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Spin-orbit induced noncubic charge distribution in cubic ferromagnets. Il. Tight-binding analysis
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The orbital moment and the noncubic charge distribution in ferromagnetic transition metals with cubic
lattice symmetry are investigated within the tight-binding model. By combining the tight-binding approxima-
tion, perturbation theory, and the Green’s function formalism for impurity scattering, approximate expressions
for both effects are derived that depend only on the spin-orbit coupling strength and the density of states of the
system without spin-orbit coupling. The basic relations between the orbital moment, the noncubic charge
distribution, and the band structure are derived from the form of these expressions and from their application
to various model band structures: We explain in this way the scaling with the spin-orbit coupling strength and
bandwidth, the typical order of magnitude, the variation as a function of the band filling, the sensitivity to band
structure details, and the role of the splitting between spin-up and spin-down states. For the noncubic charge
distribution we derive the form of the dependence on the direction of the magnetization and show how the sign
and magnitude of this anisotropy are related to the different energy distributiogs arfd t,, states. This
tight-binding analysis is finally applied to thedSimpurities in Fe. The local densities of states without
spin-orbit coupling are obtained by self-consistent augmented plane-wave calculations using a supercell
method. The special features of thd Bnpurities in Fe with respect to the band structure, the orbital moment,
and the noncubic charge distribution are discussed. The general trend of the systematics is interpreted as a band
filling effect. The prevailing sign of the anisotropy is ascribed to the concentration @tiséates near the
Fermi energy. The results of the tight-binding analysis are compared with the experiment and a more rigorous

calculation.
DOI: 10.1103/PhysRevB.66.174402 PACS nunt®er75.50.Bb, 71.20.Be
I. INTRODUCTION are availablé 1% and EFG’s in noncubic transition metals

can moderately well be reproduced bwb initio
The spin-orbit couplingSOQ is only a small contribu- calculations*~*3

tion to the energy of the valence electrons in transition met- However, the understanding of some elementary relations
als if compared with the bandwidth or the exchange interacbetween the noncubic charge distribution, the SOC, and the
tion. But it plays a key role for several important phenomenaband structure will also be necessary for the interpretation of
in the magnetism of Fe-, Co-, or Ni-based compounds, likehe experimental and theoretical results. These relations are
the magneto-optic Kerr effect, magnetic anisotropy energynot directly evident from the very generally formulated equa-
or magnetostriction. The calculation of these spin-orbit ef-tions of ab initio calculations. Therefore, we present in this
fects from first principles and their properties in artificially work an approximate but more transparent treatment of the
structured material have found much interest in recenSOC within the tight-binding model. The results are com-
years-° In this work we investigate a spin-orbit effect that pared with preliminary band structure calculations including
was less intensely studied in the past: the noncubic charg8OC. Detailed electronic structure calculations, better repre-
distribution in ferromagnets with cubic lattice symmetry. It senting the impurity systems, are left for future work.

can be measured via the electric field gradiggfG) at the Tight-binding models were already used in the first stud-
nuclear site and is a sensitive test for the theory of spin-orbiies of the SO-EFG to explain the effect: Aiga and Itoh as-
effects in transition metals. sumed a rigid shift of the partial densities of states by the

For a long time data were available only for a few favor- SOC* Using this approximation the orbital moment and the
able cases. But due to recent improvements in the measur8O-EFG can be expressed in terms of the SOC strength, the
ment technique, a more complete experimental study of theensity of states at the Fermi energy, and the derivative of
spin-orbit induced EFGSO-EFQ has become feasible. A the density of states at the Fermi energy. This model was
first systematic investigation was performed for the ifn-  extended by Gehring and Williams by the introduction of the
purities in Fe, Co, and Ni. The preceding pageart ) (Ref.  crystal potential to treat a possible dependence on the direc-
7) gives a survey of the current experimental situation. For aion of the magnetizatiol"* Because of its conceptual sim-
quantitative account of the effect detailed electronic structurglicity, the rigid shift of the partial densities of states is still
calculations are necessary. Althoughatwinitio calculations  used today for qualitative consideratidis.But this model
of the SO-EFG have been reported so far, the potential fois in several respects not realistic for transition metals, as
such calculations exists: For the theoretical treatment of thediscussed in detail in Appendix A.

SOC in magnetic transition metals several advanced schemes Demangeat has used the tight-binding approximation in
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combination with realistic band structures to calculate thewvhereeg is the Fermi energy.
SO-EFG at impurities in Fe and N:'°The emphasis of this ~ The second approximation is to neglect the SOC in the
pioneering work, however, was on the attempt of a quantitahost. This seems to be primarily justified only for heavy
tive calculation of the SO-EFG and the equations used werenpurities, where the SOC is an order of magnitude larger
not simple enough for qualitative considerations. than in the Fe or Ni host. However, most of the available
The expressions for the noncubic charge distribution thaSO-EFG data are for thedsimpurities. Furthermore, it is
are used in this work are both transparent enough to reveghown in Appendix B that similar equations are obtained for
the essential relationships and realistic enough to treahe pure host. Therefore, most of the conclusions are ex-
transition-metal band structures. They are obtained by applypected to apply even if the SOC's of host and impurity are of
ing the tight-binding approximation and the perturbationcomparable magnitude.
theory to the scattering of the conduction electrons by the The SOC represents thus an additional potenti&(© at
SOC at an impurity. The derivation of these model expresthe impurity site. This is, however, a well-known scattering
sions is discussed in detail in Sec. Il. problem. An elegant solution is provided by the Green’s
The final equations are, however, not as simple as thostinction formalismi®?*
for the rigid shift of the partial densities of states. A detailed

discussion is necessary to relate the properties of the spin- p(e’) o

orbit effects to the features of the band structure. The orbital G(e)="P (e—e') de’|—imp(e), (4)
moment and the noncubic charge distribution are discussed

in Secs. Il and 1V, respectively. The discussion of the orbital p(e)=—(1/m)Im[G(e)] (5)
moment as an effect of first order in the SOC is included '

there because it makes the more involved discussion of the G(e)=G(e)+GO(e)AVSOG(e). (6)
noncubic charge distribution, a second-order effect, more ) o
transparent. G(e) is the Green’s function, an® is the principal part of

The conclusions in Secs. Ill and IV are not restricted to athe integralG(e) andp(e) are closely related and can easily
particular system. In Sec. V a special class of systems, th@e converted into each other via E¢4) and (5). Equation
5d impurities in Fe, are investigated. This is mainly moti- (6) is the Green’s function formulation of the scattering prob-
vated by the fact that at present most of the available experiem: The Green’s functioiG(e) of the system withA V(59
mental data are for these systems. In addition, their bantp expressed in terms afV(S? and the Green’s function
structure shows some peculiar features that deserve a sepa'”)(e) of the system without V(9.
rate discussion. Equationg4)—(6) are in principle operator equations. Be-
cause of the tight-binding approximation and the localization
Il. TIGHT-BINDING ANALYSIS of AVE9, ‘however,p(e), G(e), G(e), AV(EY, andO
are 10< 10 matrices acting on the tehorbitals at the impu-
The band structure of the system without SOC is assumerity site. Thus Eq(6) is a set of linear equations, which has
to be already known. To investigate the consequences of the be solved for each energy
SOC the following three approximations are introduced. The third approximation is to treatV(S9 in perturbation
The first approximation is the tight-binding model: The theory. Equation(6) is still not transparent since the un-
conduction electron stateg are described as linear combi- known quantityG(e) enters both sides of the equation. This
nations of the atomiclike orbitalg);z located at the lattice can be removed by expanding the Green’s function in powers
sitesR: of AVS9:

G=GO)+GOAVEIGO)

1
l//i:—N 2 AijRDjR - 1)
. . IR . . +GOAVEOIGOIAVEIGO) 4 . .. (7)
The indexj runs over the orbitals at each lattice site and is

confined to the tem orbitals of the outermodt shell. In a  This should be a reasonable approximation as long as the
homogeneous system the coefficieajg depend orRonly  SOC is considerably smaller than the bandwidth.

in the form of the phase factor exi(R). In the vicinity of an The next step is to f|nd. explicit expressions fof?,
impurity the amplitude may also vary. In any case, we will AV®?, andO to substitute into Eqs(3), (5), and (7). We
not make explicit use of they;z. We will use instead the introduce first the following notation to distinguish between
the two reference frames that enter our problemy, andz
denote the principal axes of the cubic lattice andy’, and
z' denote an axes system where thalirection is parallel to
Prn(€) =2 (Dol )il o) S(e—€). (20 the magnetization.

