s(0)+5(0)- (1))

both quantum and classical spin dimers B#0.
a P =2S(S+ 1)RECyot) +Cy(D)],

A. Quantum spin dynamics (24
The time evolution of quantum spins is given by the com-whereC;,(t) is normalized as i€;,(t). The thermal averages
mutator of the spin operator with the Hamiltonian, (&) and(s?) can be written in the notation of Eq&)—(9) as
. (s(s+1)) and(s(s+1))—coth®/2){Bs(b)), respectively.
iIS(=[S,H], (16)
B. Classical spins
S =exp(itH)S (0)exp —itH). 17

It is interesting to compare the quantum time correlation
It is easiest in the quantum case just to keep the time depeffunctions with those obtained from classical spin dynamics.
dence in this form, and then to 18t operate on the eigen- For classical spin dimers, one solves the equations of motion
states in the matrix elements of the correlation function. Thef the spins directly, taking the length of each spin to be

total spin operators’ ands, are independent df unity. We first solve Eq(19) for §(t), and then Eq(18) to
obtain theS(t). We then evaluate the classical autocorrela-
B. Classical spin dynamics tion function Cy4(t) =(S;(t) - S;(0)) by averaging over the

length S (0=<S<2) of the total spin, the anglé betweenS
andB, and the angleb, describing the initial relative con-
figuration of S; andS,, and by requiringC;,(0)=1. Since

o the procedure is analogous to that used for the four-spin
S=JISXSHYSXB, (18) ring,'* the results are given in the Appendix. Here we only
where|S(t)|=1, fori=1,2, S=S,+S,, leading to remark that the classical correlation functions also must sat-
isfy a sum rule,

The two classical spin§(t) each precess according to
classical Heisenberg dynamics,

S= ySXB. (19

1 ~
Hence, the total spif precesses abo®, and theS, precess gll+2cog Bt)](S?)=Caa(t) +Cyat). (29
about bothB andS. The solution to these equations is given

in the Appendix.
V. FOURIER TRANSFORMS

IV. TIME CORRELATION FUNCTIONS A. Quantum spins

A. Quantum spins The Fourier transfornd;;(w) of the real part of the auto-

In this section, we evaluate the time correlation functionscorrelation functionCyy(t) for the quantum dimer of spis-
for quantum spins with general spin valBeHere we calcu-  SPIns is given by

late the time autocorrelation function for the quantum dimer. 65+ 1
For easy comparison with the classical results, we normalize ° _ fe TS(w—we )+ S+ we. 26
the correlation functions such that Bg(0)=1.'% Then (@) izZO sild(@—ws)+ oot sl (20

Ca(t) =(Sy(1) - $1(0)), or

The discrete mode frequencies;; and their amplitudes

s s ” o fs; are given forS=1/2 andS=5/2 in Tables Il and Il in
Cu(h=2, 2 (sme™s(0)e”™-5,(0) the Appendix.
x e PHsm)/D, (20) B. Classical spins
3 In order to compare the quantum and classical results, it is
=> DD eitEsm Eym)g=AEsm useful to evaluate the Fourier transfornCy,(w)
sm g/ m' a=1 =[7 . dtexplwt)Ci4(t) of the classical autocorrelation func-
x| (smSy,|s'm’)[2/D (21  tion. Lettingw= w/|J| andB=B/|J|, we find for positivew
“ ’ that
— BEgm=as(s+1)+bm, (22 ~ ~ -~ — ~ ~
Flom Cis(0)= 8(w) Cogt 8@~ B)Cort (@) (27)
D=3(S+1)Z, (23)  Exact expressions for the discrete amplitu@g and Cy;,
where Z is given by Eq.(5). In Eq. (21), the expectation and for the continuous pasiCy,(w) are given in the Appen-
values are related to Clebsch-Gordon coefficients. dix. Then, in order to check the numerical evaluation of the

For quantum spins, the near-neighbor correlation functio@POve quantities, we employ the frequency sum rule, 1
and the autocorrelation function are related by the sum ruless [ gdwCyy(w)/ .

