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Temperature dependence of the frustrated Heisenberg model in the fcc type-I configuration
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The Heisenberg model for the fcc type-I configuration is studied with the use of the interacting spin-wave
theory at the order 1/S, S being the spins coupled antiferromagnetically. The continuous degeneracy of the
ground state of the nearest-neighbor Heisenberg Hamiltonian (Hnn) and the conditions for different types of
interactions susceptible to stabilize a multi-k structure remain identical in the whole antiferromagnetic range in
temperature. This set includes local anisotropy and four-spin and biquadratic exchange interactions as well as
effects of the crystal electric field and quadrupolar interaction. The temperature dependence of the low-
frequency magnetic excitations corresponding toHnn is calculated analytically. For the double-k and triple-k
configurations the quartic terms renormalize in great part the overall Heisenberg antiferro-coupling, giving
schematically the behavior (A12n̄/S)Aa1b(12n̄/S) wheren̄ has the temperature dependence of the Bose-
Einstein distribution. Concerning the terms to be added toHnn to lift the degeneracy of the ground state, they
can be separated into two classes following their leading temperature dependences which are 12tn̄/S, where
t51 or 3. Available experiments are discussed.
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I. INTRODUCTION

Type-I fcc antiferromagnets are typical examples of thr
dimensional frustrated spin systems. The most general
configuration for this kind of magnetic order can be writt
as a superposition of the three wave vectorsK15(2p/a)
3(1,0,0), K25(2p/a)(0,1,0), and K35(2p/a)(0,0,1),
wherea is the lattice constant. This structure can then be
a single-k, double-k, or triple-k state, the triple-k structure
being an extension of the 120° spin structure on the trian
lar lattice to the three-dimensional case.

Since the first experimental evidence of fcc type-I fru
trated compounds, a great deal of both theoretical and
perimental interests have arisen. In particular, there are c
pounds where the phonon effects are well known, th
allowing, in principle, a precise identification of the excit
tion spectrum on a large domain in temperature.1–3 In this
respect, NpBi and USb compounds present strong simi
ties ~see, for instance, Ref. 4!. For both, magnetic excitation
spectra have been measured on a temperature range
than the Ne´el temperatures of 192.5 and 213 K, respective
They give strong indications that a noncollinear triple-k spin
structure is realized on the whole antiferromagnetic dom
In both alloys the magnetic excitation spectra consist of t
branches with longitudinal and transverse polarizations,
spectively. On the other hand, the semiconductor MnT2,
which crystallizes with the pyrite-type structure, undergo
to a second-order antiferromagnetic~AF! transition atTN
586.5 K. The nature of its magnetic structure has been s
ject to controversy until recently. Indeed the experiment
Burlet et al.5 assesses definitely the conclusion that the c
responding spin configuration is of the triple-k type-I struc-
ture. In contrast to previous claims,6 this structure is stable
on the whole AF domain.

Until now, most theoretical works have concentrated
the properties of the ground state atT50 and essentially
concern the terms to be added to the isotropic Heisenb
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model to lift the degeneracy of this ground state. Effects d
to biquadratic and four-spin exchange interactions in fcc s
lattices were first discussed, to our knowledge, by Yoshim
and Inagaki7 and Yosida and Inagaki8 in a classical treatmen
of the Heisenberg Hamiltonian~see also Ref. 9!. In Ref. 10 a
local anisotropy energy was considered in a phenomenol
cal model, in which higher-order spin interactions were tak
into consideration. The magnetic excitation spectra for typ
antiferromagnets have been modelized by Ha¨lg and Furrer1

within the random phase approximation by taking into a
count the crystal-field, anisotropic bilinear exchange and i
tropic quadrupolar interactions. Jensen and Bak11 calculated
the spin-wave spectra of USb with triple-k magnetic struc-
ture by using a Hamiltonian including, in addition to the A
exchange coupling between nearest neighborsHnn , the
pseudodipolar interaction and a crystal-field term with cu
symmetry. However, almost nothing is known about fini
temperature properties including the stability of various s
orderings. The purpose of this paper is to investigate
stability of the Néel order and the temperature dependence
the spin-wave spectra. The three possible AF structures a
general considered. A triple-k structure is, sometimes, onl
studied, but it is just an exercise to extend the formalism
others multi-k states. In Ref. 12 we have proposed a theo
ical framework to study with reasonable efforts frustrat
magnets in the fcc type-I configuration. Here we apply t
framework to evaluate the 1/S quantum corrections to the
spin-wave spectra through the Holstein-Primakoff repres
tation of spins. We prove that this theory gives relevant
formation within the whole range of the AF phase. For i
stance, the softening temperatureTs where the spin-wave
frequencies drop to zero is the Ne´el temperature, i.e., the
temperature for which the magnetization disappears, at l
for the triple-k configuration. We give strong reasons to thin
that, if some structure is stabilized atT50, it remains the
same on the whole AF domain of temperature. Moreover,
obtain analytical results on the temperature behavior of
spin-wave spectra.
©2002 The American Physical Society14-1
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This paper is organized as follows. In Sec. II form
theory is settled down. Invariances of the magnon spe
under some substitutions are used to shrink the unit magn
cell and to establish some results, drastically simplifying
perturbative treatment of the Hamiltonian. These simplifi
tions allow us to make new predictions about the tempera
dependence of the spin-wave spectra ofHnn in Sec. III and
of a set of supplementary interactions in Sec. IV. This
includes four-spin and biquadratic exchange interactions
cal anisotropy and quadrupolar interaction. The crystal e
tric field is also studied. The experimental relevance of th
results is discussed in the Conclusion.

II. GENERAL FORMULATION

A. Heisenberg model

The Hamiltonian we start from reads

Hnn5J(
^ i , j &

~S1i•S2 j1S1i•S3 j1S1i•S4 j1S2i•S3 j

1S2i•S4 j1S3i•S4 j !, ~1!

with J.0. SI i represents the magnetic moment, located
the i th site, and corresponding to the sublatticeI. The sum-
mation ^ i , j & is taken over all nearest-neighbor pairs. T
crystal structure of fcc is such that each site has 12 nea
neighbor sites which belong four by four to the other thr
sublattices. Thus the coordination numberz is 4. The mag-
netic momentsSI are located atdI in the unit magnetic cell
as follows: d15(0,0,0), d25(0,1/2,1/2), d35(1/2,0,1/2),
andd45(1/2,1/2,0). In order to consider simultaneously t
single-k, double-k, and triple-k states we choose in full gen
erality the direction of the magnetizations on sublattices
cated on the unit cell atdl as ~a,b,g!, ~2a,b,2g!,
~2a,2b,g!, and ~a,2b,2g!, respectively. Here
a5sinq cosw, b5sinqsinw, and g5cosq are polar direc-
tional cosines satisfyinga21b21g251. The triple-k state
is given bya5b5g51/A3 and corresponds to the AF sta
observed in the USb and MnTe2 compounds.1,5 Fixing, for
instance,u[p/2, which means a coplanar structure, t
double-k model is recovered forw5p/4 ~shown in Fig. 1 of
Ref. 12!. Finally, the single-k model is obtained from the
condition u50. The ground state given byHnn has a two-
dimensional infinite degeneracy, since its energy is indep
dent of the polar angles~q,w!, betraying the high degree o
frustration of this model. This high degeneracy can be lif
by additional terms in the Hamiltonian.

Various types of interactions have been studied in Ref.
In particular local anisotropy, four-spin exchange intera
tions, and biquadratic interactions have been conside
Their role in stabilizing a noncollinear magnetic state h
been clarified. In spite of the great number of studies, no
ing is well established since no clear signal emerges from
data. This is the reason why we made a systematic stud
these interactions, extending our analysis12 to quadrupolar
interactions and crystal-electric-field effects.

In full generality the Hamiltonian~1! is expressed in
terms of four types of bosonic operatorsl5a, b, c, andd for
17441
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sublattices 1, 2, 3, and 4, respectively, these operators s
fying the commutation relations of elementary boson ope
tors. Following the standard analysis within the linear sp
wave theory based on the Holstein-Primakoff repres
tation,13 we take a local coordinate sytemjhz at each site of
the lattice. Thez axis is taken to be the classical direction
spins in the ground state. The resulting transformation
each sublattice is expressed in terms of the polar coordin
~u, w! which define the antiferromagnetic configuration
the four sublattices. Finally, the Hamiltonian~1! is given in
terms of the Fourier transforms of the bosonic operators
(N being the total number of sites!