! The tend orbitals are represented by a basis set where the
The expectation value of an opera®t the impurity site is  Spin is parallespin up,T) or antiparallel(spin down,|) to
given by the following trace: the magnetization and the angular-dependent part behaves
like xy, yz, zx, x?—y?, or 32>~ r2.22 Herexy, yz, andzx
are thet,y orbitals (other notation:e, I's, I'y5), and x?
—y? and %?—r? the e, orbitals (other notation:y, I's,

local density of statep,,,(€) at the impurity siteR=0:

(0)= f FTOp(e)]de, 3
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I'1,). The former are preferentially oriented along fli& Q] ijfku_ —(Um)Im[G3(e)G ( )Gl(e)]. (16)

directions, the latter along thigl00] directions. p(®(e) is .
diagonal in this representation with only four different matrix s_tu is summed ovef 1T, T11, [T, and|||. The respec-

stu,
elementSpl,g(e), pIzg(e), pég(e), and ptlzg(e)_ The radial tive b*'s are
part of the orbitals is assumed to be independent of the en- bliT=1, blil=-1,
ergy of the electron and the type @brbital. It enters only in bllle—1 pllieq L
the form of the SOC strength and the averagél/r%). o =-1 =1 (17)
AV(S9 s given byés- I acting on thed orbitals at the 11K IS summed overegly€y, €glaglag, tag€glag, and
impurity site. The matrix elements a8V in the used fagtzgteg- TheCij’'s depend on the direction of the magne-
representation are given, for example, in Refs. 18 and 23. tization:
The expectation values that are investigated in this work

Cete=2—2F(a), Coy=2F
are(l,/) as a measure for the orbital moment &g —I(I ete (@), ceu=2F(a),

+1)/3) as a measure for the deviation of the charge distri- Cer=2—F(a), Cyu=—3%+F(a), (18)
bution from cubic symmetry. Fat electrons the latter quan-
tity is connected to the’'z’ component of the EFG By F(&)=3(a o +a a? +a2a2 (19
a2 10+1) a is the unit vector parallel to the direction of the magneti-
V= (217 e(1r3)( 15, - 3 (8 zation.

Each Green’s functioiG(e) is, as defined by the right
We need to consider only the components, since in prac- side of Eq.(4), simply a linear combination of the respective
tice only these are accessible to the experiment. ~ partial density of states’(e’) at different energies’. Thus,

If we now combine Egs(3), (5), and(7), we obtain in  the sets of equationéll)—(14) and (15)—(19) express the
lowest nonvanishing ord¢first-order perturbation theory for - orpital moment and the noncubic charge distribution directly

(I,1) and second order faii, —I(1+1)/3)]: in terms ofg and the four partial densities of statﬁls(e)
1 (e o pt2 (e), pe (e), andp;, (8)
(l)=— ;'mf T (1,)G(e)(¢s-1)GO(e)]de, The equat|0ns are used in the following sections in differ-

9) ent ways:(i) The basic relations between orbital moment,
noncubic charge distribution, and band structure are derived
from the structure of the equations. This structure mainly lies

O e) within the b andc coefficients and the definition of th@'’s.
Therefore, it is not immediately obvious from the Efjl) or
(15). But it will become clear from the discussion of these
de.(100  quantities in Secs. Il and I\jii) The equations are evaluated
for simple model densities of states to study directly the
If the matrix multiplications in Eq(9) are carried out, the influence of particular features of the density of statés

following expression for the orbital moment is obtained: ~ Applied to theey andt,y densities of states of a particular
system the equations yield approximate results for the orbital

moment and the noncubic charge distribution. The main

, 10+D\ 1 (e [[, 1(1+1)
(ESCECS R S PR TN

x(£s-1)GO(e)(¢s-T)GO(e)

(Iz)=¢ 2 Z b®'c;; Qjji(e)de, (1) trends should be reproduced in this way although no com-
plete agreement with more precise calculations can be
Q5= — (Um)Im[Gi(e)Gl(e)]. (19  expected

The advantage of the proposed tight-binding analysis with

The G™s are the matrix elements d&(®)(e). The super- respect to other perturbation treatments of the SOC is that
scriptss andt denotef or | spin, the subscriptsandj, e, or ~ the band structure enters the equations in the form of four
t,q orbitals.st is summed oveff T and|| and thebs“s are  partial densities of states, a comparatively transparent form.
This is a feature of the impurity problem, because the scat-

bl=1, btl=-1. (13)  tering by the localized SOC is wave vector independent and

allows us to combine all states with the same energy to the

ij is summed oveegyt,, andt,yt,, and thec;'s are ;
J 9'20 20°29 ' local density of states. On the contrary, the band structure

Co=4, Cy=1, (14)  enters most other perturbation treatments in the form of a set
of eigenstates and eigenenergies for each wave vector. It is

wheree, andt,q is abbreviated by andt. impossible to obtain a qualitative understanding of the band

~ We obtain from Eq(10) for the noncubic charge distribu-  structure in this detailed form. The equations for the impurity
tion problem are thus easier to understand than the equations for

1(1+1) . the pure metal.
<|2’_ >:§2J' FE E bstuciij?tku(e)de’ Equ§t|on(6) was already used in Ref. 15 to investigate
z 3 stu 1jK ] the orbital moment and the noncubic charge distribution. The

(15 decisive improvement with respect to this work is that we
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transform the implicit equation fo€5(e) into the explicit —_ (a) ' ' '

equation(7) by using perturbation theory. The explicit form <  5F 7

decisively facilitates the interpretation of the structure of the Q ok J \ ]

equations. Explicit equations were also derived in Ref. 15, o~ : : :

but under the assumption of a Lorentzian shape of the den- g 2B (v) .

sities of states. This assumption is far less realistic than the o

perturbation theory. o - ]
Apart from the approximations that are used in the deri- I 0

vation of our model we want to mention also some more "

fundamental limitations(i) We neglect in this work the v —25F 1

electrons. However, it is well known that they can make an © _0' s (') 0'5

essential contribution to the EFG even if the electronic struc- . ’

ture is dominated byl electrons, because the radial paripof e (arb. units)

andd orbitals is very different! Whether there is a sizabje T oL ' ' ' ]

contribution to the SO-EFG will depend on the numbepof Q

andd electrons and on the respective radial matrix elements A

& and(1/r3) in the particular casii) It is now commonly S 7 (o) ]

assumed that, according to Hund’s second rule, the orbital v . ! .

-0.5 0 0.5
er (arb. units)

moment is enhanced by intraatomic correlations by up to a
factor of 2. In recentb initio calculations these correlations
are taken into account by an additional “orbital polarization”  Fig. 1. Orbital moment for a smooth band. (a) Density of
(OP) term?*2> This “OP mechanism” is not taken into ac- states.(b) Density of orbital moments(c) Orbital moment as a
count in our work. Its importance forddand & elements  function of the Fermi energyV is the bandwidth.
and for the noncubic charge distribution remains to be inves-
tigated. fore, the orbital moment is of the ordéfW. The sign of the
admixtures is determined by the factord/e’). This factor
leads to the mixing of wave function components with or-
bital moment parallel to the spin from the energetically lower
state to the higher state. In return, components with orbital
The quenching of the orbital moment in transition metalsmoment antiparallel to the spin are mixed from the higher
is the result of the competition between the mixing of thestate to the lower state. In this way an orbital moment anti-
states by the SOC and the splitting of the states by the bangarallel to the spir(the energetically favored orientatipis
structure?® The conduction electron states are split into a seinduced in the lower half of the band and an orbital moment
of bands. The energy separation is of the order of the bandparallel to the spin in the upper half of the band. The result-
width W. The expectation value of the orbital moment would ing distribution of the orbital moment in thieband is shown
vanish for all eigenstates in the absence of the SOC. Thfor an idealized, almost rectangular density of states in Fig.
SOC tends to mix the states of each spin direction into eigent(b).
states ofl,,, but the mixing is hindered by the splitting of ~ The orbital moment of the system is obtained by the in-
the states. tegration ofd(l,/)/de up to the Fermi energy. The depen-
The structure of the quantil&fjt(e), the basic element on dence of the orbital moment on the band filling is shown in
the right side of Eq(11), provides a more formal description Fig. 1(c): Since the states with antiparallel orientation of the
of this quenching mechamism)fj‘(e) is the density of or- orbital moment are filled up first, the orbital moment is al-
bital moment per unit energ¥ |, )/de at the energgdue to ~ ways antiparallel to the spin and the maximum moment is
the mixing of { and | states by the SOC. For simplicity, we found for a half filled band.
consider first only| states and neglect the difference be- The formal expression for the orbital moment as a func-
tween e, and ty, states. That meanﬁeg:ptzg:(lls)ptv tion of the Fermi energy is obtained by integration of Eq.

wherep; is the total density ofl states. Using Eqs4), (11), (20):
and(12) we can express the density of orbital moment as a
function of the density of states:

IIl. ORBITAL MOMENT

A. Competition between band structure and SOC

pi(e)pl(e")

e (21)

<|Z,>TT:(2/5)§FFdefe de’

Trar
pi(e") ,
—de’. (200 This particular form is obtained by a rearrangement of the
(e—e’) integration limits: Only unoccupied states need to be consid-
The structure of this expression reflects the quenching of thered fore’, since admixtures between occupied states do not

orbital moment by the energy distribution of the states: Thechange the total orbital moment.

