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Temperature dependence of the frustrated Heisenberg model in the fcc type-1 configuration

J-P. Adef
Condensed Matter Theory Group, CPMOH, UMR CNRS 5798, Univaisitordeaux |, 351 cours de la Litzion,
33405 Talence Cedex, France
(Received 12 July 2002; published 8 November 2002

The Heisenberg model for the fcc type-I configuration is studied with the use of the interacting spin-wave
theory at the order 8, S being the spins coupled antiferromagnetically. The continuous degeneracy of the
ground state of the nearest-neighbor Heisenberg Hamiltortiap) (and the conditions for different types of
interactions susceptible to stabilize a midtstructure remain identical in the whole antiferromagnetic range in
temperature. This set includes local anisotropy and four-spin and biquadratic exchange interactions as well as
effects of the crystal electric field and quadrupolar interaction. The temperature dependence of the low-
frequency magnetic excitations correspondingdtg, is calculated analytically. For the douliteand triplek
configurations the quartic terms renormalize in great part the overall Heisenberg antiferro-coupling, giving
schematically the behavior/(l—n/S) Ja+b(1—n/S) wheren has the temperature dependence of the Bose-
Einstein distribution. Concerning the terms to be addeH ipto lift the degeneracy of the ground state, they
can be separated into two classes following their leading temperature dependences whichrd& Where
t=1 or 3. Available experiments are discussed.
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[. INTRODUCTION model to lift the degeneracy of this ground state. Effects due
to biquadratic and four-spin exchange interactions in fcc spin
Type-| fcc antiferromagnets are typical examples of threelattices were first discussed, to our knowledge, by Yoshimori
dimensional frustrated spin systems. The most general spind Inagaki and Yosida and Inagékin a classical treatment
configuration for this kind of magnetic order can be written Of the Heisenberg Hamiltonialsee also Ref.9In Ref. 10a
as a superposition of the three wave vectirs=(2/a) local anisotropy energy was considered in a phenomenologi-
X(1,0,0), K,=(27/a)(0,1,0), and Ks=(27/a)(0,0,1), g:al mode], in wh|ch h|gher-orde'r spin interactions were taken
wherea is the lattice constant. This structure can then be "0 consideration. The magnetic excitation spectra for type-|
a singlek, doublek, or triplek state, the triplé structure ar_ltlf_erromagnets have been ”"Od.e"z‘?d byg-hmq Fu.rre
being an extension of the 120° spin structure on the trianguwIthln the random phase approximation by taking into ac-
lar lattice 1o the three-dimensional case count the crystal-fle_ld, anisotropic bilinear exchange and iso-
i . ) , : tropic quadrupolar interactions. Jensen and'Bakliculated
Since the first experimental evidence of fcc t_ype-l frus-ihe spin-wave spectra of USb with triplemagnetic struc-
trated compounds, a great deal of both theoretical and exyre py using a Hamiltonian including, in addition to the AF
perimental interests have arisen. In particular, there are COMsychange coupling between nearest neighbdrs,, the
pounds where the phonon effects are well known, thugpseudodipolar interaction and a crystal-field term with cubic
allowing, in principle, a precise identification of the excita- symmetry. However, almost nothing is known about finite-
tion spectrum on a large domain in temperattireln this  temperature properties including the stability of various spin
respect, NpBi and USb compounds present strong similarierderings. The purpose of this paper is to investigate the
ties (see, for instance, Ref)4For both, magnetic excitation stability of the Nel order and the temperature dependence of
spectra have been measured on a temperature range lowhe spin-wave spectra. The three possible AF structures are in
than the Nel temperatures of 192.5 and 213 K, respectively.general considered. A triple-structure is, sometimes, only
They give strong indications that a noncollinear triglepin  studied, but it is just an exercise to extend the formalism to
structure is realized on the whole antiferromagnetic domainothers multik states. In Ref. 12 we have proposed a theoret-
In both alloys the magnetic excitation spectra consist of twdcal framework to study with reasonable efforts frustrated
branches with longitudinal and transverse polarizations, remagnets in the fcc type-I configuration. Here we apply this
spectively. On the other hand, the semiconductor MnTe framework to evaluate the $/quantum corrections to the
which crystallizes with the pyrite-type structure, undergoesspin-wave spectra through the Holstein-Primakoff represen-
to a second-order antiferromagnefi&F) transition atTy tation of spins. We prove that this theory gives relevant in-
=86.5 K. The nature of its magnetic structure has been sulfermation within the whole range of the AF phase. For in-
ject to controversy until recently. Indeed the experiment ofstance, the softening temperatufg where the spin-wave
Burlet et al® assesses definitely the conclusion that the corfrequencies drop to zero is the &letemperature, i.e., the
responding spin configuration is of the triftetype-1 struc-  temperature for which the magnetization disappears, at least
ture. In contrast to previous claifighis structure is stable for the triplek configuration. We give strong reasons to think
on the whole AF domain. that, if some structure is stabilized &t=0, it remains the
Until now, most theoretical works have concentrated onsame on the whole AF domain of temperature. Moreover, we
the properties of the ground state B0 and essentially obtain analytical results on the temperature behavior of the
concern the terms to be added to the isotropic Heisenbergpin-wave spectra.
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This paper is organized as follows. In Sec. Il formal sublattices 1, 2, 3, and 4, respectively, these operators satis-
theory is settled down. Invariances of the magnon spectréying the commutation relations of elementary boson opera-
under some substitutions are used to shrink the unit magnettors. Following the standard analysis within the linear spin-
cell and to establish some results, drastically simplifying thevave theory based on the Holstein-Primakoff represen-
perturbative treatment of the Hamiltonian. These simplificatation!® we take a local coordinate sytegm¢ at each site of
tions allow us to make new predictions about the temperaturthe lattice. The/ axis is taken to be the classical direction of
dependence of the spin-wave spectraHgf, in Sec. Ill and  spins in the ground state. The resulting transformation at
of a set of supplementary interactions in Sec. IV. This seeach sublattice is expressed in terms of the polar coordinates
includes four-spin and biquadratic exchange interactions, lot6, ¢) which define the antiferromagnetic configuration of
cal anisotropy and quadrupolar interaction. The crystal electhe four sublattices. Finally, the Hamiltonidh) is given in
tric field is also studied. The experimental relevance of theséerms of the Fourier transforms of the bosonic operators by

results is discussed in the Conclusion. (N being the total number of sites
Il. GENERAL FORMULATION N7, X X4 QYSY.1 R2SZ
A. Heisenberg model
The Hamiltonian we start from reads VAR VRAR+ VAR HH. I}, @)
where Q =nd+nl+n+nl, A=a@_,+bb_,+ce_y
Hin=32 (Sii-Spj+Sii-Sgj+S1i- Sy + S+ Sy +ddo, Zk=ah_+eod oy, Sf=ac g t+bedo, 3¢
(Bl =ad_y+bec_y, Al=alb+clde, A=alc,+b]d,, and
+ S5+ Sy Ssi- Sy, (1)  Ai=aldy+bjc. For the sake of simplicity we assume
=ml/4. Then the coefficients areP,=4, Q,=0, R
with J>0. §; represents the magnetic moment, located at=2C, C, (sirf6+2i cosé), RY=4C, C, sir’6, RE
y z X z

the i' th s_itg, gnd corresponding to the sub'latticé'he sum- =2C, C, (sirf6—2i cos6), Vi=2C, C, sirff, VY
mation (i,j) is taken over all nearest-neighbor pairs. The Xy , Y 2

