PHYSICAL REVIEW B 66, 174306 (2002

Quasienergy band structure of the harmonically driven é-function chain
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We study the quasienergy band structure of a potential consisting of a periodic array of harmonically
oscillating § functions. The perturbative and non-perturbative regimes are investigated using Floquet-Bloch
states and the Floquet translation matrix whose eigenvalues and eigenvectors are given in terms of continued
fractions. We study the structure of these eigenstates and relate it to the structure of the quasibound state of a
single S-function potential. We also study the dynamics of the bands as a function of the strength of the
oscillating potential and find that the collapse of one of the quasienergy bands is related to the quenching of the
transmission through a singi®function potential.
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[. INTRODUCTION for the oscillating delta chain and use it to investigate the
guasienergyQE) band structure in the perturbative regime.
Since the 1930s, the study of space-periodic potentials hds Sec. Il we construct the Floquet translation matiii).

yielded fundamental information about the properties ofln Sec. IV, we solve for the eigenvalues and eigenvectors of

electrons in crystals. Tunneling and interference effects givéhe TM matrix using continued fractions. In Sec. V, we study
rise to the well-known energy band structure in such materithe structure of the eigenvectors in the negative energy chan-
als. For real crystals, in addition to the band structure, on&€ls and relate it to some scattering properties of the single

has to consider the interaction of the electrons with impuri-6-function potential which are derived in Appendices A and
ties or defects, the electron-electron interaction, and th&. In Sec. VI, we study how the QE band structure changes

electron-phonon interaction to give an accurate descriptio@s @ function of the strength of the oscillating potential. And

of the dynamics of electrons in such materials. finally in Sec. VII, we make some concluding remarks.
The development of superlattices and the more recent ad-
vances in atom optics have brought to the forefront the study Il. FLOQUET-BLOCH APPROACH

of space periodic potentials since, for the first time, it has
been possible to observe fundamental quantum effects, due
solely to the spatial periodicity of the potential, that had been 2 o
predicted long ago. These include Landau-Zener tunneling, H= p—+[V0+V1 cog wt)] E s(x—mL). (1)
Wannier-Stark ladders, and Bloch oscillations, which occur 2u
in a periodic system driven by a DC electric fiéld. . .
The effects of time-periodic forces on spatially periodic Here,p an.dxare the momentum gnd. position operatqss
systems have also been studied and interesting phenometh¢ effective mass of the particle, is the strength of the
have been predicteand some observed experimentally static part of the potential/, is the strength of the oscillat-
such as dynamical localizatiorimini-band collapsg?®  ing part of the potentiakp is the frequency of the oscillation,
photon-assisted tunnelifgguantum Hamiltonian ratchet$,  tis the time, and_ is the distance between neighboring delta
chaos-assisted  tunnelidfgt®  dynamic  Anderson- functions.
localizatiort? and quantization of particle transpatt. Since a wave function that satisfies Salinger’'s equa-
Because of the myriad of phenomena that have been asoni#(dW¥/gt)=HW¥ with Hamiltonian(1) must be periodic
sociated with space-time periodic potentials, it is interestingn time and spacéFloquet-Bloch theorejnthe solutions are
to study one of the simplest potentials which has both periof the form
odicities: a spatially periodic chain af-function potentials
whose strength oscillates periodically in time. The math- » ‘ 4 .
ematical simplicity of this potential permits an analytic com- Vex(X,t)=€ 'Et/ﬁe"(xn;_w m:E_w Y me* Mg Nt
putation of its eigenstates and eigenvalues with the use of 2)
continued fractions. This simplicity also allows for a clear
understanding of the basic dynamical properties of a quarwhere? is Planck's constanty, , is a probability ampli-
tum particle under a space-time periodic potential. This systude, € is the quasienergy(with allowed values &e
tem is special because its classical analog issfw), andk is the Bloch momentuntfor which the first
quasi-integrablé? whereas most other systems of this typeBrillouin zone is taken to be- w/L<k</L). If we sub-
are non-integrable. stitute the statel ., (x,t) into the Schrodinger equation and

In Sec. Il we derive the Floguet-Blodl#B) Hamiltonian use the fact that (L) L_’f,zdxexp[Zﬂ-i/L(m—m’)x]

The Hamiltonian we will study in this paper is of the form

m=—®
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= S, (UT) [ idtexdio(n—n')t]=6,,, , we obtain an eigen- 1
value equation for the amplitudg, .,
2 E F'Eirym,mfﬁbn’,m’:e Ynms )
n'=—om=-x»

