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Spectral densities of Kondo impurities in nanoscopic systems
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We present results for the spectral properties of Kondo impurities in nanoscopic systems. Using Wilson’s
renormalization group we analyze the frequency and temperature dependence of the impurity spectral density
pi(w,T) for impurities in small systems that are either isolated or in contact with a reservoir. We have
performed a detailed analysis of the structurepdv,T) for @ around the Fermi energy for different Fermi
energies relative to the intrinsic structure of the local density of states. We show how the electron confinement
energy scales introduce features in the frequency and temperature dependence of the impurity spectral prop-
erties.
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[. INTRODUCTION tions between the impurity and conduction electron spins
extend up to a distance of the order&(f.
The physics at the nanoscale has emerged as one of the The problem of Kondo impurities in nanoscopic systems
most active areas in condensed matter physics. This nef@r different experimental realizations has been the subject of
field includes the study of small metallic and superconductM@ny recent theoretical and experimental wdtkshen a

ing islands, quantum dots and nanostructurated semicondu{ONdO system, either an atomic impurity or an artificial atom

. Such as a quantum d@é®D), is embedded in a small system
tors, nanotubes and quantum corrals, nanoelectronics an d . o .

o ; of volumeL® whered is the spacial dimension, the length-
nanocharacterization, among other things.

.scaleL should be compared with the characteristic Kondo

The advances in nanotechnologies revived the interest Rngth £ . For L<¢, finite-size effects are expected to be
the Kondo effect one of the paradigms of strongly corre- important. The conditiorL ~ & is equivalent tokgTg~ A

lated systems. On the one hand, scanning tunneling microg;hare the energy gives the average level spacing of the
copy (STM) allowed the direct measurement of local Spec-finjte system. For a finite system the characteristic endrgy
troscopic properties of Kondo impurities on noble metalaets a5 a low energy cutoff for the charge and spin excita-
surfaced* and in nanoscopic systei©n the other hand, it tions and consequently it modifies the low temperature be-
has been shown that single electron transistors and singlgavior of the system.
walled carbon nanotubes weakly coupled to contacts may The ground state properties of a Kondo impurity in a
behave as Kondo impurities generating new alternatives tgmall system have been addressed by a number of authors
study the phenomerfa. using different approximatiorfs}° The thermodynamic

In its simplest form, the Kondo problem is a single quan-properties and the effect of coupling the system to a macro-
tum spin interacting with an ideal electron gas. An antiferro-scopic reservoir have recently been studied using the Wil-
magnetic coupling between the impurity and the free elecson’s renormalization groupln this work we extend renor-
tron spins gives rise to an anomalous scattering at the Fermalization group calculations to evaluate the impurity
energy leading to a large impurity contribution to the resis-spectral density and analyze how the new energy or length-
tivity. Simultaneously the impurity spin is screened by thescales introduced b_y the finite size affects the Kondo reso-
conduction electrons and the magnetic susceptibility satuance at the Fermi energy. We also study the temperature
rates at low temperature. There is a characteristic temperglependence of the low-energy spectral density.
ture T that separates the low-temperature from regime the The rest of the paper is organized as follows. In Sec. Il we
high-temperature regime. At>Ty, the impurity spin is es- Present the mpdel and describe how the numerical renormal-
sentially free and the problem can be treated by perturbatiorigation group is adapted to our case. We then recap the most
in a dimensionless coupling constantAt T<Ty the impu- relevant thermogjynamlc pr_opert!es. Section Il (_:ontams the
rity spin is screened forming a singlet complex with the con-sSpectral properties of the impurity for frequencies closel to
duction electrons and the system is described by an infinithe€ Fermi energy. After presenting the general formulation
effective coupling. The crossover regime with- Ty is more W€ show results for finite systems, systems in contact with a
difficult to describe and the best treatment corresponds to thg@Servoir and the temperature dependence of the Kondo reso-
numerical renormalization group\RG) as done by Wilsod. ~ hances. Finally Sec. IV includes a summary and discussion.

The characteristic Kondo temperature is given by
~DNe ™ where D is the free electron bandwidth. As-
sociated to this energy scale there is a characteristic length In this section we present the model for an impurity in a
scale known as the Kondo screening length=%vg /kgTk nanoscopic system coupled with a macroscopic reservoir and
wherev is the Fermi velocity. The physical meaning of the briefly discuss how Wilson’s renormalization group is
screening length is that, in the low-temperature regime wheradapted to this problem. Then we review the thermodynamic
the impurity spin is screened, the antiferromagnetic correlaproperties of the system.

