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Magnetic properties of exactly solvable doubly decorated Ising-Heisenberg planar models
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Applying the decoration-iteration procedure, we introduce a class of exactly solvable doubly decorated
planar models consisting both of the Ising- and Heisenberg-type atoms. Exact solutions for the ground state,
phase diagrams, and basic physical quantities are derived and discussed. The detailed analysis of the relevant
quantities suggests the existence of an interesting quantum antiferromagnetic phase in the system.

DOI: 10.1103/PhysRevB.66.174415 PACS nuni®er75.10.Jm, 05.56-q, 75.10.Hk

[. INTRODUCTION preparation of new magnetic materials with similar topologi-
cal structure as the system under investigation. Actually,
The quantum Heisenberg mod&HM) (Ref. 1) and its some of recently synthesized compounds represent a pro-
simplified Ising versiof remain one of the most actively gressive step in this directidfi.
studied subjects in statistical mechanics. In particular, the The outline of the present paper is as follows. In Sec. I,
low-dimensional antiferromagnetic QHM has recently at-the main points of the mathematical formulation of the
tracted a lot of attention since it represents a very usefulecoration-iteration procedure for Ising-Heisenberg models
model for the investigation of interesting quantum phenom-are explained and the exact equation for the phase diagrams
ena. Among the most fascinating problems that are of currerdnd basic physical quantities are derived. The most interest-
interest in this field, one should mention the investigation ofing numerical results are presented and discussed in detail in

Haldane gaps in the one-dimensio(D) antiferromagnetic  gec. |11, and, finally, some concluding remarks are given in
QHM with integer spins, quantum phase transitiofispin-  gec v

Peierls instabilities, dimerization and other related
phenomend, quantum entanglemeht, magnetization
plateaud and so on. In addition to the above mentioned
works, a number of the studies has been devoted to the in-

vestigation of the role of magnetic ordering in high-su- In this work we will study the spin-1/2 Ising-Heisenberg
perconducting cuprates consisting of two-dimensional Cu-Qnodel on planar doubly decorated lattices. In order to illus-
networks: In fact, the magnetic properties of these materialsyate a typical topological structure of the considered system,
can be well described by means of a spin-1/2 antiferromagy, Fig. 1 we depict a part of the doubly decorated square
netic 2D QHM. _ , lattice. In this figure the black circles denote the spin-1/2

Desplte of extensive studies, the QHM has _been .exaC“Ysing atoms that occupy the sites of the original square lattice
solved in one dimension orif} thus for hlgher dimensions 54 the gray ones represent the spin-1/2 Heisenberg atoms
only more or less accurate approximate methods ar?esiding on the bonds of the original lattice.

available!! In general, the main difficulties of a rigorous Consequently, the Hamiltonian of the Ising-Heisenberg
treatment of the QHM are closely associated with the NoNz.qdel can be wr’itten in the form

commutability of the spin operators involving the Hamil-
tonian of the system. This principal mathematical intractabil-
ity of the QHM has motivated us to introduce a class of
interesting exactly solvable models, consisting both of the
Ising- and Heisenberg-type atoms. For this purpose, we uti-
lize the well known decoration-iteration procedure originally
introduced by SyoZf and later remarkably generalized by
Fisher™ In the spirit of the Syozi's and Fishers’s papers, in
this work we use the decoration procedure to put a couple of
Heisenberg atoms on each bond of the regular Ising lattice.
In this way we obtain a doubly decorated model consisting
of two interpenetrating sublattices occupied by Ising- and
Heisenberg-type atoms, respectively, and such a model can
be of interest both theoretically and experimentally. Theoreti-
cally, the most outstanding feature of this model is the fact
that it enables to investigate, by an exact calculation, how the FIG. 1. The fragment of the doubly decorated square lattice. The
guantum Heisenberg atoms modify the magnetic propertieklack (gray) circles denote the positions of the Isifigeisenbery

of the pure Ising systems. On the other hand, from the exatoms, respectively. The ellipse demarcates a typical bond described
perimental point of view, the model can be inspiring in theby the Hamiltoniari, [see Eq(2)].

