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Spectral densities of Kondo impurities in nanoscopic systems

P. S. Cornaglia and C. A. Balseiro
Instituto Balseiro and Centro Ato´mico Bariloche, Comisio´n Nacional de Energia Ato´mica, 8400 San Carlos de Bariloche, Argentina
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We present results for the spectral properties of Kondo impurities in nanoscopic systems. Using Wilson’s
renormalization group we analyze the frequency and temperature dependence of the impurity spectral density
r i(v,T) for impurities in small systems that are either isolated or in contact with a reservoir. We have
performed a detailed analysis of the structure ofr i(v,T) for v around the Fermi energy for different Fermi
energies relative to the intrinsic structure of the local density of states. We show how the electron confinement
energy scales introduce features in the frequency and temperature dependence of the impurity spectral prop-
erties.
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I. INTRODUCTION

The physics at the nanoscale has emerged as one o
most active areas in condensed matter physics. This
field includes the study of small metallic and supercondu
ing islands, quantum dots and nanostructurated semicon
tors, nanotubes and quantum corrals, nanoelectronics
nanocharacterization, among other things.1

The advances in nanotechnologies revived the interes
the Kondo effect,2 one of the paradigms of strongly corre
lated systems. On the one hand, scanning tunneling mic
copy ~STM! allowed the direct measurement of local spe
troscopic properties of Kondo impurities on noble me
surfaces3,4 and in nanoscopic systems.5 On the other hand, it
has been shown that single electron transistors and si
walled carbon nanotubes weakly coupled to contacts m
behave as Kondo impurities generating new alternative
study the phenomena.6

In its simplest form, the Kondo problem is a single qua
tum spin interacting with an ideal electron gas. An antifer
magnetic coupling between the impurity and the free el
tron spins gives rise to an anomalous scattering at the F
energy leading to a large impurity contribution to the res
tivity. Simultaneously the impurity spin is screened by t
conduction electrons and the magnetic susceptibility s
rates at low temperature. There is a characteristic temp
ture TK that separates the low-temperature from regime
high-temperature regime. AtT@TK , the impurity spin is es-
sentially free and the problem can be treated by perturbat
in a dimensionless coupling constantl. At T!TK the impu-
rity spin is screened forming a singlet complex with the co
duction electrons and the system is described by an infi
effective coupling. The crossover regime withT;TK is more
difficult to describe and the best treatment corresponds to
numerical renormalization group~NRG! as done by Wilson.7

The characteristic Kondo temperature is given byTK

;DAle21/l where 2D is the free electron bandwidth. As
sociated to this energy scale there is a characteristic le
scale known as the Kondo screening lengthjK5\vF /kBTK
wherevF is the Fermi velocity. The physical meaning of th
screening length is that, in the low-temperature regime wh
the impurity spin is screened, the antiferromagnetic corre
0163-1829/2002/66~17!/174404~8!/$20.00 66 1744
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tions between the impurity and conduction electron sp
extend up to a distance of the order ofjK .

The problem of Kondo impurities in nanoscopic syste
for different experimental realizations has been the subjec
many recent theoretical and experimental works.8 When a
Kondo system, either an atomic impurity or an artificial ato
such as a quantum dot~QD!, is embedded in a small system
of volume Ld whered is the spacial dimension, the length
scaleL should be compared with the characteristic Kon
length jK . For L,jK finite-size effects are expected to b
important. The conditionL;jK is equivalent tokBTK;D
where the energyD gives the average level spacing of th
finite system. For a finite system the characteristic energD
acts as a low energy cutoff for the charge and spin exc
tions and consequently it modifies the low temperature
havior of the system.

The ground state properties of a Kondo impurity in
small system have been addressed by a number of au
using different approximations.8–10 The thermodynamic
properties and the effect of coupling the system to a mac
scopic reservoir have recently been studied using the W
son’s renormalization group.9 In this work we extend renor-
malization group calculations to evaluate the impur
spectral density and analyze how the new energy or len
scales introduced by the finite size affects the Kondo re
nance at the Fermi energy. We also study the tempera
dependence of the low-energy spectral density.