IIl. MODEL AND THERMODYNAMIC PROPERTIES
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—s4tU hybridized with the continuum acquiring a finite lifetime, the
Al local density of states inside the central cluster then presents
resonances separated by the enexggnd with widthsy that

are determined by the barrier. The model then incorporates
—*d the new energy scales and y, that may drastically change
= the impurity behavior.
— This geometrical structure is particularly appropriate to
¢ use the numerical renormalization group approach developed
by Wilson. Wilson introduced a logarithmic discretization of
Vot o, 4 atye tyort o the energy of the conduction electrons, dividing the band in a
eqU ._o_o_o_(){/_o oO—O0—O0—--- series of energy intervals with exponentially decreasing
1 2 3 N, width. By means of a canonical transformation the resulting

Hamiltonian can be mapped into a linear chain with variable
hoppings. Each site representing an orbital surrounding the
impurity with an associated energgr length scale. Wilson
proposed to solve the linear chain by iterative perturbation. A
truncated chain withN sites, described by an effective

A. Model Hamiltonian and Wilson’s renormalization group Hamiltonian Hy, gives the correct physics on an energy

Our starting point is the Anderson model for magneticsca|e oy - A renormalization group transformation corre-

impurities with a Hamiltonian which in the usual notation SPonds to adding a site to the chain and relates the Hamilto-
readdl nians describing successive lower energy scales. This leads

to a systematic way of calculating the thermodynamic prop-
_ s fyt + erties at successive lower temperatures and the spectroscopic
HAM_; derrdrrJFUdeTdePL;r 8CeCro properties at successive lower frequencies.
' In our case, the Hamiltoniali9,, is rewritten in Wilson’s
basis as schematically shown in Figbll The potential bar-
rier is described including a higher diagonal energy to the
orbital centered arounB;. Due to the structure of Wilson’s
where the operatail], creates an electron with spinat the  basis wave functions, a given potential barrier leads to a
impurity orbital with energysy and Coulomb repulsiotd,  diagonal energy that decreasesRasncreases. Alternatively
andc],, creates an electron in an extended state with quarthe barrier can be simulated with a smaller hopping matrix
tum numbersy and o and energye, . The last term repre- element in the region when/(r,R.) is different from zero.
sents the effect of an external magnetic field along zhe We adopted this last description reducing one hopping term
direction coupled to the impurity spi§ . Hereafter we will by a factora. In what follows it is assumed that the band of
useD=1 as our unit of energy. extended states is half filled, the Fermi energy is set equal to
In this notation, the nanostructure of the system is hiddernzero, andey= —U/2. This guarantees that the electron-hole
in the structure of the one-electron extended states with ersymmetry of the problem is preserved.
ergiese, and wave functions/,(r). In Eq. (1) the hybrid- The properties of a Kondo impurity depend on the local
ization matrix elements are taken proportional to the ex-density of states at the impurity coordinate that in Wilson’s
tended state wave functions at the impurity position, i.e.representation is the local density of states at site 1. We end
V,=Vy#,(0) where the impurity position is defined as the this section with a brief discussion on the effect of the con-
origin of coordinates. We consider a simple structure consistfining potentialW(r,R;) on the local density of states close
ing of a spherical metallic cluster of radii& with the im-  to the Fermi energy. For a gived the spectrum ofHy de-
purity at the center. The cluster is embedded in a bulk matepends on the parity of. In the absence of impurity, a one
rial with which it is weakly coupled through a large surface particle state at zero energy exists only for dddas sche-
barrier. The Hamiltonian can be put in the forf,y matically shown in Fig. 2. The spectrum, as a functiorNpf
=H2M+W(r,Rc) where the first term is the Anderson alternates between those of Figsa)2and Zb). The mean
model Hamiltonian for an impurity in an infinite homoge- energy separation, between the one-electron states, is given
neous host and the last term is a spherically symmetric pd3y the characteristic energy that decreases &¢increases.
tential barrier placed at a distanBg from the impurity. Fig-  This is the spectrum of a finite systefN€ N.) described by
ure 1(a) illustrates the configuration described by the model.an infinite barrier. The other one electron states, not shown in
For an infinite impenetrable barrier, the central cluster is deFig. 2, are not at energiesA or (n+1/2)A with integern.
coupled from the macroscopic reservoir and the model deThis is due to the logarithmic discretization of the band. How
scribes an impurity in a small sample. In this situation, thethe NRG can be used to analyze finite size effects was shown
extended states that are coupled to the impurity, are confinday Nozieres?®> To show that the logarithmic discretization
in the central cluster and their energy spectrum is a discreteorrectly describes the low-energy spectrum of a impurity in
spectrum with a mean energy level separation given by thénite systems, in the next section, we compare the exacts
characteristic energ. For a finite barrier these states are results on a finite system with those obtained with the NRG.