174427-4
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FIG. 5. Plots of the AFM quanturB=5/2 modes of’;; versus FIG. 6. Plots of the AFM quantur=5/2 modes of’;; versus

/|| atB=0 atT=kgT/[|J|S(S+1)]=0.1,1¢, and for the com-  w/|J| atB=0.4 atT=0.1,1¢, and for the discrete classical modes
bined discrete classical modes at=0. The curves represent at w/|J|=0B. The curves representCy,/3[S(S+1)]¥? versus
8C11(0)/[S(S+1)]Y2 versusw[ S(S+ 1)1V w[S(S+1)]1V%]J].

In Fig. 6, we show the corresponding curves for e

=5/2 AFM dimer at the field=0.4. ForB#0, each of the
h quantum zero-field modes splits into three modes, and there-

= o . . __fore to compare the continuous pait,;(w) with the split
a andB. These quantities arise from the long-time rms limit o ) -
of Cy(t) and for the long-time oscillatory behavior at the duantum modes, we divide the scaled continuous pag of
driving frequency, respectively. This secosdunction oc- by 3, plotting  6C1/3[S(S+1)]"? versus w[S(S
curs at the resonant frequency in an EPR experiment. +1)]Y4|J|. As in Fig. 5, the classicab function modes at
»=0,B are not scaled, but in this case, they are distinct. For
this rather strong-field valu®= 0.4, the agreement between
the classical and quantum results is very goodas», and

A. Autocorrelation function spectra pretty good at the intermediafe=1. However, afT=0.1,

In Fig. 5, we plot the amplitudets,; of the s-function these results can differ by more than a factor of two. We note

modes of the zero-field quantu®=5/2 AFM Cyy(w) for that the classical curves are piecewise continuous functions

» - of w, with several discontinuities in slope evident. These
positive w/|J], at the temperatureS=kgT/[|J|S(S+1)] discontinuities in slope generally appear at the the frequen-

=22,1,0.1. The amplitudes of the modes at these tfireal-  cjes corresponding to rather large jumps in the quantum
ues are indicated by the symbois X, *. For comparison, mode amplitude values. AT values lower than those pic-

We aﬂso show thgresults of the zero-flelo! cIaSS|ca.I CaICUIafured, the classical curves develop into three distinct modes
tion Cy3(w). For B=0, both of thes-function amplitudes \ith finite widths.

Coo and Co, appear aw=0, and their combined weight at | Figs. 7 and 8, we show the results for the v 5/2
theseT values is indicated by the circle, tria~ngle, and squarecase atB=0,0.1, respectively. Choosing=0.1 in Fig. 8
respectively. In addition, the continuous péf(w) is plot-  allows us to display all of the results clearly on the same
ted both by scaling its amplitude by[§(S+1)]"*and the  figure. Except for the differenB values in Figs. 8 and 6,
frequency by S(S+1)]*2 This combined scaling allows us Figs. 7 and 8 correspond precisely to Figs. 5 and 6, with the

to compare with the quantum results, while preserving th&ame scaling of the continuous part of the Fourier transform
area under the curves. F&8=5/2, this scaling changes the of the classical correlation function, and the same symbols

maximum = /|J| from 2 to V35~5.91. We note that as and linestyles. For the FM case Bt=0,0.1, Figs. 7 and 8
T—e, the quantum and classical delta functionse&t0  show that the agreement between the classical and quantum
agree exactly, both having the weight2. Also asT—o, modes is excellent a6—, pretty good af=1, but only

the classicalbiCy,(w) forms an envelope for the amplitudes qualitative atT=0.1. In this case, the classicéiffunction at

of the quantum delta functu{ls, except for a slight dewauonw=0 differs significantly from the quantum one, and the

at the larger frequencies. At=1, the agreement between continuous classical curve cannot be scaled in this way at all.
the quantum and classical results is also pretty good, alas shown for the equivalent neighbor model, the FM classi-
though there are deviations at nearly every quantum modga| curves obey a different lof-scaling relation, as the low-
value. These deviations are more pronounce@i-a0.1, but T peak center approach®] linearly in T from below as
the overall agreement is still rather good. T—0.%In Fig. 8, the development of the continuous classi-

We note thaC, also appears in the expression € w)
with w=<0. The coefficienty, and Cy; of the delta func-

tions atw=0 andw=B, respectively, are functions of bot

VI. NUMERICAL RESULTS
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cal curve into three low modes is evident, but the fit to the
guantum case a=0.1 is not good at all. Not only should
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FIG. 9. Plots of the AFM quantur=1/2 modes of’;; versus
ol/|J] atB=0.4 atT=0.1,15¢, and for the discrete classical modes

at /|J]=0B. The curves represenéC,,/3[S(S+1)]2 versus
o[ S(S+1)1Y)J].