The rest of the paper is organized as follows. In Sec. II
present the model and describe how the numerical renorm
ization group is adapted to our case. We then recap the m
relevant thermodynamic properties. Section III contains
spectral properties of the impurity for frequencies close
the Fermi energy. After presenting the general formulat
we show results for finite systems, systems in contact wit
reservoir and the temperature dependence of the Kondo r
nances. Finally Sec. IV includes a summary and discuss

II. MODEL AND THERMODYNAMIC PROPERTIES

In this section we present the model for an impurity in
nanoscopic system coupled with a macroscopic reservoir
briefly discuss how Wilson’s renormalization group
adapted to this problem. Then we review the thermodyna
properties of the system.
©2002 The American Physical Society04-1
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A. Model Hamiltonian and Wilson’s renormalization group

Our starting point is the Anderson model for magne
impurities with a Hamiltonian which in the usual notatio
reads11

HAM5(
s

«dds
†ds1Ud↑

†d↑d↓
†d↓1(

n,s
«ncns

† cns

1(
n,s

~Vn* cns
† ds1Vnds

†cns!2m iBSiz , ~1!

where the operatords
† creates an electron with spins at the

impurity orbital with energy«d and Coulomb repulsionU,
andcns

† creates an electron in an extended state with qu
tum numbersn and s and energy«n . The last term repre-
sents the effect of an external magnetic field along thz
direction coupled to the impurity spinSi . Hereafter we will
useD51 as our unit of energy.

In this notation, the nanostructure of the system is hidd
in the structure of the one-electron extended states with
ergies«n and wave functionscn(r ). In Eq. ~1! the hybrid-
ization matrix elements are taken proportional to the
tended state wave functions at the impurity position, i
Vn5V0cn(0) where the impurity position is defined as th
origin of coordinates. We consider a simple structure cons
ing of a spherical metallic cluster of radiusRc with the im-
purity at the center. The cluster is embedded in a bulk m
rial with which it is weakly coupled through a large surfa
barrier. The Hamiltonian can be put in the formHAM

5HAM
0 1W(r ,Rc) where the first term is the Anderso

model Hamiltonian for an impurity in an infinite homoge
neous host and the last term is a spherically symmetric
tential barrier placed at a distanceRc from the impurity. Fig-
ure 1~a! illustrates the configuration described by the mod
For an infinite impenetrable barrier, the central cluster is
coupled from the macroscopic reservoir and the model
scribes an impurity in a small sample. In this situation,
extended states that are coupled to the impurity, are confi
in the central cluster and their energy spectrum is a disc
spectrum with a mean energy level separation given by
characteristic energyD. For a finite barrier these states a

FIG. 1. A sketch of the central grain embedded in a metal~a!.
Inside the grain the characteristic energy level spacingD is shown
together with the impurity levels at«d and«d1U. In ~b! the linear
chain obtained after Wilson’s canonical transformation.
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hybridized with the continuum acquiring a finite lifetime, th
local density of states inside the central cluster then pres
resonances separated by the energyD and with widthsg that
are determined by the barrier. The model then incorpora
the new energy scalesD andg, that may drastically change
the impurity behavior.

This geometrical structure is particularly appropriate
use the numerical renormalization group approach develo
by Wilson. Wilson introduced a logarithmic discretization
the energy of the conduction electrons, dividing the band
series of energy intervals with exponentially decreas
width. By means of a canonical transformation the result
Hamiltonian can be mapped into a linear chain with varia
hoppings. Each site representing an orbital surrounding
impurity with an associated energy~or length! scale. Wilson
proposed to solve the linear chain by iterative perturbation
truncated chain withN sites, described by an effectiv
Hamiltonian HN , gives the correct physics on an ener

scale ṽN . A renormalization group transformation corre
sponds to adding a site to the chain and relates the Ham
nians describing successive lower energy scales. This le
to a systematic way of calculating the thermodynamic pr
erties at successive lower temperatures and the spectros
properties at successive lower frequencies.