_ €
whereH® is the FB Hamiltonian 05
~FB hz 27T 2 \70

nn’mm’ z K+ Tm —nhw 5n,n’5m,m’+T5n,n’
vy
+Z(5nfl,n’+5n+l,n’)- (4)

0
Diagonalization of this matrix yields the quasienergies and
eigenvectors as a function of the Bloch-momentdm

For computational purposes, it is convenient to define the
following dimensionless quantities,

B B 2pw [ h g 01
e=elhw, =L 5 k=« Z,u_w'

0.15}

0.05}
2pnw
X' =X L, 7= owt, (5) ol LN
f 0.22n o3sn Kl
v v FIG. 1. Quasienergy curves faf,=0,V,;=0.03]=5. Curves
V= L, 0= L, HFB=HFB/4 w. have been labeled using,Mm) pairs, where the energy of the cor-
212\ 2puwlh h2\2pwlh responding unperturbed statefis- (n+¢)% w, and its wave vector

is K=k+27m/l. FeaturesA, B, C, andD are indicated. The inset

In terms of these dimensionless variables, the FB Hamilg; .o 5 magnification of the dashed box.
tonian takes the form

tween bandg1,—1) and(2,1). From first-order degenerate

HE®, = E(kl+2wm)2—n S, n,5mm,+2ﬁ5n . perturbation theory we obtain the reduced 2 Hamiltonian
. 12 B o near the poinkl|~1:
2 (5 it Baian) 6) 0 Vi
I ( n—-1n’ n+1n’/- 81171(k|) 2|—
HFP= : ()
For zero static potentialVo=0, and smallV,, the 2V1 0 (K
— &1kl

guasienergy bands can be labeled away from the avoided I

crossings, by the integer pain,(m) as is shown in Fig. 1 for

the parameters/;=0.03)=5. The FB eigenvector corre- Where the unperturbed quasienergies afe ;(kl)= 7 (kI
sponding to the poing, ,(kl) on band ,m), is a plane —2m)2= 1,89 (kl)= 5 (kl+2m)?—~2. The eigenvalues of
wave with (dimensionlessenergyE=(n+¢) and (dimen-  this Hamiltonian matrix give the quasienergy bands in the
sionlesy momentumK =k+ (2a/I)m. The curve in Fig. 1 ~neighborhood of the crossing,

for the pair (,m) is obtained by drawing a parabola cen-

tered at the pointr(,27m) in the infinite plane E,K). The e=(k)=3[83 _1(kl)+834(kD)]
segment of the parabola that crosses the regiestE& 1, VAL
(—nq-rr:]|)<sz/I, gives rise to the quasienergy band labeled +1 \/[8(1)‘71(k|)_ggyl(k|)]2+16 I_l) )

It is also useful to plot the average energy of the FB

eigenstates¥, (x,t), which we define as At the middle of the avoided crossing, whes& ;=e3 ,,

the distance between the bands, is
(E)=2 (s+m2 [¢nml” ) v,
n m A=4—, (10

This is shown in Fig. 2 for the same parameters chosen for
Fig. 1. Let us focus on three features, marked A,B,C, in FigsNote that the width of the avoided crossing does not depend
1 and 2. We begin by studying B, an avoided crossing been the energy or momentum of the bands involved, which is
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FIG. 2. Average energyE), vs Bloch mo-
mentum, k, for V,=0,V,;=0.03]=5. Features
A, B, C, andD (discussed in the textare indi-
cated.

<E>
S

0 :
/2
‘|‘ | nkl n

a peculiar feature of the delta-function chain. Therefore, foreal Bloch momentum correspond to the physical states,
the delta-function chain, all first-order avoided crossingswhile the eigenfunctions with complex Bloch momentum are
have the same widthy. not physical since they diverge in one direction alongxhe
Feature C is an example of a first-order avoided crossingxis.
between band$0,0) and (1,—1). Note that the first-order
avoided crossings in the quasienergy plot reveal themselves A. Time periodicity
as crossings in the average energy plot. This happens be- . . .
cause at an avoided crossing the two states exchange identi- Let us Wr'|te the FB s'tatelIfE'K(x,t), in terms of dimen-
ties, and the average energy includes the contribution frorﬁ'onless variables, and in the form
both states. %
Feature A, in Fig. 2, is a second-order avoided crossing, Y (X', 1)= D, (X )e e (11)
involving a two phonon process between the unperturbed n=-—

states(2,1) and (0,0. This is evident in Fig. 2, where the | pqra ¥,(x') contains all the spatial dependance of the
crossing occurs between a band with average energy negjy e function. Since the potential is zero everywhere except