(d(1,.)1de) (&)= (@l (e)P

induced moment is proportional gge) p(e’), the product of
the number of the involved states @gnde’. The various

We will extend in the following the discussion from a
band with uniform spin direction and almost rectangular den-

matrix elements are absorbed in the prefactor 2/5. The mixsity of states to a realistic ferromagnetic band structure by

ing of the states is suppressed by a facitfe—e’). There-

the following stepsi(i) Both spin directions are taken into
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T T T T T T B. Competition betweenT and | band

z'i i T ya \ P 1 We have just discussed the orbital moment of theand,

) \ / which arises from the mixing of thi states. To this we have
02 | (a) ] to add the orbital moment of thg band, which arises from
i the mixing of the| states. It essentially shows the same

0.5
0 Pa: behavior. But the relevant densities are those of [tHeand
and it has the opposite sign since it is also antiparallel to the

0.0 7 spin. The competition between the contributions from the
W and] bands is formally described by thecoefficients in Eq.
\lf (b) (12): With respect to the spin indicest of the Qisjt’s we can

p; (1/eV)

05 distinguish a7 and a| | contribution, which are added in
05 | the form 77— .
’ This partial cancellation between the orbital moments of
0.0 F the T and the| band is important for the dependence of the
total orbital moment on the band filling. In the paramagnetic
0.5

state,7 and | bands are identical and the cancellation is
! . ! . . . exact. In a “simple” ferromagnetic band structure,and |
-6 -4 -2 0 2 4 bands are just shifted with respect to each other by the ex-
e (eV) change splitting. The | and {1 terms are, as a function of
FIG. 2. Model densities of states for F@) Smooth density of €, accordingly also just shifted with respect to each other
states py=1/5p,). (b) Realistic density of states, andt,, states by the exchange splitting. The typical dependence of the or-
are not distinguished(c) Realistic density of states; and t, bital moment as the difference of both terms on the band
states are distinguished. The densities(bh and (c) were taken filling is shown in Fig. 3a). This dependence is in accor-
from Ref. 8. dance with Hund’s third rule: The orbital moment is parallel

.. . . . to the magnetization for a more than half filled band and
account.(ii) The rectangular band is replaced by a rea“St'CantiparaIIel for a less than half filled band.

density of statediii) e, andt,g states are distinguished. For — tha absence of 1 and 1| terms directly arises from the

each of these steps the density of states and the dependenggy, of £q.(9). The matrix elements in the trace are found to
of (I,/) on the band filling are shown in Figs. 2 and 3, re-ave the following form:

spectively. The partial densities of states for Fe from Ref. 8
were chosen as the example for a realistic ferromagnetic <i|IZ,|j><j|§§r|i>, (22)
band structure.

wherei and| denote the mixed states. Sintg does not

(Ia) ' ] ' ' change the spin, only the following two combinations are
5t . /N I 4 possible with respect to the spins of the involved states:
4
of . . ] DD
st A 1 and

: : : : : : = (LD,

which both arise from ths,/I,, component of the SOC. The
(sy/l_r+s_/1,./) component of the SOC also admixés

r . and | states. But this does not contribute (ig.) in first-
5 \/\/ order perturbation theory.
! } } } } } C. Sensitivity to band structure details

-~

5L (e) 7\\ ] Figure 3b) shows the orbital moment if we replace the

’ rectangular densities of states by realistic ones. The depen-
of + . dence on the band filling is still rather smooth and remark-
D , ably similar to the case of the rectangular densities of states.
s ! 7 This shows that the orbital moment is rather insensitive to
. . . . . ! band structure details. It is to a large extent already deter-
-6 -4 -2 0 2 4 mined by the relative positions of the and | band, the

e (eV) position of the Fermi energy, and the ragtv.

FIG. 3. Orbital moment as a function of the Fermi energy for the A further band structure detail is the distinction between
densities of states from Fig. 2. Dashed lines(@n contributions  the ey andt,y densities of states. The coefficients in Eq.
from the | and the| band. Dashed line iric): orbital moment  (11) describe to which extent mixings betweegistates, be-
according to Eq(26). tweent,g states, and betwees andt,, states contribute to

<lp> (&/W)
E
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the orbital moment: With respect to th¢ indices of the Therefore, we offer here also a much simpler model version
ijt’s we find eyt andt,yt,, terms, which are added in the of the analysis presented above.

form 4eyt,q+1y4toy. This particular set o coefficients is Motivated by the insensitivity of the orbital moment to
the result of the matrix elements of the SOC apcbetween band structure details, these details are neglected by replac-
the variousey andt, orbitals. ing the energy splittingg—e’) in Eq. (21) by an appropriate

Figure 3c) shows the orbital moment &, andt,, states ~averagede. The right side of Eq(21) is then the product of
are distinguished. The orbital moment is obviously onlythe number of all occupied states,
slightly affected by this distinction. This is in accordance

with the general insensitivity to band structure details. N = fEFPt(e')de' (24)
o )
D. Expansion in directional cosines the number of all unoccupied states,
We have shown above that only tegl,, component of
&s- I contributes to the orbital moment. If we expréssas Nu:J pi(e)de’ =5—N,, (25)
S.ail;, wherea is the unit vector in the direction of the °F
magnetization, Eq(9) can be written in the form the ratio&/(Ae), and a numerical prefactor. If we approxi-
mate 1Ae by
<|Z/>:i2j dijaia]-. (23)

The summation overr andj is over the cubic coordinates (4NV2)IW/2de w e’
y, andz The orbital moment is thus a polynomial of second 0 w2 (e—e')’

order in the directional cosinesg . All matrix elements and _ . _

details of the band structure are put into the coefficiekjts ~ We obtain 1Ae~—4/W. By applying this procedure also to

The important point is that these obey the same symmetry d§€ orbital moment of thg band we obtain for the total

the system without SOC. Equati¢®3) provides, therefore, a Orbital moment

particularly transparent formulation of some well-known ) ) L I

symmetry properties of the orbital moment. (1)~ (8/5)(§/W)[ = Ngy(5—Ng) +Ng(5—Ng)]. (26)
For example, the orbital moment in a cubic lattice is in- . . .

dependent of the direction of the magnetization, because any ©Viously, Eq.(26) is much simpler than Ed11), but also

second-order polynomial of cubic symmetry has the form less realistic and flexible. For example, a separation of the
band in two parts, as found for the&l Smpurities in Fe, is not

d(af+aj+ad)=d. provided for by the parameters in E@6). Nevertheless, it
I¥vil| in many cases already describe the major trend of the
orbital moment.

The orbital moment according to E@6) is shown as the

The isotropy of the orbital moment can thus be traced bac
to the combination of the cubic lattice symmetry with the

twofold appearance of the orbital moment operator in the e ) :
first-order expression fofl /). In fact, the orbital moment dashed line in Fig. ). With respect to the full expression

depends in a noncubic lattice and/or in higher-order pertur1D) [S0lid line in Fig. 3c)] the variation with band filling as
bation theory in general on the direction of the well as the absolute magnitude of the effect is moderately
magnetizatiort’ well reproduced.

At this point the question may arise how the orbital mo- __12ble I compares the prediction of E@6) for the orbital

ment can become anisotropic in higher order when it is if"°Ments of Fe, Co, and Ni with the experiment and with the

first order still completely isotropic. The answer is that there.SUItS of fully relativistlicab initic_) caIcngtions with and
induced orbital current is actually in first order not com- Without the OP mechanism. We find again that E2f) not

pletely isotropic. It is, namely, only the expectation value ofOnly reprpduces the order of magnitude, but also the main
the orbital moment(l,.), that is isotropic. But the angular systematic trend. Of course, there can be no close quantita-

distribution of the orbital current around the nucleus can bdlV€ agreement since we have used, for examgke,that

shown to depend in general already in first order on the di¥Ve"® calculated for the free atom. Table | also shows that the

rection of the magnetization. OP mechanism, which _is not taken into account in the
A further symmetry property is that only odd orders canPresent work, can be quite important.

contribute to the orbital moment in the perturbation expan-

sion. This follows from the inversion symmetry of the unper- IV. NONCUBIC CHARGE DISTRIBUTION

turbed system which allows nonvanishing coefficients only

in front of an even number od;'s. The next term beyond

first order is thus obtained in third order and is proportional

In contrast to the orbital moment, the noncubic charge
distribution arises only in second-order perturbation theory.
3 27 Because of the higher order, there is no direct correspon-
to (§/W)*. dence to the orbital moment and the dependence on the band
structure is more complex.

