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Magnetic properties of exactly solvable doubly decorated Ising-Heisenberg planar models
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Slovak Republic

~Received 6 February 2002; revised manuscript received 21 June 2002; published 8 November 2002!

Applying the decoration-iteration procedure, we introduce a class of exactly solvable doubly decorated
planar models consisting both of the Ising- and Heisenberg-type atoms. Exact solutions for the ground state,
phase diagrams, and basic physical quantities are derived and discussed. The detailed analysis of the relevant
quantities suggests the existence of an interesting quantum antiferromagnetic phase in the system.
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I. INTRODUCTION

The quantum Heisenberg model~QHM! ~Ref. 1! and its
simplified Ising version2 remain one of the most activel
studied subjects in statistical mechanics. In particular,
low-dimensional antiferromagnetic QHM has recently
tracted a lot of attention since it represents a very us
model for the investigation of interesting quantum pheno
ena. Among the most fascinating problems that are of cur
interest in this field, one should mention the investigation
Haldane gaps in the one-dimensional~1D! antiferromagnetic
QHM with integer spins,3 quantum phase transitions,4 spin-
Peierls instabilities,5 dimerization and other relate
phenomena,6 quantum entanglement,7 magnetization
plateaus,8 and so on. In addition to the above mention
works, a number of the studies has been devoted to the
vestigation of the role of magnetic ordering in high-Tc su-
perconducting cuprates consisting of two-dimensional Cu
networks.9 In fact, the magnetic properties of these materi
can be well described by means of a spin-1/2 antiferrom
netic 2D QHM.

Despite of extensive studies, the QHM has been exa
solved in one dimension only10; thus for higher dimensions
only more or less accurate approximate methods
available.11 In general, the main difficulties of a rigorou
treatment of the QHM are closely associated with the n
commutability of the spin operators involving the Ham
tonian of the system. This principal mathematical intracta
ity of the QHM has motivated us to introduce a class
interesting exactly solvable models, consisting both of
Ising- and Heisenberg-type atoms. For this purpose, we
lize the well known decoration-iteration procedure origina
introduced by Syozi12 and later remarkably generalized b
Fisher.13 In the spirit of the Syozi’s and Fishers’s papers,
this work we use the decoration procedure to put a coupl
Heisenberg atoms on each bond of the regular Ising latt
In this way we obtain a doubly decorated model consist
of two interpenetrating sublattices occupied by Ising- a
Heisenberg-type atoms, respectively, and such a model
be of interest both theoretically and experimentally. Theor
cally, the most outstanding feature of this model is the f
that it enables to investigate, by an exact calculation, how
quantum Heisenberg atoms modify the magnetic proper
of the pure Ising systems. On the other hand, from the
perimental point of view, the model can be inspiring in t
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preparation of new magnetic materials with similar topolo
cal structure as the system under investigation. Actua
some of recently synthesized compounds represent a
gressive step in this direction.14

The outline of the present paper is as follows. In Sec.
the main points of the mathematical formulation of t
decoration-iteration procedure for Ising-Heisenberg mod
are explained and the exact equation for the phase diagr
and basic physical quantities are derived. The most inter
ing numerical results are presented and discussed in deta
Sec. III, and, finally, some concluding remarks are given
Sec. IV.

II. FORMULATION

In this work we will study the spin-1/2 Ising-Heisenbe
model on planar doubly decorated lattices. In order to illu
trate a typical topological structure of the considered syst
in Fig. 1 we depict a part of the doubly decorated squ
lattice. In this figure the black circles denote the spin-1
Ising atoms that occupy the sites of the original square lat
and the gray ones represent the spin-1/2 Heisenberg a
residing on the bonds of the original lattice.