closely tracks that of the quantum=0 mode. For the FM
case, however, this tracking is not so good. However, the

the low-T classical curves require a different scaling relation,best that can be said for the continuous part is thaf as

similar to those foB=0, the order of the relative heights of

—oo, the second quantum mode nearly falls upon the classi-

the three largest modes at the largest frequencies pictured f6al curve scaled as in Figs. 5 and 7, for both AFM and FM
the classical curves is inverted relative to that for the quaneases. AtT=kgT/[|J|S(S+1)]=1,0.1, this agreement be-

tum case.
We now consider the cas=1/2. For theB=0 AFM and
FM cases, there are two quantum modes feed) at

comes increasingly much worse, respectively. For the FM
case, the classical treatment fails miserablyras0, as the
amplitude of the classicab function mode atw=0 ap-

w/|J|=0,1. As T—x, these modes have equal intensity proachesrw, and the integrated intensity of the continuous

(m/2), for both FM and AFM cases. For the AFM caseTas
decreases to 0, the amplitudes of the modes/al|=0(1)
decreasdincrease continuously to 0 ¢), respectively. For

classical mode peak vanishes®s:0. Hence, the classical
treatment does not describe tBe=1/2 dimer atB=0 cor-
rectly, and the correct quantum treatment leads to just two

the FM case, however, these mode amplitude values increasgeodes forw=0.

(decreasewith decreasingl to 27/3 (7/3), respectively, at

T=0. Somewhat surprisingly, for the AFM case, the ampli-

tude of the combined classical delta functions @0

1.8 T T T T T T
* classical quantum T/[|J|S(S+1)]
16 [ -
o [i (scaled) values
‘_:1.4 o -
1; [ e X 01
(‘i)/ 12 4
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FIG. 8. Plots of the FM quanturB=5/2 modes of’;; versus
wl|J] atB=0.1 atT=0.1,150, and for the discrete classical modes

at w/|J|=0B. The curves represendC,,/3[S(S+1)]¥2 versus
o[ S(S+1)1V%|J].

For B#0, however, there are five modes foe=0 with
S=1/2, so a classical treatment can approximate the quan-
tum behavior a bit better than f@=0. In Figs. 9 and 10,

250 j j ' i ]
T/|J|S(S+1)] classical guantum

N values (scaled)
"% 2t 01 O e i
%) 1 a
9,
2 156 A oo o) - i
6 x
S ¥ i * FM S=1/2
3 quplB/Y| = 0.4
1) J

I 15
o/[J|, o[S(S+1)]"2/|J|

FIG. 10. Plots of the FM quantur§=1/2 modes of’;; versus
ol/|J] atB=0.4 atT=0.1,15¢, and for the discrete classical modes

at /|J]=0B. The curves represenéC;,/3[S(S+1)]2 versus
o[ S(S+1)1Y)J].
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fi/2,i

06

FM S=1/2

0.4 |+

T/NIS(S+1)] = 0.1

02

0.3
gus|BA|

FIG. 11. Plots of the FM quantu®=1/2 mode amplitudes,,;

versusB at T=0.1 The numerical labels correspond to thelues
in Table | of the Appendix.

) " !
0.1 0.4 0.5 0.8

the AFM and FMS=1/2 results forB=0.4 atT=0.1,15%
are shown. In both cases, the two quantum modes f

both cases, a§—», the five quantum modes have the am-
plitudes /6, 7/3, w6, 7/6, and /6, respectively. The clas-

sical results agree precisely with the first two, and form aI

PHYSICAL REVIEW B6, 174427 (2002

0.8 |-

f12,i

04 |

AFM S=1/2

02 |

[

TYIS(S+1)] = 0.1

L
0.4 0.6

0.8
Qus|BA|
FIG. 12. Plots of the AFM quanturB=1/2 mode amplitudes

fai versusB at T=0.1. The modé values correspond to Table | in
the Appendix.

with the mode amplitudes 8=0.4 pictured in Fig. 10, with
the amplitudes of the modes at/|J|=0,0.4,0.6,1, and 1.4

- ) ) Oépproximately equal ter/3,7/3,0,0, andm/3, respectively.
o/|J|=0B=0.4 are compared with the two classical delta

functions, and the remaining three quantum modes for 0A
<w are compared with the continuous classical curves. Irl

