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Hysteretic properties of a magnetic particle with strong surface anisotropy
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We study the influence of surface anisotropy on the zero-temperature hysteretic properties of a small single-
domain ferromagnetic particle, and investigate limiting cases where deviations from the Stoner-Wohlfarth
model are observed due to nonuniform reversal of the particle’s magnetization. We consider a spherical particle
with simple cubic crystal structure, a uniaxial anisotropy for core spins, and radial anisotropy on the surface.
The hysteresis loop is obtained by solving the logaupled Landau-Lifshitz equations for classical spin
vectors. We find that when the surface anisotropy condtarassumes large values, e.g., of the order of the
exchange coupling, large deviations are observed with respect to the Stoner-Wohlfarth model in the hysteresis
loop and thereby the limit-of-metastability curve, since in this case the magnetization reverses its direction in
a nonuniform manner via a progressive switching of spin clusters. This characteristic vidyelepends on
the surface-to-volume ratio of exchange coupling and the angle between the applied field and core easy axis.
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[. INTRODUCTION and the analysis was restricted to the hysteresis loop.
In this paper, we use an improved version of the method

Surface effects have a strong bearing on the properties ahentioned above including a global-rotation condition on the
small magnetic systems, and entail large deviations from theesultant magnetic moment of the particle in addition to the
bulk behavior. It was shown in Ref. 1 that the magneticlocal condition(see Ref. 4 We compute the hysteresis loop
disorder on the surface caused by surface anisotropy is lorand infer from it the limit-of-metastability curvéSW as-
ranged, which implies that even the spins in the core of aroid), and compare with the SW model especially when the
very small magnetic particlé nm) render a magnetization surface anisotropy constant assumes large values, e.g.,
that deviates from the bulk value. It will be useful to under-K_/J~1. This study has allowed us to investigate the limit
stand surface effects in magnetic materials in order to contradf validity of the SW model for very small magnetic particles
their properties which are relevant for technological applicayhere surface anisotropy plays a determinant role, and

tions. One such property is the coercive field as it givesyhose magnetization no longer switches in a coherent way.
indications on the relaxation time of the magnetization and o method. based on the numerical solution of the

thereby on the stability of the information stored on magnetiq ,,qau-Lifshitz equation at zero temperature

- is checked
media.

. . ainst the SW semianalytical results in two limiting cases of
Surface effects are due to the breaking of crystal-fiel g y g

symmetry, and this is a local effect. So, in order to study he exchange coupling with different distributions of anisot-

such effects one has to resort to microscopic theories, unlikg Py axes. We first consider a single-domain particle with a

the macroscopic Stoner-WohlfartSW) model? which are macroscopic mag.netic ”?Ofnem resulting from very strong
capable of distinguishing between different atomic environ-e)((:h"’lnge !ntera(?thn. Th!s is equivalent to the SW one-spin
ments and taking account of physical parameters such a&roblem with uniaxial anl_sotropy. A_second_ test c_JeaIs Wlt_h

bulk and surface anisotropy, exchange, and dipole-dipole inth® case of a square particle of noninteracting spins all with
teractions. Unfortunately, this leads to difficult many-bodyandomly distributed easy axes. This model mimics an as-
problems which can only be dealt with using numerical ap_sembly of monodispersed single-domain nanoparticles with a

proaches. random distribution of their easy axes embedded in a two-
This work deals with the effect of strong surface anisot-dimensional(2D) nonmagnetic matrix. _ .
ropy on the hysteretic properti¢bysteresis loop and limit- The plan of this work is as follows: we first define our

of-metastability curve, the so-called SW astipiaf a single- model (Hamiltonian and physical parametgrpresent the
domain spherical particlevith free surfaces a simple cubic  method used for computing the hysteresis loop, and test it
(so crystal structure, a uniaxial anisotropy in the core, andagainst the semianalytical results of SW model. Then, we
radial single-site anisotropy for spins on the boundary. Thealiscuss our results for a spherical particle in terms of ex-
hysteresis loop and thereby the critical field are computed bghange coupling, particle’s size, and surface anisotropy by
solving, at zero temperature, the local Landau-Lifshitz equavarying, in turn, one of them while keeping the other two
tions derived from the classical anisotropic Dirac-Heisenberdixed. We also study the situation wittintra)surface ex-
model in field, subjected to a local conditideee below change coupling different from that in the core of the par-
accounting for the minimization of energy with respect toticle. A short account of the present work can be found in
local rotations of each spin in the particle. In Ref. 3 the samdref. 5. It is worth mentioning though that in fact only an-
method was used for studying the hysteretic properties ofsotropy and exchange coupling on the surface can be con-
models of nanoparticles, where the anisotropy was eithesidered as free parameters as there are so far no definite
random in the whole particle or taken only on the surfacegxperimental estimations thereof.