Consequently, the Hamiltonian of the Ising-Heisenbe
model can be written in the form

FIG. 1. The fragment of the doubly decorated square lattice.
black ~gray! circles denote the positions of the Ising~Heisenberg!
atoms, respectively. The ellipse demarcates a typical bond desc

by the HamiltonianĤk @see Eq.~2!#.
©2002 The American Physical Society15-1
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Ĥd52
1

2 (
i , j

Ji j @D~Ŝi
xŜj

x1Ŝi
yŜj

y!1Ŝi
zŜj

z#2
1

2 (
k,l

Jkl
(1)m̂k

zŜl
z ,

~1!

where both summations in the first term are carried out o
all Heisenberg atoms. On the other hand, in the second
the first summation runs over all Ising atoms and the sec
one over all Heisenberg atoms. As usual, in this work
restrict all possible interactions to the nearest-neighbo
atoms only. For this purpose we setJi j 5J if the site i is the
nearest neighbor of the sitej. Otherwise we assume thatJi j
50. Similarly, for nearest-neighboring sitesk and l we put
Jkl

(1)5J1 andJkl
(1)50 in all other cases. The factor 1/2 in bo

terms of Eq.~1! has been included to avoid double-counti
of the relevant terms. Finally,Ŝi

a and m̂ l
z represent the well-

known components of spin-1/2 operators, andD describes
the spatial anisotropy in the Heisenberg exchange inte
tion. In fact, this parameter allows one to control the beh
ior of the system between the Ising regime forD,1 ~easy-
axis-like anisotropy! and theXY regime for D.1 ~easy-
plane anisotropy!. In view of further manipulations, it is
useful to rewrite the total Hamiltonian of the system as a s
of the bond Hamiltonians, i.e.,Ĥd5(kĤk , where the sum-
mation is carried out over all the pairs of Heisenberg ato
The bond HamiltonianĤk involves all the interaction term
associated with thekth pair of Heisenberg atoms~see Fig. 1!,
and is given by

Ĥk52J@D~Ŝk1
x Ŝk2

x 1Ŝk1
y Ŝk2

y !1Ŝk1
z Ŝk2

z #

2J1~Ŝk1
z m̂k1

z 1Ŝk2
z m̂k2

z !. ~2!

The most important point of our treatment is the calculat
of the partition function for the system under investigatio
Taking into account the standard commutation relation
the bond Hamiltonians~i.e., @Ĥi , Ĥk#50, iÞk), we can
express the partition functionZd of decorated system in th
form

Zd5Tr exp~2bĤd!5Tr expS 2b (
k51

Nq/2

ĤkD
5Tr$m% )

k51

Nq/2

TrSk1
TrSk2

exp~2bĤk!, b51/kBT, ~3!

wherekB is the Boltzmann constant andT the absolute tem-
perature.N represents the total number of Ising atoms anq
is the coordination number of the original~undecorated! lat-
tice. The symbol Tr$m% means a trace over all degrees
freedom of Ising spins and finally, TrSk1

TrSk2
denotes a trace

over a couple of Heisenberg spins residing on thekth bond.
To proceed further, it is useful to introduce the followin
extended decoration-iteration transformation:12,13
17441
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.
r

TrSk1
TrSk2

exp~2bĤk!

52 exp~bJ/4!H cosh@bJ1~mk1
z 1mk2

z !/2#

1exp~2bJ/2!coshFb2AJ1
2~mk1

z 2mk2
z !21J2D2G J

5A exp~bRmk1
z mk2

z !. ~4!

The unknown transformation parametersA andR can be eas-
ily obtained following the standard procedures~see Ref. 12
and references therein!, namely,

A52 exp~bJ/4!~V1V2!1/2, bR52 lnS V1

V2
D , ~5!

where we have introduced the functionsV1 and V2 as fol-
lows:

V15cosh~bJ1/2!1exp~2bJ/2!cosh~bJD/2!,

V2511exp~2bJ/2!coshS b

2
AJ1

21J2D2D . ~6!