crystal structure of fcc is such that each site has 12 nearest- —4Cy Cycos's, and Vi=2C Gy simé. The structure
neighbor sites which belong four by four to the other threefactors are defined bg, =coda(k/2)] (i=x,y,z) and ng
sublattices. Thus the coordination numlzes 4. The mag- :alzak_ From now on, we set the lattice constant 1. Up

netic momentsS, are located a® in the unit magnetic cell  to now, the approximation used to obtain analytical results
as follows: 6,=(0,0,0), 6,=(0,1/2,1/2), 6;=(1/2,0,1/2),  assumes that the different bosonic operators are independent
and d,=(1/2,1/2,0). In order to consider simultaneously theof the sublattice to which they are bounded. This approach
singlek, doublek, and triplek states we choose in full gen- has been considered for the first time in Ref. 14 and has been
erality the direction of the magnetizations on sublattices loproved to give the exact spin-wave dispersions in Ref. 12.
cated on the unit cell atg as (6,79, (—aB,—7, The exact diagonalization of Hamiltoni&®) may be carried
(—a,—By), and (a,—p,—v), respectively. Here outin two different ways. The first approach, used in Ref. 12
a=sindcose, B=sindsing, and y=cosd are polar direc- consists of obtaining analytically through tivapLE math-
tional cosines satisfying?+ 82+ y*=1. The triplek state  ematical manipulation langualehe four spin-wave disper-
is given bya= 8= y=1/\/3 and corresponds to the AF state sions. The complete solution requires knowledge of the Bo-
observed in the USb and MnJecompoundg:® Fixing, for  goliubov transformation to which we turn next.
instance, 6==/2, which means a coplanar structure, the
doublek model is recovered fop=7/4 (shown in Fig. 1 of
Ref. 12. Finally, the singlek model is obtained from the ) )
condition #=0. The ground state given b, has a two- W? mtrToduce ;2 Tset of ~spin-wave operators
dimensional infinite degeneracy, since its energy is indepen@k @k Bk Bk Yk, Yk » 6k 6 through the Bogoliubov trans-
dent of the polar angle&d,¢), betraying the high degree of formations &>0) which are a straightforward generaliza-
frustration of this model. This high degeneracy can be liftection of those given by Oguchi, Nishimori, and Taguchi in
by additional terms in the Hamiltonian. Ref. 14:

Various types of interactions have been studied in Ref. 12.
In particular local anisotropy, four-spin exchange interac-

B. Bogoliubov transformation

— P A 4B
tions, and biquadratic interactions have been considered. a=_——=[Aexp(—i¢) + Biexp(—idy)
: . e . , 2\2
Their role in stabilizing a noncollinear magnetic state has
been clarified. In spite of the great number of studies, noth- +Cexp( —ipS) +Dyexp —i¢l) ],

ing is well established since no clear signal emerges from the
data. This is the reason why we made a systematic study of
these interactions, extending our anallsi® quadrupolar
interactions and crystal-electric-field effects.

In full generality the Hamiltonian(1) is expressed in c -
terms of four types of bosonic operators-a, b, ¢, andd for + Cyexp(—i¢y) — Dyexp( —igy) ],

b ZL[A exp( —idp) —Beexp —i¢2)
k 2\/5 k k k k
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c :i[A ex[(—i(ﬁA)—i-B exr(—iqSB)
k 2\/§ k k k k

—Cyexp —i %) —Dyexp—i pR)]1,

d =i[A exp(—i¢p) — Byexp —i ¢p)
k 2\/5 k k k k

—Ciexp(—ipg) +Dyexp —i ¢R)], (3)

where Xk=Cff(xk+x,k)+S>k<(xi—xik), for X=A,B,C,D
and x=«a,B,7,6, respectively. Fork<O0 we have X_
=CR(X—X_) +SR(xt+x",). The operatorsy, By, Y.

and 6, commute between themselves and satisfy the canoni-

cal commutation relations

[, al1=[Be.BI=[ k. v§1=[ 6k 601 = bkq-

The coefficient’, Sy, and the phaseg; are chosen so
that the off-diagonal terms in E@2) vanish, that is,

(CE)ZZE(P—E_F 1) ,
2\ V(PO =1Qil?

1 Py
<S§>2=—(——1), 4
2\ VPO~ QI
1 ReQy 1 ReQ
cos’-qbffzz(lt xk), Sinz¢f((=§(11—xk ,
|Qkl |Qkl -
where
. SiPe
Pi=—5—(C« Ci,+Ci Ci) ~ cos'0C, Cy +1,
N L
Qk - T(ZCKXCKZ-I— CkkaZ"r‘ Ckaky)

+i COSG(CkXCky— Ckkaz)

Sirte
PE=— —5—(Ck Ck,+Ci.Cr) — cos4C, Cy +1,

5 Sinfe
Q= ~ 5 (2Ck Cx, = Ci Cx, = C . Ci)

—i cose(CkXCky— CkkaZ)

o sirfg
Pi=—5—(Cy Cy,~ Ci Ci) + cosdC, Cy +1,

. Sirfo
Q=" (72C Ly, +C C, = C Ci)

—i COSG(Ckaky‘f‘ Ckkaz)
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sirfe
PR =— —5—(C Ck,~Cy Cy )+ cos'0Cy Cy +1,

5 S
Qu=—75(72C Ci, = Ci Ci, + Ci Ci )

+i COSG(CkXCky+ Ckkaz) . (6)

Following this procedure, we obtain the diagonal form of the
Hamiltonian:

HD:
X=A,B,C,D

+ V(P2 — | QR xi

The magnon energy corresponding to braAcis given by

1 1
> (— 5Pkt 5 V(PO = Qil?

wa(k)=Q(Cy,~ Ck .Ci) ={¥’[ (1~ Cy Cx,)*~ Cf (Ci
—Cy,)?]+ @?[(1+Cy Ci )*~ Cf (Ci +Ci )]

+B7[(1+ Ckkaz)z_Cﬁx(Cky+ CkZ)Z]}llz_ @

Note that the energ@(ckx,cky,ckz) is measured in units of
the spin-wave velocity, i.e., the prefactor=4JS is under-
stood. The set of spin-wave dispersions as well as the set of
parameters of the Bogoliubov transformation is invariant
with respect to the simultaneous replaceme@(ia:»—cki
(i=x,y,z) . First, we observe that the other spectrum
branches are straightforwardly deduced from the expression
above by changing the signs of the cosir@@: wg(k)
=0(Cy,Cr, Ci), wc(k)=0Q(Cy,Cy , —Cy), and wp(k)
EQ(—CkX,Cky,Ckz). Besides the parameters of the Bogoliu-
bov transformatior{6) are related by the same substitutions.
Indeed, the pairsRy ,Qy) for X=B,C,D are obtained from
X=A by changinngi into _Cki with i=y,X,z, respec-
tively. Thus, the whole parametrization given by the Bogo-
liubov transformation obeys this invariance. Other invari-
ances are hidden in these expressions. Restricting ourselves
to the set{Py,wx(k);X=A,B,C,D} and to the triplek
state, we observe that this set is invariant under the permu-
tations Ckx,Cky,CkZ)i(Cky,CkZ,Ckx) and (Ckx,Cky,Ckz)
:(CkZ,Ckx,Cky). Indeed, if we denote byR1) and (P2)
respectively, these transformations of the structure factors,
we see that according to expressioi® and (7) and a?
=B%=92, (P1) implies

(PR, 0a(k)=(PS,0c(k), (P2, wg(k)=(PE,wg(k)),

(PS 0c(K)= (PP, wp(k), (PP, 0p(k)=(PL,wa(k)),

)

whereas for P2) we find
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(p’l’j ,wA(k))ﬁ(ka ,wp(k)), (pE wa(k))ﬁ(PE ,wg(K)), Of interest to us in the sequel are relations involving the four
integrands above along with the expressz@kx,Cky,Ckz)
Py, 0c(k)= (P, 0a(k), (PR, 0p(k)=(PF,wc(k)). =2xfx(Ck,.Ck,Cy,)- They are the explicit forms of the in-