FIG. 1. A sketch of the central grain embedded in a mé&tal
Inside the grain the characteristic energy level spading shown
together with the impurity levels aty andeyq+U. In (b) the linear
chain obtained after Wilson’s canonical transformation.
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FIG. 2. Unperturbed local density of extended states at the im- FIG. 3. The magnetic susceptibilitys Ty versus temperature.
purity coordinatg(site 1) for a cluster witha=0 (vertical barsand  The thick line corresponds to an impurity in a bulk material (
a=0.05 (lineg). In the later case the spectral density has been=1), lines and symbols to a barrier enclosMg=19 and 20 shells
evaluated using a small imaginary part in the frequefayN, (open and full symbols, respectivélyriangles(circles correspond
=19 and(b) N.=20. to =0.35 (0.6). The other parameters agg= —0.5, U=1.0, and

V=0.2.

The alternating spectrum with a fixed Fermi energy corre- _ e . .
sponds to an alternating parity in the number of electrons, iffnt from zero and, in the Iow;temperatzure limit the impurity
fact for a fixed electron density, as the radRisof the clus- ~ Susceptibility diverges ag= u(11|S,|1)“/kgT.
ter increases, the number of electrons alternates between For a finite barrier the susceptibility always saturates,
even and odd. We recall that due to the symmetry of theh'owever, the at-resonance and off-resonance situations give
system only the sector of the Hilbert space vitvave elec-  fise to very different temperature dependences. We calcu-
trons is considered here. With a finite barrier#0) the lated the impurity magnetic susceptibility given'By
discrete states of the cluster are hybridized with the con-
tinuum of the host metal and become resonances. The local _ 2 2
density of states then becomes a continuum but retains some KeTX=1i EV Pu(vISl»)]
structure characterized by the energy In the NRG ap- b
proach, Hamiltonian$d with N>N. accumulate states at 2 v
low energies representing the broadening of the central peak +2kBT§'g [(vIS:1€)] Ec—E,)’ @
for odd N or the tails of the states at A/2 for evenN,.
The local densities of states as obtained with the NRG aréhere the summation is done over the low-energy sfates
also shown in Fig. 2. For+#0 the number of electrons in With energiesE, and P, =exp(-E, /kgT)/Z. The matrix ele-
the central cluster is no longer a good quantum number an@nents(»|S;,|€) have to be evaluated in a recursive way at
in what follow we refer to the situations of Figs(a2 and each renormalization step. The susceptibility reflects the
2(b) as the Fermi energy being at a resonafateesonande thermodynamic properties of the system and we use the ef-
or between two resonancésff-resonance respectively. fective magnetic moment®=kgTy as an indicator of the

As we show below, this structure of the local density of degree of screening of the impurity spin.

states determines the thermodynamic and the spectral prop- In absence of a barrier—corresponding to the infinite ho-
erties of the impurity. mogeneous system—the characteristic energy scale is the

Kondo temperature indicated &gTy . A finite barrier at
_ _ R.—enclosing N, shells—introduces the energy scale
B. Thermodynamic properties =DA N2 where A=2 is Wilson’s discretization param-
Here we briefly recap the thermodynamic properties ofeter. ForkgT,>A the fine structuréon the scale off) of
the model. As stated above, far=0 the at-resonance situ- the density of states does not change the properties of the
ation corresponds to an odd number of extended electronsystem. Conversely, fokgTx~A confinement induced re-
An impurity in the Kondo limit contributes with an extra gimes are observed: for the system at resonance, as the tem-
electron and the ground state is a singlet indicatediOas  perature is lowered, there is a rapid decrease in the magnetic
The expectation value of the impurity spif|S;,|0) is zero  momentu? whenkgT~A; for the system off resonance, as
reflecting the complete screening of the impurity spin and thé&gT approached the magnetic moment saturates leading to
zero temperature susceptibility is finite. For the off- a plateau in the temperature dependence®fonly at lower
resonance situation the ground state of the isolated clustéemperatures the screening is comple(ede Fig. 3. This
with a Kondo impurity is a Kramers spin-1/2 doubj@¢} and  plateau can be interpreted as the behavior of an isolated clus-
[I). The expectation valué|S,|m)=—(U|S,||) is differ-  ter. Only at very low temperatures the coupling with the host
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FIG. 4. The effective Kondo temperature, that describes the
low-temperature behavior of the susceptibility, versus the barrier Xolw—(Ex—Ey\)], (6)
parametera for the at-resonancéupper curves and the off-
resonancélower curve$ cases. Open symbols were obtained using
Eq. (3), full symbols using the scaling shown in the inset. The
parameters are the same as in Fig. 3.