The higher order can be understood in the following way:

Every model is a compromise between simplicity andThe eigenstates of the system in the absence of the SOC
transparency on the one side and realism on the other sideontain components with positive and negative orbital mo-

E. Simplified model
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TABLE I. Orbital moments of Fe, Co, and Nimod) refers to Eq(26), (SO) and(OP) refer toab initio

calculations without and with orbital polarization, afeckp) refers to the experiment. The parametﬁt,sNL ,

andN}, are rough estimates.

7 1 d SO)hb OP)b b

¢ (eV)? W (eV) N/ N | (med) 1501 | (OP | (&xP)
Fe 0.054 6.2 4.8 2.6 0.074 0.048 0.078 0.08
Co 0.068 5.8 5.0 3.4 0.102 0.076 0.123 0.14
Ni 0.086 5.1 5.0 4.4 0.071 0.048 0.066 0.05

%Reference 28.
bReference 25.

ments to exactly the same extent. The mixing of the states bgf the band positive and negative contributions tend to cancel
the SOC leads to a growth of the components of one orbita¢ach other and the last term in E@7), which is always
moment direction. But at the same time the respective comAegative, dominates. With respect to the direction of the
ponents with the opposite orbital moment diminish, in first-magnetization there is thus an oblate deformation of the elec-
order perturbation theory to exactly the same extent. Sinc&on distribution at both ends of the band and a prolate de-
orbitals with opposite orbital moments have the same spatidprmation in the middle of the band. Figureb} shows the
electron distribution, the charge distribution does not changélistribution of the noncubic charge distribution over a rect-
in first-order perturbation theory. angular band.

We neglect in the following magnetostriction as a source Figure Xb) shows that the largest orbital moment density

of the noncubic charge distribution. This point is discussed irS in first-order perturbation theory induced at both ends of
Appendix C. the band. Therefore, it is perhaps not surprising that the

states with large If,) concentrate in second-order perturba-
tion theory just at the ends of the band whereas they are
missing in the middle of the band.

o The noncubic charge distribution of the system is given
by the integral oved(lf,—l(l +1)/3)/de up toeg. The re-

. . ) sulting dependence on the band filling is shown in Fig):4
element on the right side of EqL5), provides the formal The nget dgformation of the electron dgi]stribution is ob(lgte for

descsr:pu)tlon_ of this QUgnchmg. . e a less than half filled band and prolate for a more than half
;°(e) is the density of noncubic charge distribution PeT ¢illed band
unit energyd(lf, —1(I1+1)/3)/de at the energye due to the '

A. Competition between band structure and SOC

The quenching of the spin-orbit induced mixing of states
by the band structure also dominates the physics of the no
cubic charge distribution. The structure(@ﬁﬁ”(e), the basic

mixing of 7, |, and |' states by the SOC. There are 14 o ' ' " (a) ]
differenthjﬁ”(e) 's, according to whethet or |, ey or ty, e / \
states are mixed. For simplicity, we again first consider only © of , . . g
1 states and assumﬁeg(e)=ptzg(e)=(1/5)pf(e). Using z o ' ' (b)
Egs. (4), (15), and (16), we can then express the noncubic é . 50F % .
charge distribution in the following way as a function of the = %
density of states: + o> OF ; 7
= N z \_/
(d<|2 |(|+1)>/d )W( : aw  ~80F ]
) e e V; 1 L 1
z 3 o -0.5 0 0.5
T( ) T( ) e (arb. units)
pt el p'[ e" A r T T T ]
=(7/250¢?| 3 Te)PJJ ——————de'de’ n 10
—m?pl(e)p{(e)p{(e)|. (27) g \f
v -10f , , , 1

-0.5

0

0.5

The structure of Eq(27) reflects that the noncubic charge
distribution arises from twofold admixtures by the SOC: The
effect is proportional to the triple product of the involved £ 4. Noncubic charge distribution for a smodttband. (a)
densities of statep(e)p(e’)p(€"). It is suppressed by a pensity of states(b) Density of noncubic charge distributioft)
factor £%/[(e—e’)(e—e")] and scales, therefore, with Noncubic charge distribution as a function of the Fermi energy. The
(&/W)?. Its distribution over the band is determined by theinsets in(b) illustrate that the positive sign corresponds to an oblate
sign of the factor I{e—e’)(e—e")]: Forenear the ends of deformation of the electron distribution, the negative sign to a pro-
the band this factor is predominantly positive. In the middlelate deformation.

ep (arb. units)
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For completeness, we give here also the formal expres- ' ' ' ' ' '
sion for the noncubic charge distribution as a function of the 10k
density of states:

of 20 aNNY
<|2 |(|+1)>m /(\/*<

= -10f i
z 3 (M=t =it +1dd)

=(21/250 &2

e Te Te/ Te//
deef de’f de(’pt( )i (€7)py(€")
e €r

(e—e')(e—¢")

e e Te Te’ Te"
_J’ def Fde'f Fde”pt( )pi(e")p(€”) .
e

(e—e')(e—¢€")

(28)

|
—
[=]

T

I

<1Z-101+1)/3> [(¢/W)?]

It is obtained from the integral over ER7) by a rearrange-
ment of the integration limits and by use of the relation

—
(=)
T

( 1 1 1 ) or
P + +
(e—e')(e—€") (e'—e)(e'—€") (e"—e)(e"—¢") -10f

=7n%8(e—e')S(e—e").

Due to these manipulations, the last term on the right side of

Eq. (27) has disappeared and the factof(&/-e)(e—¢")] FIG. 5. Noncubic charge distribution as a function of the Fermi

IS %WaysllpOSItlve. d in f band with if energy for the densities of states from Fig. 2. Dashed and dash-
e will now proceed again irom a band with uniform y,ueq jines in@: 117, 117, IT]l, and ||| terms, which are

spin direction and rectangullar dens_ity of stat_es t_o a .realistigldded to the total noncubic charge distribution in the fgrh
band structure by the following stefd$) Both spin directions — LT =1TL+1L].

are taken into accountii) A realistic density of states is

used.(iii) e; andt,, states are distinguished. The density of
states and the noncubic charge distribution as a function of
eg are shown for each of these steps in Figs. 2 and 5, respec-

I(l
tively. (U2 -

+1)
DD, @Y

B. Competition betweent and | bands whereas theg,.l_,+s_/l,,) component of the SOC gives

. . , rise to contributions of the form
The competition betweeh and | bands is also important

for the noncubic charge distribution. Thecoefficients from , I
Eq. (17) show in which way thg and the| states contribute (15—
to the effect: With respect to the spin indicesu of the

Q?jtk“’s we find four types of terms: 11, 117, [T/, and] || or

terms, according to whether three, two, one, or none of the

+1)
3 [T AL T (32

mixed states ar¢ states. These terms contribute to the total . 10+D

noncubic charge distribution in the form{T—1,7— 111 (L1 3 DA L) (33
+|1l]l. TheT77 and 1|1 terms form the noncubic charge

distribution of the band, the| || and || terms the non- The dependence of the total noncubic charge distribution

cubic charge distribution of thg band. We note that via the on the band filling can be understood in the following way:
mixed terms even a full band contributes to the effect. The 117 contribution was already discussed above. The
The presence of four terms follows directly from the form other contributions show essentially the same behavior apart
of Eqg. (10). The matrix elements in the trace are all of thefrom that one, two, or three of the densities of states are
form replaced by| densities of states. Therefore, there is a rela-
tively smooth transition fronf {1 to 7|7 to [T] to |]].
. (a+1 - . I In the paramagnetic state, theand | bands are identical
(il - 3 [)lés-T[ky(k[gs- T]i). 29 and the vl?arious cgontributions cancel each other exactly. In a
“simple” ferromagnet, T and | bands are shifted with re-
With respect to the spin of the involved states ®)d,,  spect to each other by the exchange splitting. The, 117,
component of the SOC gives rise to contributions of the form| 1 | and| | | terms are in this case rather similar apart from
a gradual shift within this series from tHeto the | band.
(12— |(|+1)|T)(T|| DD (30  The summation of the terms in the fori [ —1]1— 11|
z 3 z z +]]] leads to a dependence ep that resembles the sec-
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ond derivative of one of the terms. The result is that the TABLE Il. The c;j coefficients from Eq(15) for M||[100] and
deformation of the electron distribution changes from oblateM||[[111]. e, is abbreviated by andt,g by t.
to prolate to oblate to prolate as the band is successively

filled. The individual contributions and the total noncubic Cete Cett Ctet Citt
charge_ qllstrlbutlon are shown in Figiab as a function of the M|[100] 2 0 5 12
band filling.