Now, after substituting Eq.~4! into Eq. ~3! one obtains the
equation

Zd5ANq/2Z0 , ~7!

which relates the partition function of the doubly decorat
Ising-Heisenberg model (Zd) to that of the original undeco
rated spin-1/2 Ising model (Z0 .) From this simple relation,
we can directly calculate some physical quantities~for ex-
ample, the free and internal energies or specific heat! on the
basis of well-known thermodynamic relations. However,
understand the behavior of the system, we have to ana
also some other quantities~for instance the magnetizatio
and pair-correlation functions! that cannot be obtained from
the partition function in a straightforward manner. Fort
nately, we can avoid this complication by exploiting the e
act identities

^ f 1~m̂ i
z ,m̂ j

z , . . . ,m̂k
z!&d5^ f 1~m̂ i

z ,m̂ j
z , . . . ,m̂k

z!&0 , ~8!

^ f 2~Ŝk1
a ,Ŝk2

g ,m̂k1
z ,m̂k2

z !&d

5K TrSk1
TrSk2

f 2~Ŝk1
a ,Ŝk2

g ,m̂k1
z ,m̂k2

z !exp~2bĤk!

TrSk1
TrSk2

exp~2bĤk!
L

d

,

~9!

from which the relevant quantities can be calculated. In
above equations,f 1 represents a function depending only o
the Ising spin variables, andf 2 denotes a function which
depends on the spin variables located on thekth bond only.
The superscriptsa andg denotex,y or z components of the
spin operators and the symbols^•••&d and^•••&0 mean the
standard ensemble average related to the decorated and
5-2
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nal lattice, respectively. Now, applying one of the stand
methods,15 we simply derive equations for the sublattic
magnetization,

mA
z [

1

2
~^m̂k1

z 1m̂k2
z &d!5

1

2
~^m̂k1

z 1m̂k2
z &0!5m0 , ~10!

mB
z [

1

2
^Ŝk1

z 1Ŝk2
z &d58~^m̂k1

z &d1^m̂k2
z &d!K0, ~11!

mB
x [

1

2
^Ŝk1

x 1Ŝk2
x &d50, ~12!

mB
y [

1

2
^Ŝk1

y 1Ŝk2
y &d50, ~13!

wherem0 is the magnetization per one site of the origin
lattice and the coefficientK0 is given in the Appendix. Simi-
larly, the various pair correlations can be expressed with
help of Eqs.~8! and ~9! in the simple forms

qii
zz[^m̂k1

z m̂k2
z &d5^m̂k1

z m̂k2
z &0[«, ~14!

qhh
xx[^Ŝk1

x Ŝk2
x &d5K11K214qii

zz~K12K2!, ~15!

qhh
yy[^Ŝk1

y Ŝk2
y &d5qhh

xx , ~16!

qhh
zz[^Ŝk1

z Ŝk2
z &d5K31K414qii

zz~K32K4!, ~17!

qih
zz[

1

2
^Ŝk1

z m̂k1
z 1Ŝk2

z m̂k2
z &5K01K514qii

zz~K02K5!.

~18!

Here«[^m̂k1
z m̂k2

z &0 denotes the nearest neighbor correlat
of the original lattice that is well known and the coefficien
K02K5 are listed in the Appendix. Finally, the internal e
ergy and specific heat of the system can be also easily
culated from the relations

Ud52
Nq

2
@JD~qhh

xx1qhh
yy!1Jqhh

zz12J1qih
zz#, ~19!

Cd5]Ud /]T. ~20!

III. NUMERICAL RESULTS AND DISCUSSION

In this section we will show the most interesting nume
cal results of the system under investigation. For the sak
simplicity, we restrict our attention to case of the doub
decorated square lattice~see Fig. 1! in which all characteris-
tic properties can be illustrated.