In Fig. 12, we plotted the amplitud_efsl,z,i of the five

FM guantum modes fo6=1/2 at theT=0.1. From Fig.
2, the five modes are difficult to discern clearly, due to the
strong degeneracies involved. Clearly, the crossover from the

ow-field to the high-field regime occurs &=1. In the

qualitative envelope similar to the remaining three quantumow-field regime, the modes at=08B have nearly zero am-

modes. This agreement is qualitatively preserved_'atl.

plitudes, and the modes witb=|J|,|J+B| have nearly

However, asT—0, the classical and quantum cases differequal amplituden/3. This is the situation pictured foB

dramatically. For the AFM case pictured in Fig. 9, the five
guantum modes for € w approach the amplitudes 0, 0,
/3,73, andm/3 asT— 0, respectively, and the continuous
classical curve develops a strong peakeat 0, which is

qualitatively different. The qualitative behavior of the two

discrete classical AFM modes is not too bad, however. Fo

the FM case pictured in Fig. 10, ds-0, the quantum FM
modes approach the amplituded$3,7/3,0,0, andw/3, re-

spectively. That is, the modes at=0,|J+B| increase, the

=0.4 in Fig. 9. However, Fig. 12 indicates that dramatic
changes in the mode amplitudes at ldvshould take place
asB is increased from=0.8 to ~1.2. Over this field range,
the amplitudes of the modes at=|J|,|J+ B| decrease from
pearlyfr/S to nearly 0, and the amplitudes of the modes at
=0, increase from nearly zero to neatty3. Meanwhile,
the amplitude of the remaining modeat=|J| remains con-
stant atzr/3. Although not pictured for brevity, ak=1, all
five AFM modes forS=1/2 are clearly evident, and the

modes atw=|J, |‘]._B| decrease, and the mpde @tB crossover from the weak-field regime to the strong-field re-
has a nonmonotoni@ dependence. The classical treatment . —
gime occurs aB~1.5.

reserves these FM features only qualitatively, and is inac ; . .
P te forT<0.1 v 4 The field dependencies of the most important modes for
curate fort <u.1. the FM and AFMS=5/2 dimers are shown at the rather low

temperature?=0.1 in Figs. 13 and 14, respectively. In Fig.

13, the FM modes shown are fer=0, B, |5J+B|, and
5/J|. The crossover from the weak- to strong-field limits

occurs at abouB~0.5. In the weak-field limit, this corre-
sponds to the dominant modesBat 0.1 shown in Fig. 8, for
and|J+§|, respectively. Note that @=0, the s, for | which the ranking of the five strong.est Ionm(-)des- is at
=0,1 are degenerate but unequal in intensity, andathe, /|3]=0.1,0,5.1,5, and 4.9, respectively. At high fiel@s,
for i=2,3,4 are both degenerate and equal in intensity. A®>2, there are only three important modes &t 0,B, and
each field, the sum of the five intensities4s From this 5J+B, which have amplitudes that approachr/3, /7,

figure, it is evident that the crossover from the low-field re-and 7/7, atB— oo respectively.
gime to the high-field regime occurs at the rather low-field For the AFM case witt8=5/2, the behavior of the rela-

value, B~0.1. The high-field regime is clearly consistent tive mode amplitudes aT=0.1 is more complicated, as

B. Field dependencies of the quantum modes

In Fig. 11, we plotted the amplitudds,; of the five FM
guantum modes fos=1/2 atT=0.1 versusB. The modes
wyp; for i=0, ... ,4correspond taw=0, |B|, |J|, |[J—-B],

174427-7
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FM S=5/2

f52,i

TANISS+1)] = 0.1

05 |

PHYSICAL REVIEW B 66, 174427 (2002

et al. measured the four Fe2 dimers they made, and found
that the zero-field magnetic susceptibility could be fit with
the Heisenberg model, with exchange constants ranging from
15 to 19 cm'! (22 to 27 K, which corresponds ®=1 at
B~16—22 T). A slightly different fit was made by Lascial-
fari etal, obtaining |J]~22K for the Fe2 dimer,
[Fe(OMe)(dpm)],. Those authors also refer to EPR mea-
surements that give rise to a zero-field splitting anisotropy of
abou 7 K in thefirst excited state, which would complicate
the analysis performed here. Such a zero-field splitting