with M, ,»=(\|d,/\"). In the absence of an external mag-
netic field, the impurity spectral density is spin independent
and from here on we drop the spin indexdp,(w,T).

We now briefly discuss the application of the NRG to

. evaluate these quantities. The zero-temperature limit of ex-
states becomes relevant and the complete screening can ression(6) can be put in the form

cur. The condition for the existence of these regirkg$y

~A can be put in the forn§; ~R. whereég=rhvg /kgTy is 1 5

the Kondo screening length of the infinite system. In other pi(w,T=0)= Z00) % M) d?8(w+E,)

words, only if the Kondo screening length is of the order or '

larger than the system size, the confinement effects become +|MOJ\|26(w— E,\), @)

evident in the thermodynamic properties. Although the be- . I
havior of the system is not universal, at very low tempera_Where the subindex 0O indicates the ground state, the summa-

tures the susceptibility can be used to define an effectivdOn S over all excitations\ with energiesE, and on the
Kondo temperature. In fact the low-temperature taikgT y components of the ground state in the case of a degenerate

' : ground state, and(0) is the zero temperature partition func-
can be scaled to define the effective energy sféflfe‘or the tion that gives the ground state degeneracy. We recall that in

E\;fve?gr:atr%)r/it:ﬁ!:, gﬁg'ﬁ?g:ﬁmﬂ% B?Zevﬁggﬁsthrisﬂﬁmg tWOthe NRG the chemical potential is set at zero and all many
body energie&, are measured from the ground state energy.
In order to evaluate the impurity spectral density of the
2 real system using the results of the NRG, consider the spec-
)((T=O)=O.103kﬂ—.|i_, (3 tral densityp](w,T) corresponding to HamiltoniaH . As
B'K mentioned above, the RG strategy of an iterative diagonal-
ization of a sequence of Hamiltoniangly with N

to relate the low-temperature susceptibility to an effective=0.1, ..., isbased on the fact that, on an energy seale
TS, The other alternative is to plgt? vs T/TE" fitting TS the spectrum oHy is representative (3]‘ the spectrum of the
to have a good scaling at low temperatures. The effectivénfinite HamiltonianH. Hence, foro~w) it is a good ap-
Kondo temperatures describing the low temperature behavigroximation to také&'

are shown in Fig. 4 as a function of the barrier height for the

at-resonance and off-resonance situations. &or0.2 the pi(0,T=0)=p! (0, T=0).

two criteria give the same results, for smaller values dhe
universal behavior is obtained only at extremely low tem-
peratures where numerical errors become important.

A typical choice is to consider for thMth iteration the en-
ergy rangeA N?<w<2A N2 that is, to consider all the
states ofHy with energiesEQl in this range and all the cor-
responding matrix elementﬁli"o to compute the spectral

ll. SPECTRAL DENSITIES OF IMPURITIES density as

IN NANOSCOPIC SYSTEMS
1 N |2 N
pi(@,T=0)=5—— > MY |25(w+E})

Using the standard definitions and notation, the impurity ZN(0) %0
Green’s function can be written, using the Lehmann repre- N 12 N
sentation, as +[Mo,|?8(w—EY). (8
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Since for the infinite systems the energy spectrum consiste 3

of a continuum, at each energy scalg, the discrete spectra
are usually smoothed by replacing the delta functi&fm
—EY) by a smooth distributioP(w—E)). At eachN we
use a Gaussian logarithmic distribution with a width that
decreases as the characteristic energy scatgoflt is then 0
clear that at high energies, say the atomic energy of the im-
purity level g4, the NRG cannot resolve any detailed struc-
ture, only at low frequencies there is enough resolution toz 61
see, for example, confinement effects. We analyze in detaiz- 4
the impurity spectral density around the Fermi energy which ~ ,[
in fact contains all the physics at an energy scale relevant foi , / \ ,
the Kondo effect and for the electron confinement in a nano- 2 -1 0 1 2
scopic sample. Before presenting the renormalization group /A

results we show, as a reference calculation, some exact re- -~ ¢ Impurity spectral density;
sults in finite systems. e '

