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Spin-dynamics simulations of the triangular antiferromagnetic XY model
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Using Monte Carlo and spin-dynamics methods, we have investigated the dynamic behavior of the classical,
antiferromagneticXY model on a triangular lattice with linear sizes<300. The temporal evolutions of spin
configurations were obtained by solving numerically the coupled equations of motion for each spin using
fourth-order Suzuki-Trotter decompositions of exponential operators. From space- and time-displaced spin-
spin correlation functions and their space-time Fourier transforms we obtained the dynamic structure factor
S(q,w) for momentuny and frequencyo. Below Ty (Kosterlitz-Thouless transitionboth the in-plane $)
and out-of-plane $*%) components 08(q, w) exhibit very strong and sharp spin-wave peaks. Well aligue
S and S** apparently display a central peak, and spin-wave signatures are still s&h In addition, we
also observed an almost dispersionless domain-wall peak atchigblow T (Ising transition, where long-
range order appears in the staggered chirality. AbQyvethe domain-wall peak disappears for @lIThe line
shape of these peaks is captured reasonably well by a Lorentzian form. Using a dynamic finite-size scaling
theory, we determined the dynamic critical exponentl.0043). We found that our results demonstrate the
consistency of the dynamic finite-size scaling theory for the characteristic frequegp@nd the dynamic
structure factoiS(q, ) itself.

DOI: 10.1103/PhysRevB.66.174403 PACS nuntder75.10.Hk, 75.40.Gb, 75.40.Mg

I. INTRODUCTION because of the double degeneracy of the ground-state chiral-
ity configurations. This model has two order parameters: the
The study of the dynamic properties of classical spin sysstaggered in-plane magnetization and the staggered chirality.
tems has been extensively carried out using both theoreticdlhere have been ongoing controversies concerning phase
and simulational approaches. In their work on the theory ofransitions and the nature of the phase transitions. $6me
dynamic critical phenomeniaHohenberg and Halperin pro- suggested that the system undergoes a single phase transi-
posed a number of different dynamic universality classesion, generally yielding a non-Ising critical exponent; how-
based upon the conservation laws. The dynamic critical beever, other§™! supported a double-phase-transition scenario
havior is describable in terms of a dynamic critical exponenivith a Kosterlitz-Thouless(KT-) like transition followed by
z, which gives rise to different dynamic universality classes:a second-order chirality-lattice melting transition at a slightly
z depends on the conservation laws, lattice dimension, anbigher temperature. In addition to spin waves and vortices,
the static critical exponents. Now spin-dynamics simulationsvhich are fundamental excitations in the ferromagnetic or
have become a mature method for probing the timeantiferromagneticXY model on a bipartite lattice, the trian-
dependent behavior of magnetic systefsse Ref. 2 for a gular antiferromagnetiXY model has other excitations asso-
recent review. This approach has resulted in high-quality ciated with domain-wall formation between two different
dynamic critical exponent estimates for numerous models. liground states in view of the chirality configuration of ground
a recent high-resolution spin-dynamics stddysai etal.  stated
made direct, quantitative comparison of both the dispersion A good experimental realization of the frustrated antifer-
curve and the line shapes obtained from their simulation dateomagnetic XY model on a stacked triangular lattice is
with recent experimental results for RbMpRusing the ABX;-type halides (like CsNiCkL, CsMnBg, and
Heisenberg antiferromagnet model and a newly developedsCuC}).'>**The magnetic B ions form a triangular an-
approach of higher-order decomposition time integrationiferromagnet within theab planes and a ferromagnetic cou-
method$ and obtained a good agreement. pling along thec direction produces three-dimensional order.
In this paper we consider the classical two-dimensional While the static critical behavior of the TAFXY model has
(2D) antiferromagneticXY model on a triangular lattice been the subject of much interest during the last decade, a
(TAFXY). This frustrated 2D spin system has received muchheoretical study of the dynamic critical behavior has not
attention during the last decade! The TAFXY model dis-  been carried out for the TAFXY model.
plays rich low-temperature phase structures and critical phe- In the present work, we have studied the dynamic behav-
nomena because frustration introduces additional discreter of the TAFXY model using Monte Carlo and spin-
symmetries resulting from the chiral degrees of freedom. Thelynamic(MC-SD) methods. Although in the usual plandy
ground states of this model are composed of three interpermmodel each spin has two components, here we use the three-
etrating sublattices with lattice vectors of leng{B. Spins componentXY model in order to study the real dynamics.
on each sublattice are ferromagnetically ordered and spins ofhese two models belong to the same static universality
different sublattices are oriented2#/3 with respect to each class**°but the planaXY model will not have true dynami-
other. The TAFXY has a continuous(l) symmetry associ- cal behaviot
ated with global spin rotations and a discréte symmetry The estimates fofxt and T used here are taken from a
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recent high-precision MC study where the critical tempera- C"k(r—r’,t—t’)=(S',‘(t)Sf,(t’))—(S'r‘(t))(s‘:,(t’)).
ture T, associated with the chirality phase transition and the (4)
KT transition temperatur&y+ associated with unbinding of
vortex pairs have been determinedTas-0.412(5)/kg and The dynamic critical exponerz can be determined by
Trr=0.403(1)/kg .10 using the dynamic finite-size scaling theory developed by
Chen and Landdd for deterministic systems:
Il. MODEL AND SIMULATION METHOD Kk