(9 variance of both the spin-wave spectra and the Bogoliubov
When a doublék structure is considered, expressions of thetransformation(4),(5):
spin-wave spectra and of the parameters of the Bogoliubov .
transformation, under the exchan@®, Cy < Cy, (Cky be- fB(Ckx’Cky’Ckz)_fA(Ckx’_Cky’Ckz)’

ing invarian}, become
? ) fe(Ci, Ciy Ci) = Fal= Cie, Cic, Ci )

Py oc(k)= (PP wp(K)), (10)
fo(Ck ,Cr ,Cr)=Fa(C, ,C ,—Cy), 13
the two remaining seté andB being unchanged. p(Cigo Ciey i) = Fa(Cio Gy = Ci) (13

C. Consequences of the spectrum invariance F(Cr,p Cir Cie) = 1= Ci, G Ci) = F(Ci = Ci, G )

These invariances have very important consequences. =F(Cy,Ci,, ~ Ci)- (14
First, let us consider for instance the staggered magnetization . )
M(T) at finite temperature: Let us take advantage of these properties. First of all, they

allow us to get a very satisfactory self-consistent description
1 of the spin-wave physics. Indeed, the main applications of a
MM=g 2 (S (S5 +(S5) +(Shi)) spin-wave approach are to calculate the reduction of the
' spontaneous magnetization by quantum fluctuations at
=0, to determine the temperature dependence of the spon-

— T o . -
==l4as- > X (. taneous magnetization, and to estimate the critical tempera-
N NA=a,b,c,d i . . . . .
ture as the temperature at which this magnetization vanishes.
Using the Bogoliubov transformation we obtain In general, when as in our case they are several sublattices,
different choices lead to different solutions, thus rendering
E E t the overall framework inconclusive. Now we proceed to
> (N\p) . SN _ )
r=abcd prove that these solutions are identical, an important charac

teristic of this framework. In fact, we have as many possi-
B .2 Xi21) . l:_)ilities as the number of sublat_tices to manage the calcula-
—XX:AQ% ., D(SEK {L(CO+ (ST XX+ (S} tion. For example, Eq.(11) gives the solutionM(T)
RS corresponding to the case of considering together the four
sublattices. However, it is also possible to work with only

+XX:Aa§BC bs kzo CSKI{OD?)+((x0)?) one of the four dispersion relations, say,(k), with the
e expression oM ,(T) given by Eq.(12). To see how this is
—((x" A = (x_p?]. possible we must carefully study the properties of the inte-

. . _ gration on the BZ.
Obviously, since the expectation values do not depend on the ¢.¢ |attices are in general described by a set of ten inte-

sign of the variable introduced by the Fourier transformationga|s. The invariance of the integrand under the transforma-
the staggered magnetization is given by tion k;= —k; allows us to reduce this set to the three follow-
ing contributions:

1
MM=g 2 [45- 2 ALCO7+(SOINRX)

X=AB,C | 1 (= Tk, 2m
MAM =y | di; | = dky| dkyfa(Cy,Ci.Cr),
oJo 0 0 Y
+(S§)2}), (12)

T 1 T 2m 37—ky—k,
wheren(X) =[ expBuwx(K)—1] s the Bose-Einstein distri- Ma(m)= V_ofo dszﬂ_kzdkxjo dky
bution. Let us now consider the staggered magnetization cor- 2
responding to a given sublattice. Converting the sum of the X fA(CkX,Cky,CkZ),

Fourier transformation to an integral over the Brillouin zone
(BZ), we get from the expression above " 1 (2« 3m—k, 3m—ky—k,
MA(T)=V—f dsz dkxj dk,
1 oJm 0 0
Mx(T)= | dkdk,dk,fx(Cy ,Cy ,Cy), 12
X( ) VOJ'BZ x4 Ry U Rz X( Ky ky kz) ( ) % fA(CanCkyaCkz)a (15)

whereV, is the volume of the BZ and and the final expression is

fx(Ci,Ck, s Ci) = S=(C)*+ (S)ZIE(X) = (S M A(T)=8[MY(T)+ M (T)+ MU (T)].
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By using the obvious invariance of the integrand

fFA(Ci; Cr Ci)=Fal(—Ci, = Ci, =Ci))  (16)

and by changing the integration variables>27—k;, it is
possible to rewrite these integrals as

M (T)= 1Jdef2W
A( )__v; 0 z T+
1 (= 7+K, m+k

M}{(T)z—f dsz dkxf

V0 0 0 0

XFa(CisCiyCic,)

M”'(T)——f dkf

XFA(CoCoyCic,)-

2
deJ dk,fa(Cy ,Cy ,Cr),
0 X y v4

dk
fw-%—k -k, y

Consequently the full integration reads

2 2
M A(T) = dkf dk, | diTa(Ciy, i Ci).

7

Now for the choicewg(k), the integration on the Brillouin
zone is

VoJo

1
Me(T)= - | diiiefa(Co, = Ci )

=8[Mg(T)+Mg(T)+Mg'(T)].

Again, using Eq(16) we rewrite the first two integrals on the
right-hand side(RHS) of the relation above by changing

Cky:>—Cky. The third integral is modified througlﬁ:kx

=—Cy, andeZ:> —Cy, and the overall result is identical to

Eqg. (17). Using the same tools it is easy to show that

M(T)
1 =Ma(T)=Mg(T)=

4 Mc(T)=Mp(T)

(18

= dkf dkf dk,fA(Ci,Cii, Cip)- (19
0
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Besides, as a by-product of the discussion above, we have
obtained a powerful tool to build the interacting spin-wave
theory of such spin systems, namely, the universality of the
different averages over the ground state of the number op-
erators corresponding to the four sublattices:

(N =(n®)=(n°)=(n%) =T
1
=Ve fBZ{[(CEVHSi)ZJnE(m+(8§)2}. (20)

To conclude we establish a general result which is a
straightforward consequence of the discussion above. In-
deed, it can be stated as a kind of theorem, namely, all inte-
grals of the formI(X)=fBZJ-‘X(CkX,Cky,CkZ) where the ex-

pressions?—"X(CkX,Cky,CkZ) obey to the invariance properties

(16) can be rewritten as an integration over a simple cubic
lattice. In additionZ(A)=Z(B)=Z(C)=Z(D).

D. Perturbative treatment

The various terms of interaction between magnons are
treated in the standard way. We require that the number and
momentum of magnons always be conserved. Taking the ex-
ample of two sublatticea andb, we have only to consider in
the decoupling process pair averages liega,), (blb,),
(albk) and their conjugates. Indeed, annihilating a magnon
in the a sublattice corresponds to the process of creating a
magnon on the same sublattice or on another subldifice
or d. Obviously the modified spin-wave theory introduced by
TakahasH? for Heisenberg ferromagnets and later applied to
antiferromagnet< is in agreement with these conservation
laws. Then we calculate all kinds of interactions by combin-
ing every possible pairs of operators into their averages.

The main hindrance to straightforward calculations is the
occurrence in the decoupling process of cumbersome pair
averages different from the average of the particle number
operator. In some peculiar ca¥&€or recent works see Refs.