would still allow quantum level splitting, but the magnetiza-

tion steps and the specific heat double peaks would not all be
. , , regularly spaced. We remark that these level crossing effects
0 ! 2 ous|BA| 8 4 5 are purely quantum in nature, as the analogous classical cal-

culations do not give rise to such effects, and hence are only
FIG. 13. Plots of the dominant FM quantu@+5/2 mode am-  approximate forla|=1. Nevertheless, the quantum effects
plitudesfs,; versusB at T=0.1. The modé values correspond to Predicted for the magnetization and specific heat ought to be
Table Il in the Appendix. observable with presently available facilities, as one should
o ) ~ be able to see one or two magnetization steps, and one or two
shown in Fig. 14. There we plotted the field dependencies o§peciﬁc heat double peaks.
the eight most important modes, which occuraat 0, |2J In addition, inelastic neutron scattering would see slightly
=B, 2|3, |B|, [J=BJ, and|J|, respectively. From Fig. 14, different results from those presented here. In this situation,
it is evident that there are essentially three field regimes. Thehe classical envelope curves might be quite useful, as they
low-field regime occurs foB< 0.5, the intermediate regime can serve as a guide to the behavior that might be expected

is for 1.5<B<2.2, and the high-field regime f@>3, ap-  With specific zero-field splitting values. More important, in-
proximately. An example of the low-field regime at the sameelastic neutron scattering can be used to probe the details of
temperature was shown f@&=0.4 in Fig. 6. In Figs. 6 and e magnetic interactions within an individual dimer. Pro-
14, the low-field rank-ordering of the six most important Vided that a single crystal of sufficient size for such studies
modes are those at=|B+1J|, 3], [B—J|, |B+2J], 2|J] can be obtained, one would perform the experiments at the
~ T C * 71 wave vectors specific to the crystal structure. More precisely,
and|B—2J|, whereJ<0. From the intermediate regime pic- o\ nyolarized inelastic neutron magnetic dynamical struc-

= - ; ) i Sure factorS(q, ) for a single crystal of equal-spin dimers is
those atw=|B+2J| and|B+J|, with the six other modes in given by 81617

the list contributing lesser, but comparable amounts. Finally,

in the high-field regime, the two dominant modes arevat 3 o
=0 and|B|, respectively. S(q,w)= ;:1 (6ap—dalp)
VII. DISCUSSION = dt
Aot T
We remark that there have been some experiments on one X f_mgwel (Qa(a,1)Qp(a,0)), (28)

or more of the Fe2 single molecule magnet dimers. Le Gall

where theq,=sin 0,COS¢y,Sinbsing,, and cod, for a
=1,2, and 3, respectively,, ¢4 are the angles the scatter-
ing wave vectorg makes with the spin quantization coordi-
nates, and( ...) represents a thermal average, as in Eq.
(20). The dimer structure operator

Qu(a,) =F(q)[VIS () +e7'9S,,(1)], (29

where 2l is the displacement vector between the dimer
spins, andf(q) is the atomic magnetic form factdt’ The
low T, B=0 transitions inS=1/2 C¢* and YB" and inS
___________ 6 .1 =3/2 CP" dimer powders were treated previou$iy° For
""""""""""""""" B=0, the quantization axis is arbitrary, sf=m/2 was
........ choserf For B#0, the quantization axis is parallel By so

s 7 04 and ¢, are the angleg makes with the coordinatez B

4
gus|BA| Aoal . .
andxXy=z. For scattering wave vectorg. directed along
FIG. 14. Plots of the dominant AFM quantuB=5/2 mode the special angle
amplitudesf g, versusB at T=0.1. The modé values correspond
to Table Il in the Appendix.

)
T

AFM S=5/2

T/[JIS(S+1)] = 0.1

05 |

05=sin"1(2/3)%, (30)

174427-8



HEISENBERG DIMER SINGLE MOLECULE MAGNETS IN . .. PHYSICAL REVIEW B6, 174427 (2002

the components of eadh; (w) are sampled equally, and ACKNOWLEDGMENTS

We thank M. Ameduri and S. E. Nagler for useful discus-

2 - - sions. D.E. gratefully acknowledges support from Project

S(Qe,w)= gfz(qc)[Cn(w)+Clz(w)008(2qc~ d] No. SFB463 with the MPI-PKS, the MPI-CPfS, the IFW, and
(31) the TU Dresden.