wSL (Q!w)

We will first briefly describe the model and the numerical W
method used here and show how the dynamic structure factor L
is computed. The classical antiferromagneXi¥ model is  where we do not introduce a frequency resolution function in
described by the following form: order to smoothen the effects of the finite length of time
integration because of very long integration times used in our
spin dynamics,)(tk(q) is the total integrated intensity given

by

=Gkk(wLZ,QL), (5)

H :J<Z> (SS+99)), (1)
i]

Whe[(e theZ summation is over all nearest nel_ghbdis, _ X'fk(Q):f S(q,0)dw. (6)

=(8',9,S)) is a three-dimensional classical spin of unit o

length at sité, andJ is the positivelantiferromagneticcou- e oharacteristic frequenay¥(qL) is a median frequency

pling constant between nearest-neighbor pairs of spins. W : .
. . . . e etermined by the constraint

consider triangular lattices of sizex L along the primitive

vector directions (e, ,3€,+(/3/2)e,), containing N=L? 1 O

sites and Rl elementary triangles. In our calculations, peri- 2L (a)= wakkSL (q,0)do. (7
odic boundary conditions are applied along the primitive "

vector directions. In the dynamic scaling theory, the finite-size scaling ex-

We use a hybrid Monte Carlo procedure which consists ofyressjon for the median frequenayX is given by
a combination of the Metropolis updafeand the overrelax-
ation algorithn’ (see also Ref. 180ne hybrid Monte Carlo wﬁqk: L~2Q(qL). 8
step consists of two Metropolis and eight overrelaxation ) o
updates®? Using this hybrid algorithm, we generated ap- Using Eq.(8), we estimate the d){(namlc critical exp(_)nemt
proximately 700—8500 equilibrium configurations at a givenfrom the slope of a graph of logfy) versus log() at fixed
temperature. Typically 1000 hybrid Monte Carlo steps werevalue of gL, and we test the dynamic finite-size scaling
used to generate each equilibrium configuration, which igheory using Eq(5).
then evolved using the equations of motion given by