We can predict from Fig. ®) already the sign of the M1 0 2 ! L2

SO-EFG in pure Fe. It should be positive since thgand is
somewhat more than half filled. For Ni, where tth®and is  |attice symmetry and not from the SOC. The anisotropy ac-
almost completely filled, we expect a negative SO-EFG.  cordingly depends in lowest order only on the band structure
and not on the SOC strengthiii) In view of the distinct
C. Sensitivity to band structure details differences in the partial densities of states in realistic band

Figure §b) shows the noncubic charge distribution for a|s_|tructures,hlarge a_n_ls_otro?ﬁs can_mlprlnc!ple E.e ef>f<pected.
realistic density of states. The comparison with Figa)5 OV\(/jever,t e sznsn_llvltylo t el part|cu|ar Spin-orbit effect on
shows the extent of the sensitivity to band structure details?@nd structure details plays also a role.

The basic pattern in the dependence on the band filling with For a more de_tailed acc_ount of the gnisotropy we negd to
g ow which orbitals contribute to which extent for which

the three sign changes remains essentially preserved. BUFOW. L - .
some additic?nal strugture is also introduced)./ 'Iphe amount o |rec_t|on O.f the magr!enzatlpn. Tfuecoeffmm_qts n Eq(15)
this fine structure corresponds roughly to the amount of finé’rov"gﬁhth's information: With respect to thgk indices of
structure in the density of states. the (jji’s we findegtzg€g, €qtaglag s t2g8glag, @Ndizgtagiag
An essential question for the comparison between banff'ms, which are weighted by the coefficients from Eq.
structure calculations and experiment is how accurate thgl8)- The order ofeg andtyg in ijk plays a role when com-
description of the band structure must be. Our results suggeBtn€d with the order of and| in the spin indicestu.
that the reproduction of the main features in the density of Equation(18) shows that alt coefficients are the sum of
states allows already a moderately precise prediction of then isotropic term and a term proportionalR¢«). The form
noncubic charge distribution. This should be well within the of the anisotropy is thus given [jy(o_;), independent of the
scope of modermb initio calculations. o band structureF(«) equals 0, 3/4, and 1 foM|[100],
Compared to the orbital moment, the sensitivity to band I[110], and MJ||[111], respectively, and varies rather
structure details is much Iarger. This is dug to the secon moothl;} between thesé major directibns. The complete de-
ordfzr of tr:/e effect: The adm|x,tures are weighted b€/ pendence on the direction of the magnetization can thus be
—e’)(e—e")] instead of 1/¢—e’) and the cancellation be- yegcribed by two parameters. This suggest an alternative pre-
tween thel 17, 11T, [ 1], and| || terms is more complex gentation of the coefficients: Instead of specifying an iso-
than between th¢1 and | | terms in the case of the orbital ¢qnic and anisotropic part we can also specify the coeffi-

moment. Both features increase the importance of the bandents for the two extreme caskH|[ 100] andM||[111]. The
in the immediate vicinity of the Fermi energy and increase; .qefficients are given in this form in Table II.

thus the sensitivity to details in this region. The ¢ coefficients from Eq(18) or Table Il are the exact
_ answer to the question to which extent #eandt,, states
D. Anisotropy contribute for different directions of the magnetization. A

The anisotropy of spin-orbit effects in transition metal less precise but much simpler answer can be deduced from
ferromagnets is due to the following mecharfé? The  Table Il If one goes fronM|[100] to M|[111], 2(egtogeq)
partial densities of states depend on the orientation of this replaced by 2dgtrgtag), 2(tagegtag) by (t2g€4tzg)
orbitals relative to the lattice. For example, in the case oft (tagtagtzg), and —1/2(taqto4tog) is left unchanged. To a
cubic symmetry, thes, andt,, orbitals of thed band have large part this is the replacement of oggdensity of states
different densities of states. The matrix elements ofgthly, ~ Out of a triple product of densities bytg, density of states.
and (s,/1_,+s_.1,.) components of the SOC depend, on Based on this observation, we propose the following rule:
the other hand, on the orientation of the orbitals relative td30theg andt,g orbitals are important for all directions of the
the direction of the magnetization. Therefore, a rotation ofmagnetization, but they orbitals are somewhat more impor-
the magnetization in the laboratory frame changes the densant for M{|[[100] and thet,y orbitals somewhat more for
ties of states in the reference frame of the magnetizationV|[111].
whereas the matrix elements of the SOC remain per defini- This interpretation of the coefficients allows us now to
tion unchanged. This will in general change the magnitude ofvestigate the relation between anisotropy and band struc-
the spin-orbit effect. ture in more detail.

Some conclusions can be drawn at this poifit: The First, we discuss some limiting cases, which were dis-
mechanism is quite general. The anisotropy of spin-orbit efcussed already in Ref. 15. T_he_:se are rather unre{:\listic, but
fects is accordingly rather the rule and the isotropylefy in ~ We want to show that the coefficients from Table Il give the
cubic symmetry is the exception, as follows also from thesame results as the previous wotk: For pe =py, all an-
discussion in Sec. Ill D(ii) The nonspherical symmetry of isotropic terms vanish and the noncubic charge distribution is
the band structure that causes the anisotropy comes from tligotropic. (i) If only e, states are important, there is no non-
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cubic charge distribution at all, sineg orbitals alone are not from the transverse component can also be brought into the
mixed by the SOCi(iii) If only t,4 states are important, only form of a polynomial in then;'s.

thet,gtogtog term does not vanish. The noncubic charge dis-  The form of the anisotropy directly follows from E(4),
tribution is in this case foM|[[100] and M|[111] only since any fourth-order polynomial with cubic symmetric co-
—1/7 and 1/7 as large as in the CaRE=py, - efficients must have the form

Figure 3c) shows the[100] and[111] noncubic charge
distributions for realistic partial densities of states—namely,
those of Fig. 2c). The variation of the anisotropy with the This form of the anisotropy is thus the consequence of the
band filling illustrates the range of anisotropies that can beourfold appearance of the orbital moment operator and of
expected for realistic band structures: Any anisotropy is inthe cubic lattice symmetry.
principle possible, from no anisotropy to opposite signs of The order of the effect can also be deduced directly from
the noncubic charge distribution fo4[|[100] andM|[111].  Eq. (34): Only the coefficients of even-order terms do not
However, in the majority of cases the anisotropy will beyanish in an expansion like E(B4) because of the inversion

d©@+d@) aiai-i— a§a§+ a’a?).

larger than 10%, but will not lead to a sign change. symmetry of the system. This has the consequence that the
The main trends in the anisotropy will in many cases beowest-order term is of second order. The next-higher-order
explained by the simple rule that tieg states are more im- terms are of fourth, sixth, ... order and are proportional to

portant forM||[[100] and thet,, states foM|[[111]. The Fe  (gwW)4, (&W)®, ... .

band structurg¢Figs. 2c) and 5c)] offers two examplesti)

At th(_a bottom of the bandg= —5- -3 eV)3 thet,q ban(_j F. Simplified model

is, with respect to theey band, shifted to higher energies. ) ) ) .
Accordingly, in this energy region the dependence of the The orbital moment is expressed in Eg6) by N,, N,
[111] noncubic charge distribution oeg differs from the ¢, andW. We have tried to derive a similarly simple expres-
respective dependence of f#00] noncubic charge distribu- Sion for the noncubic charge distribution. No simple relation-
tion mainly by a shift to higher energieéi) In the region  ship was found, however, which takes the strpng_cancellatlon
e=—3-.-+2 eV thee, band is concentrated in one promi- between thef 17, 11T, |1], and ||| contributions ad-
nent density of states peak. This leads locally to a smalfquately into account. Therefore, we derive here only an es-
effectivee, bandwidth and thus to a large contribution from timate for thef 1 contribution. )

the e, band. Accordingly, thg¢100] noncubic charge distri- The energy splittings in Eq28) are replaced by an “ap-
bution in this energy region is in most cases considerablpropriate” averagele. All details of the density of states are
larger than thd111] noncubic charge distribution, although Neglected in this way. 1Xe)? is approximated by

the form of the dependence e is similar forM||[ 100] and

M|[111]. 1

wi2 w w
(2/\N)3f def de’f dg/—— .
0 w2 w2z (e—e')(e—¢")