APPENDIX

2 ~
= — 2 — .
3]c (qC)[Cll(w)[l cos20,- d))fm 1. Classical time correlation function

cog2q,-d) From the classical equations of motion,

1
S(S+ l) (<S§>5(w)+ E(SZ_S§>

S(t)=BS;+S, [xcog Bt) —ysin(Bt)], (A1)
X[8(w—B)+ 8(w+B)]

} , (32

whereB=yB, B is a unit vector parallel t®, andx, andy

_ are orthogonal unit vectors satisfying y=B. SinceS=S
where we have employed the Fourier transform of the sum s

1 _ _Qq 2
rule in Eq.(24). For powder samples, one can still use the B, we have$=Scosg and S, =Ssing, and henceS

_ _ . : a =$+S2. S((t) is then found to be
special angle technique with a field to obtaly(w), but
since the direction ofl is random, one obtains

Sl,H(t):S:L,H_’_Sl,J_ COS(J St— ¢0), (AZ)
- sin(2q.d .
cos{ch.d):r;q—qg), (33 S (t):e”VB‘[Sl'SL N Susl(exp[H(JSt— bo)]
i N S 2 S-S
where- - - is a spatial averag¥. N exfd i(JSt-¢y)] A3
For the general case @+ 6%, however,S(q,») cannot S+S ' (A3)
be written simply in terms of th@ij(w). There are four _ _ o _
factorsh; fori=0, . . . ,3,listed in the Appendix, that depend WhereS, . =S;,*iS,,, and ¢, fixes the initial relative con-
upong-d and sing,. We then find figuration of the two spins. Sincg,=S—S;, we haveS,
=S, =S/2 and Sy, =—S,, =(S, /S)[1—SY4]"2 After
£2(q) 65+1 averaging ovekpg,
S(a0)=—5 = 2 fsihs[8(0—o0s)+ oot ws)], <
- 1 ~
(34) Ci(t)= Z< §|2+ 28—2(1— S?14)cog St + Sfcos{ Bt)
where hg; is the appropriatéh; for the modes* wg;, as 1—S2/4 _
indicated forS= 1/2 and 5/2 in the Appendix. The factdng +—g—{(S+8)*cod (IS+B)t]+(S-§)°
andh,; are x cog(q-d), and correspond respectively to the
w=0 and =B modes. The factors, and h; are = sir’(q -
-d), and correspond respectively to the modes-at) and X co§(IS-B)t]} ). (A4)

+|nJ=B|, for n=1,...,5+1. Sinceh, andh, are also

o sinzeq, whereash; andh; areo(1— %sinzeq), the experi-  ReplacingSwith s for elegance, these classical averages are
menter can fine tune the single crystal data by rotairamd ~ evaluated from

g relative tod.

Neutron powder data on the deuteratSe1/2 dimer 2 7sin0d o
single molecule magnet VODRO;D,0 (V2) were taken, (.. .>=Z‘1j sdsf > e
resulting in a fit to the AFM Heisenberg model ¢f| 0 0
=7.81(4) meV® close to the value 7.6 meV found in the
susceptibility fit'® This corresponds t®=1 at B~66 T, NE q 7SiNOd0 o o oco
which is too large for thermodynamic studies. However, in- Z= fos sfo 2 °© :
elastic neutron scattering at 0.1-B.Bught to be possible for
this material. Single crystal data could be particularly inter-The integrals ove® can then be written in terms &,(x)
esting. For the Fe2 dimers, inelastic neutron scattering in asinhk)/x and its first and second derivatives,;(x)
field of B=<0.4— 0.5 should be possible, which would not see = F{(x) =[ cosh&)—sinh)/x]/x and F,(x) = Fg(x) = F(x)
any level crossing effects, but could prove interesting, as-2F(x)/x, respectively. We note thdt,(x)/Fq(x)=L(x)
indicated in Fig. 6. =coth)—1/x is the Langevin function. We find

as?+bscosf . (A5)

(A6)

174427-9
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1
Cia(t)= 8_ZJ sdséS{ZSZGl(bth)+(4 s?)