Ill. RESULTS AND DISCUSSION

;SZEXS ) 2 We first compare the behavior of the dynamic structure
t

9§ factor S*(q,w) at several different temperatures, whése

ing f icular initial Soi , . refers to thex (in-plane or z (out-of-plane component and
Starting from a particular initial spin configuration, we per-\ye \yere fimited to thd11] reciprocal lattice direction, i.e.,

formed numerical integration of these equations of motion, _ with g determined by the periodic boundary con-
using a recently developed fourth-order Suzuki-Trotter dergitiégéq)’ g y P y

composition method,and the integration is carried out to a
maximum timet,,,, typically of the order oft,,,,J=680 At L
andt.o1 =600, with a time step obt=0.2J"1. We com- 9=17"Ng: Ng=12,... 3. 9
pute the thermal average of a time-dependent observable by
averaging over all the values of the observable obtained by Figyre 1 shows the temperature dependence of the dy-
evolving all independent initial equilibrium configurations.  namic structure facto8(q,w) for a lattice size ol =240
The dynamic structure fact@®(q,w) is the space-time 4.4 5 particular momentumg=27/15. ForT<Tyy Our re-
Fourier transform of the position- and time-displaced spin-gjis for the dynamic structure fact8F* show a very strong
spin correlation function. It is definedlgor momentum tranSferspin-wave and a central peak which are visible as pro-
q and frequency transfen as follows. nounced peaks at the spin-wave frequendy]) and ate
dt =0, respectivelyS** has structures with less intensity than
Kk _ i = [ 77 ot mkk , S [note the change in scale between Fig®) And Ib)].
S (q,w)—E e )f,m erCTr=r ’t)ﬁ’ © There is a sharp spin-wave peak and no central peaks are
visible in $?% The positions of the spin-wave peaks are the
wherek=x, y, or z is the spin component and the space-same forS** and $*%, and as the temperature increases, the
displaced, time-displaced spin-spin correlation function isspin-wave peak broadens, its position moves towards lower
given by w, and its amplitude decreases. AboVg;, S and S**

r,r’
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FIG. 2. Temperature dependence of the dynamic structure factor
S*(q,w) at high frequenciesL =240 andq=2=/15 in the[11]
direction in all cases. For clarity, a frequency resolution function is
\ used to smoothen the oscillations due to the fitjig,. We can see
\ a domain-wall peak fol <T.. The peak broadens as the tempera-
ture increases. However, the domain-wall peak disappeafE at

] >T..

25 r T=0.5T,, |

(b) L=240 %
q=27/15

creases. The domain-wall peak disappears forgadibove
] T.. This result indicates the presence of an Ising-like phase
transition connected with the loss of chirality order. Figure 3
shows S(q,w) for three different system sizes with the
same value ofj=2/15 at highw in order to see the finite-
size effects of the domain-wall peak. The intensity of the
domain-wall peak does not depend on lattice size, the data
essentially collapse onto a single curve, and finite-size ef-
fects are not visible, whereas the intensity of the spin-wave
FIG. 1. Temperature dependence of the dynamic structure factgpeak depends strongly on lattice size.
S(qg,w). L=240 andq=2/15 in the[11] direction in all cases:

0.8

(a) in-plane component an@) out-of-plane component. 0.015

apparently display a central peak, but spin-wave signature: ft=16200

are still visible inS*2. The same qualitative behavior was T=0.5T,; o L=240
observed in spin-dynamics simulations of the 2D classical q=2w/15

XY model on a square lattic8. 001 - % ]