19 and 20, the nonlinear spin-wave theory can be computed
by using some complicated and, sometimes, obscure self-
consistent equations between several pair averages. This ob-
stacle disappears in the framework of the fcc frustrated
Heisenberg antiferromagnet. Let us |IIustrate this statement
on the following trilinear expressiolX; ;)n; b , Where in
momentum space it reads

This proves the self-consistency as mentioned before. More-
over, let us observe that it is possible to extend the integra- ,
tion domain ofk, to [0,27], thus recovering the overall 2 nabfr:i cos \.,OS(kZ_ kz)
symmetry between the three variablek, (k). This o IN e 2 2
means that the cumbersome numerical integration on the fcc
BZ is replaced by a simple cubic integration. In order toIn the decoupling process where we employ Wick's theorem,
prove this result it is sufficient to consider the peculiar casenly the pair average&ja,) and(a.b() do not vanish and
of MA(T). After the substitutionsk,=27—k,, k=2
k andk,= 27—k, in the first two mtegraIS\/IA(T) and
(T) in Egs. (15 and the use of Eq.16) one can easily
found that

ky—Ky)
fo~ky C akak,bl,_k.

E (nabT> \/— ZboE <”k>+4352 C, Ck<akbk>
(21)

Following the same procedure the averéggj>n?bj can be

8
MA(T)= —
A= written as

2 2 2m
dkf dk, | dkfa(Cy,Cy ,Ci)-
0 0
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1 Therefore, the following properties follow directly from Egs.
<|2J> <n|abj>: \/_N ZbO; <nekl>+4aog CkkaZ<aEbk> . (23)—(25),
(22 F,(Cy,.Cy,Ck)=Fo(—Ci,.Ck,Ch) =F,(Cy,, — Ci .Cx)

Let us now discuss the last contributions on the RHS of the

: i =F -
above equations. As a consequence of the Bogoliubov trans- o Cioy Crp = Ci)

formation (4),(5) it follows that and are valid fore=x,y,z. It then turns out that these ex-
pressions satisfy the conditions allowing us to apply the
> (Af+H.c) theorem proved in the preceding section, namely,
k

1
Io’ \/_ Fo’(CkX!Ckykaz)

1 =
=5 ; (AlA—B[B,+ClC,—D|D+H.c), Volsz

16J‘2ﬂ' 2 2@

= dsz dkxf dkyFo.(Ck le ka )
> (AZ+H.c) VoJo 0 0 o
k

More specific properties depend on the particular multi-

1 " N N " structure which is stabilized. For the highly noncollinear
=5 Ek (AA—ByBk—CCy+ DDy +H.c), triplek state, the expressions above satisfy the permutation
invariancesP1 andP2 [Egs.(8) and(9)],
> (AY+H.c) Fx(Ci Cuy i) = F 2 C, Cie,, € )= — Fy(Ci, Ci . Cic )
k (26)
1

allowing us to establishsince from Eq.(26) the three vari-

_= + th _~te Rt
- Ek (ArAkt BBy = CyCy—= DDyt H.c). ables of integration are equivalgnt

2

These relations allow us to calculate the averages on the I,=1,=-1,=T. (27

RHS of Egs.(21) and(22). Since For the doublek state we can observe from the exchartige

(XIX)=[(CH2H(SH2INE(X) + (82, [see Eq(10)] that
it follows that =1, (28)
FX(Ckx'Cky'Ckz)=4CkkaZ<Ai§+ H.c) 7, being unchanged. Finally for the singdtestate we have
= chyckz[g(CkX1 _Cky!ckz) 1,=1,=0, (29

since in that cas& (Ax+H.c.)=3(Af+H.c.)=0.

_g(Ckx’Cky'Ckz)+9(Ckx’cky’_Ckz) The next step is to find phenomenological expressions for

(= Ce.Cr.Ci)] 23) these integals. It seems quite reasonable to assume the uni-
ke gk b versality of the pair averages\"u) and their conjugates,
Whereg(CkX.Cky,Ckz) =<Bl5k>- Note also that with A # u and\,w=a,b,c or d. Thus they can be written as
z 4 t 4 B\2
F2(Ck,Ck,,Ck)=4Cy Cy (Aj+H.c) Zo=g | CoCoriN )= | CrrCr{l(Cy)
X y z Xy VO BZ VO BZ
=2C,C Cv.,—C¢,C
o Col 0k = G G +H(SP)InE(B)+(58)7), (30
_g(ckx’cky’ckz)_g(ckx’cky’_Ckz) where to o=(X,y,z) corresponds, respectively,o’',o"]

=([y,z].[x,z],[x,y]). This expression is, of course, consis-

90~ Cio Cip Ci)] @4 tent with the relations (27 and (28). Indeed,
and 9(C, Ch,Ci) =[(CRA*+ (SAZING(B) +(SP)? with the
parametrization corresponding to the trilestate has the
Fy(CkX,Cky,Ckz) = 4CkXCkZ<A}§+ H.c) property
=2C Gy [9(Cr, —Ci, Ci) 9(Cu, Coy Cr,) =9(Cy , Ci, Cr ) =9(Ci, Cic , Cic ),
+g(Ckx,Cky,Ckz)—g(Ckx,Cky,—Ckz) whereas for the double-case one only has
~9(=Cu,,Co, G ) 1. (25 9(Cu,sCo Cr) =9(Cy, Ci, Crc ) -
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Ill. HEISENBERG ISOTROPIC HAMILTONIAN

S
- . , =1/=si +ah(nP+n?—2n%+(c +cf
Within the spin-wave theory at fourth order to which we RetHs \/;sm 20@2;3 {(ai+a )(nj+n; an) (ci+ci)

shall restrict ourselves, the effective Hamiltonian acquires b d a A e g
the form H="H,+ H,+ Hz+H4, WhereH, is the term of X (nj+nj—=2n7) = (b;+by)(nj+ny—2n;)
g:]hdolrger in the Bose opgrators. Here we eyaluate thS 1/ —(di+d?)(nf+nf—2n}’)}.

guantum corrections té{, by taking into account
Hsz and’H,. We replace, as explained before, two of the three  again using Eqs(20)-(22),
(four) operators inH5 (H,) with the expectation values in
the ground state dft,, ending up with a term which is linear S . + + N
(bilinean in Bose operators. In the following we prove that ~ (R€Ha)=—27/5sin26(ag+ao—bo—bo+co+Co
the double infinite degeneracy of the ground state persists on
the whole antiferromagnetic range of temperature when the —dg—do)(IerIZJr 21,).

hird-order terms in th ni rators ar Icul . . . .
third-order terms e bosonic operators are calculated This average value is zero for the singleand doublek

o states since then the prefactor séhanishes and for the
A. Odd contribution triplek state by using Eq27). Thus we have proved that, at
Generally, the requirement that the linear patt of the  this order, the degenera_cy_of the ground state remains true
Hamiltonian vanish leads to classical conditions for the ori-over the entire AF domain in temperature.
entation of the equilibrium magnetic moment of each sublat-
tice. When this Hamiltonian describes a frustrated spin sys- B. Quartic contribution
tem this part disappears whatever may be the andleg),  The following is an attempt to go beyond the linear spin-
thus betraying the strong degen_eracy of the _correspondwwave theory by considering the interactiafy given by the
ground state. The odd term of higher-ordes gives some ¢, ith_order perturbation with respect to the number of
insight into the relative stability of the magnetic states giveny osonic operators. The scalar products of spins containing

by 7, or to the permanency of the degeneracy at the quan,en products of bosonic operators can be written in the
tum level. This term is separated into an imaginary part proyy.a| coordinate system as

portional to
S,-S,=— (S~ SJ+ 87 Sb)cosh+ SE - SssirP9—SE - Sico,
Im H3=sin6(S{S,~ $S;— S[F+ I S{+ ;S5 (31)
— ST+ SIS, — SSY) S S=(S- S—SE-S5)cos 20— S7- 57, (32)
and a real part S, Sy=(S-S7+S7- Sf)cosh+ S5 - Shsir? 60— S - Sicog 6.
| (33
2
ReH;= —sin 20(S{Sh+ S5 S5 — $S5) + —sz 9(§S§ Other contributions are easily obtained by changing spin la-

bels. In fact the scalar products of any pairs of spins laying

_ +fy st S st + ). on opposite edges of the basic tetrahedron are identical. Thus
SIS+ S5~ S+ S5~ S~ S+ ) S;- S, is deduced frons; - S, by replacing 3 and 2-4,