NH2

JS
522zS1Sk$PkVk1@QkLk1Rk

xSk
x1Rk

ySk
y1Rk

zSk
z

1Vk
xDk

x1Vk
yDk

y1Vk
zDk

z1H.c.#%, ~2!

where Vk5nk
a1nk

b1nk
c1nk

d , Lk5aka2k1bkb2k1ckc2k

1dkd2k , Sk
x5akb2k1ckd2k , Sk

y5akc2k1bkd2k , Sk
z

5akd2k1bkc2k , Dk
x5ak

†bk1ck
†dk , Dk

y5ak
†ck1bk

†dk , and
Dk

z5ak
†dk1bk

†ck . For the sake of simplicity we assumew
5p/4. Then the coefficients arePk54, Qk50, Rk

x

52Cky
Ckz

(sin2u12i cosu), Rk
y54Ckx

Ckz
sin2u, Rk

z

52Ckx
Cky

(sin2u22i cosu), Vk
x52Cky

Ckz
sin2u, Vk

y

524Ckx
Ckz

cos2u, and Vk
z52Ckx

Cky
sin2u. The structure

factors are defined byCki
5cos@a(ki/2)# ( i 5x,y,z) and nk

a

5ak
†ak . From now on, we set the lattice constanta51. Up

to now, the approximation used to obtain analytical resu
assumes that the different bosonic operators are indepen
of the sublattice to which they are bounded. This appro
has been considered for the first time in Ref. 14 and has b
proved to give the exact spin-wave dispersions in Ref.
The exact diagonalization of Hamiltonian~2! may be carried
out in two different ways. The first approach, used in Ref.
consists of obtaining analytically through theMAPLE math-
ematical manipulation language15 the four spin-wave disper
sions. The complete solution requires knowledge of the B
goliubov transformation to which we turn next.

B. Bogoliubov transformation

We introduce a set of spin-wave operato
ak ,ak

† ,bk ,bk
† ,gk ,gk

† ,dk ,dk
† through the Bogoliubov trans

formations (k.0) which are a straightforward generaliz
tion of those given by Oguchi, Nishimori, and Taguchi
Ref. 14:

ak5
1

2A2
@Akexp~2 ifk

A!1Bkexp~2 ifk
B!

1Ckexp~2 ifk
C!1Dkexp~2 ifk

D!#,

bk5
1

2A2
@Akexp~2 ifk

A!2Bkexp~2 ifk
B!

1Ckexp~2 ifk
C!2Dkexp~2 ifk

D!#,
4-2
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ck5
1

2A2
@Akexp~2 ifk

A!1Bkexp~2 ifk
B!

2Ckexp~2 ifk
C!2Dkexp~2 ifk

D!#,

dk5
1

2A2
@Akexp~2 ifk

A!2Bkexp~2 ifk
B!

2Ckexp~2 ifk
C!1Dkexp~2 ifk

D!#, ~3!

where Xk5C k
X(xk1x2k)1S k

X(xk
†2x2k

† ), for X5A,B,C,D
and x5a,b,g,d, respectively. Fork,0 we have X2k

5C k
X(xk2x2k)1S k

X(xk
†1x2k

† ). The operatorsak , bk , gk ,
anddk commute between themselves and satisfy the can
cal commutation relations

@ak ,aq
†#5@bk ,bq

†#5@gk ,gq
†#5@dk ,dq

†#5dkq .

The coefficientsC k
X , S k

X , and the phasesfk
X are chosen so

that the off-diagonal terms in Eq.~2! vanish, that is,

~C k
X!25

1

2 S Pk
X

A~Pk
X!22uQk

Xu2
11D ,

~S k
X!25

1

2 S Pk
X

A~Pk
X!22uQk

Xu2
21D , ~4!

cos2fk
X5

1

2 S 16
ReQk

X

uQk
Xu D , sin2fk

X5
1

2 S 17
ReQk

X

uQk
Xu D ,

~5!

where

Pk
A5

sin2u

2
~Cky

Ckz
1Ckx

Cky
!2cos2uCkx

Ckz
11,

Qk
A52

sin2u

2
~2Ckx

Ckz
1Cky

Ckz
1Ckx

Cky
!

1 i cosu~Ckx
Cky

2Cky
Ckz

!

Pk
B52

sin2u

2
~Cky

Ckz
1Ckx

Cky
!2cos2uCkx

Ckz
11,

Qk
B52

sin2u

2
~2Ckx

Ckz
2Cky

Ckz
2Ckx

Cky
!

2 i cosu~Ckx
Cky

2Cky
Ckz

!

Pk
C5

sin2u

2
~Cky

Ckz
2Ckx

Cky
!1cos2uCkx

Ckz
11,

Qk
C52

sin2u

2
~22Ckx

Ckz
1Cky

Ckz
2Ckx

Cky
!

2 i cosu~Ckx
Cky

1Cky
Ckz

!

17441
i-

Pk
D52

sin2u

2
~Cky

Ckz
2Ckx

Cky
!1cos2uCkx

Ckz
11,

Qk
D52

sin2u

2
~22Ckx

Ckz
2Cky

Ckz
1Ckx

Cky
!

1 i cosu~Ckx
Cky

1Cky
Ckz

!. ~6!

Following this procedure, we obtain the diagonal form of t
Hamiltonian:

HD5 (
X5A,B,C,D

(
k

S 2
1

2
Pk

X1
1

2
A~Pk

X!22uQk
Xu2

1A~Pk
X!22uQk

Xu2xk
†xkD .

The magnon energy corresponding to branchA is given by

vA~k![V~Ckx
,2Cky

,Ckz
!5$g2@~12Ckx

Ckz
!22Cky

2 ~Ckx

2Ckz
!2#1a2@~11Ckx

Cky
!22Ckz

2 ~Ckx
1Cky

!2#

1b2@~11Cky
Ckz

!22Ckx

2 ~Cky
1Ckz

!2#%1/2. ~7!

Note that the energyV(Ckx
,Cky

,Ckz
) is measured in units o

the spin-wave velocity, i.e., the prefactorv54JS is under-
stood. The set of spin-wave dispersions as well as the se
parameters of the Bogoliubov transformation is invaria
with respect to the simultaneous replacementsCki

⇒2Cki

( i 5x,y,z) . First, we observe that the other spectru
branches are straightforwardly deduced from the expres
above by changing the signs of the cosinesCki

: vB(k)

[V(Ckx
,Cky

,Ckz
), vC(k)[V(Ckx

,Cky
,2Ckz

), and vD(k)

[V(2Ckx
,Cky

,Ckz
). Besides the parameters of the Bogoli

bov transformation~6! are related by the same substitution
Indeed, the pairs (Pk

X ,Qk
X) for X5B,C,D are obtained from

X5A by changingCki
into 2Cki

with i 5y,x,z, respec-
tively. Thus, the whole parametrization given by the Bog
liubov transformation obeys this invariance. Other inva
ances are hidden in these expressions. Restricting ourse
to the set $Pk

X ,vX(k);X5A,B,C,D% and to the triple-k
state, we observe that this set is invariant under the per
tations (Ckx

,Cky
,Ckz

)⇒(Cky
,Ckz

,Ckx
) and (Ckx

,Cky
,Ckz

)

⇒(Ckz
,Ckx

,Cky
). Indeed, if we denote by (P1) and (P2)

respectively, these transformations of the structure fact
we see that according to expressions~6! and ~7! and a2

5b25g2, (P1) implies

„Pk
A ,vA~k!…⇒„Pk

C ,vC~k!…, „Pk
B ,vB~k!…⇒„Pk

B ,vB~k!…,

„Pk
C ,vC~k!…⇒„Pk

D ,vD~k!…, „Pk
D ,vD~k!…⇒„Pk

A ,vA~k!…,
~8!

whereas for (P2) we find
4-3
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„Pk
A ,vA~k!…⇒„Pk

D ,vD~k!…, „Pk
B ,vB~k!…⇒„Pk

B ,vB~k!…,

„Pk
C ,vC~k!…⇒„Pk

A ,vA~k!…, „Pk
D ,vD~k!…⇒„Pk

C ,vC~k!….
~9!