2he and a ba}nd hear Bo. . . atx’ =ml, we assume’,(x’) in regions | and ll(on the left
Feature D in Fig. 2 cannot be explained using degeneratgnd right of thes function atx’ =0, respectivelyto be of
perturbation theory. It is not the result of an avoided crossing, o t5rm '

between unperturbed states. This feature occurs when the
unperturbed quasienergy bafd—1) (in Fig. 1) crosses the 1
lower edge of the quasienergy Brillouin zone=(0). This Ph(x') = —=(ae* +d,e ") for —1<x<O0,
sudden drop in the average energy of the eigenstate will be ko

discussed in Sec. IV. (12

oyr 1 ik’ —ikx’
n(X ):—k(Cne n +b,e” ") for 0<x<lI.

IlI. TRANSLATION MATRIX \/—n

Let us now construct the Floquet translation matrix for thefor finite chains, the f?ctor 4k, is included to ensure uni-
s-function chain. This will be done in two steps. First, we @ity of the S matrix;® we also use that convention here.
calculate the transfer matrix connecting the Floguet coeffi- he dimensionless wave vectoks,, are given by
cients of the wave functiofEq. (2)] on the left and on the o
right of a § function. Then we calculate the translation ma- Kn=ve+n (13
trix which connects the Floquet components of the waveNote that forn<0 the wave vector is imaginary and gives

function on the left side of a delta function with the compo-rise to exponentially decaying and growing modes. These
nents on the left side of the nearest neighbor delta functionyill be discussed later in Sec. V.

The eigenvectors of this translation matrix will have either  Continuity of ¥, (x’,7) atx’=0 gives
pure real(norm of eigenvalue equal to on®r complex
(norm different from ongBloch momentum. The cases with a,+d,=c,+b,. (14
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Because of the delta function in the Hamiltonian, the spatialvhere7! is the spatial translation operator axds its eigen-
derivative of ¥ (x’,7) atx’=0 is discontinuous and satis- value, which satisfiea =e'¥ for k real when¥ ((x') is a

fies Bloch function. Imposing this condition on the wave func-
tion and its derivative at the poixt = —1/2, we obtain
dw, dw, _ _ . _
- =[Vo+V;cog7)]¥, (0,7). N(ape *n2+d eknl’2)=c eknl2 4+ p e~ knl’2)
dx’ x'=0" dx’ x'=0" ) ) ) ) (26)
(15) Na,e knl2—d eiknll2)=¢ eiknl2_p g=iknl/2
This leads to the condition We can write this set of equations as
Chtdn—bp—ay=—2i[sy(ay+dy) +hp_1(an-1+dn-1) Toiz Tipl(A} [Tz Top|(C
Toe ~TilD) "1, —Twlle] @7
+hp(ans1+dns)], (16) ~1/2 12 172 —1/2
where where the matrixT .|, is diagonal and has matrix elements
e* k2 We can now write
h,= 1/4\/1 T Vo .an )\(A) | T2 T|/2}1[T|/z T|/2KC)
(e+n)™e+n+l) vetn D) [T ~Tiel [Tie ~To)lB
Using Eqgs.(14) apd(16) we solve forc,, andb,, in terms of 1] Ty Tl T T ,l/C
a, andd, to obtain S
2T = ToplTie —Top/\B
Ch=an—ispdn—ihy_1an-1—ihpan 1 —ispdp—ih,_1dn g T| ol/c
—ih,dyg (18 =l o T.|\8) (28
and If combine Eqs(23), (24), and(28), we obtain
b,=d,+ispa,+ih,_1a,_1+ih,a,1+isd,+ih,_1d,_; (A (A)
™ =\ , 29
+ih,dyyq- (19 D D @9
It is useful to define the column vectoks B, C, andD with ~ Where
componentsa,,, b,, ¢,, andd,, respectively. Then Eqs. T (1-X) TX
(18) and (19) can be written in matrix form as ™=| " [ (30)
T X T_(1+X)
C=(1-X)-A—X-D, 20 , . . .
is the Floquet translation matrix. After diagonalizing the TM
B=X-A+(1+X)-D, (21) ~ Mmatrix, one selects the eigenvectors corresponding to eigen-
values|\|=1. These are the Floquet-Bloch states of the sys-
where the matriXX has components tem.
[XInn= 60 n-1ihnr+ S nsaifny 14 Snr niSh - (22 C. Static potential case(Vy#0,V,=0)
This system of equations can also be written as For a purely static potential, the TM matrix is ax2
matrix with two distinct eigenvalues and corresponding
(C) -M. A) 29) eigenvectors. It can be shown that
B D
, ikl 1+£ elk! E
with 2ik 2ik
T™M=
_ _ . Vo . Vo) [’ 3
1-X X e ikl - | ikl
M=l 1ox| (24 2ik 2ik