X[ cogsJt)G,(bs,Bt)+ Gy(bs,Bt)sin(sJ]},

(A7)

Gi1(x,y)=Fa(x) +[Fo(x)—Fx(x)]cody),  (A8)

Ga(X,y)=Fo(X) —F,(X)+[Fo(x) +F5(x)]cogy),

(A9)
Gs(x,y)=2F(x)sin(y). (A10)
As T—o, we sett* =|J|t, and obtain,
0 cog T
lim Cya(t) = Wf(t*), (A11)

T—o
[1+2cog2t*)] 3sin2t*) 3[1—cog2t*)]
t*2 t*3 2t*4

(A12)

f(t*)=1—

We note thaff (t*) was obtained previously for the zero-field

case’® We also have lim  Ci(t)=1—lim___Ci(t).
These forms clearly satisfy the requirement_limCy(0)
=1.

2. Quantum frequency spectrum

The Fourier transforng; () of the real part of the auto-

PHYSICAL REVIEW B 66, 174427 (2002

TABLE |. Factorsh; that appear ir8(q,w), Eq.(31), and their
associated transition quantum number changes.

i As Am hy
0 0 sirfg,cog(q- d)
0 *1 (1— 3sirP4,)co(q- d)

=+

1 sirfg,sir’(g- d)
1 +1 (1— 3sirP,)sin¥(q-d)

w Nk O

I+

<sn’i Sh=|s'm’ )= Om’ m= 1[A§m55,'5/2+ (— "t
X (B§m53’,s+l+ Cstm‘ss’ ,S— 1)]:
(A18)

respectively. We note tha,=S;,+S,,, S+
We find

for n=1,2,
=5+ +S55+.
MS m

sm,a m’ ,m[ 53’ ,sm2h0+ 4h2( Bgmés’ ,s+1+ Cgmés’,sf 1)]

+ 8 me1ih1(Agn)?8sr o2+ 2h3

X [(B;:m)z‘ss’,s+1+ (Csim)25s’,s—1]}a

where theh; and the changeAs=s'—s andAm=m’'—m

in the matrix elements for which they occur are listed in
Table I. For arbitrarys, each of thehs; is equal to one of the
four h; listed in Table I. ForS=1/2 and 5/2, the appropriate
choices of théhg; are listed in Tables Il and Ill, respectively.
We remark that by setting(q)=1 and each of thény,=1,

(A19)

correlation functionCy,(t) for the quantum dimer of spis- (4, ®)— Cyy(w)/(27).

spins is given by

6S+1
Cry(w)= ;0 fsild(w—ws)+ 8w+ ws;)], (AL3)

fs;=mag;/C3(b,a). (A14)
For bothS=1/2 andS=5/2, CS(b,a) is given by
CS(b,a)=4S(S+1)e?SIb~(25+1)elz, (A15)

We note thatD=S(S+1)Z and thatCS(0,0)=4S(S+1)
X(2S+1)2.

The factorsh; that weight the modes i8(qg,w) given by

Eq. (34) can be derived from Eq$28) and(29). In Eq. (298),

the off-diagonal terms i5(q, w) with @, 8=1,2 sum to zero,

a. Quantum frequencies for $1/2
For S=1/2, we have

CY3b,a)=3(1+eP+e®+el~29), (A20)

The mode frequencies,,;, their relative amplitudes
aypj, and the factors,,; appearing irS(q, ) are given in
Table II.

b. Quantum frequencies for &5/2

For simplicity, we set

(2s+1)sinH (2s+1)b/2]
Asb)= Sinh(b/2) ’

(A21)

and the remaining off-diagonal terms all vanish. Hence, we

only require the matrix elements

MET =(1-02)|(smQl(q,0)[s'm")|%/f2(q).

From Eg. (4) and s.|sm)=
=[s(s+1)—m(m=1)]*2 we write

(Srdsnz|sr m’> = 5m’,m[m§s’,s/2+ (— 1)n71
X (Bsm5s’,s+l+ Csm‘ss',s— 1)]:
(A17)

(A16)

A s,m=1), where A,

TABLE Il. Frequencyws; and weighting factohg; spectra of
the S=1/2 Heisenberg dimer in a magnetic field.