When a double-k structure is considered, expressions of t
spin-wave spectra and of the parameters of the Bogoliu
transformation, under the exchange~E!, Ckx

⇔Ckz
(Cky

be-
ing invariant!, become

„Pk
C ,vC~k!…⇔„Pk

D ,vD~k!…, ~10!

the two remaining setsA andB being unchanged.

C. Consequences of the spectrum invariance

These invariances have very important consequen
First, let us consider for instance the staggered magnetiza
M (T) at finite temperature:

M ~T!5
1

N (
i

~^S1i
z &1^S2i

z &1^S3i
z &1^S4i

z &!

5
1

N S 4S2 (
l5a,b,c,d

(
i

^l i
†l i& D .

Using the Bogoliubov transformation we obtain

(
l5a,b,c,d

(
i

^l i
†l i&

5 (
Xx5Aa,Bb,Cg,Dd

(
k

$@~C k
X!21~S k

X!2#^xk
†xk&1~Sk

X!2%

1 (
Xx5Aa,Bb,Cg,Dd

(
k.0

C k
XS k

X@^~xk
†!2&1^~xk!

2&

2^~x2k
† !2&2^~x2k!

2&#.

Obviously, since the expectation values do not depend on
sign of the variable introduced by the Fourier transformati
the staggered magnetization is given by

M ~T!5
1

N (
k

S 4S2 (
X5A,B,C,D

$@~C k
X!21~S k

X!2#nk
B~X!

1~S k
X!2% D , ~11!

wherenk
B(X)5@expbvX(k)21#21 is the Bose-Einstein distri

bution. Let us now consider the staggered magnetization
responding to a given sublattice. Converting the sum of
Fourier transformation to an integral over the Brillouin zo
~BZ!, we get from the expression above

MX~T!5
1

V0
E

BZ
dkxdkydkzf X~Ckx

,Cky
,Ckz

!, ~12!

whereV0 is the volume of the BZ and

f X~Ckx
,Cky

,Ckz
!5S2@~Ck

X!21~S k
X!2#nk

B~X!2~S k
X!2.
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Of interest to us in the sequel are relations involving the fo
integrands above along with the expressionf (Ckx

,Cky
,Ckz

)

5(Xf X(Ckx
,Cky

,Ckz
). They are the explicit forms of the in

variance of both the spin-wave spectra and the Bogoliu
transformation~4!,~5!:

f B~Ckx
,Cky

,Ckz
!5 f A~Ckx

,2Cky
,Ckz

!,

f C~Ckx
,Cky

,Ckz
!5 f A~2Ckx

,Cky
,Ckz

!,

f D~Ckx
,Cky

,Ckz
!5 f A~Ckx

,Cky
,2Ckz

!, ~13!

f ~Ckx
,Cky

,Ckz
!5 f ~2Ckx

,Cky
,Ckz

!5 f ~Ckx
,2Cky

,Ckz
!

5 f ~Ckx
,Cky

,2Ckz
!. ~14!

Let us take advantage of these properties. First of all, t
allow us to get a very satisfactory self-consistent descript
of the spin-wave physics. Indeed, the main applications o
spin-wave approach are to calculate the reduction of
spontaneous magnetization by quantum fluctuations aT
50, to determine the temperature dependence of the s
taneous magnetization, and to estimate the critical temp
ture as the temperature at which this magnetization vanis
In general, when as in our case they are several sublatt
different choices lead to different solutions, thus render
the overall framework inconclusive. Now we proceed
prove that these solutions are identical, an important cha
teristic of this framework. In fact, we have as many pos
bilities as the number of sublattices to manage the calc
tion. For example, Eq.~11! gives the solutionM (T)
corresponding to the case of considering together the
sublattices. However, it is also possible to work with on
one of the four dispersion relations, say,vA(k), with the
expression ofMA(T) given by Eq.~12!. To see how this is
possible we must carefully study the properties of the in
gration on the BZ.

fcc lattices are in general described by a set of ten in
grals. The invariance of the integrand under the transform
tion ki⇒2ki allows us to reduce this set to the three follow
ing contributions:

MA
I ~T!5

1

V0
E

0

p

dkzE
0

p2kz
dkxE

0

2p

dkyf A~Ckx
,Cky

,Ckz
!,

MA
II ~T!5

1

V0
E

0

p

dkzEp
a 2kz

2p

dkxE
0

3p2kx2kz
dky

3 f A~Ckx
,Cky

,Ckz
!,

MA
III ~T!5

1

V0
E

p

2p

dkzE
0

3p2kz
dkxE

0

3p2kx2kz
dky

3 f A~Ckx
,Cky

,Ckz
!, ~15!

and the final expression is

MA~T!58@MA
I ~T!1MA

II ~T!1MA
III ~T!#.
4-4
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By using the obvious invariance of the integrand

f A~Ckx
,Cky

,Ckz
![ f A~2Ckx

,2Cky
,2Ckz

! ~16!

and by changing the integration variableski⇒2p2ki , it is
possible to rewrite these integrals as

MA
I ~T!5

1

V0
E

0

p

dkzE
p1kz

2p

dkxE
0

2p

dkyf A~Ckx
,Cky

,Ckz
!,

MA
II ~T!5

1

V0
E

0

p

dkzE
0

p1kz
dkxE

0

p1kx2kz
dky

3 f A~Ckx
,Cky

,Ckz
!,

MA
III ~T!5

1

V0
E

0

p

dkzE
0

p1kz
dkxE

p1kx2kz

2p

dky

3 f A~Ckx
,Cky

,Ckz
!.

Consequently the full integration reads

MA~T!5
8

V0
E

0

p

dkzE
0

2p

dkxE
0

2p

dkyf A~Ckx
,Cky

,Ckz
!.

~17!

Now for the choicevB(k), the integration on the Brillouin
zone is

MB~T!5
1

V0
E

BZ
dkxdkydkzf A~Ckx

,2Cky
,Ckz

!

58@MB
I ~T!1MB

II ~T!1MB
III ~T!#.

Again, using Eq.~16! we rewrite the first two integrals on th
right-hand side~RHS! of the relation above by changin
Cky

⇒2Cky
. The third integral is modified throughCkx

⇒2Ckx
andCkz

⇒2Ckz
and the overall result is identical t

Eq. ~17!. Using the same tools it is easy to show that

M ~T!

4
5MA~T!5MB~T!5MC~T!5MD~T! ~18!

5
8

V0
E

0

p

dkzE
0

2p

dkxE
0

2p

dkyf A~Ckx
,Cky

,Ckz
!. ~19!

This proves the self-consistency as mentioned before. M
over, let us observe that it is possible to extend the integ
tion domain of kz to @0,2p#, thus recovering the overa
symmetry between the three variables (kx ,ky ,kz). This
means that the cumbersome numerical integration on the
BZ is replaced by a simple cubic integration. In order
prove this result it is sufficient to consider the peculiar ca
of MA(T). After the substitutionskx⇒2p2kx , ky⇒2p
2ky , andkz⇒2p2kz in the first two integralsMA

I (T) and
MA

II (T) in Eqs. ~15! and the use of Eq.~16! one can easily
found that

MA~T!5
8

V0
E

p

2p

dkzE
0

2p

dkxE
0

2p

dkyf A~Ckx
,Cky

,Ckz
!.
17441
e-
a-

cc

e

Besides, as a by-product of the discussion above, we h
obtained a powerful tool to build the interacting spin-wa
theory of such spin systems, namely, the universality of
different averages over the ground state of the number
erators corresponding to the four sublattices:

^na&5^nb&5^nc&5^nd&5n̄

5
1

V0
E

BZ
$@~C k

X!21~S k
X!2#nk

B~X!1~Sk
X!2%. ~20!

To conclude we establish a general result which is
straightforward consequence of the discussion above.
deed, it can be stated as a kind of theorem, namely, all i
grals of the formI(X)5*BZFX(Ckx

,Cky
,Ckz

) where the ex-

pressionsFX(Ckx
,Cky

,Ckz
) obey to the invariance propertie

~16! can be rewritten as an integration over a simple cu
lattice. In additionI(A)5I(B)5I(C)5I(D).