. . wherek= 2E.
The matrix M relates components of the eigenstates on op A graph of the absolute value of the two eigenvalues of

posite sides of a singlé function in the infinite chain. TM, as a function of energy, for the static delta chain is
shown in Fig. 8a). The prohibited energy regions are the

B. Spatial periodicity regions occupied by the “bubbles.” These occur at energies

Because of the spatial periodicity of the Hamiltonian Eq.for which the absolute value of the eigenvalues of TM is not
(1), Floquet-Bloch states have the property one. The well-known band structure for this potential is ob-
tained by plotting energy versus Bloch momentum as shown

T'\Ifsvk(x’)=\1fgvk(x’+I)=)\\P£,k(x’), (25 in Fig. 3(b). For the parameters chosen in Fig. 3, the delta-
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8 T 8

(a) (b)

7t 1 7t

5r g 5} _
Al | FIG. 3. (a) Energy,E, plotted as a function of
E I | the absolute value of eigenvaluks, of the TM

IS

matrix (measured in units of the bound-state en-
ergy of one é-function potential, Epoyng
=—uV%2#?=—1). (b) Energy vs Bloch mo-

N
N

— mentumk, for a static chain. Parameters used are
1t <P . 1__/_//'\_ Vo=—+2,V;=0, |=5, u=1, andfi=1.
0:’_‘——-“_]— 1 —

-1 ‘i -1
) 2 1 o g o ] L.
AL,

function potential has a bound stateEat — 1. That is pre- F19- 3 starting with Fig. 4 is to “unfold” the quasienergy axis
by calculating the “average” energy, as defined in Eg),

cisely the location of the negative energy band, which occu;

. . . . for each eigenvector in the QE bands. This shows us that
pies the region-1.025<E< —0.975. The width of this band o, the oscillating part of the potential is small compared

IS kng)zvvn to decrease rapidly with the distance betweeny the static part, the quantity that approximately preserves
wells** For | =5 it is already of the order of 1G. the band structure of the static potentia{ ). The effect of

Itis now interesting to use the Floquet TM matrix derived a small oscillating potential is only important when the dis-
in Secs. IIlA and Il B for the case whe¥l,#0,V1=0 as a  tance between two unperturbed energy bands is a multiple of
way to test the Floguet formalism and to gain insight into thes w (in the neighborhood of a quasienergy avoided crossing
effect of a time periodic perturbation in the band structure ofthis is where the deviations ¢E) from the band structure of
the static potential. Using the Floquet TM matrix of E§0)  the static potential occur, as was shown in Sec. Il, Figs. 1 and
and the same parameters is in Fig. 3, we obtain in Hig, 4 2. Thus, the average energy is a useful quantity since it
a plot of the eigenvalues of the TM matrix as a function ofsmoothly becomes the energy as the oscillating potential is
the quasienergy. In Fig.(8), we obtain a plot of the quasien- turned off.
ergy versus Bloch momentum. The relation between Fig. 4
and F|g 3is Simp|e_ The energy axes in F|g$)$nd 3b) IV. EIGENVECTORS OF THE FLOQUET TRANSLATION
have been divided into intervals of widftw and the inter- MATRIX
vals have been mapped into the regiog &< in Figs.

. . The solution to the eigenvalue equatidtg. (29)] can be
4(a) and 4b), respectively. The way to recover the results in 9 quatidrg. (29)]

obtained in terms of continued fractions. The procedure we

‘N

©
T

06k _ FIG. 4. (8 Quasienergyg, vs the absolute

{ ‘ value of the eigenvalues of the Floquet TM
matrix. (b) Quasienergyg, vs the Block momen-
tum, k. Parameters used al:a,=—\/§, V=0,
04F i and |=5. Only 8 positive energy channels in-
cluded.

0.2
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follow is similar to the one used in the study of the scatteringThus, from Egs(41) and (42), we can obtain two different

properties of a single oscillating-function potential®
Equation(29) can be written in the form

(1-X)-A=X-D=AT_, A,

(1+X)-D+X-A=\T,-D. (32

Adding these two equations, we obtain a relationship be-

tween the components &f andD,
Dy = 7nAn,

with
1— elklgiknl

1—eklgiknl ’ (33

M= —

where the dimensionless quantitiks, k, and| [defined in
Egs. (5) and (13)] have been used. The relation between

andD is purely kinematic; it does not depend on the poten-

tial. If we combine Eqs(32) and(33), we obtain

(1-\T_))-A=X-P-A, (34
whereP is a diagonal matrix with matrix elements
—iknl _ giknl
PnE[P]n,n:melkl- (35
We now define
Qu=[1-AT_ ] ,=1—e knle (36)
Using this, and Eq(22) we obtain from Eq(34),
Rnan—ihg-1Pp_1an-1=ih Pyigan.g, (37)
where
R,=Q,—is,P,. (38