0163-1829/2002/68.7)/17441911)/$20.00 66 174419-1 ©2002 The American Physical Society



H. KACHKACHI AND M. DIMIAN PHYSICAL REVIEW B 66, 174419(2002

Il. MODEL HAMILTONIAN contribution of exchange interactions. On the other hand, the
second contribution plays the role of shape anisotropy, which
for a spherical particle yields an irrelevant constant. There-
fore in our case of very small spherical particles, where the
N effect of surface anisotropy constant is most important,

H=—, JijS'Sj_(gMB)H'z S+Han,, (1)  which is one of the main issues of the present work, the
{5 =1 volume term is negligible and the shape anisotropy is absent.

We consider the following classical anisotropic Dirac-
Heisenberg model:

where § is the unit spin vector on sitge H is the uniform
magnetic field applied in a directiogr with respect to the !l METHOD OF CALCULATION OF THE HYSTERESIS
referencez axis, NV is the total number of spin&ore and LOOP
surface, and in the sequéd will denote the particle’s diam- Different models of a nanoparticle are studied. In each
eter. J;;(=J>0) is the strength of the nearest-neighbor ex-case we simulate the lattice with sc crystal structure, and
change interaction, which will be taken in our calculationsihen assign to each site a length-fixed three-component spin
the same everywhere inside the particle, unless otherwisgsctor, For the calculation of the hysteresis loop we start
specified(see Fig. 14t seq); Ha, is the uniaxial anisotropy yith a magnetic configuration where all spins are pointing in
energy, the same directionr- z, which corresponds to the saturation
state. The hysteresis loop is due to the existence of meta-
Han= _2 Ki(S-€)? 2) staple states in 'ghe system. Sta_rting frqm the initial configu-
[ ration and applied field, the integration of the Landau-

with easy axisg and constanK;>0. This anisotropy term Lifshitz equation (see below tends towards a new

contains either of the two contributions stemming from theconflgurann that is an energy minimum. .

core and surface, and depends on the system under consid- Let us now establish the Landau-Lifshitz equations for the
eration. For instance, for the 2D modgVhich serves as a magnefuc moments. \We phoob’ec as the energy scaI.e and
test of our calculations by comparison with the SW model normalize the other physical constants accordingly, i.e.,

all spins(core and surfagehave the same anisotropy con- 2K, (gps)
stant but randomly distributed axes. In the case of a spherical t— Xt, =—-—X
particle, all core spins are attributed the same condtant h 2Ke
and all surface spins are attributed the constnt More-  Then, the Landau-LifshitzL) equation for a spir§ at site

h

H. (4)

over, core spins will have an easy axis along thexis, i, reads
whereas a surface spin is assumed to have its anisotropy axis
along the radial direction, see Ref. 6 and many references ds off off
therein. i~ SXhT—aSX(§xhT), 5
A more physically appealing microscopic model of sur- _ _ 0
face anisotropy was provided by Bl& wherea(~1) is the damping parameter ahl" is the effec-
tive field acting on the spilg and is given by
Z
Hire= =K 2 (S8 3 13
N hieﬁ:h+2KC ;1 Ji; S +ha", (6)

where z; is the coordination number of site and g; _ _ _

=ry;/rjj is the unit vector connecting the sit¢o its nearest wherehi"=—(9H,,/9S)/2K ., with Ha, given in Eq.(2),
neighbors. This model is more realistic since the anisotropy; is the coordination number of siteln the sequel, we will

at a given site occurs only when the latter loses some of itsise the reduced parametgrs;J/K, , ks=Ks/K,. Therefore
neighbors, i.e., when it is located on the boundary. Howeveffor each sitei we arrive at three coupled equatioli®r

the extra sum on nearest neighbors in E8). makes this S',5,S/), and because of the second term in Eg). we
model less practical for numerical calculations, especiallyactually obtain a system ofA8(local) coupled equations. We
those that are time consuming, such as the SW astroid. So Bmphasize that it is more convenient to use spherical coordi-
this paper we restrict ourselves to the model of radial singlenates(for each spip instead of the Cartesian ones. Indeed,
site anisotropy on the surface. In Ref. 8, we have developedwing to the fact that the spins are of constant length, this
an analytical theory, together with the numerical methodreduces the number of individudbr each spipequations to
used here, for weak surface anisotropy and studied thig instead of 3,

model and compared it with the radial-anisotropy model.