In our case, the HamiltonianHAM
0 is rewritten in Wilson’s

basis as schematically shown in Fig. 1~b!. The potential bar-
rier is described including a higher diagonal energy to
orbital centered aroundRc . Due to the structure of Wilson’s
basis wave functions, a given potential barrier leads to
diagonal energy that decreases asRc increases. Alternatively
the barrier can be simulated with a smaller hopping ma
element in the region whereW(r ,Rc) is different from zero.
We adopted this last description reducing one hopping te
by a factora. In what follows it is assumed that the band
extended states is half filled, the Fermi energy is set equa
zero, anded52U/2. This guarantees that the electron-ho
symmetry of the problem is preserved.

The properties of a Kondo impurity depend on the loc
density of states at the impurity coordinate that in Wilso
representation is the local density of states at site 1. We
this section with a brief discussion on the effect of the co
fining potentialW(r ,Rc) on the local density of states clos
to the Fermi energy. For a givenN the spectrum ofHN de-
pends on the parity ofN. In the absence of impurity, a on
particle state at zero energy exists only for oddN as sche-
matically shown in Fig. 2. The spectrum, as a function ofN,
alternates between those of Figs. 2~a! and 2~b!. The mean
energy separation, between the one-electron states, is g
by the characteristic energyD that decreases asN increases.
This is the spectrum of a finite system (N5Nc) described by
an infinite barrier. The other one electron states, not show
Fig. 2, are not at energiesnD or (n11/2)D with integern.
This is due to the logarithmic discretization of the band. Ho
the NRG can be used to analyze finite size effects was sh
by Nozieres.12 To show that the logarithmic discretizatio
correctly describes the low-energy spectrum of a impurity
finite systems, in the next section, we compare the ex
results on a finite system with those obtained with the NR
4-2
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SPECTRAL DENSITIES OF KONDO IMPURITIES IN . . . PHYSICAL REVIEW B66, 174404 ~2002!
The alternating spectrum with a fixed Fermi energy cor
sponds to an alternating parity in the number of electrons
fact for a fixed electron density, as the radiusRc of the clus-
ter increases, the number of electrons alternates betw
even and odd. We recall that due to the symmetry of
system only the sector of the Hilbert space withs-wave elec-
trons is considered here. With a finite barrier (aÞ0) the
discrete states of the cluster are hybridized with the c
tinuum of the host metal and become resonances. The l
density of states then becomes a continuum but retains s
structure characterized by the energyD. In the NRG ap-
proach, HamiltoniansHN with N.Nc accumulate states a
low energies representing the broadening of the central p
for odd Nc or the tails of the states at6D/2 for evenNc .
The local densities of states as obtained with the NRG
also shown in Fig. 2. ForaÞ0 the number of electrons in
the central cluster is no longer a good quantum number
in what follow we refer to the situations of Figs. 2~a! and
2~b! as the Fermi energy being at a resonance~at-resonance!
or between two resonances~off-resonance!, respectively.

As we show below, this structure of the local density
states determines the thermodynamic and the spectral p
erties of the impurity.

B. Thermodynamic properties

Here we briefly recap the thermodynamic properties
the model. As stated above, fora50 the at-resonance situ
ation corresponds to an odd number of extended electr
An impurity in the Kondo limit contributes with an extr
electron and the ground state is a singlet indicated asu0&.
The expectation value of the impurity spin^0uSizu0& is zero
reflecting the complete screening of the impurity spin and
zero temperature susceptibility is finite. For the o
resonance situation the ground state of the isolated clu
with a Kondo impurity is a Kramers spin-1/2 doubletu⇑& and
u⇓&. The expectation valuê⇑uSizu⇑&52^⇓uSizu⇓& is differ-

FIG. 2. Unperturbed local density of extended states at the
purity coordinate~site 1! for a cluster witha50 ~vertical bars! and
a50.05 ~lines!. In the later case the spectral density has be
evaluated using a small imaginary part in the frequency~a! Nc