2

(b)

_ 20
3
~
|

(0, T=0). Upper panels are
exact results for a linear chain withi=8 (Vy=0.14,e4=E¢
—0.5, U=1.0, andt=0.25) and eighta) and severtb) electrons.
A. Exact results in finite systems Lower panels are the NRG results with=0, N.=13, (c) and N,

Here we present the zero-temperature results for an impu- -4 (d). (e4=—05,U=10, andv=0.2)

rity in a finite system consisting of a linear chain bf
equivalent sites with the impurity at one end. In this case th
energy spectrum of extended statesand the hybridization
matrix elementd/, of Hamiltonian(1) are given by

@y the Kondo temperature of the finite system. The peaks at
w~*A are also made of a couple of delta lines each. The
justification of this description of a central line and satellites
at = A is given by the fact that for smaller hybridizations the

e,=—2tcog va/(N+1)] two <_:entra| lines approackh~0 and the impurity spectral
density reproduces the structure of the unperturbed local
and density of stategthe at-resonance situation of Fig(ag.
Here we used these parameters for a better comparison; re-
V,=Vesinva/(N+1)], sults with a smaller hybridization calculated with the NRG

are shown below.
Odd number of particlesThe ground state of the system

Usi L laorith first calculate th dis a spin-1/2 doublet. The spectral densities have a low fre-
sing a Lanczos aigorithm we Trst caiculate the groun guency gap with peaks at~ = A/2. Each of these peaks at
state energy and wave vector. In the present case Itls ConVes_ + A 5 consist of two delta lines that correspond to final
nient to use a second Lanczos algoritArto evaluate di-

; ) . . _states with different total spin: when an electron is created or
rectly the impurity spectral func'qon, rather than evalufat'ngdestroyed on the spin-1/2 ground state, the final state may

Have total spin zero or one. The energy of the final state
'depends on its total spin. Again in this case the general struc-
ture is that of the underlying local density of states.

These results should serve us as a guide for the numerical

renormalization group calculation. Since the NRG involves

speitral density arounhd thﬁ Fermller_1ergy showsha serlkes Tbme approximations and will be extended to more realistic
peaks separated by the characteristic enexgyEach pea cases, as is the case of a system with a finite barrier, it is

may be composed by a one or a few delta lines as shown i, o rtant to have this exact result as a reference calculation.
Figs. 5a and §b). In what follows we discuss the low-

energy structureg=<A) of the impurity spectral function for
the case of even and odd number of particles correspondi
to the at-resonance and off-resonance situations, respectively. For a finite system, the renormalization procedure is trun-
Note that the results of Figs(& and 5b) are not for a half cated at an iteratioN. . In Figs. §c) and d) we present the
filed system and as a consequence the electron-hole symmi&RG results for the impurity spectral density of a finite sys-
try is not exactly preserved. tem with an even and an odd number of particles, respec-
Even number of particle§he ground state of the system tively. As for the calculation of the thermodynamic proper-
is a singlet and the impurity spectral density shows a centraies, the system with an eveledd number of particles is
peak atw~0 and two satellites ab~ = A. The central peak evaluated with an odteven number of shell§\.. The spec-
consists of two lines, one fan>0 and one folw<<0 corre-  trum consists of a discrete collection of delta lines and, as in
sponding to adding and subtracting a particle, respectivelythe previous section, the smoothing is done only for practical
The splitting between these two lines, that decreasegy,as purposes in the presentation of the data. Our low frequency
decreases, is not given directly by the confinement enargy NRG results compare very well with the exact results of a
but by the energy gained by forming the singlet, i.e., is giverfinite systemFigs. 5a) and b)]. Again, for an even num-

wheret is the hopping matrix element in the chain and
=1,2,...N.