Aremark is in order concerning the dipole-dipole interac- 6;=(h&+ ahf;, 7)
tions inside the particle. It is well knowrihat these relativ-
istic interactions lead to two contributions, a first term that is @i=(—he"+ ahiﬁ)i Ising;

an integral over the volume of the particle, and a second one

over the surface. The latter represents the magnetostatic ewhere hgﬁz —aH/aa,hZﬁz —JdHldep are the polar compo-
ergy. However, it has been sholfirthat in very small par- nents of the effective field. For the one-spin problem, these
ticles the first contribution is negligible as compared with theare obtained by direct differentiation of the energy written in
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spherical coordinates, whereas for a particle it is not possible ~ m, | | T ) ‘o
to obtain a tractable analytical expression of the energy inq g4 : B g '
spherical coordinates, 96" andhS are written in terms of I .

the time derivatives of the Cartesian componentmf‘(?fin 0.5 ::’;ﬁ d [
Eq. (6). Using Eq.(7) instead of Eq(5) allows for a gain of Z

computer time, but this method encounters stability problems %° g
specific to the spherical coordinates, because of the facto V4
1/siné in Eq. (7), which diverges a¥—0,7, and hence a

1 --0.5

special care is required when numerically handling these, , | » | b)

equations. ——— — — ———+-10
After having constructed the magnetic structulattice 10 05 00 05,10 10 05 00 05,10

and spin vectors on)itwe apply a magnetic fieltl at some

angle ¢ with respect to the reference axis, with values FIG. 1. Left: (numerica) hysteresis loops for different values of

chosen in a regular mesh. Then we calculate the local effegt increasing inwards:y=0,60°,85°,90°, for a 3 particle with
tive field for all spins and thereby the right-hand sides of theuniaxial anisotropy. For the sake of clarity the SW analytical hys-
LL equations(7) and proceed with the time integration. As teresis loops have been omitted, since they exactly coincide with
this is done, the total energy in Efl) smoothly decreases, the gomputed ones. Rightnumerical in_ squares and analytical in
and some criterion must be used for stopping the integratioff!l line) SW astroid for the same particlg:= 10.

for the given value of the applied field and moving to the

next value. In our calculations we proceed to the next field AS @ test of this method, we considered a box-shaped
value when particle witht* ’=32, a sc structure, uniaxial anisotropy, and

strong exchange interaction between spins inside the particle,

and computed the hysteresis loop for different values of the
d_S <& ®) angle ¢ between the applied field and the easy axis. The
dt ' results are shown in Fig. deft). Next, we present in Fig. 1

(right) the SW astroid, which separates the region with two
which implies that the system is close to a stationary state, minima of energy from that with only one minimum. We see
being a small parameter of the order of 610 7. How-  that the SW results are exactly reproduced by our calcula-
ever, it was shown in Ref. 4, that this local condition, whichtions. We have also computed the hysteresis loop of a square
accounts for the minimization of energy with respect to localparticle of noninteracting spinsJ€0) all with randomly
rotations(or small deviationsof each spin, must be supple- distributed easy axes. This is equivalent to an assembly of
mented by a global condition on the resultant magnetic momonodispersed single-domain noninteracting particles with
ment so as to account for the global rotation of the particle’'sandomly distributed easy axes in two dimensions. As ex-
magnetic moment. Obviously, for a single spin these twapected, we find that the remanent magnetization is equal to
conditions boil down to one and the same conditiBh 1/2.

Next, the stationary state thus obtained is used as the ini- For later reference, we plot in Fig. 2 the critical fidid

tial state for the next value of the field. Ilteration of this and the height of the magnetization jurtig., m,—mg), as
process over a sequence of applied fields, of given magnfunctions of the angle/ between the direction of the field
tude and direction/, renders the hysteresis loop. For eachand core easy axis. Obviouslg.(¢) in Fig. 2 (left) is a
value of this angle we determine the critical or switchingwell-known result of the Stoner-Wohlfarth model.
field (see discussion belgwThe whole procedure finally On the other hand, we note that the height of magnetiza-
renders the critical or switching field as a function of thetion jump has an almost linear dependenceyomxcept for
angley, which in the case of critical field is the SW astroid. the final portion 76%<90°, which corresponds to cycles