The contribution of third order in bosonic operators, which iswhereasS,- S, (S,-S;) is deduced frons,;- S; (S;-Sy) by
of the order 1% with respect to the linear contribution, takes the substitutions 42 and 3-4 (1—2 and 4-3).
the form At the fourth order in Bose operators, the teB85 takes
the form
S
2

S
s a_n%(pf—p;+d—df
+(af)%ajb; +(a) %a;b{ +aib]bj'+a(b])?b;

b d
+(ni - )(c;r—(:j+aj—a;‘)},
(g g

1
(ajb;+a/b;+H.c)— g[afaizbj +ala’b]

It is straightforward to evaluate the average of this quantum

correction by using Eqg€20)—(22). This results in +af‘b}rbj2+ aiT(bjT)ij] i (34)
S . It is straightforward to generalize the averag2®) and(22).
_ + t
(ImHz) =4 \[ES'” (29— ap—bo+bo For instance, we have

+ej-co- it do) (T, 7o), <2 ara.zb.>=1_6
< D) )=y
(.5

2 kZ <nﬁ1>k2 Ckzyckzzakzb—kz
Now, we may invoke Eqsi27)—(29) to prove thatIm H;) ' ?
=0, whatever may be the state considered.
The corresponding real part is given by +§, Cklkalz<aE1bk1>§, Ay, A, |-
1 2
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Transforming the sum ok, in integration over the BZ we
obtain

< > ai*a?b,-> => (8NCy Cy @b+ 4T,a@)-
{1 k
The other terms in Eq.34) come out easily and

<§$+ %Sﬁo = Ek: [ 28( 1- g) CkkaZ(Eﬁ-l— Aﬁ"‘ HC)

Z, +
_E(4Qk+Ak+Ak) . (35

The first term on the RHS above is the same as the one for

the noninteracting case in whicB is replaced byS(1

—n/S). It is straightforward, although lengthy, to generalize

the above result to the other scalar products in E§$.—
(33). The final results are

(SIS4+SIS])= - ; [ZS< 1- g) Ci, Ci (Xf—Af+H.c)
—%(mk—AK—Ab],
(SiS+S7Sh + Sy + SISh)
=> (43
k

n Cexyt
1—§ Ckyckz[l(zk) +H.C.]

—T(iAL+ H.c.)]. (36)

The calculation of a mean-value-liK& S5) requires spe-

cial care. Indeed, at this order such a contribution is given by

(SiShy=2F—2zS>, (n®+nP)+ < <2> n?n})> .
1 |,]

After the Fourier transformation we obtain

<2 nf‘nf’> =4n >, (nd+nP)
(i.j) K

N

+NE

T4
& (Cky_qukz_qZ<akbk>aqbq+ H.c).

(37

Because of the natural assumpti¢ab])=(a_b’,) we
found

% (cky,qyckz,qz<akb1>agbq+ H.c)
- Ek ckyckz<akbl>% cqycqzagbq

+Ek Skyskz<akbl>% Sy, Sq,a4Pq* H.c.|,

PHYSICAL REVIEW B 66, 174414 (2002

where S =sink/2] (i=x,y,z). Formally, the average
(S¢i,»nn’) may be written as

<E nianf’> =4n >, (nd+nP)+
(iJ) k

> Ckyck atby
k z

+I.> Si, S« ajby+ H.c.),
k Z

where the expression @, is deduced fron¥, by replacing
the factor CkkaZ by SkySkZ. Now, defining

F;(Ckx,Cky,Ckz)zskySkZ<A§+ H.c.) it can be shown that
Fx(Ci,oCu, Ci) = Fu(— Ci,, Ci, Cic)

=~ Fu(C, = Cy,Cu)

= F;(Ckxackyy —Cy)
and more generallyF (Cy )=F,(-Cy ) and F,(Cy )

=—F[,(—Ckw) if w#0. Since these expressions obey
relation (16), we can apply the theorem stated in the
former section, namely, IBZF(’,(CkX,Cky,Ckz)
=4/57dk,S57dk 57k, F,, (Ci,Ci ,Ck). FromF(Cy )
= —F[T(—Ckw) it follows thatF[T(Ckm)=0. Then necessar-
ily Z, =0.

Accordingly we have

(i sis)=208 29 1- 4| S 0,

+Z,

> Ci Cx §+H.c.>. (38)
k r4

Now with the help of Egs(31)—(33) and according to
Egs. (35), (36), and (38) it is straightforward to calculate
‘H,+H,4. The resulting Hamiltonian can be written as in Eq.
(2). The new coefficients are

ny 2 .
Pf<2+4)=4( 1_9 ~5(TH T+ 21,)sir’9,

(2+a)_ Sha

7, 2
K E (Z,+I,)+ gco 0,

n
R§(2+4): 2( 1— 9 Ckkaz(Si”20+ 2i cosb),
2+4 n i
RK( ):4 1—§ CkakZSInze,
n
R§(2+4)= 2( 1— g) Ckaky(sinzb’— 2i cosé),
cos 6

n
V§(2+4)= 2( 1- g) CkkaZSinzﬁ— TIXCkkaZ,
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(2+4) n cos 20 where 7,=7,= —Z,=7;. In addition, the other spin-wave

Vi = —4( 1-3 Cy Cy cos 6+ —5 LCCx, frequencies associated with Eqg2) and (43) are obtained
from these expressions by changing the signstpxt Cky,

n coL0 and Cy, respectively.
V§(2+4)=2(1—g)ckxckysir129— —5 ZLxCx, (39 In both cases the resulting magnon energy assumes the

form

Now we are ready to give the main result of this paper. Since

the Hamiltonian defined by the above parameters can be dj; () — \/( 1_j> (1_ﬁ)9(2)+<9(4)>I +{(QWy,. (49

agonalized by the Bogoliubov transformati¢8), we can S S

write the corresponding set of spin-wave dispersions. Fo[ ot ;s first discuss the tert2®),, . We have to evaluate
sake of clarity, we give the formulas for the three allowede jmportance of the different integrals entering in this for-
spin st.ates. We restrict ourselves to terms which are not- AU3iulation. We choose the limit of zero temperature since then
dratic in the integrald, , A=x,y,z. Indied, as we are dis- yhey pecome independent of the Heisenberg couplng
cussing now, those terms denoted {8y, are negligible 1 i jimit these integrals are given by formukg®) where

in the most interesting cases. They can be obtained, if neg,, ng(B)=0. A numerical evaluation of such quantities,
essary, fm”? the formulas above. Beglnr_ung with the sifigle- however, is complicated by the singular nature of the inte-
state, recalling thal,=7,=0, and denotindy by 7, grand. In fact these integrals are analog to the expressions
of the zero-point spin reduction within the antiferromagnetic

ni2 : :
200y =| 1 _ _ 2_ 2 _ 2 spin-wave theory. They ask for an analytical treatment, a
os(k)=|1 3 [ CkXCkZ) Cky(ckx Ckz) 1 9 well-known fact in quasi-one-dimensional antiferro-
magnetg? Let us consider the concrete exampleZpfor the
I n 4 singlek state:
+ 5 1—g)ckxckz(1—ckxckz)+<9< Ny, (4D