II. FORMULATION
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where both summations in the first term are carried out over B ro— ———
all Heisenberg atoms. On the other hand, in the second term +exp(—BJ/2)cos E\/‘]l(ﬂkl_ﬂkz) +J°A
the first summation runs over all Ising atoms and the second
one over all Heisenberg atoms. As usual, in this work we =Aexp BRuk ko) (4)

restrict all possible interactions to the nearest-neighborinq_ )
atoms only. For this purpose we skt=J if the sitei is the he unknown transformation parametérandR can be eas-

nearest neighbor of the sifeOtherwise we assume thag  ily obtained following the standard procedureee Ref. 12
—0. Similarly, for nearest-neighboring sitesand~ we put ~ and references thergimamely,
JP=3, andJH=0 in all other cases. The factor 1/2 in both

terms of Eq.(1) has been included to avoid double-counting A=2 exp BIIA)(V,V,)Y2  BR=21n ﬁ) (5)
of the relevant terms. Finalls® and u? represent the well- Va
known components of spin-1/2 operators, ahddescribes \hare we have introduced the functiods andV, as fol-

the spatial anisotropy in the Heisenberg exchange intera%ws:

tion. In fact, this parameter allows one to control the behav-

ior of the system between the Ising regime foK1 (easy- V, =cosh{ 83,/2) + exp( — BII2)cosi BIA/2),
axis-like anisotropy and the XY regime for A>1 (easy-

plane anisotropy In view of further manipulations, it is

useful to rewrite the total Hamiltonian of the system as a sum V,= 1+exp(—,8J/2)cos>'(é /\]i+ J2A2> ] (6)
of the bond Hamiltonians, i.ef,{d=2k7:lk, where the sum- 2

mation is carried out over all the pairs of Heisenberg atomsyow, after substituting Eqid) into Eq. (3) one obtains the
The bond Hamiltoniarf, involves all the interaction terms equation

associated with thkth pair of Heisenberg aton{see Fig. 1,

and is given by Z,=AN92z, (7)
which relates the partition function of the doubly decorated
= — A 1 & & 1 & & Ising-Heisenberg model4,) to that of the original undeco-
K [ASaSet SaSe) ¥ SaSe] rated spin-1/2 Ising model4,.) From this simple relation,
_Jl(éilllﬁl_f_ ‘32(2%2)_ (2)  we can directly calculate some physical quantitifes ex-

ample, the free and internal energies or specific)haathe

basis of well-known thermodynamic relations. However, to
The most important point of our treatment is the calculationunderstand the behavior of the system, we have to analyze
of the partition function for the system under investigation.also some other quantitig$or instance the magnetization
Taking into account the standard commutation relation forand pair-correlation functionghat cannot be obtained from
the bond Hamiltoniangi.e., [, H,]=0, i#k), we can the partition function in a straightforward manner. Fortu-
express the partition functiofiy of decorated system in the nately, we can avoid this complication by exploiting the ex-
form act identities

(fo(uf.pmfs o omya=(Fa(mf nf, o, (8)

Ng/2
Zq=Trexp(—BHy) =Tr eXF{ _'Bgl Hk) (F2(S,Sh . k1, 1E2) )

Trslersszz( :91?1 ’Asgz !;Lil ,;Lﬁg)eXF( — BHy)
Trs, Trs, X0 — BFH,)

Nag/2
= Tr{ﬂ}kl:[l Trs, Trs exp(— BH), B=1KkgT, (3) _

d

wherekg is the Boltzmann constant aridthe absolute tem- ©)

peratureN represents the total number of Ising atoms @nd from which the relevant quantities can be calculated. In the
is the coordination number of the Origir(ajndecoratehlat' above equationgll represents a function depending 0n|y on
tice. The symbol Tr,, means a trace over all degrees of the |sing spin variables, anfl, denotes a function which
freedom of Ising spins and finally, JrTrs , denotes a trace depends on the spin variables located onktrebond only.