N
1
N

hc m-m,
1.0 2.0
0.9 N
I‘, 1[ 15
t * \
0.8 A ) = )
j 0 \ FIG. 2. One-spin problem. Left: critical field
J|' ’ as function ofy. Right: height of magnetization
07 ¥ N, jump as function ofi.
i f 0.5 \
0.6 N\
/| \\
05 —1!” 0.0 .Vl
00 02 04 06 08 10 12 14 00 02 04 06 08 1.0 12 14
v (radian) y (radian)
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FIG. 3. Distribution of surface anisotropy axes versus the azi- G- 4. Hysteresis loop, i.e., plot of the magnetization projection

muthal angley, for a spherical particle witlD =10 (AV=360: 176  ON the field qlirection asa fur_mtion of tieeducedi field h, for =0,
surface spins and 184 core spins ks=1 and different values gt \/=360.

with crossing branches as exhibited by the hysteresis fofh€ first jump, and those witlys between 0.4 and 0.6 or 1.0
#=85° in Fig. 1(left), see Ref. 12 for a discussion of this and 1.2 are responsible for the second jump. Next, along
issue. portion 3—4 we have successive small jumps and thereby a

slight decrease of the magnetization. The origin of these

_ small jumps resides in two contributions. One contribution
IV. SPHERICAL PARTICLES: RESULTS AND DISCUSSION comes from those surface spins whose easy axis makes an

Here we consider a single-domain spherical particle ofingle around 0.2 with the field. Even though the correspond-
simple cubic(sg structure with uniaxial anisotropy in the ing height of jump is largésee Fig. 2, right their number is
core and anisotropy constakt,, and radial anisotropy on rather small(s_ee Fig. 3 thus rendering a small contribution
the surface with constar¢,. Our main goal here is to in- {0 the magnetization. The other contribution is due to surface
vestigate the influence of surface anisotropy, both in direcSPins with an angless=1.4, which yield a small contribu-
tion and strength, on the hysteresis loop and SW astroidion owing to the fact that the height of the corresponding
However, we will also study the effect of exchange couplinglump is very small(see Fig. 24s>1.2), even though their
and particle’s size. Again for later reference, we plot in Fig.number is relatively large. On the last portion of the lower
3 the distribution of surface anisotropy axes of the sphericaPranch of the hysteresis in Fig. 4, we see another big jump,

particle as a function of the azimuthal angle between a Which is due to the switching of core spins at the fiald
surface spin easy axis and applied field. =1.0. At last, there is a slow increase of magnetization due

to a final adjustment of surface spins along the field direc-
tion. In the present case, the surface fully switches before the
core (see Fig. 5.

Now we study the effect of exchange coupling on the Forj=0.1, we see that the surface behavior remains al-
hysteresis loop of a spherical particle containing=360  most the same as in the previous cases, whereas the core
spins(176 surface spins and 184 core spindfe first con-  spins now switch clusterwise as can be seen in the fourth
sider the case in which the anisotropy constants in the corpicture of Fig. 5. Indeed, regarding the exchange field as a
and on the surface are equal, ile,;=1.0, and the magnetic small perturbation of the applied magnetic field, it is clear
field applied along the easy axis of the core spins, so as tthat the core spins located near the surface are subject to an
investigate the influence of radial direction of surface anisoteffective field whose direction is slightly deviated from their
ropy. Forj<1, i.e.,j=0,0.01, we can see along portion 1-2 easy axis, i.e., the corresponding angles slightly different
in Fig. 4 a progressive decreade absolute valugof the  from zero. Now, in Fig. 2(left) we can see that this little
magnetization, which is due to the alignment of surfacedeviation iny produces an important change in the switching
spins, since as the field direction is along the core easy axield. On the contrary, we find that this effect is almost absent
the core spins have a rectangular cycle and the jump is ah what concerns the jumping field of surface spins, as can
h=1.0. be seen along portion 2—3 in Fig. 4 upon comparing the

Next, along portion 2—3 we can see two jumps. Indeed|oops for j=0,0.01 andj=0.1. Indeed, the surface spins
according to the distribution of surface easy axes in Fig. 3responsible for these jumps have their easy axes at an angle
and the critical field as a function af in Fig. 2 (left), those  0.6<,<1.0, and hence the change in the corresponding
surface spins withys between 0.6 and 1.0 are responsible forcritical field is very small(see Fig. 2 left In Fig. 4 we