E. Expansion in directional cosines This gives 1/(e)?~10.5W?. Using this estimate and Egs.

The expansion of the right side of E(L0) in a polyno-  (24) and(25), we obtain from Eq(28)
mial of the a;’s leads to the following expression for the

i Tatrin N [(1+2)\ 111
noncubic charge distribution: < 3,_ 3 > ~0.88(§/W)2NI)NI,(NI,—NI)). (35)
[(1+1) i i i - .
2 _ _ o o The relation(35) is used here to estimate the typical mag
<|Z’ 3 > ij%n 'Jm“a'ajama”+i2j djaiar nitude of the effect. The maximum and minimum of the

(39 productN,N,(N,—N_,) are +12.0 and—12.0. The noncu-
bic charge distribution should, therefore, range in principle
The noncubic charge distribution is thus a polynomial ofbetween about 10 and— 10 (&/W)?2. This is in accordance
fourth order in the directional cosines of the magnetizationwith the model calculations in Figs. 4 and 5, for example. Of
All details of the matrix elements and the band structure argourse, other factors also play a role. The strong cancellation
put into the coefficientsl;;,, andd;; . The important pointis between thef {1, 1|1, |1l, and ||| contributions, for
again that these coefficients obey the same symmetry as tigample, tends to reduce the effect. On the other hand, peaks
system without SOC. This allows a particularly transparenin the density of states will enhance the effect, since the

formulation of some symmetry properties. effective bandwidth becomes smaller near the peaks.
Equation(34) is derived in the same way as its counter-
part for the orbital moment, E¢23). The only complication V. 5d IMPURITIES IN Fe

is that there are now not only terms like E430) and (31)
that arise from the longitudinal component of the SOC but
also terms like Eqs(32) and (33) that arise from the trans- Variousab initio calculations of the electronic structure of
verse component of the SOC. The longitudinal component ithe 5d impurities in Fe have been performed in the past to
proportional toZ; «;l; and thus automatically leads to a poly- investigate the local moments, the orbital moments, the hy-
nomial in thea;’s. However, it can be shown that the terms perfine fields, and the nuclear spin—lattice relaxation.

A. Local band structure
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05 F ] tic basic pattern that remains preserved throughout tthe 5
T series: The densities of states concentrate at both ends of the
band. This leads to a distinct separation of the band into an
0.0 1 ] upper and a lower part. The spin-down band lies always
above the spin-up band. This is remarkable since the sign of
05 L J ] the local moment changes from negative for Re to positive
05 L ] . for Ir and Au.
~ 0 - This pattern arises from the adjustment to the host band
G 4] structure and was already found in a similar form for thte 4
= 0o 8 impurities in Co and NiRefs. 32 and 38 The 4d and X
g orbitals are more extended than the 8rbitals of the host.
Therefore, the bonding and antibonding states tend to be
g'g . shifted out of the host band and concentrate at both ends of
' the band. Furthermore, the exchange integral is smaller at the
4d and = impurities than in the host. Therefore, the local
0.0 I i magnetism is suppressed at the impurity and the relative po-
sition of the spin up and the spin down band is mainly de-
: termined by the host band structure.
05t | ] A common basic pattern is also found for the difference
-5 0 5 between thee; andt,, densities of states: The, states are
e (eV) concentrated in the upper part of the band in one prominent

density of states peak, whereas thg density is distinctly
less peaked in this energy region. This feature is already

However, no calculation of the SO-EFG’s has been reported?reSent in the pure Fe hdsee Fig. &)].
In order to have the densities of states necessary for the But there are also some distinct changes in the local band
tight-binding analysis outlined above, we have calculated thStructure as the atomic number of the impurity increases. The

local band structure of thedsimpurities in Fe from Tato Au Main trends are the following(i) The center of the band
within the full-potential linearized augmented plane-waveShifts downwards or, in other words, the Fermi energy moves
(FPLAPW) method using the wien97 cod®. upwards within the common band structure pattern. This

The impurity problem was approximated by constructingba”d fiII_ing is, however, only ip part responsible for the in-
a supercell with seven Fe and one impurity atot¢, cell). ~ crease in the electron numbéii) The lower part of thed
This rather small supercell was chosen to reduce the numer?@nd becomes narrower and its amplitude increases at the

cal effort. It should allow us to reproduce the main featureSXPense of the amplitude of the upper part. An important part

in the systematics, but it presents certainly a severe approxP—f the increase in the electron number is due to this effect.

mation for quantitative purposes. Therefore, the respectivélil) For the light & impurities up to Re the amplitude of the
set of local band structures should be viewed only as a realower part of the] band is smaller than the amplitude of the

istic model for the actual band structures of thkigpurities Corresponding part of th¢ band. This effect is responsible
in Fe. for the negative local moment in these systems.

Relativistic effects were taken into account within the sca-
lar relativistic approximation. The density functional with
generalized-gradient corrections from Ref. 31 was used. The
radiusRy,r of the atomic spheres was relatively lard® To demonstrate that our calculations give realistic results
=2.2 a.u. for Fe an®yt=2.4 a.u. for the impurity. All cal-  with regard to the magnetism of the investigated systems, the
culations were performed with,,,Ryr=8 and a rather calculated local spin and orbital moments are compared in
coarse mesh of 2R points in the irreducible wedge of the Fig. 7 with previous results from circular magnetic x-ray
Brillouin zone. The unit cell dimensions were determineddicroism (CMXD) measurements and fully relativistic spin-
self-consistently from the calculated total energies. Thus theolarized Korringa-Kohn-Rostocker (SP-KKR)
effect of the lattice relaxation around the impurity could becalculations**® The systematic trend that was found in the
approximately incorporated. previous studies is approximately reproduced by our calcu-

The e, andt,, densities were extracted from the wave lations.
functions within the impurity sphere. Since tlevave func- The FPLAPW moments in Fig. 7 are the spin and orbital
tions extend beyon®yr, they were normalized to twey; ~ moments of thel electrons in the impurity sphere, however,
and threet,y states per impurity and spin direction in the in order to take the extension of the wave functions beyond
total d band. This procedure is somewhat arbitrary since thé®y,r into account, multiplied by the same factor by which the
upper end of thel band is not uniquely defined. number ofd states(occupied and unoccupigth the sphere

Figure 6 illustrates the variation of the band structure withis reduced with respect to the nominal number of 10. To
the impurity. It shows thee, andt,, densities of states for obtain the orbital moment, the SOC was introduced in a sec-
ReFe, IrFe, and AltFe. The locald band has a characteris- ond variational stefi as a potential of the form

FIG. 6. Partial densities of states forlRg IrFe, and AlFe.

B. Orbital moment
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FIG. 8. Direct comparison between tight-binding analysis and

results of our FPLAPW calculations are compared with the result@P initio calculation. The orbital momentgtop) and noncubic
from CMXD measurementéExp) and fully relativistic SP-KKR ~ charge distributiongbottom of the & impurities in Fe were either

calculations. The CMXD and SP-KKR results are taken fromcalculated within the FPLAPW approadhPLAPW) or the density
Ref. 35. of states from the FPLAPW calculation was used as input for the

tight-binding analysigTight B.).

1

2

mc

calculated for the free atom.

within the atomic spheres. The FPLAPW calculation was
brought to convergence with this additional potential, an
(l,/) was extracted from the wave functions within the
sphere.

The deviations between the curves in Fig. 7 are at present
difficult to interpret: The small supercell used in our calcu-
lations is certainly a severe approximation. In the SPR-KKR
work the modification of the electronic structure on the
neighboring host atoms was not taken into account. Finally,
the CMXD results were obtained by an unjustified version of
the CMXD sum rules. Therefore, a thorough reexamination
of the magnetism of these systems seems to be worthwhile.
Moreover, the average moment in the Wigner-Seitz sphere,
which was calculated in the SP-KKR calculations, will in
general not be identical to the average moment in the impu-
rity sphere of the FPLAPW calculation or the average mo-
ment in the vicinity of the nucleus, which is probed by the
CMXD measurements.

To investigate the origin of the systematic trend of the
orbital moment, the tight-binding analysis was applied. In
the upper part of Fig. 8 the orbital moments that were ob-
tained by the application of E¢11) to the densities of states
are compared with the orbital moments from the FPLAPW
calculation.¢ was taken from Ref. 28. Since both approaches

are based on the same band structure, the deviations between

the two calculations can be directly attributed to the simpli-
fied treatment of the SOC and the band structure in the tight-
binding analysis. It turns out that not only the systematic

<lz'> (E/W)

h\%1 oV produced by the tight-binding analysis. The latter result is
T oar remarkable since we have used, for examgle,that were

Figure 9 shows the orbital moment as a function of the
Oband filling for Reé-e, IrFe, and Au-e. To generalize the
discussion, the orbital moment is given in units &,
whereW=5.5 eV is the bandwidth of the Fe host.