over a couple of Heisenberg spins residing onkttebond.  The superscripta and y denotex,y or zcomponents of the

To proceed further, it is useful to introduce the following spin operators and the symbdls- - )4 and(- - - ), mean the
extended decoration-iteration transformattén? standard ensemble average related to the decorated and origi-
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nal lattice, respectively. Now, applying one of the standard

: . . . 35F UANTUM
methods'® we simply derive equations for the sublattice Q

magnetization, 30F
z_l ~z ~z _l ~z ~z _ ﬂ2~5.'
Ma= 5 (et #i2)a) = 5 ((Bia T Hi2)o) =Mo,  (10) 20t FERROMAGNETIC
L5k (FERRIMAGNETIC) PHASE
1 e - ~ ' (FP) -
M§= 5 (St Seda=8((ti) o+ (1)) Ko, (1D 1.0 LT
0 3 6
1 AN
X_ — /X X —
M= 2<S“lJrSk2>d 0, (12) FIG. 2. Ground-state phase diagram of the doubly decorated
Ising-Heisenberg model. The full lines represents the line of first-
1 . . order phase transitions that separates the ferromagnetic or ferrimag-
mg= §<S¥1+ Sk2)a=0, (13 netic phaséFP) from the quantum antiferromagnetic phd&AP).

wherem, is the magnetization per one site of the original In order to find possible ground state phases and to inves-
lattice and the coefficier, is given in the Appendix. Simi- tigate their properties, we have to analyze the internal en-
larly, the various pair correlations can be expressed with thergy, magnetization and correlation functionsTat0. De-

help of Egs.(8) and(9) in the simple forms pending on whether the anisotropy parameteas less than,
L L equal to, or greater than the boundary valug,
Ai = (Bk1kko)a= Kk ti2)0=¢, (14 =2[3,]/3+1 one finds three different regions.
Ay a (i) ForA<A.,
Ohn=(S1Sk2)a=K1t Ko +4gi (K —Kp), (15 NG
&y @ Ug=——=-(2[31]+J),
Anh={St1Sk2)a= Ann. (16) g
Ghh= (S S)a=Ks+ Ka+ 4071(K5—Ky), 17) 0i*=0nn=025, @jy==0.25, gpp=0jh=0.0. (21)
1 . . o (i) ForA>A,
QiZhZE§<S1§1M§1+Sﬁzﬂiz>:K0+K5+4QiZiZ(K0_K5)- Ng
(18 Ud=—?[—J+2lez+(JA)2],

Heres=(uZ,1ut,)o denotes the nearest neighbor correlation
of the original lattice that is well known and the coefficients
Ko— K5 are listed in the Appendix. Finally, the internal en-
ergy and specific heat of the system can be also easily cal-
culated from the relations

J1

YNALEREINE

ai’=dhp=—0.25, giy==

JA
A==, @2
Nq 432+ (JA)?
Ug=— 7 [JA(AR+ann) +Idin 20051, (19) '
(iii ) for A=A,
Ug=— 5 (2[31[+),
I1l. NUMERICAL RESULTS AND DISCUSSION
In this section we will show the most interesting numeri- 22 72 0.0 qlie + ZANPIEN

cal results of the system under investigation. For the sake of Qi =Ghn=YY, Gin= T 8(]34]+9)”
simplicity, we restrict our attention to case of the doubly
decorated square latti¢eee Fig. 1in which all characteris- VI(I4[+ )
tic properties can be illustrated. q)ﬁ)ﬁzq)ﬁﬁzm- (23