A. Effect of the exchange coupling
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FIG. 5. Magnetic structure fgr=0.1k,=1 for the field valuesh=—4.0,0,0.64,0.8,0.88,4 which correspond to the saturation states and
different switching fields shown in Fig. 4. These field values correspond to the pictures when starting from the upper array and moving right,
down left, and then right. Obviously, gray arrows represent core spins and black arrows represent surface spins.

can also see that fgr=0.1, i.e., when the exchange energy the number of core spins. This expression ligrhas been
becomes comparable with anisotropy and Zeeman energgptained by summing over the direction of surface easy axes
there are more jumps that can be attributed to the switching/hich results in a constant surface energy contribution pro-
of different spherical shells of spins starting from surfaceportional toks. Hence, due to spherical symmetry, the sur-
down to the center. This situation is sketched in Fig. 5. Foiface anisotropy constant does not enter the final expression
example, forh=0 one can see that the exchange has a littlf he. )

influence on surface spins, as they are directed almost along NOW we consider the case of larger valueskef e.g.,
their easy axes; fon=0.64 the surface spins show the sameKs=10, SO as to investigate the influence of surface anisot-
behavior as in the absence of exchange, but part of cofPPY both in direction and strength. The results are presented
spins, located near the surface, are deviated from their ead Fi9- 7 (1efv).

: _ ; Here, a notable difference with respect to the previous
. At the fieldh=0.8 all th h Iread D .
z\i(veiicsched e all these core spins have afrea ycase,ksz 1, is the fact that the core now switches before the

For j= 1~k,, even that there is only one jump, the hys- surface and at higher fields. Moreover, there appear more

. . . . _jumps which may be attributed to the switching of various
tere5|s_loop is not rectangular owing to the fac_:t th_at the SPINR|ysters of surface spins. Both cases show that as the ratio
rotate in a noncoherent way, as can be seen in Fig. 6. This

. X SlkS decreases, the magnetization requires higher fields to
due to a compromise between anisotropy and exchange €Barate. This is further illustrated by Fig. (ight) where

ergies, see, for example, the picture for=0. Moreover,  —1@®=j for a smaller particle.

even a small number of neighbors lying in the core produces™ | et us now summarize the ongoing discussion. We ob-
a large effect via exchange on the behavior of a surface spierve that considering a radial distribution for surface anisot-

For much larger values gfthe spins are tightly coupled ropy, leads, even in the case of very strong exchange, to an
and move together, and the correspondingmerically ob-  important quantitative deviation from the classical SW
tained critical field h coincides with théanalytica) expres-  model. In particular, the critical field in our model is given
sion obtained in the limi§—, i.e.,h.=N./N, whereN.is by

174419-5



H. KACHKACHI AND M. DIMIAN PHYSICAL REVIEW B 66, 174419(2002

\\i 1/
/,// /| §:\\§‘\\//////Z
Sz

\

FIG. 6. Magnetic structure foj=1ks=1 for the field valuesh=—4.0,0,0.56,0.6,4 which correspond to the saturation states and
different switching fields shown in Fig. 4. As in Fig. 5, gray arrows represent core spins and black arrows represent surface spins.

c rable, the compromise between exchange coupling, favoring

HL:NHE, (9 a full alignment of the spins along each other, and surface

anisotropy, which favors the alignment of spins along their

where Hg is the critical field for a spherical particle with radial easy axes, produces large deviations from the SW
radial anisotropy on the surface and uniaxial in the cbi®, model. More precisely, the shape of the hysteresis loop is no
is the critical field for a spherical particle with uniaxial an- longer rectangular and there appear multiple jumps. The ap-
isotropy for all spins. Therefore, whgnandk, are compa- pearance of these jumps makes it necessary to define two

m.h/h m.h/h

FIG. 7. Left: Hysteresis loops foy=0, Kq
=10, and different values gf D=10 (N=360).
Right: Hysteresis loops foy=0, k=10, and
different values of. D=7 (N=123.
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0 Stoner-Wohifarth
FIG. 8. Left: Hysteresis loops fap=0ks=1,j = 10? for differ- ' astroid

ent values of the particle’s diametd. Right: (in diamond$

Switching field for the same parameters as a functionDof

hsw(Nc/N) is the SW switching field multiplied by the relative {1 . ' . . ' .