I W12 N12; ai;

0 0 ho 1+e?®

1 |B| h, (1+€")?2
2 [J] h, eP(1+e729)
3 |J-B| hs eP(eP+e 29)
4 |3+B| hs 1+eb 2

174427-10
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TABLE lll. Frequencywsg; and weighting factohg; spectra of
the S=5/2 Heisenberg dimer in a magnetic field.

i wsppj  Ngp; Asppj
0 0 ho 2e5(076a)325 gan(ntD3N | s2cosheh)
1P h F (1+e 2e 2
2 20 e (1o )3 (A|(b)
3 349 h E:;Oe5b*18“(1+e’G“)EﬁzoAs(b)
4 43 h 718 1% (1+e %) 2L A(b)
5 53 h, 5(1+e 00)e%3? A (b)
6 |B| h, 2coth@r2)e®® 69525 ean(nt 31 ssinhsh)
7 |B+J hs 2 (1+ P24t~y (b)
8 |B+2J hs 15 €% 241+ €2 49) X(b)
9 |B+3J] hs 5e? 18 (14 P B X4 (b)
10 |E+4J| hs %{eb‘m“(l+eb‘8“)x4(b)
11 |B+5J] hs §(1+e°7 1) Xg(b)
12 |B—J| hs 35e5b’28“(eb+e*2“)Y1(b)
13 |B-2J] hs 320b—24x(gh 4 @~ 42) Y, ()
14 |B-3J| hs 35e7b 18e(gb+ e762)Y,(b)
15 |B-4J] hs 1777 10%(eP+ e Y ,(b)
16 [B—5J| hs se%(eb+e 10y (b).
efblz
X(b)= ——5—=[eS’sinhsb) — ssinh(b
(D) 4smh'3(b/2)[ h(sb) h(b)

—4s%sink(b/2)], (A22)
b/2

4sini?(b/2)

+4s?sintf(b/2)]. (A23)

We note thatX;(b)=Yy(b)=1 and that Xs(0)=Y(0)
=s(4s?—1)/3. The mode frequenciess,; , their relative

Y (b)=X{—b)= [e~SPsinh(sb) —ssinh(b)

amplitudesas,; , and thehg,; factors are given in Table IlI.

In evaluating the coefficientss;,; ata=b=0, it is useful to
employ the relations

2S n 2
E 52:S(S-I—l)(ZS-i— 1) | (A24)
n=1s=1 3
2 (28+1)2:(n+1)(2n;1)(2n+3) (A25)
$=0

3. Classical frequency spectrum

From Eq.(27) and lettingw = w/J andB=B/J, the clas-

sical spin Fourier transforng;,(») has the following dis-
crete and continuous contributions,

Cry(®)=8(w)Cop+ 8(@—B)Coy+ 6C1y(w), (A26)

4
5611(Zo>=i§1 Ci(w), (A27)

PHYSICAL REVIEW B6, 174427 (2002
™ 2 3 s?
COO:W 0 sdse* Fz(bS), (A28)
a 2 2
001=—f s2dse*SFy(bs)—F,(bs)], (A29)
42|31 Jo

Ci(w)= 0(2— @) 20(1— w?l4)e*®’

4Z|J|
X[Fo(bw)—Fy(bw)], (A30)
Cy(w)= 4Z|J|®(2 B—w)(w+B)[1—(w+B)%4]

x e@ BXE [h(m+B)]+Fy[b(@+B)]

+2F[|bl(w+B)]}, (A31)
Cs(w)= 4Z|J|®(B ©)O(w+2-B)(B—w)

X[1—(w—B)24]e* = [F [b(B—®)]

+Fy[b(B—w)]+2F[|b|(B—w)]}, (A32)
C4(a)) (0— B)®(2+B ©)(w— B)

4Z|J|
x @ B*(E [b(m—B)]+F,[b(®—B)]

—2F4[|b|(w—B)1}. (A33)

4. Low temperature classical modes

We now investigate the low- behavior of the various

contributionsC;(w) to the classicaly;(w). We follow the
procedure used for the isosceles triangle and equivalent
neighbor models in zero fieldRefs. 15 and 211

The FM modal spectrum a6—0 is given by

0,(B)= (A34)
0,(B)=2, (A35)
Q4(B)=B+2. (A36)

We note thaC, leads to(},, C,, andC5; combine to create
Q,, andC, leads toQ.
As T—0, the AFM mode frequencies satisfy
0,(B)=00(2-B)+(B-2)0(B—2), (A37)
0,(B)=BO(2—B)+20(B-2), (A38)
05(B)=2BO(2—B)+(B+2)0(B—2). (A39)

In Ql(g), the 0O indicates that the maximum of the mode is
at =0, the same position as f@y,.
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