Using the method of continued fractions we now obtain from

Eq. (37) an expression for the ratia,/a,, ;. Let us define

T (39)
" a~n-¢—1.
If we substitute Eq(39) into Eg. (37), we obtain
ih,P
Ro—ihn1Pnoafnq= nf n+l- (40)
n
Solving Eq.(40) for f,, in terms off,_, gives
thnPni1q
fo= - , 41
" Rn_lhn—lpn—lfn—l ( )
and solving Eq(40) for f,,_; in terms off,, gives
1 thyPhig
fnl‘ihn_lpn_1< U T

expressions for the quantitfy,. If we iterate Eq.(41) we

obtain

thaPhig

ha—1Pn-1Py
hﬁ—zpn—ZPn—l

h2 3Pn_3Pn_2

(43

Rp_o+

where the downward arrow indicates that the indices of all
guantities (except P,, 1) run over integers equal to or
smaller tham. If we iterate Eq.42) we obtain

1 ha1Pn+1Poso
fn=inp, | Roeat 2 ’
ntn R n hns2Pns2Pnya
ne R h§+3pn+3pn+4
negt————————

(44)

where the upward arrow indicates that the indices of all
quantities run over integers equal or greater timarit is
important to note that these two functions have very different
dependence on n. When|—o, fl —o . This implies that
for |n| large,a,>a, 1 (the components of the eigenvector
decay forn positive and grow fon negative. On the other
hand, whenln|—, f:—0. This implies that fofn| large
a,<a,.; (the components of the eigenvector grow for
positive and decay for n negative his means that to obtain
eigenvectors that have support in a finite number of channels
one has to usé for n>1 andf}, for n<—1.

We can now derive a general prescription to generate the
components of an eigenvector starting from an arbiteyy
=1. By applying repeatedly the definition 6f=a,/a, 1,
we obtain

2 (459
An+n= J
fm+n—1frTn+n—2 T fln
am_n="fh_fb . . fl_ an (45b)

for anyn>0. One can avoid having to use both equations to
generate the components of an eigenvector by using Eg.
(459 and starting with anm negative enough so that all
eigenvectors have support on channels higher thaithis
can be done since for any eigenvector, andifoegative and
large, a,<a,,;. Then, the contribution of large negative
components to any eigenvector will be negligible.

Let us now define the function,

II(e,k =Hin:_m ,
n(e ) fiT(S,k)

(46)

wheremis chosen so all eigenvectors have support on chan-
nels higher tham. Using this function we can construct the
positive momentum components of any eigenveciof
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LF1
N “ A L ' L D
| S Y WA
P Y \
oles’ R . L ¥ S
w 5 o N s 5 0 nh 5
08 bz) ' ' A F08 ' ' )
la_| [d | FIG. 5. Plots of components & andD for
n N-o4 two FB eigenvectors with g=0.586k=0.01)
JJ\ and (£=0.07k=0.01) for V,=0V,;=1.0)=5.
. m PE— (a) Eigenvector of the TM matrix with &
=0.586k=0.01). (b) Eigenvector of the TM ma-
. . . i . i i trix with (¢ =0.07k=0.01). (c) Plots of A andD
A M. (eI (e)| D obtained from Eqs(47) and(33). These plots are
8 n n indicative of the pole structure ofl,,. The

dashed line corresponds t@=0.586k=0.01)
and the solid line to£=0.07k=0.01).

=(AT,D"), whereT denotes transpose, starting with an arbi-function of & for k=0.01, calculated using Eq#47) and
trarily fixed a_,,=1 (before the vector is normalizedwe  (33). The components are arranged in decreasing order of

can write energy(from left to righy). There are very narrow peaks for
all components shown, at quasienergies 0.586 and 0.07 as
AT=[ ... 1I1_(&,k),IT1_iq(e,k), ... I (e,K), ...]. can be seen in the insets. The profile of an eigenstate, as