As has been pointed out by Le¢al. in addition to spin
waves, there is another type of elementary excitation associ @
ated with domain-wall formation between regions with op- XE':
posite staggered chirality. In order to observe the dynamicw
effects of the destruction of chirality order, we investigate the ;505 |
temperature dependence of the dynamic structure f&tor
at high frequencies. We illustrate this in Fig. 2. The intensity
of the domain-wall peak is I¢ of that of the spin-wave
peak at smalf] [note the change in scale between Figs) 1
and 2. The relative intensity decreases at lagg&or clarity, 0
a frequency resolution function witlbw=1.27/t ¢ iS 2.5 3
used to smoothen the oscillations due to the fitjtg,. Be- o/
low T, where long-range order appears in the staggered FiG. 3. Lattice size dependence of dynamic structure factor
chirality, we observe an almost dispersionless domain-wals<(q, w) around the domain-wall peak position at fixed momentum
peak at highw typical of an Ising model. As the temperature gq=2#/15 in the[11] direction atT=0.5Txy. The intensity of the
approaches the chirality transitiofi, from below, the domain-wall peak does not depend on lattice size and the data es-
domain-wall peak broadens and its relative intensity desentially collapse onto a single curve.
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(b) L=300 ‘ FIG. 5. Dispersion relationw,(q) of the spin-wave peak in
5222775 i S(q,w) for the [11] direction as a function of momentum. The
300 - | 1 inset shows the dispersion relatia(q) of the domain-wall peak.
| i‘ by a multiple Lorentzian form
E g
%% 200 | ) 1 $q.0) AI'? BI'3 BI'3
L q.w)= + +
f ¥ Fi-i—wz F%ﬂ-(w—w;) F%-f—(w-i—wé)
A
100 i 1 1 Cr CrI3 a0
E & + + ,
2+ (0—w3) T3+ (o+owd)
where the first term corresponds to the central peak, the next
two terms are from the spin-wave creation and annihilation

0 0.05 0.1 0.15 0.2

ol peaks atw=*w,, and the last two terms are contributions

FIG. 4. In-plane componer®™ of the dynamic structure factor rOM the domain-wall peaks aé=* wg. In order to fit the
simulated line shapes to the Lorentzian form, EL), we

for L=300.(a) T=0.9T¢t and(b) T=Tkt atq=27/75 in the[11] .
direction in all cases. The symbols represent simulation data and tHésed a frequency range<Gw<5. We find that the Lorentz-

solid line is a fit with the multiple Lorentzian function given in Eq. ian line shapes fit our simulation data reasonably well. lllus-
trations of the fits using Eq10) to the simulated line shapes

(10.
at T=0.9T«t and atTx are shown in Fig. 4. In the figure

The in-plane dynamic structure fact&*(q,w) for the  the symbols represent our simulation data and the solid line
2D XY model below the topological transition temperatureis a fit with the Lorentzian function given in Eq10). In
Tk was analyzed by Villaidl Moussa and Villairf? and  Figs. 4a) and 4b), we find additional small peaks on both
Nelson and Fishé® They found thatS(q,») has spin- sides of the spin-wave peak. One simple explanation which
wave peaks diverging at the spin-wave frequenrgy(q). is consistent with the data is the presence of two-spin-wave
Menezeset al?* calculatedS(q,») and found a diverging peaks. We could see that the position of these extra peaks
spin-wave peak similar to that of Nelson and Fisher and aorresponded to frequencies of two-spin-wave addition and
logarithmically diverging central peak. However Evertz anddifference peakgmarked as(1), (2), and(3) in Fig. 4(a)].
Landad* found that their MC-SD data for the shape of These dynamical features have been noticed in earlier
S(q,w) are not well described around the spin-wave peak byMC-SD simulationd'#?8and a theoretical approaéhAs we
the above theoretical predictions. did not generalize Eq(10) to include the extra peaks, this

Mertens et al?®?® calculated S(g,w) above Tyr and  extra structure causes the line shape to depart from a Lorent-
found a Lorentzian central peak f&” and a Gaussian cen- zian form.
tral peak forS*% Very recently, Wysinet al?’ calculated The dispersion relations,(q) of the spin-wave peak and
S(g,w) and found nondivergent spin-wave peaks and weakvy(q) of the domain-wall peak can be obtained from the
peaks on both sides of the spin-wave peaks. Belgw, above Lorentzian fit. Figure 5 shows the dispersion curves as
these theoretical approaches motivated us to fit the line shage function of momentum. The inset shows the dispersion
of the dynamic structure fact@** to a Lorentzian form. We relationwy(q) at T=0.5T+ andT=0.9Ty, where obtain-
found that the line shape & is reasonably well captured ing a goodwy(q) is difficult because of the small peak
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FIG. 6. Finite-size scaling plot for the median frequengyf at 600 - -
T=Tkr. The dynamic critical exponent value obtained from the
slope of the log-log plot iz=1.000(1) forn=1 using all lattice
sizes andz=1.003(2) forn=2 using the largest four lattice sizes. o LF

The solid lines display a fit to a straight line. Statistical errors of the ™
data are smaller than the symbol sizes.

height and the broadening of the domain-wall pésde Fig. 300 -
2). As expectedw,(q) is linear for smallg and wy(q) is
approximately constant.