D. Perturbative treatment

The various terms of interaction between magnons
treated in the standard way. We require that the number
momentum of magnons always be conserved. Taking the
ample of two sublatticesa andb, we have only to consider in
the decoupling process pair averages like^ak

†ak&, ^bk
†bk&,

^ak
†bk& and their conjugates. Indeed, annihilating a magn

in the a sublattice corresponds to the process of creatin
magnon on the same sublattice or on another sublatticeb, c,
or d. Obviously the modified spin-wave theory introduced
Takahashi16 for Heisenberg ferromagnets and later applied
antiferromagnets17 is in agreement with these conservatio
laws. Then we calculate all kinds of interactions by comb
ing every possible pairs of operators into their averages.

The main hindrance to straightforward calculations is
occurrence in the decoupling process of cumbersome
averages different from the average of the particle num
operator. In some peculiar cases18 ~for recent works see Refs
19 and 20!, the nonlinear spin-wave theory can be compu
by using some complicated and, sometimes, obscure
consistent equations between several pair averages. Thi
stacle disappears in the framework of the fcc frustra
Heisenberg antiferromagnet. Let us illustrate this statem
on the following trilinear expression(^ i , j &ni

abj
† , where in

momentum space it reads

(
^ i , j &

ni
abj

†5
1

AN
(
k,k8

cos
~ky2ky8!

2
cos

~kz2kz8!

2
ak

†ak8bk82k
† .

In the decoupling process where we employ Wick’s theore
only the pair averageŝak

†ak& and^akbk
†& do not vanish and

(
^ i , j &

^ni
abj

†&5
1

AN
S zb0

†(
k

^nk
a&14a0

†(
k

Cky
Ckz

^akbk
†& D .

~21!

Following the same procedure the average(^ i , j &ni
abj can be

written as
4-5
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(
^ i , j &

^ni
abj&5

1

AN
S zb0(

k
^nk

a&14a0(
k

Cky
Ckz

^ak
†bk& D .

~22!

Let us now discuss the last contributions on the RHS of
above equations. As a consequence of the Bogoliubov tr
formation ~4!,~5! it follows that

(
k

~Dk
x1H.c.!

5
1

2 (
k

~Ak
†Ak2Bk

†Bk1Ck
†Ck2Dk

†Dk1H.c.!,

(
k

~Dk
z1H.c.!

5
1

2 (
k

~Ak
†Ak2Bk

†Bk2Ck
†Ck1Dk

†Dk1H.c.!,

(
k

~Dk
y1H.c.!

5
1

2 (
k

~Ak
†Ak1Bk

†Bk2Ck
†Ck2Dk

†Dk1H.c.!.

These relations allow us to calculate the averages on
RHS of Eqs.~21! and ~22!. Since

^Xk
†Xk&5@~Ck

X!21~S k
X!2#nk

B~X!1~S k
X!2,

it follows that

Fx~Ckx
,Cky

,Ckz
!54Cky

Ckz
^Dk

x1H.c.&

52Cky
Ckz

@g~Ckx
,2Cky

,Ckz
!

2g~Ckx
,Cky

,Ckz
!1g~Ckx

,Cky
,2Ckz

!

2g~2Ckx
,Cky

,Ckz
!#, ~23!

whereg(Ckx
,Cky

,Ckz
)5^Bk

†Bk&. Note also that

Fz~Ckx
,Cky

,Ckz
!54Ckx

Cky
^Dk

z1H.c.&

52Ckx
Cky

@g~Ckx
,2Cky

,Ckz
!

2g~Ckx
,Cky

,Ckz
!2g~Ckx

,Cky
,2Ckz

!

1g~2Ckx
,Cky

,Ckz
!# ~24!

and

Fy~Ckx
,Cky

,Ckz
!54Ckx

Ckz
^Dk

y1H.c.&

52Ckx
Ckz

@g~Ckx
,2Cky

,Ckz
!

1g~Ckx
,Cky

,Ckz
!2g~Ckx

,Cky
,2Ckz

!

2g~2Ckx
,Cky

,Ckz
!#. ~25!
17441
e
s-

he

Therefore, the following properties follow directly from Eq
~23!–~25!,

Fs~Ckx
,Cky

,Ckz
!5Fs~2Ckx

,Cky
,Ckz

!5Fs~Ckx
,2Cky

,Ckz
!

5Fs~Ckx
,Cky

,2Ckz
!,

and are valid fors5x,y,z. It then turns out that these ex
pressions satisfy the conditions allowing us to apply
theorem proved in the preceding section, namely,

Is5
1

V0
E

BZ
Fs~Ckx

,Cky
,Ckz

!

[
16

V0
E

0

2p

dkzE
0

2p

dkxE
0

2p

dkyFs~Ckx
,Cky

,Ckz
!.

More specific properties depend on the particular multk
structure which is stabilized. For the highly noncolline
triple-k state, the expressions above satisfy the permuta
invariancesP1 andP2 @Eqs.~8! and ~9!#,

Fx~Ckx
,Cky

,Ckz
!5Fz~Cky

,Ckz
,Ckx

!52Fy~Ckz
,Ckx

,Cky
!,

~26!

allowing us to establish@since from Eq.~26! the three vari-
ables of integration are equivalent#

Ix5Iz52Iy[I. ~27!

For the double-k state we can observe from the exchange~E!
@see Eq.~10!# that

Ix5Iz , ~28!

Iy being unchanged. Finally for the single-k state we have

Ix5Iz50, ~29!

since in that case(k(Dk
x1H.c.)5(k(Dk

z1H.c.)50.
The next step is to find phenomenological expressions

these integals. It seems quite reasonable to assume the
versality of the pair averageŝl†m& and their conjugates
with lÞm andl,m5a,b,c or d. Thus they can be written a

Is5
4

V0
E

BZ
Cs8Cs8^l

†m&5
4

V0
E

BZ
Cs8Cs8$@~Ck

B!2

1~S k
B!2#nk

B~B!1~S k
B!2%, ~30!

where to s5(x,y,z) corresponds, respectively,@s8,s9#
5(@y,z#,@x,z#,@x,y#). This expression is, of course, consi
tent with the relations ~27! and ~28!. Indeed,
g(Ckx

,Cky
,Ckz

)[@(Ck
B)21(S k

B)2#nk
B(B)1(S k

B)2 with the
parametrization corresponding to the triple-k state has the
property

g~Ckx
,Cky

,Ckz
!5g~Cky

,Ckz
,Ckx

!5g~Ckz
,Cky

,Ckx
!,

whereas for the double-k case one only has

g~Ckx
,Cky

,Ckz
!5g~Ckz

,Cky
,Ckx

!.
4-6
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III. HEISENBERG ISOTROPIC HAMILTONIAN

Within the spin-wave theory at fourth order to which w
shall restrict ourselves, the effective Hamiltonian acqui
the form H5H11H21H31H4, whereHn is the term of
nth order in the Bose operators. Here we evaluate the 1AS
and 1/S quantum corrections toH2 by taking into account
H3 andH4. We replace, as explained before, two of the th
~four! operators inH3 (H4) with the expectation values in
the ground state ofH2, ending up with a term which is linea
~bilinear! in Bose operators. In the following we prove th
the double infinite degeneracy of the ground state persist
the whole antiferromagnetic range of temperature when
third-order terms in the bosonic operators are calculated

A. Odd contribution

Generally, the requirement that the linear partH1 of the
Hamiltonian vanish leads to classical conditions for the o
entation of the equilibrium magnetic moment of each sub
tice. When this Hamiltonian describes a frustrated spin s
tem this part disappears whatever may be the angles (q,w),
thus betraying the strong degeneracy of the correspon
ground state. The odd term of higher-orderH3 gives some
insight into the relative stability of the magnetic states giv
by H1 or to the permanency of the degeneracy at the qu
tum level. This term is separated into an imaginary part p
portional to

Im H35sinu~S1
hS2

r2S1
rS2

h2S1
hS4

r1S1
rS4

h1S2
hS3

r

2S2
rS3

h1S3
hS4

r2S3
rS4

h!

and a real part

ReH352sin 2u~S1
jS3

r1S1
rS3

j2S2
jS4

r2S2
rS4

j !1
sin 2u

2
~S1

jS2
r

2S1
rS2

j1S3
jS4

r2S3
rS4

j1S1
jS4

r2S1
rS4

j2S2
jS3

r1S2
rS3

j !.

The contribution of third order in bosonic operators, which
of the order 1/S with respect to the linear contribution, take
the form

Im H35AS

2
sinu(

^ i , j &
$~ni

a2ni
c!~bj

†2bj1dj2dj
†!