Before discussing the results, it is worth noticing that the
phase diagrams for the ferromagnetic<0,J,>0) and fer-  The plus or minus sign one applies for the ferromagnetic or
rimagnetic §>0,J,<0) case will be the same, since the ferrimagnetic case, respectively. From these relations, we
relevant equation for the critical temperature is invariant unave obtained the ground-state phase diagram in| e
der the transformatiod,«< —J;. On the other hand, the an- —A space which is depicted in Fig. 2. Taking into account
tiferromagnetic system J<0 and arbitraryJ;) exhibits  Egs.(21)—(23), one easily identifies the standard ferromag-
many different features and will be discussed in a separateetic (ferrimagneti¢ phase(FP) for A<A.. However, for
work. A>A_ an unexpected quantum phase occurs in the system.
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This phasdto be referred to as a quantum antiferromagnetic 03T 7T T T T T

phase(QAP)] requires more detailed description since it dif- 0ak  RTITa00  asassssnssssary
fers from standard phases in the pure Ising or Heisenberg § ’ |BJI|/J=1:O . 1
models and, as far as we know, such a phase has not been g01r g=4 ¢ °°°°o<>o°ooooo§
described in the literature before. In fact, from the relevant E 0.0 | ansassnssasssassnm i
equations we find that in the QAP the Ising spitigat are the I N ]
nearest neighbors on the original latli@gee aligned antipar- g01r a a7 g2 i

. S Ui > 9

allel with respect to each other. Consequently, we have the 02F . QAP
classical Nel long-range ordering on the Ising sublattice 0 ° I"lﬂf' . EEPEEE——

with ma=0.0 and q;’=—0.25. On the other hand, the
nearest-neighboring Heisenberg spins create dimers, thus we
also haveng=0.0 andq;;,= —0.25. However, the alignment ~ FIG. 3. Dependences of the pair-correlation functions at the
of these dimers with respect to their nearest-neighborindront state on the anisotropy parameferor the doubly decorated
Ising spins is random; hence the relevant correlation functiogquare lattice ¢=4) and|J,|/J=1.0.
g’ does not reach its saturated value @.25). Moreover,
one easily observes that the degree of randomness increasese. Contrary to this behavior, the correlatiog$” and gy,
with the increasing in anisotropx. This behavior appar- take saturation values independently\gfexcepting the spe-
ently appears due to the competition between strong easyial pointA=A_ where they jump to zero. Thus, the antipar-
plane anisotropy4) that supports short-range ordering andallel orientation of the relevant Ising and Heisenberg spin
the exchange interactions],(J;) “preferring” the long-  pairs is not affected at all even by the very strong anisotropy.
range ordering along the easy axis. It is also clear from th&inally, to complete the ground-state analysis, in Fig. 4 we
aforementioned arguments that despite of some disorder irshow the internal energy of different phases as a function of
troduced by random orientation of the dimers, the QAP willthe anisotropy parametdr for [J;|/J=1.0. In this figure, the
exhibit the long-range Ne ordering captured to the Ising full and dashed lines represent the stable and unstable parts
spins. Thus one can expect the appearance of the secorf-the relevant energies, respectively. The black point is the
order phase transition in the system at finite temperaturegnergy of the DP. This dependence apparently supports our
even for very strong values of the anisotropy paramater previous statements and clearly illustrates the occurrence of
Nevertheless, the QAP also differs from the standarélNe the first-order phase transition At=A .= J3.
phase(both the classical and quantum gmie to the ferro- Now let us proceed to study the finite-temperature phase
magnetic in-plane short-range order of the Heisenberg spinsliagrams forq=4 that can be easily obtained by putting
Another unusual feature of the QAP is the perfect antiparalle3,R= =+ 2 In(1++/2) into Eq.(5). Solving the relevant equa-
alignment of the Ising spin@hat are not directly coupled via tion numerically for some characteristic values Bf we
exchangg despite some disorder present between théiave obtained the phase boundaries in4heT, plane that
nearest-neighboring Ising and Heisenberg atoms. Furtheare plotted in Fig. 5. As one can see, the critical temperature
more, we would like to emphasize that the existence of thelecreases gradually from its Ising valuefet0 and van-
QAP by itself is very surprising, since we have the systenishes forA=A.= \/m On the other hand, foA
with the ferromagnetic exchange interactiaghandJ; only. > A_ the transition temperature at first rapidly increases, then
Finally, one should notice that the FP and QAP are sepapasses through a local maximum value and finally tends to
rated by the first-order phase transition line that is given byzero forA —. It is clear that forA <A, the phase boundary
the conditionA=A .= \2|J,|/J+ 1. At an arbitrary point of separates the FP and DP, and similarly for A, separates
this line there coexist two of the above mentioned phase®AP and DP. As one can expect, the relevant thermal phase
(FP, QAP together with a disordered pha@P) in which  transition is of the second order and belongs to the same
we have my=mg=qi’=qg;;=0.0 and the nonvanishing
short-range ordering both in they plane and along the easy —