Before discussing the results, it is worth noticing that t
phase diagrams for the ferromagnetic (J.0,J1.0) and fer-
rimagnetic (J.0,J1,0) case will be the same, since th
relevant equation for the critical temperature is invariant
der the transformationJ1↔2J1. On the other hand, the an
tiferromagnetic system (J,0 and arbitraryJ1) exhibits
many different features and will be discussed in a sepa
work.
17441
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In order to find possible ground state phases and to inv
tigate their properties, we have to analyze the internal
ergy, magnetization and correlation functions atT50. De-
pending on whether the anisotropy parameterD is less than,
equal to, or greater than the boundary valueDc

5A2uJ1u/J11 one finds three different regions.
~i! For D,Dc ,

Ud52
Nq

8
~2uJ1u1J!,

qii
zz5qhh

zz50.25, qih
zz560.25, qhh

xx5qhh
yy50.0. ~21!

~ii ! For D.Dc

Ud52
Nq

8
@2J12AJ1

21~JD!2#,

qii
zz5qhh

zz520.25, qih
zz56

J1

4AJ1
21~JD!2

,

qhh
xx5qhh

yy5
JD

4AJ1
21~JD!2

. ~22!

~iii ! for D5Dc ,

Ud52
Nq

8
~2uJ1u1J!,

qii
zz5qhh

zz50.0, qih
zz56

2uJ1u1J

8~ uJ1u1J!
,

qhh
xx5qhh

yy5
AJ~ uJ1u1J!

8~ uJ1u1J!
. ~23!

The plus or minus sign one applies for the ferromagnetic
ferrimagnetic case, respectively. From these relations,
have obtained the ground-state phase diagram in theuJ1u
2D space which is depicted in Fig. 2. Taking into accou
Eqs. ~21!–~23!, one easily identifies the standard ferroma
netic ~ferrimagnetic! phase~FP! for D,Dc . However, for
D.Dc an unexpected quantum phase occurs in the sys

FIG. 2. Ground-state phase diagram of the doubly decora
Ising-Heisenberg model. The full lines represents the line of fi
order phase transitions that separates the ferromagnetic or ferri
netic phase~FP! from the quantum antiferromagnetic phase~QAP!.
5-3
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J. STREČKA AND M. JAŠČUR PHYSICAL REVIEW B 66, 174415 ~2002!
This phase@to be referred to as a quantum antiferromagne
phase~QAP!# requires more detailed description since it d
fers from standard phases in the pure Ising or Heisenb
models and, as far as we know, such a phase has not
described in the literature before. In fact, from the relev
equations we find that in the QAP the Ising spins~that are the
nearest neighbors on the original lattice! are aligned antipar-
allel with respect to each other. Consequently, we have
classical Ne´el long-range ordering on the Ising sublatti
with mA50.0 and qii

zz520.25. On the other hand, th
nearest-neighboring Heisenberg spins create dimers, thu
also havemB50.0 andqhh

zz520.25. However, the alignmen
of these dimers with respect to their nearest-neighbo
Ising spins is random; hence the relevant correlation func
qih

zz does not reach its saturated value (60.25). Moreover,
one easily observes that the degree of randomness incre
with the increasing in anisotropyD. This behavior appar-
ently appears due to the competition between strong e
plane anisotropy (D) that supports short-range ordering a
the exchange interactions (J, J1) ‘‘preferring’’ the long-
range ordering along the easy axis. It is also clear from
aforementioned arguments that despite of some disorde
troduced by random orientation of the dimers, the QAP w
exhibit the long-range Ne´el ordering captured to the Isin
spins. Thus one can expect the appearance of the sec
order phase transition in the system at finite temperatu
even for very strong values of the anisotropy parameterD.
Nevertheless, the QAP also differs from the standard N´el
phase~both the classical and quantum one! due to the ferro-
magnetic in-plane short-range order of the Heisenberg sp
Another unusual feature of the QAP is the perfect antipara
alignment of the Ising spins~that are not directly coupled via
exchange!, despite some disorder present between
nearest-neighboring Ising and Heisenberg atoms. Furt
more, we would like to emphasize that the existence of
QAP by itself is very surprising, since we have the syst
with the ferromagnetic exchange interactionsJ andJ1 only.