27 27 2

Ilzfo dszo deJO dk,Cy Cy,
For this state the spin-wave dispersion relations contain two
branches, as it should, since there are as many branches as x[ 1-C Cy, 1]
magneti lattices. The other branch i from th -
expression Above by changing the sigrayt o1 r [(1-Cy G, )"~ CF (Cy~C)7)

IFor the doublek state, by imposing=/2, Eq.(39), re-  The ky integration yields

sults in

K

J‘Zﬂ' 2w CkX_CkZ
I,=4 dkj dk,Cy C — | —1].
1 0 4 0 XK, ~k, 1_Ckxckz

2
2 n
w3(k)= 1—9 (1-C Ci)

Here K(K) is the complete elliptic integral of the first kind
with modulus k. The analytical property of this function
neark’ =0, wherek’= ,/(1- Cﬁx)(l—Cﬁz)/(l— C Ci) is
1 known fronf? K=In(4/k'). The divergent logarithmic be-
X(To+ J)[1-3(C C +C C ) ]— —(1—3 havior along the directionk,=0 andk,=0 cannot be re-
Xty y "z 4 S L . . - .
garded as a wrong indication since the original Heisenberg
XT5(Cy C +Cy Cy —2C, C, ) +(Q@),,. (420  Hamiltonian corresponds to an unphysical situation. Indeed,
o oz X when systems experimentally realized are considered, the
. . . . continuous degeneracy of the ground state has to be lifted by
_ This expression depends on two quantities which are des'ome exchange term stabilizing a midtstructure? Then a
fined byZ,=1,=1, and J,=1, . gap appears in the spin-wave spectrum and there are no more
Note thatg=cos *\/% gives the triplek state. The corre- divergencies. Moreover, these quantities decrease as the gap
sponding spectrum branch is increases, in such a way that the value at the weak gap is a
good estimate. This is the reason why we have evaluated the

2 n
X (1+ Ckakz_ Ckaky— CkkaZ) - §( 1- g)

5 n\? ) above integrals by introducing at hand a gap of the order of
wg(K)=| 1= 3| [175(Cy Ly, +Cy O+ Ci Cu) 4J5200. AssumingVo=(27)°, we obtain(in a° units)
+5Ci Gk, Cr,(Ci, + Ci + Ci)) — 3(C§ CF I,=-0.84, I,=-025 J,=-013, Iz= —0.1(24.5)

T
+Cf Ce, +CRCR) 1+ 2—;

1_q[c c These values can be interpreted as follows. The contribution
S/t of the triplek state to the spin reduction is 0.33With
respect to the formulation of this quantity, the integrands are
_1 2 (4)
3(Ci,Ci, +Ci Ci, F C Ci) T (™, (43 odulated by the facto€, C, which diminishes roughly the

174414-9



J-P. ADER PHYSICAL REVIEW B 66, 174414 (2002

result of the integration by one-half order of magnitude. This 20
strong reducing effect is partly compensated by the prefactor

of 4 entering in the definition df; , thus leading to a smaller

value. Now the other multi- magnetic states are less and 15
less tridimensionals. The magnetic moments of the dolable-
state lie in a plane, whereas the singleenfiguration is very
similar to a canonical one-dimensional AF structure. This
explains the differences between the estimations in @&s.
Since the magnon energies are normalized to unity in the
sense that)(0,0,0=1, we have strong reasons to believe 54
that the contribution(Q®),, is negligible at least for the
triple-k structure.

Taking into account this approximation, the additional . . . .
perturbative terms given b, in Eq. (44) have two conse- 0 50 100 150 200
guences. First, they renormalize the magnon energy by the Temperature(K)
prefactor I-n/S. As the temperature increases, the second
term of th|s thermal average also |ncreasesy CaUS|ng a de_ FIG. 1. The tel.’nperat_ure dependence of the |0ng|tud|na| and
crease in the spin-wave frequencies. But interestinglyjransverse modes in NpBi.

enough, the overall shape of the magnon modes remains Ugiansyerse moded) is obtained withr =0.2. Thus, in spite
affected by the temperature at which they are measured. Igt the freedom in the parameter choice, the necessity of
pther words, for this _contrlbutlon, lowering the temperature g s established. The parameter sehis=280 K, which
increases the resolution of the frequency spectra. The Hamikorresponds to an effective coupling=47 K, and A,
tonian H,+H, furnishes also an additive contribution be- =555 K (J,=93 K). Second, the temperature dependence
having asy1—n/S and which partly jams the image given of the data on the longitudinal modés) can be straightford-
above. However, at least for the trigtestructure, a decrease wardly obtained from the fit on the transverse ones by a
in temperature of the spin-wave spectra is predicted. This isonstant rescaling, since nows=\/1.54, the remainder of
in agreement with what is called the softening phenomenothe parameter set being unchanged. Note that this observa-
of the spin-wave frequenciéd.This phenomenon is known tion is qualitatively in agreement with the formulation pre-
to be common to most antiferromagnets. sented here, Eq43), since the variation in temperature of
The softening temperatur@,, the temperature below the magnon energies is independent of_ the branc_h choice.
which the spin waves are stable, is in general greater than tHdowever, we have to remember that this formulation con-
Neéel temperature. This is becauEg is the temperature limit  Cerns only the unrealistic description given Hy,. In par-
above which the long-range order is destroyed. Indeed, wheficular, the clear difference between the couplingand
long-range AF order does not exist, the nearest-neighbdi@s 1 be explained by some model.
sites still have AF interactions, the correlation length remain-
ing very long. In the present context, if the remaining addi-
tional terms which do not contribute to the temperature de-
pendence, £n/S, are lacking, the two critical temperatures ~ Now we discuss the temperature dependence given by the
are identical if, as usually is estimated to be the critical nonlinear spin-wave theory for the Heisenberg model with
temperature at which the magnetization vanishes. different types of anisotropy and interactions. First, we shall
Finally, we make a rough comparison of E44) with the  focus on stabilizing terms for which higher-order contribu-
temperature dependence of the longitudinal and transvers®ns can be evaluated easily. We accordingly restrict the
modes in NpB£2* In fact, we choose the following param- discussion to the local single-ion anisotropy, the quadrupolar

Energy {meV)
>

IV. HEISENBERG SYSTEMS
WITH SUPPLEMENTARY INTERACTIONS

etrization for the energy of these magnetic excitations: interaction, and the single-ion anisotropy given by the crystal
electric field. These calculations are made for the triple-

n n state. A systematic derivation of higher-order properties of

E=\ \/1— §\/1+f— S (46)  other stabilizing terms is a very complicated task. Hence, it

seems worthwhile to wait for a particular physical applica-
In addition to the prefactox, there is a second parameter in tion before attempting a careful analysis. However, it is pos-
the expression of, Eq. (20), which measures the effective sible to make some speculations about their behavior in tem-
strength of the AF coupling in the Bose-Einstein distributionperature by considering only the “leading terms” giving for
nE:[epr\lw/T)—]_]_l_ These parameters are chosen in or-H> the prefactor +n/S. This will be done for the fourth-
der to reproduce the observed élleemperature and the order spin couplings.
value of the excitation energy &t=0. Then, the behavior in )
temperature is given by the ratio The resultsFig. 1) em- A. Local anisotropy
phasize two points. First a non-negligible contribution First, let us discuss the local single-ion anisotropy in the
(Q®y, is required in the expressiof#4) of the magnon triple-k configuration. The Hamiltonian which has to be
energy. Indeed the dashed curve refers to @) with r added toH, in order to stabilize this type of configuratithn
=0, whereas the solid curve reproducing the data on théas the general form
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3051105 [11=[S{- ST+ S-S+ V2(S- §7+57-S) 1%,

where the uppeflower) sign corresponds to the sublattices

[1,3] ([2,4]), respectively. From these expressions the three
first quantum corrections are easily calculated. The term
SH(Q3), third order in the Bose operators, vanishes. This re-
sult indicates the stability of the structure on the whole AF
domain in temperature. Moreover, the interacting theory ob-
tained to the fourth order gives similar results to the interact-
ing H, at the same order:

4
6Han=DanZ ;1 (Si-d)?,

where the index refers to theth lattice site,l labeling the
four sublattices. The unit vectoid; are defined along the
direction of the trigonal axis asl;=(1/y3)(1,1,1), d,
=(143)(-1,1-1), dy=(1/{3)(-1,—1,1), and d,
=(1//3)(1,—1,—1). Here the equilibrium conditiofs do
not depend on the order of theSléxpansion considered. The
former Hamiltonian in the triplée structure reduces t6

4
¢ @) 4 (5 @y = 8K 3(1_3 !
Han=Dan®S 3, (S-nl)? NG+ (MG =B 1= 5|2 2,
i 1=1

resulting in the exact expression C. Crystal electric field

a 4 The single-ion anisotropy can be also provided by the
SHP +(sH W)= _2Dan83( 1_92 > nl, crystal electric fieldCEF) in some special cases which we
iI=1 discuss now. For localizefgelectron systems the correspond-

which corresponds to consider the leading ternSinwith ing Hamiltonian is given by

the changD ,,=D,,(1—n/S). Thus there is no qualitative 4

difference in the leading temperature behavior given by the WCFZE E {54(02i[|]+502i[|])

expansion of the quartic ter,. R

+Bg(O%[11-2104117)}, (47)
B. Quadrupolar interaction s(Osill] sl D}
. o . . whereB, andBg are effective crystal-field parameters. Such
An analy5|s of the stability of antlferrc_)magnetlcally O contribution has been used to calculate the excitation spec-

dered multik structures has shown the importance of the

quadrupolar interactiorfs.A model including both crystal- trum of USb by canonical spin-wave theory in the trife-

. . . L9 state'* For theU3" ions the second term on the RHS of Eq.
field effects and anisotropic exchange originating from qua-

X . . . (47) vanishes and, then, the expression above can be ap-
drupolar interactions was developed to explain the spin dy- roximated by the spin Hamiltoni&hsH ~$+$+$
namics of several type-I antiferromagnéisle only consider proximated by the spi ronia cr 2
the case of diagonal and isotropic interactions with one efWithin this approximation the classical stable states given by

fective quadrupolar coupling paramet; given by the OHcr again are determined by the criterion of vanishing

Hamiltonian linear term,
4 sin 20(SF)3St(sirt— 2 cog9) =0. (48)
— 0 0 2 2
SHq= KZ Zl (O2i[1]02i[1]+305[1]O3[1]), They can then be the single-doublek, or triplek state. We
must now evaluate the S/quantum correction to this result
whereO}' are Stevens operatof$: by taking into account’H g‘,l by replacing two of the three
0 ) operators in6H (C3F) with their expectation value. Then the
O3[1]1=3(S)*—S(S+1), term, which is linear in Bose operators and of next order in
1/S, is

O3[11=(S)%— ()2
A== (6HE)) = —2 sinf cos’ 0((SE)3St) — 2 sirP 0 cos( (SF)3SE)
The resulting equilibrium conditions given by the linear term
do not depend on the particular sublatticel, . . . ,4 con- +6 sinf cose((S7)°S'S"),
sidered and are given by giving

6K S?sin 26(x;+x! ) (S+1—3Scod6) =0. S
By =632 \ﬁs'n 26(2 cog9—sirfo)n’

Therefore, the quadrupolar interaction stabilizes the three fcc (oM e 2° o In~6)
states potentially, the triplk-state being selected when the
spin Sis very large. In that case the strendthof the qua-
drupolar contribution is strongly enhanced by a fac®r  again the cancellation of this expression gives the same
Now concentrating on this last possibility we find the follow- stryctures as Eq49).
ing expressions in the local coordinate sytemy: Now restricting ourselves to the triplestate and consid-
ering only the contribution of the magnetic moméntesults

O%[110%[11=[(SF 7 V25)) - %12, in

X(ao_bo+ Co_d0+ HC)
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1 zero-order contribution. The latter one is given by expres-
Sﬁ*'S‘yl*‘321:5[(55)24'(S”)2]2+[S{)z[(SS)ZJF(S”)Z] sions like S¢- S°~S2, since then there is no structure factor
canceling the integral in Fourier space. Thus it appears that
this second class is the source of th& férms which build

1
2 29/ l\21 T al\d
+[(S)2+(SN21(SH)?+ 3(S)% the prefactor +tn/S giving the temperature dependence.

To see how this expression develops as a function of bosonic

operators, we might note thas{)?+(S7)?=S(2a’a+1).
Hence we have the exact result at fourth order:

S+S+S=

E. Four-spin interaction

The four-spin interaction likely to lift the degeneracy of

8s® :
a'a H,, (Ref. 12 has the form

2° o2
3 2S

—45(2S—-1)a’'aa’a+o(ad).

o ) o OHv=IW[(S1-$)(S3-Sp) +(S1- S)(Sz- S3)
In the limit of large S, the corresponding term which is bi-
linear in Bose operators is given lithe three others mag- T(S1-$)(S- )] (49)
netic moments giving similar resuljts

SHE+(5HED This interaction gives a perturbative contribution at third or-
S? der which can be separated into two real partsﬂ'—@ and
:8_(1—3_n 2 (aiTai+bi*bi+ciTci+ddei)_ Reo(B3), given, respectively, byS; - S,)(S;-Sy) +(S1-Sy)
31 8/ (S-S and 6+ S)(S,- Su):

Thus the temperature dependence given by the CEF is dif-
ferent from those given bid,,. ReO =2 sindcos$ds, Re®P=sin26cos 23,

D. Fourth-order spin couplings

The fourth-order spin couplings are the biquadratic ex-With
change interactionS,- Sg)? (Ref. 7) and the four-spin ex-
change interaction3, - Sg) (Sc- Sp) (Ref. 8. The calculation
of these interactions among localized spins is greatly simpli-
fied if we neglect the terms given by the integrédls, A
=X,Y,z. Indeed, let us consider for sake of illustration the
following contribution: +(c+eN) (N3 +n’+n) = (bj+bl)(n3 +n’ +n’)

E=<Z> > [a+ah)nb+n+nd)
I,] <i,,j,>

—(d:+dH(n2 +n2 +ns)+ Tl
8H,=2, C Calbi> Cq Co.cldy- (i dimieny )+ T,
k z q z

By imposing the Wick theorem, it is decoupled in the fol- where

lowing way:
~ T T 1
<5H4>_§k: Ckyckz<akbk>§q: Ca,Ca,Cqdy Tli=Z(aiTnia+ na;+c/n°+nc;— b/ n?
t T —nPb;—dn?—n%,)
+§k) CkkaZakaEq: Cq,Cq,{Cqdq) ibi—dini—nyd;).
+> (Ckka )2(<aldk>bk0l+al0k<bk0l>)- The supression of this contribution requires
k Z

The first two terms of this decoupling vanish since one can
neglect the two sumEkakaz(aEbk) anququCqZ@gdq)
when transformed into integrals. The last term disappears in
the thermodynamic limit and we end up wif$H,,)=0.  and the stabilizing conditions remain unaffected by the third-
This result is easily extended to more general contributionsorder term in the Bose operators.