519 and~b! Nc520.
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ent from zero and, in the low-temperature limit the impur
susceptibility diverges asx5m i

2^⇑uSizu⇑&2/kBT.
For a finite barrier the susceptibility always saturat

however, the at-resonance and off-resonance situations
rise to very different temperature dependences. We ca
lated the impurity magnetic susceptibility given by13

kBTx5m i
2S (

n
Pnu^nuSizun&u2

12kBT(
nÞj

u^nuSizuj&u2
Pn

Ej2En
D , ~2!

where the summation is done over the low-energy statesun&
with energiesEn and Pn5exp(2En /kBT)/Z. The matrix ele-
ments^nuSizuj& have to be evaluated in a recursive way
each renormalization step. The susceptibility reflects
thermodynamic properties of the system and we use the
fective magnetic momentm25kBTx as an indicator of the
degree of screening of the impurity spin.

In absence of a barrier—corresponding to the infinite h
mogeneous system—the characteristic energy scale is
Kondo temperature indicated askBTK

` . A finite barrier at
Rc—enclosing Nc shells—introduces the energy scaleD
>DL2Nc/2, whereL52 is Wilson’s discretization param
eter. ForkBTK

`@D the fine structure~on the scale ofTK
`) of

the density of states does not change the properties of
system. Conversely, forkBTK

`;D confinement induced re
gimes are observed: for the system at resonance, as the
perature is lowered, there is a rapid decrease in the magn
momentm2 whenkBT;D; for the system off resonance, a
kBT approachesD the magnetic moment saturates leading
a plateau in the temperature dependence ofm2, only at lower
temperatures the screening is completed~see Fig. 3!. This
plateau can be interpreted as the behavior of an isolated c
ter. Only at very low temperatures the coupling with the h

-

n

FIG. 3. The magnetic susceptibilitykBTx versus temperature
The thick line corresponds to an impurity in a bulk material (a
51), lines and symbols to a barrier enclosingNc519 and 20 shells
~open and full symbols, respectively!. Triangles~circles! correspond
to a50.35 (0.6). The other parameters are«d520.5, U51.0, and
V50.2.
4-3
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P. S. CORNAGLIA AND C. A. BALSEIRO PHYSICAL REVIEW B66, 174404 ~2002!
states becomes relevant and the complete screening ca
cur. The condition for the existence of these regimeskBTK

`

;D can be put in the formjK
` ;Rc wherejK

`5\vF /kBTK
` is

the Kondo screening length of the infinite system. In oth
words, only if the Kondo screening length is of the order
larger than the system size, the confinement effects bec
evident in the thermodynamic properties. Although the
havior of the system is not universal, at very low tempe
tures the susceptibility can be used to define an effec
Kondo temperature. In fact the low-temperature tail ofkBTx
can be scaled to define the effective energy scaleTK

eff for the
low-energy spin excitations. We have done this using t
different criteria, one is simply to use Wilson’s result

x~T50!50.103
m i

2

kBTK
, ~3!

to relate the low-temperature susceptibility to an effect
TK

eff . The other alternative is to plotm2 vs T/TK
eff fitting TK

eff

to have a good scaling at low temperatures. The effec
Kondo temperatures describing the low temperature beha
are shown in Fig. 4 as a function of the barrier height for
at-resonance and off-resonance situations. Fora.0.2 the
two criteria give the same results, for smaller values ofa the
universal behavior is obtained only at extremely low te
peratures where numerical errors become important.

III. SPECTRAL DENSITIES OF IMPURITIES
IN NANOSCOPIC SYSTEMS

Using the standard definitions and notation, the impu
Green’s function can be written, using the Lehmann rep
sentation, as

FIG. 4. The effective Kondo temperature, that describes
low-temperature behavior of the susceptibility, versus the bar
parametera for the at-resonance~upper curves! and the off-
resonance~lower curves! cases. Open symbols were obtained us
Eq. ~3!, full symbols using the scaling shown in the inset. T
parameters are the same as in Fig. 3.
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Gs~v,T!5
1

Z~T! (
l,l8

u^ludsul8&u2
e2El /kBT1e2El8 /kBT

v2~El82El!
,

~4!

whereZ(T) is the grand partition function

Z~T!5(
l

e2El /kBT. ~5!