number of core spins. -1.0 -0.5 0.0 05 h 1.0

field values with the help of which a hysteresis loop can be
characterized. A value that marks the limit of metastability, : . S

called thecritical field, and the other value which marks the surface-to-volume rat'ms.‘ENS/N' The lines on the astroids inside
magnetization reversal, i.e., when the projection of the magt-he SW one are only guides for the numerical data.

netization on the field direction changes sign, and this is why . L
it is called theswitching field(or still coercive field. rendered by the SW model. Next, Fig. 9 shows the variation

with the surface-to-volume ratiblg=Ng/A\ of the critical
field for all angles between the core easy axis and magnetic
field, this is the limit-of-metastability curve. These results
Here, we study the effect of varying the particle’s sizeshow that, even in the general case of a field applied at an
while keepingj andks fixed. So we use the same value of arbitrary angle with respect to the core easy axis, the critical
anisotropy constant for all spins and strong exchange, i.efield of a spherical particle witks=1 can be obtained from
ke=1,=1C% and vary the particle’s diameter from @& the SW model through a scaling with constaht/V. One
=56) to 30 (M=12712. should also note that the astroid for all particle sizes falls
In Fig. 8 (left) are presented hysteresis cycles of a particlanside that of SW, in accordance with Fig.(i&ght), and the
with different diameters when the field is along the core easyarger the surface contribution the more the astroid shrinks.
axis, and on the right the variation with the particle’'s diam- Therefore folkks=1 our results for the hysteresis loop and
eter of the critical fiel§® (in diamond$ obtained from the limit-of-metastability curve can be scaled with those of SW
numerical solution of the Landau-Lifshitz equation fpr model with the scaling constaht, /A, which is smaller than
=10?, and(in circles the SW critical field multiplied by the 1 for a particle of any finite size.
core-to-volume ratigsee Eq.(9)]. The figure on the left Next, in Fig. 10(left) we present the hysteresis loop in the
shows that for such a value &f the hysteresis loop is rect- case where the surface anisotropy conskargquals the ex-
angular for all sizes, and that the critical field decreases witlthange coupling and the field is applied along the core easy
the particle’s size. The latter fact is clearly illustrated by theaxis, and in Fig. 1@right) the switching field* as a function
figure on the right, which also shows that fd=1 of the particle’s diameteD. There are two new features in
=10 ?j, all these hysteresis loops can be scaled with thoseomparison with the previous case kf=1: the values of

FIG. 9. Astroid forks=1,j=1C for different values of the

B. Effect of the particle’s size N/

h
m.h/h o5 C
. k =j=10°
|
FIG. 10. Left: Hysteresis cycle fog=0, j
=k,=10?, and different values of the particle’s
diameterD. Right: Switching field as a function
of N for the same parameters.
\.
T v T v T v
10 20 30 D 40
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FIG. 13. Switching field versus the surface anisotropy constant

FIG. 11. Astroid forj=10?, N=360 and different values of for =0, ] =107, andD=10.

surface anisotropy constak¢. The full dark line is the SW astroid
scaled withN. /N, but the dotted line is only a guide for the eye.
o _ _ In contrast with the case,= 1 andj=10°-10° where the
the switching field are much higher, and more importantly,,ysteresis loop and the limit-of-metastability curve scale
its behavior as a function of the particle’s size is opposite tQyith the SW ones with the same scaling constant for all
that of the previous case. Indeed, here we see that this fie%gms between the applied field and core easy axis, we find
increases when the particle’s size is lowered. For such high 5 for 1< ko< 20 the scaling constant depends on the angle
values ofks (Ks>K,) surface spins are aligned along their , 45 can be seen in Fig. 11. This fact explains the deforma-
easy axes, and because of strong exchange coupling thgyn of the SW astroid, that is a depression in the core easy

also drive core spins in their switching process. Thus thjirection and an enhancement in the perpendicular direction.
smaller the particle the larger the surface contribution, and g, larger values ok, we have computed the hysteresis

the larger the field required for complete reversal of the Paroop for =0, N'=360, ] = 1%. The results are given in Fig.
ticle’s magnetization. This could explain the nonsaturation of; 5 ’ '

magnetization that has been observed in, e.g.,

Jnetize cobalt ere we first note that the shape of the hysteresis loop is
particlest

rather different from that rendered by the SW model, since
for ks=30, for instance, the hysteresis loop is no longer
rectangular, even that=0. As explained earlier, this effect
Now, we fix the exchange coupling constgnthe parti- is due to the now more pronounced nonuniform rotation of
cle’s total number of sping/, and vary the surface anisot- surface spins and core spins located near the surface, and
ropy constantk;. BecauseK, is in general two to three thereby that of the particle’s magnetization. This nonuniform
orders of magnitude smaller thanwe have investigated the switching process causes large deviations from the SW
effect of surface anisotropy constant in the casg¢=0l/K, = model, and thereby no scaling with the latter is possible.