(47) obtained by connecting its corresponding peaks, is in very
) , good agreement with the results obtained by diagonalizing
The negative momentum componerils, are obtained from e TM matrix.
Eq. (33. By plotting the componerilg(e,k) in the interval G<e
For any point ¢,k) chosen, there is a band that passes<1 0<kl<1, one can see the band structure of this poten-
arbitrarily close to that pointthe bands fill the first Brillouin  tjal. We include bands whose eigenvectors have components
zone densely At this point, several component$, have a  in channels’<8. Figure 6a) shows a contour plot of val-
pole. Each divergindl, gives a nonzero component of the ues ofllg(e,k). Figure @b) shows the QE bands obtained
eigenvector corresponding to this point. After obtaining theby diagonalizing TM.
D components and normalizing we end up with the full ei- As mentioned earlier, feature D in Fig. 2 cannot be ex-
genvector which can be compared to the eigenvectors olplained using degenerate perturbation theory because it is not
tained from direct numerical diagonalization of the matrix the result of an avoided crossing. To examine this feature let
TM at the same point. us consider the function, andf' ,, [see Eq(43)]. When
We have now developed three different methods to obtai —0, hy~1/\kg—, h_;~1/\Jkg—=, and Py~ky—0.
Floquet-Bloch states for our systerl) We can find the Thereforefi—o when ¢—0, which impliesag/a; —.
eigenvectors of the F.B. Hamiltonian, E(). (2) We can  One can also show thaft£l—>0 as e—0, which implies
find the poles of Eq(47). (3) We can find by numerical ag/a;—o. This means thai, is the only non-zero compo-
diagonalization the eigenvectors of the TM matrix in EQ.nent of an eigenvector corresponding to a quasienergy band
(30. In the first two approaches, one specifies both theat the pointe=0. Therefore, the average energy of the ei-
quasienergy and the Bloch momentum, and then one pragenvector goes to zero at this point. This explains the plunge
ceeds to find the corresponding eigenvector. In the third apebserved in Fig. 2 at point D. In principle there should be a
proach, Eq(30), only the quasienergy is required, the Bloch feature like D for any band that crosses the line0. How-
momentum is a result of the calculation of the eigenvalues oéver, the width of the “plunge” in the average energy band
the TM matrix. depends on the size of the componantof the eigenvector
In Figs. 5a) and 8b), we show a plot of two eigenfunc- as one approaches the bottom of the energy Brillouin zone.
tions obtained by constructing the translation matrix, TM, forThe higher the average energy of the band where the plunge
parameters/;=1.0V,=0, and then numerically finding its occurs, the narrower it is, because tnecomponent of the
eigenvalues and eigenvectors. Eigenvedgrhas quantum eigenvector is smaller for higher average energies. This re-
numbers, £=0.586k=0.01), and eigenvecto¥, has quan-  sult might indicate that a free partic{plane wavée moving
tum numbers, £=0.07k=0.01). In Fig. %c) we show a with an energ)E could be forced to lose all its energy when
graph of the positive momentum componemfts,and nega- turning on a space-time periodic potential that oscillates with
tive momentum component§), of these eigenvectors as a a frequencyw=E/#.
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FIG. 6. Vy=0V;=0.3]=5.
(a) Quasienergy curves obtained
by numerical diagonalization of
the Floquet TM matrix.(b) Con-
tour plot of the function

Ig(e,kl).
5
0 kil n
V. CONTRIBUTION OF THE NEGATIVE ENERGY system? This question is motivated by the fact that, when the
CHANNELS parameter is large, numerical diagonalization of the TM

In this section we look at an interesting feature of thematrix becomes very maccgrate because the .m}]hr'.g be-
delta chain, which establishes a nice connection with th&°Me Very large for negative energy channgisaginary
scattering properties of a single oscillatigunction poten- ~mementumk,). Knowing how those channels contribute to
tial. In what follows, we assume the static potential is zeroth® QE band structure is therefore an important question.

[s,=0 in Eq. (38)] and ask the question: how do negative In Fig. 7(a)_we show the location, in the Q!E bf_;md struc-
energy channels contribute to the Floquet eigenstates of tHere, of two eigenvectors of the system, and in Fign) ive

a)

NZN

FIG. 7. (a) Quasienergy band
structure forVy=0,V,=1.2)=5.
Arrows show locations, o
=0.775k=0) and E=0.462k
=0), of two eigenvectors plotted
in (b). (b) Absolute value of the
Floquet components of eigenvec-
tors: (1) (¢=0.775k=0); and(2)
(e=0.462k=0). (c) Comparison
of the negative energy contribu-
tions (D par? of the two eigenvec-

b) p— . . ;
o5 FEiganvecior A ——— - %3_3‘:;?1 tors in (b) with that of the quasi-
) —o- Eig.vec. 2 bound state of a singlé-function