[Feke] |
AN

~/

-5

trend but also the magnitude of the effect is rather well reReFe, IrFe, and AlFe.
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An interesting detail of the FPLAPW calculations was
FIG. 10. & impurities in Fe: schematic view of the common that the SO-EFG'’s after the convergence of the calculation
pattern in the density of statétop) and the orbital moment as a \yith SOC were between 17% and 25% smaller than the SO-
function ofeF' (_bottom). The Iower_ part of_the b_a_nd i_s largely omit- EFG’s that were obtained by adding the SOC only in the
ted. The position og for the various 8 impurities is marked by fina) calculation of the wave functions without further itera-
the dashed lines and solid circles. tion steps. In contrast, the convergence of the band structure
after the introduction of the SOC had almost no influence on
_Figure 9 reveals that the variation of the orbital momentihe orpital moment. This shows that the SOC leaves the band
with the band filling also shows a common pattern throughtyycture essentially unchanged and the observed reduction
out the I series. It can be traced back to the common patyf the SO-EFG can be interpreted as a shielding effect within
tern in the band structure: Figur¢a has shown the orbital - the valence electron shell that corresponds to the concept of
moment as a function @ for a simple ferromagnetic band the atomic Sternheimer shielding facRr’
structure. Due to the separation of the Band into two The SO-EFG’s of the FPLAPW calculations and the tight-
parts, this function is now found for each of the two partspinding analysis are compared in the bottom part of Fig. 8.
and thus appears 2 times in series. With increasing atomiﬂgain, the t|ght_b|nd|ng analysis reproduces not 0n|y the
number the Fermi energy moves successively upwardsystematic trend but also the magnitude of the effect remark-
within this pattem, in accordance with the I‘eSpeCtive UpWar%b|y We”' despite the various approximations such as the
move within the common band structure pattern. The genergderturbation treatment of the SOC, the use of densities of

trend of the systematics can thus be described as a banghtes instead of the complete band structure, the use of
f|”|ng effect. The orientation of the local spin moment SeemSatomiC constants fog and <r_3>, and the neg'ect of the

to play only a minor role. shielding effect.

This interpretation of the systematics of the orbital mo-  gince FPLAPW calculations were performed only for
ment as a band fiIIing effect is schematiqally shown in Fig-MII[lOO], we compare in Fig. 11 the experimental numbers
10. No scales are given on the axes since only the basigith the results of the tight-binding analysis. The comparison
pattern of the dependence ep remains preserved through- reveals similarities in the overall behavior of the effect — for
out the & series. The widths and amplitudes of the variousexample, in the strong variation of the SO-EFG with the
parts of this dependence vary considerably. Comparison Qfpurity or the tendency for thEL00] SO-EFG to be larger
Figs. 6 and 9 shows that in this respect similar trends can bgan the[111] SO-EFG — but also large deviations for the
observed for the density of states and orbital moment. individual systems. We interpret this in the following way:

The calculated band structures are not accurate enough to
C. Noncubic charge distribution reproduce the SO-EFG for a given impurity. The better

o agreement with the experiment in the case of the orbital mo-
To calculate the SO-EFG within the FPLAPW method, ment is due to the smaller sensitivity of that quantity to band
the SOC was introduced as an additional potential as in thetycture details. However, the calculations should be realis-
case sz the orbital moment, and the expectation valugic enough to correctly reproduce the basic relations between
((Ar3)[15,—1(1+1)/3]) was evaluated for thel electrons  the noncubic charge distribution and the band structure. Why
within the atomic spheres. Alternatively, the noncubic chargehe calculations overestimate the magnitude of the effect is at
distribution was calculated by applying E@.5) to the den-  present not clear.
sities of states obtained without SOC, ahdnd(r ~3) were To obtain insight into the origin of the main systematic
taken from Ref. 28. trends, the dependence on the band filling was studied in
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FIG. 13. & impurities in Fe: schematic view of the common
pattern in the density of staté®p) and the noncubic charge distri-
e (eV) bution as a function okr (bottom). The positions ofer are the
FIG. 12. Noncubic charge distribution as a function of the Fermisame as in Fig. 10.
energy for REe, IrFe, and AlFe.

o dence orer that remains preserved throughout tre<eries.
more detail. Figure 12 shows the dependence of the noncubigye \idths and amplitudes of the various parts of this de-
charge d|zstr|but|on on the band filling for Re, IrFe, and  pendence vary considerably. The trends are here essentially
AuFe. (I3, —1(1+1)/3) is given in units of W) In all  the same as for the density of states. The reduction of the
casesW=5.5 eV was assumed. upper part of thed band with increasing atomic number of

Again, we find a common pattern in the dependence onhe impurity, for example, leads to a rapid decrease of the
the band filling and an upward move of the Fermi energySO-EFG magnitude for impurities above Ir. The strong in-
within this pattern: The noncubic charge distribution as acrease of the prefacta(1/r®) within the 5d series due to
function of ex has been shown in Fig.(® for a simple the contraction of the & shell is also important. According
ferromagnetic band structure. Due to the separation of the 5to Ref. 28, this factor rises from Ta to Au from 0.33 to 5.3
band into two parts, this function is now found for each of (eV)?/(ag)3. This contributes to the marked decrease of the
the two parts and thus appears 2 times in series. The positi®®O-EFG for the light 8 impurities below Re. The fine struc-
of the Fermi energy within this pattern moves upwards withture in the dependence @ that is introduced by the sen-
increasing atomic number, in accordance with the respectiveitivity to band structure details may also play a role for
upward move ofeg within the common band structure pat- some systems.
tern. Figure 13 schematically shows the calculated positions
of t.he Ferml energy vy|th|n th|§ band filling schgme for the VI. SUMMARY
various 5 impurities in Fe. Since the calculations fail to
reproduce the experimental SO-EFG'’s, the actual positions The band structure plays a decisive role for the spin-orbit
of the Fermi energy within the scheme must be differeninduced noncubic charge distribution. Therefore, it would be
from the ones shown in Fig. 13. However, the scheme itselflesirable to understand this role in more detail. However, the
should be essentially correct. sophisticated treatment of the band structure and the SOC

There is also a common trend in the anisotropy: [k@)]  within ab initio calculations, although necessary for the
noncubic charge distribution is usually larger than [th&l]  quantitative description, is in general too involved to allow a
noncubic charge distribution, although the form of the de-qualitative understanding. We propose in this work a more
pendence o is rather similar forM ||[100] andM||[111].  transparent but still realistic treatment of the SOC within the
We found this effect already in Sec. IV D for pure Fe andtight-binding approximation.
explained it as a consequence of the concentration ogéthe The comparison with more quantitative treatments shows
states in the upper part of tlieband into one strong density that the proposed tight-binding analysis is realistic enough to
of states peak. This concentration is also found for al 5 reproduce at least qualitatively the systematics. On the other
impurities and seems thus to be a property of the bcc latticéhand, the structure of the resulting equations proves to be

The band filling scheme in Fig. 13 explains the grosstransparent enough to explain the basic properties of the ef-
features of the systematics. But other factors are also impofect in terms of the interaction between the SOC and band
tant for the actual magnitude of the effect: Figure 12 showsstructure.
for example, that it is only the basic pattern of the depen- Even if the band structure deviates significantly from a

174402-14



SPIN-ORBIT INDUCED NONCUBC ... .1l ... PHYSICAL REVIEW B 66, 174402 (2002

simple exchange-split ferromagnet, the main features of the (ii) In the RS model, the mixing of and| states by the
orbital moment and the noncubic charge distribution may beSOC is strongly suppressed by their exchange splitting,
obtained by the analysis of the band structure calculatedvhich is usually much larger than the SOC. Thel and
without SOC. This was demonstrated for thetihpuritiesin | 7| contributions to the noncubic charge distribution, for
Fe. example, should accordingly be of minor importance. The
fault of the RS model is here that the broadening of the states
into bands is completely ignored when the mixing of the
states by the SOC is considered. Actually, the large overlap
The SOC was treated in the first papers on the SO-EF®Getween] and | bands leads to an equally strong mixing
within a model that will be referred to in the following as the between the bands as within the bands. Theé and | 7]
rigid shift (RS model. It was so far the only available model contributions are, therefore, as important asithé and| | |
for the SO-EFG and it is attractively simple. The more com-contributions.
plete tight-binding analysis allows us now to investigate (iii) In the RS model, the partia, andt,, densities of
whether the RS model is able to reproduce the essentiatates are simply shifted with respect to each other by the
physics. crystal potential. But in reality, the; andt,; bands can
For a detailed derivation and discussion of the RS modetliffer in many other ways. The RS model is, therefore, in
we refer to the original papefé-'®We will repeat here only general inadequate to describe the anisotropy of the noncubic
the main points. The basic idea is that the partial density otharge distribution for realistic systems.
states of the orbital with orbital and spin magnetic quantum (iv) The anisotropy of the noncubic charge distribution
numbersm; andmy is rigidly shifted by the SOC bgm;m. arises in the RS model from the suppression of the mixing of
Assuming that in the absence of the SOC the partial densitiels, and e, states by the crystal field splitting, of these
of states are independent of;, the following expressions states. Accordingly, it should decisively depend on the ratio
for the orbital moment and the noncubic charge distributionv /&, Again, the fault of the RS model is that the broadening