C. Effect of the surface anisotropy constantk

=107 From Fig. 12, we extract and plot in Fig. 13 the switching
m.h/h m.h/h
k=130 |
g 1
k =150

FIG. 12. Hysteresis loop foy=0, j=10,
D =10 and different values of surface anisotropy
constantks. These two sets of data cannot be
presented as one plot because of scaling mis-
match.
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h, m.h/h
v =45°%j=10
20 4 j=10,y=0 /._’—. 1.0 1
e
/lf;/.
154 — 0.5
10+ I4=01 A/ =1 0.0
j/j=08
5 ¢ / -0.5
] . ] —e—k=20
of—*—*—= 10 -0k =15
) —A—k =1
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FIG. 14. Switching field versus the surface anisotropy constant
for =0, and different values of surface-to-core ratio of exchang
couplings;D =10.

o FIG. 15. Hysteresis fop=45°, j=10?, D=10 (M=360), and
different values of surface anisotropy constknt

exchange couplings=j and group 2 withj<j. Whenk2
field h, as a function oks/j, denoted byks in the sequel. <ks<kg, k; being the critical value oks for groupi, the
We find thath, first slightly decreases fdt;<0.1 and then SPIns in group 1 are of SW type, while those of group 2 are

: d whek hes 1 it i ol | of non-SW type, in the sense that they switch in a coherent
Increases, and w dq approac €s L itjumps 10 farge values. way or clusterwise, respectively. Hence, as demonstrated ear-
As discussed above, for such high valuekg§urface spins

> k lier, the reversal of spins in group 2 always requires a larger
are aligned along their easy axes, and because of strong exitching field. On the other hand, whiegexceeds the larg-
change coupling they also drive core spins in their switchingygt exchange coupling in the particle, i.g.the switching
process, which then requires a very~strong field to be comfield of the whole particle decreases with/j. Now the
pleted. Clearly, this particular value &f, to be denoted by spins of both groups are of non-SW type, and their switching
T('g (: 1’ here marks the passage from a regime where Sca|.0perates C!uste-rWise, but ObViOUSIy the latter requires a
ing with the SW results is possibldeither with a higher applied field for group 1 than for group 2. .
y~dependent or independent consjantthe second regime Next, a similar effect is obtained when the field is applied
where this scaling is no longer possible because of com@r;[ an arb|]:[rar_y angle with respect tglthefcore easy "’I‘X'S’:S IS
pletely different switching processes. the case for instance in an assembly of nanoparticles. Here,

Now we present additional data which show that the'® consider the case af=m/4. We find that there appear
multiple large jumps at a smaller value kf (~0.2), as can

“ H' n TC ;
critical value” kg introduced above depends dat least be seen in Fig. 15.

two paramete_rs._ T_hese are the surface-t_o-core r:_:ltio .Of X" For an order of magnitude estimate kof and the critical
;gzﬂgg v(\:/(i)tlrj]prlzlans?)se/ét ?g?hzhioe:gg;i;ta\ﬁzlm the field is (or saturation field, consider a 4-nm cobalt particle of
: ; ’ fcc crystal structure, for which the lattice spacing as
Let us first discuss the effect gintra)surface exchange —3.554 A, and there are four cobalt atoms per unit cell
coupling. In real materials such as maghemite, it was argueﬁihe' (buII,<) magnetocrystalline anisotropy  isK ~3 :
in Ref. 1 on account of Mesbauer spectroscopy thalj . 417 erg/spin or 2.%x 1 erg/cn?, and the saturation

<.1' In Fig. 14 we have plottgo_l tfe results og obtalne_,'d magnetization isM =1422 emu/cri The critical field is
with surface exchange coupling=Js/K. smaller thanj,

i.e., core-core and core-surface couplings. First, we see thgfven byHc=(2Kc/Mg)h. Fory=0,ks=1 andh.= 15, so