1 L M L 1 L Il M 1 M 1
00 05 10 15 20 25 30
A

axis (@pn=auL#0, qi7#0). The coexistence of these three 05~ kg T/J=0.07
phases follows from the fact that the relevant ground-state 1ok T i/ /=10 ]
energies take the same valji fact, IimA_,AC—Ud(FP) 2 N p g=4 ]
=limy_ 5 Ug(QAP)=Uy(DP)s-4 |- > ]
Next, in order to demonstrate the overall dependences of 20F 637 o)
the correlation functions on the anisotropy paramétewe 25+ = Jo
have depicted in Fig. 3 the relevant pair correlations for the - .
caseJ;/J=1.0. In agreement with the arguments given 3005 10 15 20 25 30 35
above, we find the FP fok </3 and the QAP forA > /3. A

Moreover, Fig. 3 indicates that fax> /3, the correlations FIG. 4. Ground-state energy, vs A for g=4 and |J,|/J

g7, decrease with the increasidgand vgnish in the limit 'Of =1.0. The full and dashed lines represent, respectively, the stable
A—o. On the other hand, the correlatigfj, increases with  and unstable parts of the energies of relevant phases. The black
the parameted and approaches its saturation value for circle denotes the ground-state energy of the disordered gb&se
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FIG. 5. Phase boundaries in the— T, plane for the doubly FIG. 7. Temperature variations of the correlation functofs

decorated square Ising-Heisenberg lattice=@) when the ex- between Ising and Heisenberg atoms der4, J,/J=0.5 and dif-
change interactiod; is changed. FP, QAP, and DP denote the fer-ferent values of the anisotropy paramefer
romagnetic(or ferrimagneti¢, quantum antiferromagnetic and dis-