1~ni
b2ni

d!~cj
†2cj1aj2aj

†!%,

It is straightforward to evaluate the average of this quant
correction by using Eqs.~20!–~22!. This results in

^Im H3&54AS

2
sinu~a0

†2a02b0
†1b0

1c0
†2c02d0

†1d0!~Ix2Iz!.

Now, we may invoke Eqs.~27!–~29! to prove that̂ Im H3&
[0, whatever may be the state considered.

The corresponding real part is given by
17441
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ReH35AS

8
sin 2u(

^ i , j &
$~ai1ai

†!~nj
b1nj

d22nj
c!1~ci1ci

†!

3~nj
b1nj

d22nj
a!2~bi1bi

†!~nj
a1nj

c22nj
d!

2~di1di
†!~nj

a1nj
c22nj

b!%.

Again using Eqs.~20!–~22!,

~ReH3!522AS

2
sin 2u~a0

†1a02b0
†2b01c0

†1c0

2d0
†2d0!~Ix1Iz12Iy!.

This average value is zero for the single-k and double-k
states since then the prefactor sin 2u vanishes and for the
triple-k state by using Eq.~27!. Thus we have proved that, a
this order, the degeneracy of the ground state remains
over the entire AF domain in temperature.

B. Quartic contribution

The following is an attempt to go beyond the linear sp
wave theory by considering the interactionH4 given by the
fourth-order perturbation with respect to the number
bosonic operators. The scalar products of spins contain
even products of bosonic operators can be written in
local coordinate system as

S1•S252~S1
j
•S2

h1S1
h
•S2

j !cosu1S1
j
•S2

jsin2u2S1
z
•S2

zcos2u,
~31!

S1•S35~S1
z
•S3

z2S1
j
•S3

j !cos 2u2S1
h
•S3

h , ~32!

S1•S45~S1
j
•S4

h1S1
h
•S4

j !cosu1S1
j
•S4

jsin2u2S1
z
•S4

zcos2u.
~33!

Other contributions are easily obtained by changing spin
bels. In fact the scalar products of any pairs of spins lay
on opposite edges of the basic tetrahedron are identical. T
S3•S4 is deduced fromS1•S2 by replacing 1→3 and 2→4,
whereasS2•S4 (S2•S3) is deduced fromS1•S3 (S1•S4) by
the substitutions 1→2 and 3→4 ~1→2 and 4→3!.

At the fourth order in Bose operators, the termS1
jS2

j takes
the form

S1
jS2

j5(
^ i , j &

F S S

2D S ~aibj1ai
†bj1H.c.!2

1

8
@ai

†ai
2bj1ai

†ai
2bj

†

1~ai
†!2aibj1~ai

†!2aibj
†1aibj

†bj
21ai~bj

†!2bj

1ai
†bj

†bj
21ai

†~bj
†!2bj # D G . ~34!

It is straightforward to generalize the averages~21! and~22!.
For instance, we have

K (
^ i , j &

ai
†ai

2bj L 5
16

N F2 (
k1

^nk1

a &(
k2

Ck2y
Ck2z

ak2
b2k2

1( Ck1y
Ck1z

^ak1

† bk1
&( ak2

a2k2G .
k1 k2

4-7
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Transforming the sum onk2 in integration over the BZ we
obtain

K (
^ i , j &

ai
†ai

2bj L 5(
k

~8n̄Cky
Ckz

akb2k14Ixaka2k!.

The other terms in Eq.~34! come out easily and

^S1
jS2

j1S3
jS4

j&5(
k

H 2SS 12
n̄

SDCky
Ckz

~Sk
x1Dk

x1H.c.!

2
Ix

2
~4Vk1Lk1Lk

†!J . ~35!

The first term on the RHS above is the same as the one
the noninteracting case in whichS is replaced byS(1
2n̄/S). It is straightforward, although lengthy, to generali
the above result to the other scalar products in Eqs.~31!–
~33!. The final results are

^S1
hS3

h1S2
hS4

h&52(
k

H 2SS 12
n̄

SDCkx
Ckz

~Sk
y2Dk

y1H.c.!

2
Iy

2
~4Vk2Lk2Lk

†!J ,

^S1
jS2

h1S1
hS2

j1S3
jS4

h1S3
hS4

j&

5(
k

H 4SS 12
n̄

SDCky
Ckz

@ i ~Sk
x!†1H.c.#

2Ix~ iLk
†1H.c.!J . ~36!

The calculation of a mean-value-like^S1
zS2

z& requires spe-
cial care. Indeed, at this order such a contribution is given

^S1
zS2

z&5zS22zS(
i

~ni
a1ni

b!1K (
^ i , j &

ni
anj

bL .

After the Fourier transformation we obtain

K (
^ i , j &

ni
anj

bL 54n̄ (
k

~nk
a1nk

b!

1
4

N (
k,q

~Cky2qy
Ckz2qz

^akbk
†&aq

†bq1H.c.!.

~37!

Because of the natural assumption^akbk
†&[^a2kb2k

† & we
found

(
k,q

~Cky2qy
Ckz2qz

^akbk
†&aq

†bq1H.c.!

5S (
k

Cky
Ckz

^akbk
†&(

q
Cqy

Cqz
aq

†bq

1(
k

Sky
Skz

^akbk
†&(

q
Sqy

Sqz
aq

†bq1H.c.D ,
17441
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where Ski
5sin@ki/2# ( i 5x,y,z). Formally, the average

^(^ i , j &ni
anj

b& may be written as

K (
^ i , j &

ni
anj

bL 54n̄ (
k

~nk
a1nk

b!1S Ix(
k

Cky
Ckz

ak
†bk

1Ix8(
k

Sky
Skz

ak
†bk1H.c.D ,

where the expression ofIx8 is deduced fromIx by replacing
the factor Cky

Ckz
by Sky

Skz
. Now, defining

Fx8(Ckx
,Cky

,Ckz
)5Sky

Skz
^Dk

x1H.c.& it can be shown that

Fx8~Ckx
,Cky

,Ckz
!5Fx8~2Ckx

,Cky
,Ckz

!

52Fx8~Ckx
,2Cky

,Ckz
!

52Fx8~Ckx
,Cky

,2Ckz
!

and more generallyFs8 (Cks
)5Fs8 (2Cks

) and Fs8 (Ckv
)

52Fs8 (2Ckv
) if vÞs. Since these expressions obe

relation ~16!, we can apply the theorem stated in th
former section, namely, *BZFs8 (Ckx

,Cky
,Ckz

)

[4*0
2pdkz*0

2pdkx*0
2pdkyFs8 (Ckx

,Cky
,Ckz

). From Fs8 (Ckv
)

52Fs8 (2Ckv
) it follows that Fs8 (Ckv

)50. Then necessar

ily Is850.
Accordingly we have

^S1
zS2

z1S3
zS4

z&52zS22zSS 12
n̄

SD(
k

Vk

1IxS (
k

Cky
Ckz

Dk
x1H.c.D . ~38!

Now with the help of Eqs.~31!–~33! and according to
Eqs. ~35!, ~36!, and ~38! it is straightforward to calculate
H21H4. The resulting Hamiltonian can be written as in E
~2!. The new coefficients are

Pk
(214)54S 12

n̄

SD2
2

S
~Ix1Iz12Iy!sin2u,

Qk
(214)52

sin2u

2S
~Ix1Iz!1

I y

S
cos2u,

Rk
x(214)52S 12

n̄

SDCky
Ckz

~sin2u12i cosu!,

Rk
y(214)54S 12

n̄

SDCkx
Ckz

sin2u,

Rk
z(214)52S 12

n̄

SDCkx
Cky

~sin2u22i cosu!,

Vk
x(214)52S 12

n̄

SDCky
Ckz

sin2u2
cos2u

S
IxCky

Ckz
,

4-8
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Vk
y(214)524S 12

n̄

SDCkx
Ckz

cos2u1
cos 2u

S
IyCkx

Ckz
,

Vk
z(214)52S 12

n̄

SDCkx
Cky

sin2u2
cos2u

S
IzCkx

Cky
. ~39!