mentsM, .. For a better comparison of the different cases
we always measure the frequency from the Fermi enBggy
defined asEr=[Ey(Ng+1)—Eg(Ne—1)]/2 with Ep(Ng)
the ground state energy of the system withparticles. The

r%‘ Numerical renormalization group: Zero-temperature results
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FIG. 6. Impurity spectral densityi(w,T=0) for the at- FIG. 7. Same as in Fig. 6 wita=0.45 andV=0.15. (a) At-
resonance case witN.=19 (a) and the off-resonance case with resonance case witN.=19 and(b) off-resonance case withl,

N.=20 (b) and different values ofr: «=0.2 (dashed ling 0.3, =20.
0.4, 0.6, 0.75, and 0.%thick line). (e4=—0.5, U=1.0, andV
=0.2) temperature—a central Kondo peak. As we show in the next

section, a small temperature completely destroys this central
ber of particles the impurity spectral density consists of aKondo peak while the broad structures survive up to much
central peak, composed by two delta functions, and the twhigher temperatures.
satellites atw~*A. For an odd number of particles the
approximate NRG results clearly show the central pseudogap

and the two satellites abv~ =A/2 with a structure that . .
. X Here we briefly discuss the structure of the Kondo reso-
comes from the spin-dependent energy of the final state. . . . .
nance in terms of what would be obtained with a simple

For the remainder, we focus on the more interesting Ca5¢|ave boson theory in the saddle point approximation. In this

of a system in contact with a macroscopic reservoir. This is ; : ) U
; . . - heory U=1), the low-energy impurity Green’s function is
described with a nonzero parameterrepresenting a finite given by

wall.
In Fig. 6@ the impurity spectral density for the at- b2
resonance situation is shown for different valuesaofFor G(w)= , 9)
a=0 the isolated cluster results are reproduced with a peak w—e,—b?V?g%(w)
at low frequencies. This peak is well separated from the, o rep? js the square of the mean value of the boson field
Fermi energy due to a large hybridizativhused in the cal- £,=0 gives the position of the Kondo resonance, ghigh) '
culation for practical purposes. In the figure only a detail Ofiskthe bare local propagator of conduction electr(;ns. Here as
the I.OW frequency structure is shown and the satellit@ a in the NRG calculation we take the Fermi energy equal to
NA. IS not observed. As approaches one, corresponding to zero. In an homogeneous system it is a good approximation
an mfmyte homogeneous system, the two struptures mergg takeg®(w)= —imp wherep is the frequency independent
!nto a single Kondo p?a" centered at the Fermi energy. Thﬁ)cal density of states and defining the Kondo temperature
impurity spectral density when the Fermi energy is off reso-¢ as the width of the Kondo resonance the local propagator
nant is shown in Fig. ®). For a smalla the excitations c;n be put a(w)=b?/(w+iTy) with b?=Ty/mV2p in
aroundw~A/2 are clearly observed._As increases the agreement with the Friedel’s sum rule. For our case of a
~A/2 structure is washed out and simultaneously a narroVentral grain weakly coupled with a reservoir, the propagator

Kolr;do resonan(;ethvelops ?t the Fe”rmlherge.rdgy. i q g% w) is taken as a sum of poles separated by the character-
or more realistic parametefa smaller hybridization an istic energyA and widthsy

consequently a smaller Kondo temperajute at-resonance
and off-resonance impurity spectral densities are shown in 1
Fig. 7. These results show that, for the general case of a %(w)=2> w—ATiv
Kondo impurity in a nanoscopic system with an intermediate momfimly
barrier and the Fermi energy at a resonant state, we shouldith A;=1A or A;=(l+1/2)A for the at-resonance and off-
expect the low frequency spectral densii(w,T=0) to  resonance cases, respectively. The structure of the Kondo
present a broad Kondo resonance with some structure. lresonance so obtained is shown in Fig. 8. The results are in
fact, for large barriergsmall &), the Kondo resonance has a good qualitative agreement with the NRG results. In the at-
minimum at the Fermi energy. For the off-resonant case, weesonance case, depending on the value of the parameters,
expect the spectral density to present the structures~at the low-energy spectrum consists of two peaks with a deep at
+A/2 separated by a pseudogap and—at zerdhe Fermi level or a single peak with a maximum at the

C. Phenomenological approach

(10
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FIG. 8. Phenomenological results for the impurity spectral den-
sities. @ =1.0, y=0.1, ancb?Vv2=0.02). (a) At resonance(b) Off
resonance.