The dynamic critical exponemtcan be extracted from the
finite-size scaling of the characteristic frequengy, as de-
scribed in a previous section. We calculateff(qL) using
S_XX Wi_th gL=4m(n=1) andgL=8x(n=2) for seve_ra! lat- 0 0' 200 200 500 800
tice sizes aflx;. The log-log plot of the characteristic fre- g’
quencywi as a function of the lattice sideis shown in Fig.

6 where the estimated error bars for individual points are FIG. 7. Finite-size scaling of the median frequenay{L” as a
smaller than the symbol sizes. The solid lines display a fit tdunction of gL?) at (& T=0.9T,r and (b) Tyr usingz=1.0. The
linear behaviors. From the slope of a lafff) vs log() data for wy, show good scaling behavior f(ﬁ<T!<T. Statistical
graph, we obtained the dynamic critical exponert1.000 errors of the data are smaller than the symbol sizes.

+0.001 for n=1 using all lattice sizes and=1.003

+0.002 forn=2 using only the largest four lattice sizes. Of qL. The data forey, show good scaling behavior far
Within their respective error bars, the two estimates Zor <Tgy. The out-of-plane characteristic frequeneff has the
agree. Our final estimate for the dynamic critical exponent issame scaling behavior as the in-plane component at tempera-
z=1.0043), where the error bar reflects the fluctuations intures T<Ty+. Interestingly, atT=T., /7 also shows the
the different estimates af Our determined value faris in ~ same good scaling behavior witl 1.0; however, we do not
excellent agreement with theoretical predicticand with  observe similar scaling behavior il atT=T.. The same
that of the 2D XY model on a square latticez=1.00  behavior was observed by spin-dynamics simulation of the
+0.04 For comparison, we proceeded to estimate the dy2D XY model on a square lattice in a qualitative seHse.
namic critical exponent at T.. We obtained the dynamic We had also attempted to estimate thelependence of
critical exponentz=1.051+0.005 for n=1 (not shown.  the half-widthI'*%(q) of the spin-wave peak in the critical
However, this does not mean that it should bel atT  region. Here we expect the simple forfi(q)~q? The
=T.. There is no theoretical argument wizyshould also  log-log plot of the half-width"¥(q) from our simulations is
equal 1 at this transition. We then calcula@ff(qL) using  shown in Fig. 8. Fol'?¥q), we estimated the error in the
S for all q in the[11] direction and all lattice sizek and  fitted parameters by fitting the line shapes using three differ-
we graphed»®¥L? as a function ofjL? for T<Tyy usingz  ent ranges of frequency around the spin-wave peak. The fit-
=1.0. This graph is shown in Fig. 7. In the figure, statisticalted parameters varied when different frequency ranges were
errors of the data are smaller than the symbol sizes. As wesed in the fit. Fof™*(q), however, as there are three peaks
know, the dispersion curve flattens for each finite lattice sizécentral, spin-wave, and domain-waih S”(q,w) below
whenq becomes large; therefore, the data start to move away., obtaining a good fitted parameter was more difficult than
from the asymptotic behavior at progressively larger valued'?%q). First, the line shape parameters are obtained from
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FIG. 9. Finite-size scaling of the dynamic structure facgt
(b) for z=1.0, qL=4 in the[11] direction, andT = T . Data points
collapse onto the same curve for sufficiently latgeOnly the data
from small lattices deviate systematically.
0.100 ¢ ] cally. Scaling works quite well for all frequencies for lattice
sizesL =240 and 300. The corresponding plot 81(q, w)
G andgL=4m at T=T, is displayed in Fig. 10. The dynamic
(s structure factors for the largest three lattice sizes fall onto a
single curve within the bounds of their error bars. Our
0.010 - ] MC-SD data clearly show that even abolg; the dynamic
T= structure factor scales quite well, consistent with the results
OT=09T,; of the 2D XY model on a square lattice by Evertz and
Landaut* For the out-of-plane componei®? we do ob-
serve scalingnot shown. Thus we can validate the dynamic
0.001 5; 010 1,00 finite-size scaling theory.