Finally, one should notice that the FP and QAP are se
rated by the first-order phase transition line that is given
the conditionD5Dc5A2uJ1u/J11. At an arbitrary point of
this line there coexist two of the above mentioned pha
~FP, QAP! together with a disordered phase~DP! in which
we have mA

z 5mB
z 5qii

zz5qhh
zz50.0 and the nonvanishing

short-range ordering both in thexy plane and along the eas
axis (qhh

xx5qhh
yy5” 0, qih

zz5” 0). The coexistence of these thre
phases follows from the fact that the relevant ground-s
energies take the same value@in fact, limD→D

c
2Ud(FP)

5 limD→D
c
1Ud(QAP)5Ud(DP)D5Dc

].

Next, in order to demonstrate the overall dependence
the correlation functions on the anisotropy parameterD, we
have depicted in Fig. 3 the relevant pair correlations for
case J1 /J51.0. In agreement with the arguments giv
above, we find the FP forD,A3 and the QAP forD.A3.
Moreover, Fig. 3 indicates that forD.A3, the correlations
qih

zz decrease with the increasingD and vanish in the limit of
D→`. On the other hand, the correlationqhh

xx increases with
the parameterD and approaches its saturation value forD
17441
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→`. Contrary to this behavior, the correlationsqii
zz andqhh

zz

take saturation values independently ofD, excepting the spe-
cial pointD5Dc where they jump to zero. Thus, the antipa
allel orientation of the relevant Ising and Heisenberg s
pairs is not affected at all even by the very strong anisotro
Finally, to complete the ground-state analysis, in Fig. 4
show the internal energy of different phases as a function
the anisotropy parameterD for uJ1u/J51.0. In this figure, the
full and dashed lines represent the stable and unstable
of the relevant energies, respectively. The black point is
energy of the DP. This dependence apparently supports
previous statements and clearly illustrates the occurrenc
the first-order phase transition atD5Dc5A3.

Now let us proceed to study the finite-temperature ph
diagrams forq54 that can be easily obtained by puttin
bcR562 ln(11A2) into Eq.~5!. Solving the relevant equa
tion numerically for some characteristic values ofJ1, we
have obtained the phase boundaries in theD2Tc plane that
are plotted in Fig. 5. As one can see, the critical tempera
decreases gradually from its Ising value atD50 and van-
ishes forD5Dc5A2uJ1u/J11. On the other hand, forD
.Dc the transition temperature at first rapidly increases, th
passes through a local maximum value and finally tends
zero forD→`. It is clear that forD,Dc the phase boundary
separates the FP and DP, and similarly forD.Dc separates
QAP and DP. As one can expect, the relevant thermal ph
transition is of the second order and belongs to the sa

FIG. 3. Dependences of the pair-correlation functions at
front state on the anisotropy parameterD for the doubly decorated
square lattice (q54) anduJ1u/J51.0.

FIG. 4. Ground-state energyUd vs D for q54 and uJ1u/J
51.0. The full and dashed lines represent, respectively, the st
and unstable parts of the energies of relevant phases. The b
circle denotes the ground-state energy of the disordered phase~DP!.
5-4
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MAGNETIC PROPERTIES OF EXACTLY SOLVABLE . . . PHYSICAL REVIEW B 66, 174415 ~2002!
universality class as that of the usual 2D Ising model.
course, the thermal variations of physical quantities can
fer from the standard behaviors in the Ising model. To illu
trate the case, we have shown in Fig. 6 the temperature
pendences of the specific heat forJ1 /J50.5. As we can see
in the isotropic case (D51.0) we have the standard depe
dence usually observed in the Ising models. On the o
hand, for the values of the exchange anisotropy close to
critical value (Dc5A2), the specific heat may in addition t
the familiar Schottky-type maximum exhibit anoth
maxima. These maxima appear equally bellow~see the case
D51.3) and above~see the inset in Fig. 6! the critical tem-
perature, as a consequence of the thermal excitations o
Heisenberg spins that basically influence the ordering in
system. The influence of the thermal excitations on the
havior of the system is really of great importance, and can
understood from the temperature dependences of the c
lation functions. For this purpose, in Figs. 7–9 we plot th
mal variations of the correlationsqih

zz, qhh
zz and qhh

xx for the
same values ofJ1 andD as in Fig. 6. It is clear from thes
figures~see the caseD51.3) that the occurrence of the max
mum bellow the critical temperature require to satisfy tw
conditions: ~i! the relevant correlations must increase~de-