Indeed, the fourth-order terms of this kind of contributions Concerning the temperature dependence, let us consider
can be roughly divided into two classes. The first one isthe first contribution on the RHS of EA9). The calculation
provided by the product of two quadratic terms, whereas th@roceeds in several steps. The first one is to evaluate the term
second comes from the product of a fourth-order term with af second order in &

sin 26(co 6+ cos 20) =0, (50)

174414-12



TEMPERATURE DEPENDENCE OF THE FRUSTRATED.. .. PHYSICAL REVIEW@S, 174414 (2002

[(S1-S)(S3-S4)] P =ScoS 0 cost(Si- SJ+ S7- S+ S5 S)+ S]- S) P —sirP (S - S5+ S5- §)) P
+cog0(S;- S5+ S5- S5) 7.
Next we consider the fourth-order term
[(S1-S,)(S5- $4) 1 =Scog 6 cosO(S- SJ+ ST~ S5+ S5- ]+ S]- )V —sin?4(S[ - S5+ S5- §) )
+coS0(Si- S5+ S5 S)) W]+ cog bl cosi(S; - S+ S{- )P —sinf oSt - $5)P](S5- )P
+cog[coso(S5- S]+S7- §) @ —sin4(S5- ) P1(S1- $) P+ cog oS- $5) (S5 )P,

and finally, we compute the average of this fourth order ternThese relations yield to([(S;-S,)2]®)=—(3nI9)[(S,

by using the general resul{(Sy-Sg)®)=—(NIS)(Sa  -$,)?]®). The other terms follow the same law. Hence the
-S5)@). It is now a matter of some algebra to find out how biquadratic contribution behaves like the four-spin contribu-
this contribution transforms, tion

3n
([(S1-$)(S5- S 1) == = [(S1-$,)(S3-S4)1?, 3n
S SHERT (THER)=| 1~ g | Ml
in such a way that this result can be generalized to the other
terms in Eq.(49) so that
V. CONCLUSION

SH D+ (H ()= ( 1— ?) SH 2. (52) In many cases the theory of interacting magnons requires
a complicated formalism which is not only laborious to
handle but where formal difficulties may hide the physics

F. Biquadratic contribution (for a review on the spin waves in magnetic insulators, see
the work of Kaganov and Chubukd. Clearly this is not

the case for the frustrated AF Heisenberg model for the fcc

_ ) 5 ) ) type-l configuration. Let us recapitulate what we have

Hpi1g=JBI1Ql(S1-S) "+ (S5 S) "+ (S S4) + (S ) learned about the behavior in temperature of the spin-wave

+(S,-S5)2+(S,-S0)7], frequencies. The perturbative treatment leads in great part to

a renormalization of the magnetic characteristics at nonzero

this supplements the linear terms by adding imaginary ané&emperature. Indeed, the additional terms give, at least for
real contributions. The calculation is quite lengthy and in-the triplek configuration, a temperature law of the generic

volves complicated expressions. However, the resulting steform (y1—tn/Sya+b(1—tn/S) wheren is a Bose func-
bilizing condition again remains identical to that found attion andt a constant which i$,,=1 for H,,. In the case of
first order of the expansion, i.e., the conditi@®). Again we  systems experimentally realized, this Hamiltonian comes al-
derive theT dependence given by the fourth-order term, fol-ways with, at least, a supplementary contribution which lifts
lowing the same route as before. Taking the example of théhe extensive degeneracy of the ground state and specifies
first term we get successively the AF spin state. We have been successful in proving that
(5,57 the Iea((jji_r;_g;ol;m (r)]f trlle telmp(_arature deperr:denc%mS) Iis _
: not modified by the local anisotropy or the quadrupolar in-
T=Szco§0[cosa(5§-8§’+8f-5§)(2) teractions. On the contrary, the CEF and the fourth-order
spin couplings, four spin interaction, and biquadratic contri-
—sinf6(S;- S5) @+ cos (i - S5) @], butions behave in a very different way since ntwge=t,,
=tgo=3. These behaviors are in agreement with what is
[(S;-S,)?]@ . . called the softening phenomenon of spin-wave frequencies:
— > S cos'g[cosf(S;- 7+ S7- S5)*) in most antiferromagnets the initial effect of the temperature
is to decrease the spin-wave frequencies.
—sinza(sﬁl-%)(4)+co§0($§-8§)(4)] The discovery of invariances displayed by the magnon
spectra has allowed us to carry out the calculations presented
here. It is important to note that there is, at mean, one an-
other model where the magnon spectra exhibit analog prop-
20 erties. It concerns the Heisenberg antiferromagnet where
2y, CO (2 (2 both the nearest-neighb@NN) interactions and the next-
X(S‘{'S{’Z)( + 2 (S{ Sﬁ)( ) (% %)( . nearest-neighbofNNN) interactions are studied on a cubic

In the case of the biquadratic contribution

+cog 6| cosh(S;- ST+ S7-S5) P —sirt
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and square latticéS. In the latter case, one branch of the Ref. 1, the presence of more terms in the spin Hamiltonian
spin-wave spectra is given by than the minimal number given by the NN contribution along
with a stabilizing term is expected. In particular, the crystal-
field interaction is necessary to describe the spin-wave spec-

X {2\ (1— cosk;cosks,) + cosé(cosk; — cosk,)} ]2 tra of uranium antimonide af=0 K. It is therefore very

) amazing that a completely different behavior with tempera-

where the parameter represents the relative strength of the e is predicted here, rendering this striking increase in the
NNN interactions to the NN ones, the angleharacterizing  spin-wave frequencies of USh hardly understandable. There
the AF state considered. Starting from the expression abovig nhowever, a general agreement between this analysis and
it is easy to se® that the three other branches are deducednhe data. Indeed, the stability of the trigtemagnetic struc-
by changing, respectively, clg=—cosk;, cosk,  ture on the whole AF domain has been observed for &5b,

= —C0sky, and cog, 7= —Cosky ,. The three-dimensional NpB;j 2 and MnTe.® This has to be compared with the re-
spectra display similar propertié$lt would be worthwhile  markable permanence of the equilibrium conditions with re-
to study the consequences of such invariances on t8e lispect to the temperature.

expansiof’ of this model. As a by-product of this analysis, the set of tools necessary
Measurements of low-frequency magnetic excitations oto calculate the spin-wave frequencies when a stabilizing
type-I compounds with an AF ordering of triple-nature  term is added td,, is given here and the road towards a
exist for USb(Refs. 1 and 3Dand NpBi(Ref. 3 and are  meaningful and detailed analysis of experimental data is now
essentially limited to very low temperatuteThey are, how-  actually open. This also asks for new experimental efforts to

ever, of great interest since an unambiguous phenomenologéxplore the magnetic properties of these compounds.
cal interpretation is still lacking>'**?Data on the tempera-

ture dependence of these excitations are also available for
both the uranium antimonideand the neptunium pnictide
NpBi.>2* Contrary to NpBi, the low-frequency magnetic re-
sponse of USh does not follows the expected temperature This work was supported by the ESF “Vortex” Program
effect which, usually, decreases the spin-wave frequenciesind the CEAAccord-Cadre No. 12M | would like to thank

In fact the initial change in the spin-wave spectrum uponA.l. Buzdin and L. Craco for their kind interest and a careful
raising the temperature up te80 K is theincreasingof the  reading of the manuscript. | am also very grateful to F. Bour-
spin-wave frequencies. However, according to the model oflarot for informations about his data on the temperature be-
Jensen and Bak and some qualitative arguments given in havior of spin waves.

wq=2 {2\ (1+ cosk;cosk,) + cosk; + cosk,}
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