~ ~ c .
the “critical” value k¢ of ks separating the two regimes dis- Hc=6 T. On the other hands=1 means that the effective
cussed above decreases with the ridig. This is a conse- exchange field experienced by a spin on the surface is of the
quence of the fact that wheji/j<1, surface spins align order of the anisotropy field, '-‘31145J2”2|.<s- Then using
more easily along theifradia) anisotropy axes since now J=8 meV we getK=5.22xX10 ezrg/spm, or using the
they experience a weaker effective field. We also note tha@€a per surface spimpproximatelya®/g), Ks=5 erg/cnf.
the jump becomes smoother. Next, if we consider the curvé&or the case ofy= /4, ki=0.2 andh,=0.3, which leads to
js/j=1 together with any other curve with/j<1, we see H,=0.1T andK,=1.2x10"* erg/spin or 1.2 erg/cfn

that whenk,<1 the switching field is larger fojc<j than

for js=], and the opposite holds whég>1.
To understand this result, let us imagine a particle con- Our model of a spherical particle with uniaxial anisotropy
taining (at least two groups of surface spins, a group 1 with in the core and radial anisotropy on the surface leads to

V. CONCLUSION
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mainly two pertinent regions for the surface anisotropy con4ind that there is a “critical” value K¢/J)° of the ratioK¢/J
stantkg, with ke>1 (Kg>K): beyond which large deviations are observed with respect to
For small values of this parameter, ek,/j~0.01, our the SW model in the hysteresis loop and thereby the limit-
model renders hysteresis loops and limit-of-metastabilityof-metastability curve, since in this case the magnetization
curves that scale with the SW results for all values of thereverses its direction in a nonuniform manner via a progres-
angle ¢ between the core easy axis and the applied field, thsive switching of spin clusters. So, in order to deal with these
scaling constant beinty. /N, which is smaller than 1 for a features one has to resort to microscopic approaches such as
particle of any finite size. On the other hand, the criticalthe one used in this work. In fact, it is found that the critical
field, which coincides in the present case with the switchingvalue (K¢/J)¢ is even smaller for smaller surface-to-core
field, increases with the particle’s size and tends to the SWatios of exchange coupling and larger angles between the
critical field in very large systems, and thereby the corre-applied magnetic field and the core easy direction, as it is
sponding astroid falls inside the SW astroid for all particlemore likely in realistic materials.
sizes. In a subsequent work we apply the present method to
For larger values ok¢/j, butk/j=<0.2, we still have the cubo-octahedral cobalt particles with a diameter of approxi-
same kind of scaling but the corresponding constant dependmsately 3 nm recently studied in Ref. 13ee also Ref. 18 for
on . This is reflected by a deformation of the limit-of- Pt particle$. These are particles with fcc structure and trun-
metastability curve. More precisely, the latter is depressed igated octahedrons on the surface, in which the core has a
the core easy direction and enhanced in the perpendiculaubic anisotropy, and the surface anisotropy easy axes are
direction. However, there is still only one jump in the hys- believed to be along edges and facets with different constants
teresis loop implying that the magnetization reversal can b&¢ but whose values are uncertain at present. In our calcu-
considered as uniform. lations we vary these parameters and study the effect of
For much larger values dfs/j, starting fromkg/j=1, surface anisotropy on the Stoner-Wohlfarth astroid that has
there appear multiple steps in the hysteresis loop which malgeen experimentally measured in Ref. 17 where these anisot-
be associated with the switching of spin clusters. The appearopy constants have been estimated from magnetic measure-
ance of these steps makes the calculated hysteresis loogsents. The final outcome of our calculations should give an
both qualitatively and quantitatively different from those of estimation ofK¢ by comparing with these experimental re-
SW model, as the magnetization reversal can no longer beuits. Another related issue of particular interest to us is the
considered as uniform, and one has then to define two chafact that these fcc particlesee Ref. 17 for cobalt and Ref.
acteristic values of the field associated with a hysteresis loopt9 for iron) seem to exhibit an effectiveniaxial anisotropy

the critical field and the switching fieldIn addition, in the  despite their cubic crystal symmetry. This work is in
present case, there are two more new features: the values gfogress.

the switching field are much higher than in SW model, and
more importantly, its behavior as a function of the particle’s
size is opposite to that of the previous cases. More precisely,
here we find that this field increases when the particle’s size We thank D. A. Garanin and M. Nogsdor reading the

is lowered. This is in agreement with the experimental ob-manuscript and suggesting improvements. M. Dimian thanks
servations in nanoparticldsee, e.g., Ref. 16 for cobalt par- the Laboratoire de Magtisme et d’Optique for the hospi-
ticles). tality extended to him during his training under the Socrates

Therefore, assuming radial anisotropy on the surface, werogram, 1 March—31 July 2001.
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