APPENDIX A:  RIGID SHIFT MODEL

can be derived in the limit of smalf's (Ref. 16: of the states into bands is completely ignored for the mixing
of the states. Actually, thg,; andey bands largely overlap.
(I)=E&p'(er)—p'(ep)], (A1) The mixing betweer,, ande, states is, therefore, even for

arbitrarily small¢’s, about as strong as the mixing between

, 1(1+1) 5 thet,, states, and the anisotropy depends primarily only on
ly=—3)=¢ (7120[p' '(ep)+p"(ep)]. (A2)  the different form of thee, andt,q bands and not o.
p'(e) is here the total density of states andp’’(e) APPENDIX B: LOCALIZED AND HOMOGENEOUS
=dp'(e)/de its derivative. SPIN-ORBIT COUPLING

This model was extended by the inclusion of the crystal . . .
potential that splits the energy of tieg andt,, orbitals516 We have assumed in Sec. Il that the SOC is localized at

In the extended version the tehorbitals are first diagonal- the Sité of the impurity. This should be a good approximation

ized with respect to the exchange splitting, the crystal potenf0f Néavy impurities where the SOC is much larger than in

tial, and the SOC. Then, in the spirit of the rigid shift of the (€ Nost. To see what happens if the SOC at the impurity and
densities of states, the partial densities of states are assum!é‘dthe .hOSt are of the same order of magnitude, we will now
|pyestigate the opposite extreme, the pure ferromagnetic
metal, where the SOC strength is the same on all lattice sites.
tFirst-order nondegenerate perturbation theory gives in this

gase the following expression for the orbital monfént

(el | D) Dixl €5+ T| i)
; €ik— €jk
€ik<€F ejk>eF

eigenenergies.

The main difference to the tight-binding analysis is tha
the SOC shifts the energy of the states instead of mixing th
states. This makes the final equations much simpler. But it d3k
ignores an essential part of the physics, since in reality the (I,,)= f Vo E
states are mixed rather than shifted in energy. This leads to B |
several even qualitatively wrong predictions that demon-
strate the inadequacy of the RS model. _ (gl &s-T| i) Diill 2| bik)

(i) According to the RS model, only the density of states + e .
at the Fermi energy is important. Since the density of states Sk Eke ) )
is a strongly varying function, this would lead to a large $ix ande;; are the tight-binding orbitals ang the energies of
sensitivity to band structure details. Actually, however, thethe eigenstates in the absence of the S®Gs the wave
SOC mixes states from above and below the Fermi energyector,i the band indexVg is the volume of the Brillouin
Therefore, the whole band is important, and the sensitivity tzone. We neglect here points in the Brillouin zone with high
band structure details is much weaker than implied by Eqssymmetry, where in general soneg’s are degenerate and
(A1) and (A2). A prominent example is the orbital moment nondegenerate perturbation theory is not applicable.
of Fe: Due to the marked dip in the spin-down density of The orbital moment at a heavy impurity can be expressed
states just at the Fermi enerfgee Fig. 2c)], Eq. (A1) pre- in a similar form: If the Green’s functions in Eq9) are
dicts a negative orbital moment. But in accordance with Eqexpressed in terms of the eigenstates by using Ejsand
(26), the orbital moment of Fe is positive. (4), we obtain

(B1)
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<lz'>=J% s Jﬂ 2 (dillz| ¢ ) (iwles Tl dw) | (Sielés- T X djellaldi)

. Ve €Kk — €jk/ eik—ejkr
eix<er ejk >er

(B2)

We conclude that the equations for the pure mgtamo-  pect magnetostriction-induced EFG's of the order of 3
geneous SOLCand for a heavy impurity(localized SO¢  x 10" v/cm? for the 3d and 4d impurities and of the order
have essentially the same structure. The difference is that igf 3 x 10 V/cm? for the 5d impurities. In contrast, the re-
the pure metal only states with the same wave vector argpective SO-EFG'’s are of the order of ‘1®&/cm? and
mixed, whereas the localized SOC mixes all states irrespea0® v/cm?.” Thus, the magnetostriction seems to be not an
tive of their wave vectors. If in EqB1) |#)(¢ic| is re-  important contribution to the noncubic charge distribution.
placed by its average over af.’s of the same energy, one This conclusion was already drawn in Ref. 15.
obtains Eq(B2). The noncubic charge distribution represents also a quad-

The use of Eq(11) for the pure metal is thus equivalent to rupole moment of the valence electron shell. Its energy in
the averaging over all states of the same energy and th@e presence of an EF@is given by
neglect of the symmetry points in the Brillouin zone. Only
explicit calculations can clarify to which extent this is a good .
approximation. But from the similar structure of the equa- EBq=(14)Qz 2V, (CD
tions one can expect that most of the conclusions in thisvhere we have assumed axial symmetry along the direction
work still hold even if the SOC's at the impurity and host arez’ of the magnetization. There is no EFG in cubic lattice
of the same order of magnitude. symmetry, but due t&,, the energy of the system would be

In any case, the averaging over all states of the samiwered if there is one. This will distort the lattice until the
energy is a necessary simplification to obtain a transparemain inE,, which is linear in the distortion, is compensated
model, since it allows us to combine all states of the saméor by the loss in elastic energy, which is quadratic in the
energy into the density of states. It would be impossible tadistortion.
keep the overview over the complete set of eigenstates and We assume in Eq(C1) a pure electrostatic interaction
eigenenergies. Thus, E(L1) will perhaps work for the @ between the noncubic charge distribution and the lattice dis-
and 4d impurities not as well as for thedbimpurities, but it tortion because we want to obtain in a simple way an order
is the best we can do if we do not want to make use of thef magnitude estimate. Of course, the real nature of this in-

full band structure. teraction is more complex. For simplicity, we assume also
Similar conclusions can also be drawn for the noncubidhatQ, V, the lattice distortion, and the magnetoelastic cou-
charge distribution. pling constant are isotropic and axially symmetric with re-

spect to the direction of the magnetization.
The quadrupole moment of tlieshell can be estimated as

[(1+1)

: 2

APPENDIX C: NONCUBIC CHARGE DISTRIBUTION Qz’z’:(1/3)e<r2>< 12— _ €2
AND MAGNETOSTRICTION 3

There is no doubt that the magnetostriction contributes to ] ) )
the noncubic charge distribution and the noncubic chargd e EFG connected with a relative length chamél is
distribution to the magnetostriction. In transition metals,€Stimated within a point charge model‘by
however, for both effects other mechanisms are thought to be e
more important(For the rare earths the nonculbfishell is .
indeed thought to be the main source of the Voo™~ 1'5a_3(d|/|)' €3
magnetostrictior’®) In the absence odb initio calculations
we have to restrict ourselves to order of magnitude estimate&. is the effective point charge araithe cubic lattice con-
The magnetostriction causes in Fe, Co, and Ni relativestant. Combining EqgC1) and (C3) we obtain a magneto-
length changesll/I along the direction of the magnetization elastic energy of the forrk,=B(dl/l). AssumingZ=1, a
of the order of 5107°.3° To get an idea of the EFG =2.86 A, a spin-orbit induced(I>—1(1+1)/3) of 0.9
strengths that we have to expect from such a small latticex 10~3,” and(r2)=0.5 A?,? we obtain for the magnetoelas-
distortion we refer to the EFG’s in hexagonal metals. Thetic coupling constanB= —0.030 meV/atom.
typical EFG strength per IG deviation of thec/a ratio The actual magnetoelastic coupling constant for Fe,
from the ideal ratio 1.633 is of the order ofx2.0"® V/cm?®  M||[100], is B;= —0.25 meV/atont® an order of magnitude
for 3d and 4d elements and of the order oP2L0'" Vicm?  larger. Thus, the noncubic charge distribution seems to be not
for 5d elementg? If we take into account that, at least in a the dominant source of the magnetostriction. However, in
point charge model,,/(dl/l) in a cubic metal is only about view of the crude nature of our estimates, this point would
a third of V,,/(c/a—1.633) in hexagonal metaf$,we ex-  deserve a more exact study.
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