ordered phase, respectively. creasgrapidly enough with the increasing temperature in the
low-temperature regioffor example, in the case &=1.0
universality class as that of the usual 2D Ising model. Ofthe additional maximum does not appear due to the relatively
course, the thermal variations of physical quantities can difslow excitation process in comparison with the case\of
fer from the standard behaviors in the Ising model. To illus-=1.3); and(ii) the critical temperature of the system must be
trate the case, we have shown in Fig. 6 the temperature deelatively high(for instance, in the case df=1.4 we have
pendences of the specific heat 3 J=0.5. As we can see, kgT./J~0.0075 that is very low for the occurrence of the
in the isotropic case=1.0) we have the standard depen- maximum belowT ., in spite of the very strong thermal ex-
dence usually observed in the Ising models. On the othegitations.
hand, for the values of the exchange anisotropy close to the In addition to this behavior, the double-peak specific heat
critical value (A= y2), the specific heat may in addition to curve can be also observed here. The origin of the relevant
the familiar Schottky-type maximum exhibit another maxima above the critical temperature can be understood
maxima. These maxima appear equally beli@ee the case from the thermal dependences of the correlation functions, as
A=1.3) and abovésee the inset in Fig.)&he critical tem- it is clearly displayed in Figs. 6—9 fak=1.42. As one can
perature, as a consequence of the thermal excitations of tieee, the correlation functiogy;’ rapidly increases in the rel-
Heisenberg spins that basically influence the ordering in thevant region, though the short-range ordering of Heisenberg
system. The influence of the thermal excitations on the beatoms in thexy plane as well as in the direction is rapidly
havior of the system is really of great importance, and can beestroyed. Very similar behavior appears abdyealso for
understood from the temperature dependences of the corra< A excepting the fact that in this case the correlations in
lation functions. For this purpose, in Figs. 7—-9 we plot ther-the xy plane abruptly increases, although all the other corre-
mal variations of the correlationg;;, qrf, and iy, for the lations rapidly decreases as it is apparent from Figs. 7—9 for
same values of; andA as in Fig. 6. It is clear from these the case ofA =1.4. Hence the appearance of the multiple
figures(see the casaé = 1.3) that the occurrence of the maxi- peaks in the specific heat curve arises due to the relevant
mum bellow the critical temperature require to satisfy twothermally induced short-range ordering or disordering in the
conditions: (i) the relevant correlations must increa@e-  system. Finally, one should also mention that all pair-
correlation function exhibit at critical temperature weak
energy-type singularity known from the usual Ising models.
Although, the numerical calculation have been presented
for the square latticeg=4, we can, on the basis of our for-
mulation, draw some general conclusions about the behavior

0.3

0.2

0.0 el P B | . ] T N §0'1
000 005 0.10 015 020 0.25 S

kyT/1J 0.0

-0.1

FIG. 6. Temperature dependences of the reduced specific heat of ] 3
the doubly decorated square latticg=<(4) for J;/J=0.5 and dif- 0.2 . 7
ferent values of the anisotropy parameterThe dashedfull) lines .
represent the cases corresponding to the(@RP) ground-state
phases, respectively. The inset shows the detail of the behavior
when the anisotropy parametér takes the value close to the FIG. 8. The same as in Fig. 7, but for the correlatigffi be-
boundary value\ .= V2. tween nearest-neighboring Heisenberg atoms.

000 005 010 015 020 025
kpT1J
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tially modified by introducing the quantum Heisenberg at-

0 oms on the bonds of the original lattice. The origin of the
NMO QAP consists in the quantum fluctuations arising in the sys-
S 0.15 tem; hence the QAP itself provides a clear manifestation of

45 0.10 the quantum phenomena in the macroscopic scale.

Although at the present time we are not aware of any
0.05 experimental system which can be directly described by the
000 =" considered doubly decorated Ising-Heisenberg model, we
000 005 010 015 020 hope that the recent progress in molecular engineering will

kgT1J result in the preparation of such materials. In fact, recently
synthesized compound,;Kd' (CN)g.2RH (CH;COO0), (see
Ref. 16, which has the magnetic structure of the doubly
decorated square latti¢Eig. 1), seems to be the most prom-
ising from this point of view. Unfortunately, the &b ions

of the doubly decorated Ising-Heisenberg systems. Howeveflocated at the corners of each squaxee in this compound
ue to the very strong ligand field of the cyanide groups in

one should emphasize that our next statements do not cofj~ ) . . .
e low-spin statdi.e. they are diamagnejicNevertheless,

cern the one-dimensional case that exhibits quite different’™ . 3 &oi .
behavior, as result of the fact that no long-range order i$uning the ligand field around the Coions by the choice of

possible in the system at nonzero temperatures. other Iigands,-repr.esent§ a possible way hoyv to prepare the