The corresponding impurity spectral density is

r is~v,T!52
1

p
@Gs~v1 i01,T!2Gs~v2 i01,T!#

5
1

Z~T! (
l,l8

uMl,l8u
2~e2El /kBT1e2El8 /kBT!

3d@v2~El82El!#, ~6!

with Ml,l85^ludsul8&. In the absence of an external ma
netic field, the impurity spectral density is spin independ
and from here on we drop the spin index inr is(v,T).

We now briefly discuss the application of the NRG
evaluate these quantities. The zero-temperature limit of
pression~6! can be put in the form

r i~v,T50!5
1

Z~0! (
l,0

uMl,0u2d~v1El!

1uM0,lu2d~v2El!, ~7!

where the subindex 0 indicates the ground state, the sum
tion is over all excitationsl with energiesEl and on the
components of the ground state in the case of a degene
ground state, andZ(0) is the zero temperature partition fun
tion that gives the ground state degeneracy. We recall tha
the NRG the chemical potential is set at zero and all ma
body energiesEl are measured from the ground state ener

In order to evaluate the impurity spectral density of t
real system using the results of the NRG, consider the sp
tral densityr i

N(v,T) corresponding to HamiltonianHN . As
mentioned above, the RG strategy of an iterative diagon
ization of a sequence of HamiltoniansHN with N

50,1, . . . , isbased on the fact that, on an energy scaleṽN ,
the spectrum ofHN is representative of the spectrum of th
infinite HamiltonianH. Hence, forv'ṽN it is a good ap-
proximation to take14

r i~v,T50!5r i
N~v,T50!.

A typical choice is to consider for theNth iteration the en-
ergy rangeL2N/2,v,2L2N/2, that is, to consider all the
states ofHN with energiesEl

N in this range and all the cor
responding matrix elementsMl,0

N to compute the spectra
density as

r i~v,T50!5
1

ZN~0! (
l,0

uMl,0
N u2d~v1El

N!

1uM0,l
N u2d~v2El

N!. ~8!

e
r
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SPECTRAL DENSITIES OF KONDO IMPURITIES IN . . . PHYSICAL REVIEW B66, 174404 ~2002!
Since for the infinite systems the energy spectrum cons
of a continuum, at each energy scaleṽN , the discrete spectra
are usually smoothed by replacing the delta functiond(v
2El

N) by a smooth distributionPN(v2El
N). At eachN we

use a Gaussian logarithmic distribution with a width th
decreases as the characteristic energy scale ofHN . It is then
clear that at high energies, say the atomic energy of the
purity level «d , the NRG cannot resolve any detailed stru
ture, only at low frequencies there is enough resolution
see, for example, confinement effects. We analyze in de
the impurity spectral density around the Fermi energy wh
in fact contains all the physics at an energy scale relevan
the Kondo effect and for the electron confinement in a na
scopic sample. Before presenting the renormalization gr
results we show, as a reference calculation, some exac
sults in finite systems.

A. Exact results in finite systems

Here we present the zero-temperature results for an im
rity in a finite system consisting of a linear chain ofN
equivalent sites with the impurity at one end. In this case
energy spectrum of extended states«n and the hybridization
matrix elementsVn of Hamiltonian~1! are given by

«n522t cos@np/~N11!#

and

Vn5V0sin@np/~N11!#,

where t is the hopping matrix element in the chain andn
51,2, . . . ,N.