Now we are ready to give the main result of this paper. Si
the Hamiltonian defined by the above parameters can be
agonalized by the Bogoliubov transformation~3!, we can
write the corresponding set of spin-wave dispersions.
sake of clarity, we give the formulas for the three allow
spin states. We restrict ourselves to terms which are not q
dratic in the integralsIl , l5x,y,z. Indeed, as we are dis
cussing now, those terms denoted by^V (4)& II are negligible
in the most interesting cases. They can be obtained, if n
essary, from the formulas above. Beginning with the singlk
state, recalling thatIx5Iz50, and denotingIy by I1,

vB
2~k![S 12

n̄

SD 2

@~12Ckx
Ckz

!22Cky

2 ~Ckx
2Ckz

!2# ~40!

1
I1

2SS 12
n̄

SDCkx
Ckz

~12Ckx
Ckz

!1^V (4)& II . ~41!

For this state the spin-wave dispersion relations contain
branches, as it should, since there are as many branch
magnetic sublattices. The other branch is deduced from
expression above by changing the sign ofCkx

or Ckz
.

For the double-k state, by imposingu5p/2, Eq. ~39!, re-
sults in

vB
2~k![S 12

n̄

SD 2

~12Ckx
Ckz

!

3~11Ckx
Ckz

2Ckx
Cky

2Cky
Ckz

!2
2

SS 12
n̄

SD
3~I21J2!@12 1

2 ~Ckx
Cky

1Cky
Ckz

!#2
1

4SS 12
n̄

SD
3I2~Ckx

Cky
1Cky

Ckz
22Ckx

Ckz
!1^V (4)& II . ~42!

This expression depends on two quantities which are
fined byI25Ix5Iz andJ25Iy .

Note thatu5cos21A1
3 gives the triple-k state. The corre-

sponding spectrum branch is

vB
2~k![S 12

n̄

SD 2

@12 2
3 ~Ckx

Cky
1Cky

Ckz
1Ckx

Ckz
!

1 2
3 Ckx

Cky
Ckz

~Ckx
1Cky

1Ckz
!2 1

3 ~Ckx

2 Cky

2

1Cky

2 Ckz

2 1Ckx

2 Ckz

2 !#1
I3

2SS 12
n̄

SD @Ckx
Ckz

2 1
3 ~Ckx

Cky
1Cky

Ckz
1Ckx

Ckz
!2#1^V (4)& II , ~43!
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where Ix5Iz52Iy[I3. In addition, the other spin-wave
frequencies associated with Eqs.~42! and ~43! are obtained
from these expressions by changing the signs ofCkx

, Cky
,

andCkz
respectively.

In both cases the resulting magnon energy assumes
form

v~k!5AS 12
n̄

SD F S 12
n̄

SDV (2)1^V (4)& I G1^V (4)& II . ~44!

Let us first discuss the term̂V (4)& II . We have to evaluate
the importance of the different integrals entering in this fo
mulation. We choose the limit of zero temperature since th
they become independent of the Heisenberg couplingJ.
In this limit these integrals are given by formulas~30! where
now nk

B(B)⇒0. A numerical evaluation of such quantitie
however, is complicated by the singular nature of the in
grand. In fact these integrals are analog to the express
of the zero-point spin reduction within the antiferromagne
spin-wave theory. They ask for an analytical treatment
well-known fact in quasi-one-dimensional antiferr
magnets.21 Let us consider the concrete example ofI1 for the
single-k state:

I1.E
0

2p

dkzE
0

2p

dkxE
0

2p

dkyCkx
Ckz

3F 12Ckx
Ckz

@~12Ckx
Ckz

!22Cky

2 ~Ckx
2Ckz

!2#
21G .

The ky integration yields

I1.4E
0

2p

dkzE
0

2p

dkxCkx
CkzFKS Ckx

2Ckz

12Ckx
Ckz

D 21G .

Here K(k) is the complete elliptic integral of the first kin
with modulus k. The analytical property of this function
neark850, wherek85A(12Ckx

2 )(12Ckz

2 )/(12Ckx
Ckz

) is

known from22 K. ln(4/k8). The divergent logarithmic be
havior along the directionskx50 andkz50 cannot be re-
garded as a wrong indication since the original Heisenb
Hamiltonian corresponds to an unphysical situation. Inde
when systems experimentally realized are considered,
continuous degeneracy of the ground state has to be lifte
some exchange term stabilizing a multi-k structure.12 Then a
gap appears in the spin-wave spectrum and there are no
divergencies. Moreover, these quantities decrease as the
increases, in such a way that the value at the weak gap
good estimate. This is the reason why we have evaluated
above integrals by introducing at hand a gap of the orde
4JS/200. AssumingV05(2p)3, we obtain~in a3 units!

I1.20.84, I2.20.25, J2.20.13, I3.20.12.
~45!

These values can be interpreted as follows. The contribu
of the triple-k state to the spin reduction is 0.33.14 With
respect to the formulation of this quantity, the integrands
modulated by the factorCki

Ckj
which diminishes roughly the
4-9
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result of the integration by one-half order of magnitude. T
strong reducing effect is partly compensated by the prefa
of 4 entering in the definition ofIi , thus leading to a smalle
value. Now the other multi-k magnetic states are less an
less tridimensionals. The magnetic moments of the doubk
state lie in a plane, whereas the single-k configuration is very
similar to a canonical one-dimensional AF structure. T
explains the differences between the estimations in Eqs.~45!.
Since the magnon energies are normalized to unity in
sense thatV~0,0,0!51, we have strong reasons to belie
that the contribution̂ V (4)& II is negligible at least for the
triple-k structure.

Taking into account this approximation, the addition
perturbative terms given byH4 in Eq. ~44! have two conse-
quences. First, they renormalize the magnon energy by
prefactor 12n̄/S. As the temperature increases, the seco
term of this thermal average also increases, causing a
crease in the spin-wave frequencies. But interestin
enough, the overall shape of the magnon modes remains
affected by the temperature at which they are measured
other words, for this contribution, lowering the temperatu
increases the resolution of the frequency spectra. The Ha
tonian H21H4 furnishes also an additive contribution b
having asA12n̄/S and which partly jams the image give
above. However, at least for the triple-k structure, a decreas
in temperature of the spin-wave spectra is predicted. Thi
in agreement with what is called the softening phenome
of the spin-wave frequencies.23 This phenomenon is known
to be common to most antiferromagnets.

The softening temperatureTs , the temperature below
which the spin waves are stable, is in general greater than
Néel temperature. This is becauseTN is the temperature limit
above which the long-range order is destroyed. Indeed, w
long-range AF order does not exist, the nearest-neigh
sites still have AF interactions, the correlation length rema
ing very long. In the present context, if the remaining ad
tional terms which do not contribute to the temperature
pendence, 12n̄/S, are lacking, the two critical temperature
are identical if, as usual,TN is estimated to be the critica
temperature at which the magnetization vanishes.

Finally, we make a rough comparison of Eq.~44! with the
temperature dependence of the longitudinal and transv
modes in NpBi.3,24 In fact, we choose the following param
etrization for the energy of these magnetic excitations:

E5lA12
n̄

S
A11r 2

n̄

S
. ~46!

In addition to the prefactorl, there is a second parameter
the expression ofn̄, Eq. ~20!, which measures the effectiv
strength of the AF coupling in the Bose-Einstein distributi
nk

B5@exp(l1v/T)21#21. These parameters are chosen in
der to reproduce the observed Ne´el temperature and th
value of the excitation energy atT50. Then, the behavior in
temperature is given by the ratior. The results~Fig. 1! em-
phasize two points. First a non-negligible contributi
^V (4)& I is required in the expression~44! of the magnon
energy. Indeed the dashed curve refers to Eq.~46! with r
50, whereas the solid curve reproducing the data on
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transverse modes~T! is obtained withr 50.2. Thus, in spite
of the freedom in the parameter choice, the necessity or
Þ0 is established. The parameter set islT5280 K, which
corresponds to an effective couplingJ547 K, and l1
5555 K (J1593 K). Second, the temperature dependen
of the data on the longitudinal modes~L! can be straightford-
wardly obtained from the fit on the transverse ones by
constant rescaling, since nowlS5lT/1.54, the remainder o
the parameter set being unchanged. Note that this obse
tion is qualitatively in agreement with the formulation pr
sented here, Eq.~43!, since the variation in temperature o
the magnon energies is independent of the branch cho
However, we have to remember that this formulation co
cerns only the unrealistic description given byHnn . In par-
ticular, the clear difference between the couplingsl andl1
has to be explained by some model.