First, it is clear from Eqs(21)—(23) that the ground-state COMPounds with high-spin Co paramagnetic ions. Another
phase diagram does not depend on the coordination numbBPSSiPility to obtain the compounds of desired magnetlc
and spatial dimensionality of the system. This implies thaStructure consists in the chemical replacement of thé+Co
the value ofA, is also independent of the coordination num- 10nS by other transition metal ions, such as'Fend CP
ber and dimension, although our preliminary investigation ofOns- Because the corner+a'.[0ms of each square would possess
the other systems has revealed that it depends on the spfhSPin 1/2(in case of Fé ion) or 3/2 (for_CrS ion), the
value of the Heisenberg atoms. In general one can say thRf€sent theory could be applied to describe the behavior of
the QAP exists in many two- and three-dimensional latticedh€se materials. Since the most of the real materials Bhave
in the region ofA>A,. However, it is necessary to empha- ~1,itis a_lso Wor_th noticing that in the case of very weak
size the fact that the above statement is valid only in the casgxchange interactiod; (|J;|<J), the QAP appears in our
when the Nel order is possible on the relevant original lat- System neaA~1 regardless of the coordination number and
tice. Apparently, this not the case, for example, for the douSPatial dimensionality. This supports our hope that the ex-
bly decorated triangular or Kagdntettices, for which much perimental c_onflrmanon of this phase would be possible in
more complicated phases will occur far>A. . some materials. .

It is also interesting to note that the QAP, as well as the Finally, we would like to remark that the present formal-
standard FP, may exist at finite temperatures and the teni$M can be extended to investigate many other interesting
perature region of their stability is clearly enlarged with theSystems. Indeed, we have succeeded in solving some inter-
increasing coordination number and dimensionality of theeSting generalization of the system studied in this paper and
system. This is a consequence of the fact that the critical’® have fo_und very rlc_h and interesting behavior that will be
temperature increases with the increasing coordination nunfliscussed in forthcoming works.
ber and dimensionality of the system. Of course, the thermal
fluctuations gradually destroy the long-range orgth for ACKNOWLEDGMENTS
the FP and QAPIn the system, and, if the temperature ) o )
reaches its critical value, then the system undergoes the This work was supported by the Ministry of Education of
second-order phase transition sharing the same universali§iovak Republic under VEGA Grant No. 1/9034/02.

class as the standard spin-1/2 Ising planar model.

FIG. 9. The same as in Fig. 7, but for the correlatigij= gy},
between nearest-neighboring Heisenberg atoms.

APPENDIX
IV. CONCLUSION

In this work we have studied the doubly decorated Ising- K0=E sinh(5J,/2)
Heisenberg model on planar lattices. Applying the standard 8 cost{ J1/2) +exp(— BI/2)cos BIA/2)
decoration-iteration transformation, we have obtained the
simple relation between the partition function of the deco- )
rated model and its corresponding standard spin-1/2 Ising K 1 sinh(BJA/2)
model. On the basis of this relation, we have derived the 178 cosl BIA/2) +exp( BII2)cosh BI,/2)’
exact results for basic physical quantities that have been sub-
sequently discussed fdr>0 in Sec. lll.
In our opinion, the prediction of the QAP is the most 1 JA sinh( B2+ J2A%/2)

important finding of this work, and it illustrates how the K,== ,
magnetic properties of the pure Ising systems can be essen- 8 VIT+I2A? cost I+ I?A%/2) + exp( BII2)
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1 cosh BJ1/2) —exp(— BII2)cosH BIA/2)
378 cosh 8J,/2) +exp— BI/2)cost BIA/2)’

1 exp(BI/2)—cost B 5+ I°A%/2)
* 8 expl B312) + costi B\IZ+ I2A2/2)

PHYSICAL REVIEW B 66, 174415 (2002

19 sinh( B/J%+J2A2%/2)

Kg== .
® 8 32+ 32A2 cosh 32+ J2A212) + exp BII2)

80 state

The detailed derivation of the coefficients given above
requires a lengthy calculation, and thus is not presented here;
however, it can be obtained from the authors on the request.
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