/J\ potential.
0 0 —n = 0 5
0.5 [Eigenvector 2 A i N [5
VAN al , ,
0 0 -5 -1 -3 -5 -7 -9 -1n
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plot the contribution to these eigenvectors from the variousstructure of any eigenvectdlr can be written in the follow-
Floguet channels. It is important to notice the shape of D iring form:

the negative energy channels is very similar for the two

eigenvectors despite their different quantum numberg)( wT=(AT,D"), (48)
Why is there a peak in channel -5 in all eigenvectors? What
determines this structure? For a given amplitudegfthe  where
|
AT:( s ,az,al,ao,fiflao,fL,2f171a0,flfgflfzflflao, e .), (49)
and
D'=(...,7282, 781, m080,7-1f" 180, 2f' of' 120, ...). (50

The structure of the negative energy part of the eigenvecirom the negative channels. From E§3) and for negative

tors can be studied by looking at the sequencesnergy channeld_,=e '*..'a_,. Hence,
[l (FL_oft ), (FP_gftoft_y), .. .]. Let us begin by
defining the quantitiep,, andb,, as d,n ih_,
=Z_,= : (55)
: 1+G_
1_e2|kn| o » Cne1 n
= — aikyl _ A
Pn= e~ ikl _ gikpl’ b,=e € (5D where the CFG,,, can be defined recursively as
so that “ h2_, -
P.=e ki, = R =eikilp . (52) " 14+Gh ]

Using this in Eq.(43), we obtain an alternative expression
for £,

ih_p_piie Kensamkon)

2
hZ 1p-n-1P-n
h%n,zp,n,zp,n,l

2
hZ_3p-n-3p-n-2

i,

b .+

b i+
b, ,+

(53
Forn>1 this expression can be simplified. Sinee,=e'¥!
andb,=—-¢€!, f' becomes
ih_ e itkonsakop)l
) h2—n—1
h%n—Z

2
1+ A

fl

-n

(54)
1+
1+

This functionG,, is precisely the same function used to de-
scribe the transmission through a single oscillatidg
function® As shown in Appendix A, the ratio between the
diagonal components;_,, of the transmission matrix for a
single § function is

where the(*) denotes evaluation at the pole of tBenatrix.
The relationship actually goes further. In Appendix B we

look at the quasibound state of the singldéunction poten-

tial and prove that its componer(@nly the transmission part

is considered, since the reflection should be identical for

symmetry reasonsan be written as
VgB:(...,1Ztl,ztlzt2,ztlztzzt3,..J (Sn

whereas according to E¢55), the negative energy compo-

nents of the vectoD, can be written as

D'=(...,1f |, fL,Z ,,f8.2 ,Z 5,...). (58

From Eq.(54), one can conclude that for the negative energy

channels, the positive momentum componeAtspf the ei-
genvector decay exponentially with f- <e™"?", This can

The difference between Eq&8) and(59) is in the behavior
of the functionf{l(s,k), which for a certain range of

be seen in Fig. (b) where it is evident that the negative (because of its dependence on the Bloch momentucak
energy components & decay very quickly witm. In con-  be considerably different frord_,(¢). The other difference
trast, the vectorD, has a different structure, with a peak at concerns the fact that in Eq58) the Z_,, functions are
n=—>5. Itis in this part of the eigenvector where the nega-evaluated at the pole whereas the functions in &§) are
tive energy components contribute the most. If we had choevaluated at different values along the bands. In Filg) We
sen to construct the TM matrix for translations to the left,show two eigenvectors of the infinite chain, and in Fige)7
then the A part would have shown the biggest contributionve compare the negative energy component® afith the
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FIG. 8. Series of plots show-
ing the evolution of QE bandshe
four lowest in average enerpggs
the parameteY, is increased with
fixed Vo=0 and|=5. Three of
the bandgA,B,C) participate in a
periodic exchange of identity.
Band A initially related to unper-
turbed statg0,0), band B related
to unperturbed stat€4,1),(0,—1),
and band C related to states
(1,-1), (2,1). Arrows indicate the
position of some of the fixed
points in the QE band structure.

ki

guasibound state of the singfefunction system. The agree- affected by a change in the parametégr. Sec. VIC deals
ment is quite good for all the eigenvectors that we considwith the collapsésignificant reduction of its widthof one of
ered. The reason for such agreement, which seems to liee QE bands for particular values f.

independent of the particular quasienergy of the eigenstate, is

simple: the function&_, are fairly smooth in the complex A. Periodicity of the band structure
plane, therefore, their value Bt and their value on the real In the sequence of plots in Fig. 8, we show the bands
axis are very close in most cases. associated with eigenvectors whose main support is on chan-