FIG. 5. Phase boundaries in theD2Tc plane for the doubly
decorated square Ising-Heisenberg lattice (q54) when the ex-
change interactionJ1 is changed. FP, QAP, and DP denote the f
romagnetic~or ferrimagnetic!, quantum antiferromagnetic and dis
ordered phase, respectively.

FIG. 6. Temperature dependences of the reduced specific he
the doubly decorated square lattice (q54) for J1 /J50.5 and dif-
ferent values of the anisotropy parameterD. The dashed~full ! lines
represent the cases corresponding to the FP~QAP! ground-state
phases, respectively. The inset shows the detail of the beha
when the anisotropy parameterD takes the value close to th
boundary valueDc5A2.
17441
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crease! rapidly enough with the increasing temperature in t
low-temperature region~for example, in the case ofD51.0
the additional maximum does not appear due to the relativ
slow excitation process in comparison with the case ofD
51.3); and~ii ! the critical temperature of the system must
relatively high~for instance, in the case ofD51.4 we have
kBTc /J'0.0075 that is very low for the occurrence of th
maximum belowTc , in spite of the very strong thermal ex
citations!.

In addition to this behavior, the double-peak specific h
curve can be also observed here. The origin of the relev
maxima above the critical temperature can be underst
from the thermal dependences of the correlation functions
it is clearly displayed in Figs. 6–9 forD51.42. As one can
see, the correlation functionqih

zz rapidly increases in the rel
evant region, though the short-range ordering of Heisenb
atoms in thexy plane as well as in thez direction is rapidly
destroyed. Very similar behavior appears aboveTc also for
D,Dc excepting the fact that in this case the correlations
the xy plane abruptly increases, although all the other cor
lations rapidly decreases as it is apparent from Figs. 7–9
the case ofD51.4. Hence the appearance of the multip
peaks in the specific heat curve arises due to the rele
thermally induced short-range ordering or disordering in
system. Finally, one should also mention that all pa
correlation function exhibit at critical temperature we
energy-type singularity known from the usual Ising mode

Although, the numerical calculation have been presen
for the square latticeq54, we can, on the basis of our for
mulation, draw some general conclusions about the beha

-

t of

ior

FIG. 7. Temperature variations of the correlation functionqih
zz

between Ising and Heisenberg atoms forq54, J1 /J50.5 and dif-
ferent values of the anisotropy parameterD.

FIG. 8. The same as in Fig. 7, but for the correlationqhh
zz be-

tween nearest-neighboring Heisenberg atoms.
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J. STREČKA AND M. JAŠČUR PHYSICAL REVIEW B 66, 174415 ~2002!
of the doubly decorated Ising-Heisenberg systems. Howe
one should emphasize that our next statements do not
cern the one-dimensional case that exhibits quite differ
behavior, as result of the fact that no long-range orde
possible in the system at nonzero temperatures.

First, it is clear from Eqs.~21!–~23! that the ground-state
phase diagram does not depend on the coordination num
and spatial dimensionality of the system. This implies t
the value ofDc is also independent of the coordination num
ber and dimension, although our preliminary investigation
the other systems has revealed that it depends on the
value of the Heisenberg atoms. In general one can say
the QAP exists in many two- and three-dimensional latti
in the region ofD.Dc . However, it is necessary to emph
size the fact that the above statement is valid only in the c
when the Ne´el order is possible on the relevant original la
tice. Apparently, this not the case, for example, for the d
bly decorated triangular or Kagome´ lattices, for which much
more complicated phases will occur forD.Dc .