Using a Lanczos algorithm we first calculate the grou
state energy and wave vector. In the present case it is co
nient to use a second Lanczos algorithm15 to evaluate di-
rectly the impurity spectral function, rather than evaluati
excited states, their corresponding energies and matrix
mentsMl,l8 . For a better comparison of the different cas
we always measure the frequency from the Fermi energyEF
defined asEF5@E0(Ne11)2E0(Ne21)#/2 with E0(Ne)
the ground state energy of the system withNe particles. The
spectral density around the Fermi energy shows a serie
peaks separated by the characteristic energyD. Each peak
may be composed by a one or a few delta lines as show
Figs. 5~a! and 5~b!. In what follows we discuss the low
energy structure (v&D) of the impurity spectral function for
the case of even and odd number of particles correspon
to the at-resonance and off-resonance situations, respect
Note that the results of Figs. 5~a! and 5~b! are not for a half
filed system and as a consequence the electron-hole sym
try is not exactly preserved.

Even number of particles. The ground state of the syste
is a singlet and the impurity spectral density shows a cen
peak atv;0 and two satellites atv;6D. The central peak
consists of two lines, one forv.0 and one forv,0 corre-
sponding to adding and subtracting a particle, respectiv
The splitting between these two lines, that decreases aV0
decreases, is not given directly by the confinement energD
but by the energy gained by forming the singlet, i.e., is giv
17440
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by the Kondo temperature of the finite system. The peak
v;6D are also made of a couple of delta lines each. T
justification of this description of a central line and satellit
at 6D is given by the fact that for smaller hybridizations th
two central lines approachv;0 and the impurity spectra
density reproduces the structure of the unperturbed lo
density of states@the at-resonance situation of Fig. 2~a!#.
Here we used these parameters for a better comparison
sults with a smaller hybridization calculated with the NR
are shown below.

Odd number of particles. The ground state of the system
is a spin-1/2 doublet. The spectral densities have a low
quency gap with peaks atv;6D/2. Each of these peaks a
v;6D/2 consist of two delta lines that correspond to fin
states with different total spin: when an electron is created
destroyed on the spin-1/2 ground state, the final state m
have total spin zero or one. The energy of the final st
depends on its total spin. Again in this case the general st
ture is that of the underlying local density of states.

These results should serve us as a guide for the nume
renormalization group calculation. Since the NRG involv
some approximations and will be extended to more reali
cases, as is the case of a system with a finite barrier,
important to have this exact result as a reference calculat

B. Numerical renormalization group: Zero-temperature results

For a finite system, the renormalization procedure is tr
cated at an iterationNc . In Figs. 5~c! and 5~d! we present the
NRG results for the impurity spectral density of a finite sy
tem with an even and an odd number of particles, resp
tively. As for the calculation of the thermodynamic prope
ties, the system with an even~odd! number of particles is
evaluated with an odd~even! number of shellsNc . The spec-
trum consists of a discrete collection of delta lines and, a
the previous section, the smoothing is done only for pract
purposes in the presentation of the data. Our low freque
NRG results compare very well with the exact results o
finite system@Figs. 5~a! and 5~b!#. Again, for an even num-

FIG. 5. Impurity spectral densityr i(v,T50). Upper panels are
exact results for a linear chain withN58 (V050.14t,ed5EF

20.5t, U51.0t, andt50.25) and eight~a! and seven~b! electrons.
Lower panels are the NRG results witha50, Nc513, ~c! andNc

514 ~d!. («d520.5, U51.0, andV50.2.!
4-5
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P. S. CORNAGLIA AND C. A. BALSEIRO PHYSICAL REVIEW B66, 174404 ~2002!
ber of particles the impurity spectral density consists o
central peak, composed by two delta functions, and the
satellites atv;6D. For an odd number of particles th
approximate NRG results clearly show the central pseudo
and the two satellites atv;6D/2 with a structure that
comes from the spin-dependent energy of the final state

For the remainder, we focus on the more interesting c
of a system in contact with a macroscopic reservoir. This
described with a nonzero parametera representing a finite
wall.