IV. HEISENBERG SYSTEMS
WITH SUPPLEMENTARY INTERACTIONS

Now we discuss the temperature dependence given by
nonlinear spin-wave theory for the Heisenberg model w
different types of anisotropy and interactions. First, we sh
focus on stabilizing terms for which higher-order contrib
tions can be evaluated easily. We accordingly restrict
discussion to the local single-ion anisotropy, the quadrupo
interaction, and the single-ion anisotropy given by the crys
electric field. These calculations are made for the triplek
state. A systematic derivation of higher-order properties
other stabilizing terms is a very complicated task. Hence
seems worthwhile to wait for a particular physical applic
tion before attempting a careful analysis. However, it is p
sible to make some speculations about their behavior in t
perature by considering only the ‘‘leading terms’’ giving fo
H2 the prefactor 12n̄/S. This will be done for the fourth-
order spin couplings.

A. Local anisotropy

First, let us discuss the local single-ion anisotropy in t
triple-k configuration. The Hamiltonian which has to b
added toH2 in order to stabilize this type of configuration10

has the general form

FIG. 1. The temperature dependence of the longitudinal
transverse modes in NpBi.
4-10
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dHan5Dan(
i

(
I 51

4

~Si I •dI !
2,

where the indexi refers to thei th lattice site,I labeling the
four sublattices. The unit vectorsdI are defined along the
direction of the trigonal axis asd15(1/A3)(1,1,1), d2

5(1/A3)(21,1,21), d35(1/A3)(21,21,1), and d4

5(1/A3)(1,21,21). Here the equilibrium conditions12 do
not depend on the order of the 1/S expansion considered. Th
former Hamiltonian in the triple-k structure reduces to12

dHan5DanS
2(

i
(
I 51

4

~S2ni
I !2,

resulting in the exact expression

dH an
(2)1^dH an

(4)&522DanS
3S 12

n̄

SD(
i

(
I 51

4

ni
I ,

which corresponds to consider the leading term inS3 with
the changeDan⇒Dan(12n̄/S). Thus there is no qualitative
difference in the leading temperature behavior given by
expansion of the quartic termH2.

B. Quadrupolar interaction

An analysis of the stability of antiferromagnetically o
dered multi-k structures has shown the importance of t
quadrupolar interactions.25 A model including both crystal-
field effects and anisotropic exchange originating from q
drupolar interactions was developed to explain the spin
namics of several type-I antiferromagnets.1 We only consider
the case of diagonal and isotropic interactions with one
fective quadrupolar coupling parameterK, given by the
Hamiltonian

dHQ5K(
i

(
I 51

4

~O2i
0 @ I #O2i

0 @ I #13O2i
2 @ I #O2i

2 @ I # !,

whereOn
m are Stevens operators:26

O2
0@ I #53~SI

z!22S~S11!,

O2
2@ I #5~SI

x!22~SI
y!2.

The resulting equilibrium conditions given by the linear te
do not depend on the particular sublatticeI 51, . . . ,4 con-
sidered and are given by

6KS2sin 2u~xi1xi
†!~S1123Scos2u!50.

Therefore, the quadrupolar interaction stabilizes the three
states potentially, the triple-k state being selected when th
spin S is very large. In that case the strengthK of the qua-
drupolar contribution is strongly enhanced by a factorS3.
Now concentrating on this last possibility we find the follow
ing expressions in the local coordinate sytemjhz:

O2i
0 @ I #O2i

0 @ I #5@~SI
z7A2SI

j!2S2#2,
17441
e

-
-

f-

cc

3O2i
2 @ I #O2i

2 @ I #5@SI
j
•SI

h1SI
h
•SI

j6A2~SI
z
•SI

h1SI
h
•SI

z!#2,

where the upper~lower! sign corresponds to the sublattice
@1,3# (@2,4#), respectively. From these expressions the th
first quantum corrections are easily calculated. The te
dH Q

(3) , third order in the Bose operators, vanishes. This
sult indicates the stability of the structure on the whole A
domain in temperature. Moreover, the interacting theory
tained to the fourth order gives similar results to the intera
ing H2 at the same order:

dH Q
(2)1^dH Q

(4)&58KS3S 12
n̄

SD(
i

(
I 51

4

ni
I .

C. Crystal electric field

The single-ion anisotropy can be also provided by
crystal electric field~CEF! in some special cases which w
discuss now. For localizedf-electron systems the correspon
ing Hamiltonian is given by

dHCF5(
i

(
I 51

4

$B4~O4i
0 @ I #15O4i

4 @ I # !

1B6~O6i
0 @ I #221O6i

4 @ I # !%, ~47!

whereB4 andB6 are effective crystal-field parameters. Su
contribution has been used to calculate the excitation sp
trum of USb by canonical spin-wave theory in the triplek
state.1,11For theU31 ions the second term on the RHS of E
~47! vanishes and, then, the expression above can be
proximated by the spin Hamiltonian11 dHCF.Sx

41Sy
41Sz

4 .
Within this approximation the classical stable states given
dHCF again are determined by the criterion of vanishi
linear term,

sin 2u~Sz!3Sj~sin2u22 cos2u!50. ~48!

They can then be the single-k, double-k, or triple-k state. We
must now evaluate the 1/S quantum correction to this resu
by taking into accountdH CF

(3) by replacing two of the three
operators indH CF

(3) with their expectation value. Then th
term, which is linear in Bose operators and of next order
1/S, is

^dH CF
(3)&522 sinu cos3u^~Sj!3Sz&22 sin3u cosu^~Sz!3Sj&

16 sinu cosu^~Sh!2SjSz&,

giving

^dH CF
(3)&56S2AS

2
sin 2u~2 cos2u2sin2u!n̄

3~a02b01c02d01H.c.!.

Again the cancellation of this expression gives the sa
structures as Eq.~48!.

Now restricting ourselves to the triple-k state and consid-
ering only the contribution of the magnetic momentA results
in
4-11
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Sx
41Sy

41Sz
45

1

2
@~Sj!21~Sh!2#21@Sz!2@~Sj!21~Sh!2#

1@~Sj!21~Sh!2#~Sz!21
1

3
~Sz!4.

To see how this expression develops as a function of bos
operators, we might note that (Sj)21(Sh)25S(2a†a11).
Hence we have the exact result at fourth order:

Sx
41Sy

41Sz
45S 8S3

3
22S2Da†a

24S~2S21!a†aa†a1o~a5!.

In the limit of largeS, the corresponding term which is b
linear in Bose operators is given by~the three others mag
netic moments giving similar results!

dH CF
(2)1^dH CF

(4)&

5
8S3

3 S 12
3n̄

S D(
i

~ai
†ai1bi

†bi1ci
†ci1di

†di !.

Thus the temperature dependence given by the CEF is
ferent from those given byHnn .

D. Fourth-order spin couplings

The fourth-order spin couplings are the biquadratic
change interaction (SA•SB)2 ~Ref. 7! and the four-spin ex-
change interaction (SA•SB)(SC•SD) ~Ref. 8!. The calculation
of these interactions among localized spins is greatly sim
fied if we neglect the terms given by the integralsIl , l
5x,y,z. Indeed, let us consider for sake of illustration t
following contribution:

dH4.(
k

Cky
Ckz

ak
†bk(

q
Cqy

Cqz
cq

†dq .

By imposing the Wick theorem, it is decoupled in the fo
lowing way:

^dH4&.(
k

Cky
Ckz

^ak
†bk&(

q
Cqy

Cqz
cq

†dq

1(
k

Cky
Ckz

ak
†bk(

q
Cqy

Cqz
^cq

†dq&

1(
k

~Cky
Ckz

!2~^ak
†dk&bkck

†1ak
†ck^bkck

†&!.

The first two terms of this decoupling vanish since one c
neglect the two sums(kCky

Ckz
^ak

†bk& and(qCqy
Cqz

^cq
†dq&

when transformed into integrals. The last term disappear
the thermodynamic limit and we end up with^dHIV&50.
This result is easily extended to more general contributio
Indeed, the fourth-order terms of this kind of contributio
can be roughly divided into two classes. The first one
provided by the product of two quadratic terms, whereas
second comes from the product of a fourth-order term wit
17441
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zero-order contribution. The latter one is given by expr
sions likeSz

•Sz;S2, since then there is no structure fact
canceling the integral in Fourier space. Thus it appears
this second class is the source of the 1/S terms which build
the prefactor 12tn̄/S giving the temperature dependence.