IV. SUMMARY AND CONCLUSION

FIG. 8. Linewidths(a) I'™(q) and(b) I'*%q) of the spin-wave
peak inS*X(q, w) for the[11] direction and_=300. The solid lines
are linear fits to the data points.

We have studied the dynamic critical behavior of the clas-
sical 2D antiferromagnetic planak{) model on a triangu-

0.08

the fit to only one frequency range. Using these parameters
the central peak and the domain-wall peak are subtracted
The error is estimated by varying the size of the frequency
window around the spin-wave peak. In contrast to our expec-  0.06
tation, we observed two different dynamic exponents for two
different regions ofy in T*(q) at T=0.9T«. To check the =
finite-size effects for the half-widtfi*(q), we have calcu- &
lated theI'#4q) at two different lattice sizek =240 andL = 004
=300. However, we could not see any finite-size effects foré
the range of the wave vectors that are shown in the figure. Ik,
order to check our result, we calculatEdqq) for the two-
dimensionalXY model on a square lattice and obtained two
different exponents as welhot shown.

In order to test the dynamic finite-size scaling theory of
the dynamic structure fact@*X itself through the use of Eq. 0
(5), we plottedS(q, )/L?x<X(q) vs wlL? for four lattice
sizes with the dynamic critical exponent setze 1.0. For
qL=4m (n=1) andT= Ty, the resulting scaling plot for FIG. 10. Finite-size scaling of the dynamic structure faQt
S(q,w) is shown in Fig. 9. Data points collapse onto thefor z=1.0, qL=4 in the [11] direction, andT=T,. Data points
same curve for sufficiently large—namely, lattice sizes collapse onto the same curve for sufficiently latgeOnly the data
=240. Only the data from small lattices deviate systematifrom small lattices deviate systematically.

0.02 -

0 10
()L
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lar lattice using a combination of Monte Carlo methods andHowever, the intensity of the domain-wall peak does not
spin-dynamics techniques which use recently developed delepend on lattice size. The domain-wall peak disappears for
composition methods in order to increase the efficiency ofll q aboveT..
the simulations. We have calculated the dynamic structure The line shape of the central, spin-wave, and domain-wall
factor S*%(q, w) at temperatures below, at, and abdyewith peaks is captured reasonably well by a Lorentzian form. We
lattice sized<300. estimated the dynamic critical exponerftom the finite-size

At T<Tgt, very strong, sharp spin-wave peaks occur inscaling of the characteristic frequenay,. Our determined
both the in-plane and out-of-plane components of the dywvalue isz=1.0023), which is in agreement with that of the
namic structure facto®(q,»). As T increases, the spin-wave 2D XY model on a square lattice=1.00(4).1*
peak widens and its position moves towards lower In Finally, we have examined the dynamic finite-size scaling
addition to the spin-wave peal(q,w) displays a central theory and we found that the characteristic frequency
peak and additional two-spin-wave peaks. No central peaks (qL) and the dynamic structure fact@¥(q,w) itself
are visible in§°%(q,w). Above Txr, S(q,w) andS*(q,w)  scale very well.
apparently display a central peak and spin-wave signatures

o o )
are still |n_S : In a qualltgtlve.sense_, the same behavior was ACKNOWLEDGMENTS

observed in spin-dynamics simulations of the X¥ model
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