It is also interesting to note that the QAP, as well as
standard FP, may exist at finite temperatures and the t
perature region of their stability is clearly enlarged with t
increasing coordination number and dimensionality of
system. This is a consequence of the fact that the crit
temperature increases with the increasing coordination n
ber and dimensionality of the system. Of course, the ther
fluctuations gradually destroy the long-range order~both for
the FP and QAP! in the system, and, if the temperatu
reaches its critical value, then the system undergoes
second-order phase transition sharing the same univers
class as the standard spin-1/2 Ising planar model.

IV. CONCLUSION

In this work we have studied the doubly decorated Isin
Heisenberg model on planar lattices. Applying the stand
decoration-iteration transformation, we have obtained
simple relation between the partition function of the dec
rated model and its corresponding standard spin-1/2 Is
model. On the basis of this relation, we have derived
exact results for basic physical quantities that have been
sequently discussed forJ.0 in Sec. III.

In our opinion, the prediction of the QAP is the mo
important finding of this work, and it illustrates how th
magnetic properties of the pure Ising systems can be es

FIG. 9. The same as in Fig. 7, but for the correlationqhh
xx5qhh

yy

between nearest-neighboring Heisenberg atoms.
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tially modified by introducing the quantum Heisenberg
oms on the bonds of the original lattice. The origin of t
QAP consists in the quantum fluctuations arising in the s
tem; hence the QAP itself provides a clear manifestation
the quantum phenomena in the macroscopic scale.

Although at the present time we are not aware of a
experimental system which can be directly described by
considered doubly decorated Ising-Heisenberg model,
hope that the recent progress in molecular engineering
result in the preparation of such materials. In fact, recen
synthesized compound K3CoIII (CN)6.2Rh2

II(CH3COO)4 ~see
Ref. 16!, which has the magnetic structure of the doub
decorated square lattice~Fig. 1!, seems to be the most prom
ising from this point of view. Unfortunately, the Co31 ions
~located at the corners of each square! are in this compound
due to the very strong ligand field of the cyanide groups
the low-spin state~i.e. they are diamagnetic!. Nevertheless,
tuning the ligand field around the Co31 ions by the choice of
other ligands, represents a possible way how to prepare
compounds with high-spin Co31 paramagnetic ions. Anothe
possibility to obtain the compounds of desired magne
structure consists in the chemical replacement of the C31

ions by other transition metal ions, such as Fe31 and Cr31

ions. Because the corner atoms of each square would pos
a spin 1/2~in case of Fe31 ion! or 3/2 ~for Cr31 ion!, the
present theory could be applied to describe the behavio
these materials. Since the most of the real materials havD
'1, it is also worth noticing that in the case of very we
exchange interactionJ1 (uJ1u!J), the QAP appears in ou
system nearD'1 regardless of the coordination number a
spatial dimensionality. This supports our hope that the
perimental confirmation of this phase would be possible
some materials.

Finally, we would like to remark that the present forma
ism can be extended to investigate many other interes
systems. Indeed, we have succeeded in solving some i
esting generalization of the system studied in this paper
we have found very rich and interesting behavior that will
discussed in forthcoming works.
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APPENDIX

K05
1

8

sinh~bJ1/2!

cosh~bJ1/2!1exp~2bJ/2!cosh~bJD/2!
,

K15
1

8

sinh~bJD/2!

cosh~bJD/2!1exp~bJ/2!cosh~bJ1/2!
,

K25
1

8

JD

AJ1
21J2D2

sinh~bAJ1
21J2D2/2!

cosh~bAJ1
21J2D2/2!1exp~bJ/2!

,
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K35
1

8

cosh~bJ1/2!2exp~2bJ/2!cosh~bJD/2!

cosh~bJ1/2!1exp~2bJ/2!cosh~bJD/2!
,

K45
1

8

exp~bJ/2!2cosh~bAJ1
21J2D2/2!

exp~bJ/2!1cosh~bAJ1
21J2D2/2!

,
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