E. Four-spin interaction

The four-spin interaction likely to lift the degeneracy
Hnn ~Ref. 12! has the form

dHIV5JIV@~S1•S2!~S3•S4!1~S1•S4!~S2•S3!

1~S1•S3!~S2•S4!#. ~49!

This interaction gives a perturbative contribution at third o
der which can be separated into two real parts ReO A

(3) and
ReO B

(3) , given, respectively, by (S1•S2)(S3•S4)1(S1•S4)
(S2•S3) and (S1•S3)(S2•S4):

ReO A
(3).2 sinu cos3uS, ReO B

(3).sin 2u cos 2uS,

with

S5(
^ i , j &

(
^ i 8, j 8&

@~ai1ai
†!~ni 8

b
1ni 8

c
1ni 8

d
!

1~ci1ci
†!~ni 8

a
1ni 8

b
1ni 8

d
!2~bi1bi

†!~ni 8
a

1ni 8
c

1ni 8
d

!

2~di1di
†!~ni 8

a
1ni 8

b
1ni 8

c
!1Tli #,

where

Tli5
1

4
~ai

†ni
a1ni

aai1ci
†ni

c1ni
cci2bi

†ni
b

2ni
bbi2di

†ni
d2ni

ddi !.

The supression of this contribution requires

sin 2u~cos2u1cos 2u!50, ~50!

and the stabilizing conditions remain unaffected by the thi
order term in the Bose operators.

Concerning the temperature dependence, let us cons
the first contribution on the RHS of Eq.~49!. The calculation
proceeds in several steps. The first one is to evaluate the
of second order in 1/S:
4-12
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@~S1•S2!~S3•S4!#~2)5S2cos2u@cosu~S1
j
•S2

h1S1
h
•S2

j1S3
j
•S4

h1S3
h
•S4

j !~2)2sin2u~S1
j
•S2

j1S3
j
•S4

j !~2!

1cos2u~S1
z
•S2

z1S3
z
•S4

z !(2)#.

Next we consider the fourth-order term

@~S1•S2!~S3•S4!# (4)5S2cos2u@cosu~S1
j
•S2

h1S1
h
•S2

j1S3
j
•S4

h1S3
h
•S4

j !(4)2sin2u~S1
j
•S2

j1S3
j
•S4

j !(4)

1cos2u~S1
z
•S2

z1S3
z
•S4

z !(4)#1cos2u@cosu~S1
j
•S2

h1S1
h
•S2

j !(2)2sin2u~S1
j
•S2

j !(2)#~S3
z
•S4

z !(2)

1cos2u@cosu~S3
j
•S4

h1S3
h
•S4

j !(2)2sin2u~S3
j
•S4

j !(2)#~S1
z
•S2

z !(2)1cos4u~S1
z
•S2

z !(2)~S3
z
•S4

z !(2),
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and finally, we compute the average of this fourth order te
by using the general result̂ (SA•SB)(4)&52(n̄/S)(SA
•SB)(2). It is now a matter of some algebra to find out ho
this contribution transforms,

^@~S1•S2!~S3•S4!# (4)&52
3n̄

S
@~S1•S2!~S3•S4!# (2),

in such a way that this result can be generalized to the o
terms in Eq.~49! so that

dH IV
(2)1^dH IV

(4)&.S 12
3n̄

S D dH IV
(2) . ~51!

F. Biquadratic contribution

In the case of the biquadratic contribution

dHBIQ5JBIQ@~S1•S2!21~S3•S4!21~S1•S4!21~S2•S3!2

1~S1•S3!21~S2•S4!2#,

this supplements the linear terms by adding imaginary
real contributions. The calculation is quite lengthy and
volves complicated expressions. However, the resulting
bilizing condition again remains identical to that found
first order of the expansion, i.e., the condition~50!. Again we
derive theT dependence given by the fourth-order term, f
lowing the same route as before. Taking the example of
first term we get successively

@~S1•S2!2# (2)

2
5S2cos2u@cosu~S1

j
•S2

h1S1
h
•S2

j !(2)

2sin2u~S1
j
•S2

j !(2)1cos2u~S1
z
•S2

z !(2)#,

@~S1•S2!2# (4)

2
5S2cos2u@cosu~S1

j
•S2

h1S1
h
•S2

j !(4)

2sin2u~S1
j
•S2

j !(4)1cos2u~S1
z
•S2

z !(4)#

1cos2uFcosu~S1
j
•S2

h1S1
h
•S2

j !(2)2sin2u

3~S1
j
•S2

j !(2)1
cos2u

2
~S1

z
•S2

z !(2)G~S1
z
•S2

z !(2).
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These relations yield to^@(S1•S2)2# (4)&52(3n̄/S)@(S1
•S2)2# (2). The other terms follow the same law. Hence t
biquadratic contribution behaves like the four-spin contrib
tion

dH BIQ
(2) 1^dH BIQ

(4) &.S 12
3n̄

S D dH BIQ
(2) .

V. CONCLUSION

In many cases the theory of interacting magnons requ
a complicated formalism which is not only laborious
handle but where formal difficulties may hide the phys
~for a review on the spin waves in magnetic insulators,
the work of Kaganov and Chubukov27!. Clearly this is not
the case for the frustrated AF Heisenberg model for the
type-I configuration. Let us recapitulate what we ha
learned about the behavior in temperature of the spin-w
frequencies. The perturbative treatment leads in great pa
a renormalization of the magnetic characteristics at nonz
temperature. Indeed, the additional terms give, at least
the triple-k configuration, a temperature law of the gene

form (A12tn̄/SAa1b(12tn̄/S) where n̄ is a Bose func-
tion andt a constant which istnn51 for Hnn . In the case of
systems experimentally realized, this Hamiltonian comes
ways with, at least, a supplementary contribution which li
the extensive degeneracy of the ground state and spec
the AF spin state. We have been successful in proving
the leading form of the temperature dependence (12n̄/S) is
not modified by the local anisotropy or the quadrupolar
teractions. On the contrary, the CEF and the fourth-or
spin couplings, four spin interaction, and biquadratic con
butions behave in a very different way since nowtCEF5t IV
5tBIQ53. These behaviors are in agreement with wha
called the softening phenomenon of spin-wave frequenc
in most antiferromagnets the initial effect of the temperat
is to decrease the spin-wave frequencies.

The discovery of invariances displayed by the magn
spectra has allowed us to carry out the calculations prese
here. It is important to note that there is, at mean, one
other model where the magnon spectra exhibit analog p
erties. It concerns the Heisenberg antiferromagnet wh
both the nearest-neighbor~NN! interactions and the next
nearest-neighbor~NNN! interactions are studied on a cub
4-13
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and square lattices.28 In the latter case, one branch of th
spin-wave spectra is given by

v1k52S@$2l~11cosk1cosk2!1cosk11cosk2%

3$2l~12cosk1cosk2!1cosu~cosk12cosk2!%#1/2,

where the parameterl represents the relative strength of t
NNN interactions to the NN ones, the angleu characterizing
the AF state considered. Starting from the expression ab
it is easy to see28 that the three other branches are dedu
by changing, respectively, cosk1⇒2cosk1, cosk2
⇒2cosk2, and cosk1,2⇒2cosk1,2. The three-dimensiona
spectra display similar properties.28 It would be worthwhile
to study the consequences of such invariances on theS
expansion29 of this model.

Measurements of low-frequency magnetic excitations
type-I compounds with an AF ordering of triple-k nature
exist for USb~Refs. 1 and 30! and NpBi ~Ref. 3! and are
essentially limited to very low temperature.31 They are, how-
ever, of great interest since an unambiguous phenomeno
cal interpretation is still lacking.1,3,11,12Data on the tempera
ture dependence of these excitations are also available
both the uranium antimonide2 and the neptunium pnictide
NpBi.3,24 Contrary to NpBi, the low-frequency magnetic r
sponse of USb does not follows the expected tempera
effect which, usually, decreases the spin-wave frequenc
In fact the initial change in the spin-wave spectrum up
raising the temperature up to;80 K is theincreasingof the
spin-wave frequencies. However, according to the mode
Jensen and Bak11 and some qualitative arguments given
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