FIG. 9. Impurity spectral density;(w,T) for different tempera-

tures.(a) At resonanceT =0 (thick line), T=0.23A (thin line), and

T=0.7A (dashed ling (b) Off resonanceT=0.0 (thick line), T

=2.0x10"3A (thin line), T=5.1X10"2A (dashed ling and T

Fermi level(not shown. In the off-resonance case, a central =0.5A (dotted ling.

peak at the Fermi level is obtained. Note, however, that the

area of the central peak relative to the area of the satelliteure corresponding to the offset of the plateau. The first and

peaks obtained is this approximation is different from thatsecond temperatures at which the narrow Kondo peak and

obtained with the NRG. the broad structure disappear indicate the decoupling of the
impurity spin with the electron spin density at large (

D. Finite-temperature results >R.) and short (<R,) distances, respectively.

The NRG calculation of the finite temperature spectral
density pi(w,T) relies on the same approximations of the
T=0 case. The spectral density at a fixed temperaiuie
evaluated as above—using E@) instead of Eq(7)—if o

IV. SUMMARY AND DISCUSSION

We have presented a model for a Kondo impurity in a
_ 0 nanoscopic sample or grain coupled with a reservoir through
>kgT. To calculate the spectral densitya@tkgT a Hamil- 3 jarge barrier. The natural energy—or length—scale associ-
tonianHy with N such thatwy~kgT is used. ated to the Kondo effect in a bulk material is to be compared

When T¢~A and the Fermi energy lies between reso-with the scale introduced by the confinement of electrons.
nances, the off-resonance case, two energy scales are cleafljese scales modify the local density of states at the impu-
observed in the temperature dependence of the susceptibilit§ity site and consequently their thermodynamic and spectral
In fact as the temperature is lowered they determine the onsetoperties.
of the plateau irkgTy, that is given byA, and the offset at The local density of states of the host material consists of
Te" that is determined byr. For the at-resonance case the resonant states separated by a characteristic energnd
static magnetic properties are dominated by the larger scalith a width y. While A is determined by the sizeR() of
A since forkgT<A the magnetic moment is completely the grain, the width of the resonances is determined by the
screened. The spectral densities are also sensitive to the tetidansparency4) of the barrier. We have considered cases in
perature and as we will see, there are changeg;(w,T) which the Fermi energy lies at a resonance or between two of
each time the temperature approaches each one of the chiem.
acteristic energy scales. The main results of the paper are the frequency and tem-

In Fig. 9a) the spectral density;(w,T) is shown at dif- perature dependence of the impurity spectral density
ferent temperatures for a system with the parameters as im(®,T). We have performed a detailed analysis of the struc-
Fig. 6. The Kondo peak develops and reaches its zerdure of pi(w,T) for w around the Fermi energy for the case
temperature value as soon as the temperature goes Below Tg~A. This regime withT~ A is characterized by a inter-
The parameters are the same as in Fig. 3 with0.35. For  play between electron-electron correlation and confinement
the off-resonant situation the temperature evolution is showeffects. The width of the Kondo resonancgyj and the
in Fig. 9b). In this last case the two characteristic tempera-characteristic energyXA) that defines the structure of the
tures are also reflected in the magnetic susceptibility fromocal density of states are of the same order and as a conse-
which we can extract their values as the onset and offset ajuence the Kondo resonance shows a superstructure. When
the plateau inu?. As can be seen from the figure, as thethe Fermi energy lies at a resonance, the low-temperature
temperature is lowered, the broad satellitavat A/2 devel-  spectral density consists of a broad structure around the
ops at a temperature corresponding to the onset of the plé&ermi level. For large barriers, the spectrum presents a two
teau while a narrow Kondo structure develops at a tempergpeaked structure with a deep at the Fermi level, where the
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distance between peaks is given by the Kondo energy of theemperature give results in qualitative agreement with the
finite system. As the height of the barrier is decreased, thenes obtained with NRG. Different experiments such as the
peaks merge into a single broader peak. STM conductance for impurities in quantum corrals or small
For the off-resonance capg w, T=0) presents structures terraces or the transport through QD in nanoscopic rings
atw~*A/2 and a central Kondo-like peak at~0. Intem-  could be used to test the theory.
perature dependence two energy scales can be distinguished,
at which the two types of structures disappear. These two
energy scaled\ and Tﬁ“ are also reflected in the magnetic
susceptibility. Phenomenological results based on the slave This work was partially supported by the CONICET and
boson mean field theory for the impurity spectrum at zeroANPCYT, Grants No. 02151 and 99 3-6343.
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