In Fig. 6~a! the impurity spectral density for the a
resonance situation is shown for different values ofa. For
a50 the isolated cluster results are reproduced with a p
at low frequencies. This peak is well separated from
Fermi energy due to a large hybridizationV used in the cal-
culation for practical purposes. In the figure only a detail
the low frequency structure is shown and the satellite av
;D is not observed. Asa approaches one, corresponding
an infinite homogeneous system, the two structures m
into a single Kondo peak centered at the Fermi energy.
impurity spectral density when the Fermi energy is off re
nant is shown in Fig. 6~b!. For a smalla the excitations
aroundv;D/2 are clearly observed. Asa increases thev
;D/2 structure is washed out and simultaneously a nar
Kondo resonance develops at the Fermi energy.

For more realistic parameters~a smaller hybridization and
consequently a smaller Kondo temperature! the at-resonance
and off-resonance impurity spectral densities are shown
Fig. 7. These results show that, for the general case
Kondo impurity in a nanoscopic system with an intermedi
barrier and the Fermi energy at a resonant state, we sh
expect the low frequency spectral densityr i(v,T50) to
present a broad Kondo resonance with some structure
fact, for large barriers~smalla), the Kondo resonance has
minimum at the Fermi energy. For the off-resonant case,
expect the spectral density to present the structures atv;
6D/2 separated by a pseudogap and—at z

FIG. 6. Impurity spectral densityr i(v,T50) for the at-
resonance case withNc519 ~a! and the off-resonance case wi
Nc520 ~b! and different values ofa: a50.2 ~dashed line!, 0.3,
0.4, 0.6, 0.75, and 0.9~thick line!. («d520.5, U51.0, andV
50.2.!
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temperature—a central Kondo peak. As we show in the n
section, a small temperature completely destroys this cen
Kondo peak while the broad structures survive up to mu
higher temperatures.

C. Phenomenological approach

Here we briefly discuss the structure of the Kondo re
nance in terms of what would be obtained with a simp
slave boson theory in the saddle point approximation. In t
theory (U5`), the low-energy impurity Green’s function i
given by2

G~v!5
b2

v2«l2b2V2g0~v!
, ~9!

whereb2 is the square of the mean value of the boson fie
«l.0 gives the position of the Kondo resonance, andg0(v)
is the bare local propagator of conduction electrons. Here
in the NRG calculation we take the Fermi energy equal
zero. In an homogeneous system it is a good approxima
to takeg0(v)52 ipr wherer is the frequency independen
local density of states and defining the Kondo temperat
TK as the width of the Kondo resonance the local propaga
can be put asG(v).b2/(v1 iTK) with b25TK /pV2r in
agreement with the Friedel’s sum rule. For our case o
central grain weakly coupled with a reservoir, the propaga
g0(v) is taken as a sum of poles separated by the chara
istic energyD and widthsg

g0~v!5(
l

1

v2D l1 ig
~10!

with D l5 lD or D l5( l 11/2)D for the at-resonance and off
resonance cases, respectively. The structure of the Ko
resonance so obtained is shown in Fig. 8. The results ar
good qualitative agreement with the NRG results. In the
resonance case, depending on the value of the parame
the low-energy spectrum consists of two peaks with a dee
the Fermi level or a single peak with a maximum at t

FIG. 7. Same as in Fig. 6 witha50.45 andV50.15. ~a! At-
resonance case withNc519 and ~b! off-resonance case withNc

520.
4-6
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Fermi level~not shown!. In the off-resonance case, a cent
peak at the Fermi level is obtained. Note, however, that
area of the central peak relative to the area of the sate
peaks obtained is this approximation is different from th
obtained with the NRG.

D. Finite-temperature results

The NRG calculation of the finite temperature spect
density r i(v,T) relies on the same approximations of t
T50 case. The spectral density at a fixed temperatureT is
evaluated as above—using Eq.~6! instead of Eq.~7!—if v
.kBT. To calculate the spectral density atv&kBT a Hamil-
tonianHN with N such thatṽN;kBT is used.

When TK
`;D and the Fermi energy lies between res

nances, the off-resonance case, two energy scales are c
observed in the temperature dependence of the susceptib
In fact as the temperature is lowered they determine the o
of the plateau inkBTx, that is given byD, and the offset at
TK

eff that is determined bya. For the at-resonance case t
static magnetic properties are dominated by the larger s
D since for kBT,D the magnetic moment is complete
screened. The spectral densities are also sensitive to the
perature and as we will see, there are changes inr i(v,T)
each time the temperature approaches each one of the
acteristic energy scales.

In Fig. 9~a! the spectral densityr i(v,T) is shown at dif-
ferent temperatures for a system with the parameters a
Fig. 6. The Kondo peak develops and reaches its z
temperature value as soon as the temperature goes beloD.
The parameters are the same as in Fig. 3 witha50.35. For
the off-resonant situation the temperature evolution is sho
in Fig. 9~b!. In this last case the two characteristic tempe
tures are also reflected in the magnetic susceptibility fr
which we can extract their values as the onset and offse
the plateau inm2. As can be seen from the figure, as t
temperature is lowered, the broad satellite atv;D/2 devel-
ops at a temperature corresponding to the onset of the
teau while a narrow Kondo structure develops at a temp

FIG. 8. Phenomenological results for the impurity spectral d
sities. (D51.0, g50.1, andb2V250.02). ~a! At resonance.~b! Off
resonance.
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ture corresponding to the offset of the plateau. The first a
second temperatures at which the narrow Kondo peak
the broad structure disappear indicate the decoupling of
impurity spin with the electron spin density at larger
.Rc) and short (r ,Rc) distances, respectively.

IV. SUMMARY AND DISCUSSION

We have presented a model for a Kondo impurity in
nanoscopic sample or grain coupled with a reservoir thro
a large barrier. The natural energy—or length—scale ass
ated to the Kondo effect in a bulk material is to be compa
with the scale introduced by the confinement of electro
These scales modify the local density of states at the im
rity site and consequently their thermodynamic and spec
properties.

The local density of states of the host material consists
resonant states separated by a characteristic energyD and
with a width g. While D is determined by the size (Rc) of
the grain, the width of the resonances is determined by
transparency (a) of the barrier. We have considered cases
which the Fermi energy lies at a resonance or between tw
them.

The main results of the paper are the frequency and t
perature dependence of the impurity spectral den
r i(v,T). We have performed a detailed analysis of the str
ture of r i(v,T) for v around the Fermi energy for the cas
TK

`;D. This regime withTK
`;D is characterized by a inter

play between electron-electron correlation and confinem
effects. The width of the Kondo resonance (TK

`) and the
characteristic energy (D) that defines the structure of th
local density of states are of the same order and as a co
quence the Kondo resonance shows a superstructure. W
the Fermi energy lies at a resonance, the low-tempera
spectral density consists of a broad structure around
Fermi level. For large barriers, the spectrum presents a
peaked structure with a deep at the Fermi level, where

- FIG. 9. Impurity spectral densityr i(v,T) for different tempera-
tures.~a! At resonance:T50 ~thick line!, T50.23D ~thin line!, and
T50.7D ~dashed line! ~b! Off resonance:T50.0 ~thick line!, T
52.031023D ~thin line!, T55.131022D ~dashed line!, and T
50.5D ~dotted line!.
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distance between peaks is given by the Kondo energy of
finite system. As the height of the barrier is decreased,
peaks merge into a single broader peak.

For the off-resonance caser i(v,T50) presents structure
at v;6D/2 and a central Kondo-like peak atv;0. In tem-
perature dependence two energy scales can be distingui
at which the two types of structures disappear. These
energy scalesD and TK

eff are also reflected in the magnet
susceptibility. Phenomenological results based on the s
boson mean field theory for the impurity spectrum at z
h-

y

d

.S

y

17440
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temperature give results in qualitative agreement with
ones obtained with NRG. Different experiments such as
STM conductance for impurities in quantum corrals or sm
terraces or the transport through QD in nanoscopic ri
could be used to test the theory.
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