When the strengthy,, is small, the different Floquet nelsn<4. We focus on these bands because they have espe-
eigenstates are exponentially localized about the unperturbegially interesting behavior as the parameYér is changed.
states. As the strengi, increases and the eigenstates gaininspection of these plots shows that\asis varied, the band
support in the negative energy channels, they develop a chapatterns come close to repeating their structure in an almost-
acteristic peak in those channels, which can actually domiperiodic manner. In going fronV;=0 to V;=1.0 there
nate the structure of the vectdd, for the eigenstates with IS one complete exchange of identity for each ba(@i0)
lowest average energy. —(0,—-1)—-(1,1), (0-1)-(1,1)—(1,-1)—(2,1),

In general we can say that the structure of all FB eigen{1,—1)—(2,1)—(0,0). FromV;=1.0 toV,;=1.414 there
vectors of the infinite chain consists of two very distinct |szanothe_r exchange. This periodicity occurs as a function of
parts, the positive energy components which are sensitive t41- A Similar quasiperiodic behavior was found for the trans-
the Bloch-momenturk, and the negative energy componentsmission through a single oscillating  delta-function
which are independent df and are closely related to the Potential;°where the dynamics of the zeros and poles of the
quasibound state of the sing&function potential. We ex- System depend almost periodically on the parameteV/;.
pect this to be a general feature that should occur in otheFhe period inV7 is one: the equivalent of pangf=0.25 is
space-time periodic potentials such as an oscillatingranel V4=1.25, the equivalent of pane¥3=0.5 is V2
Kroenig-Penney potential. =1.5, and so on.

This periodicity is another manifestation of the correlation
between the structure of the quasibound state in the single
delta scattering problem and the structure of the eigenvectors

In this section we discuss some general features of th&ith support in the lowest energy channels in the infinite
behavior of the quasienergy bands as the strekgtbf the ~ chain.
oscillating potential is changed. In Sec. VI A we discuss the
almost periodic behavior of the QE bands with lowest aver-
age energy a¥; is changed. In Sec. VIB we discuss the  Suppose that before we turn on the oscillating potential,
existence of points in the QE band structure which are notve have a state which is a superposition of two plain waves,

VI. BAND DYNAMICS

B. Fixed points in the band structure

174306-10
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1

0.403
v, =0.767 [+

L e , \
0.8 FIG. 9. (a) The transmission
probability for a single oscillating
0.6 Ss-function potential as a function
€ € / € | of quasienergy for Vo=0V;
GV / =0.767|=5. (b) The quasienergy
A
0 | T
0.39 lapsed band(d) The band(solid

/ band structure of the infinite chain
P Vo T e w ~
— - Cos(2kL) /\ /\\ line) without the small avoided

0.2

JAY
0
1 [ Tlo ™

k

for Vo=0V;=0.767|=5. The
collapsed QE band is the thick
0.394- 5K . line. (c) Magnification of the re-
gion in (b) occupied by the col-
crossings with higher energy
bands (diabatic representation
The function cos(Rl) is plotted
for comparison(dot-dashed ling
! A 5 (e) The average energy along the
collapsed band and the compo-
nents of eigenstates from two dif-
0.3947 ferent locations on the collapsed
- : o Ki a band.

0.4025

0-2n 0 -2

in particular ¢,(x) = (1/2) (e’**— e ) =sinkx). If k, scribed in Sec. VIA becomes practically flat, that is, the
satisfies the conditionk,=mm/l with —so<m=®, then Wwidth of that QE band has collapsed to its minimum value.
sin(k,)=0, which means that the wave function has nodes alhis collapse occurs almost periodically as a functiorvﬁxf

the location of the functions. This implies that this particu- Collapse of QE bands in a periodic potential driven by an
lar state will not be affected as the potential is turned oroscillating electric field has been studied before using one-
(whether thes-function potential is oscillating or nptThis  band and two-band approximatioﬁtt.was shown there that
state is a Bloch state since it is periodic in space and it mush the single-band nearest-neighbor tight binding approxima-
belong to a band of the perturbed system. Therefore, for afion, the collapse is completéhe width of the band goes to
infinite chain of 6 functions, oscillating or not, there are zerg and is determined by the zeros of the Bessel function
fixed points in the band structure, in the sense that fonany 3 in the same paper, numerical calculations show that the
and V, there is always a band attached to the points thatg|japse is not complete as it is expected from the von
satisfy the conditiork,=mm/l. This is a special feature of Neumann-Wigner non-crossing rd.

the delta function potential. The fixed points are at the edges 11,4 probability current associated with an eigenstate in a

(m odd and the centerrgi even of the Brillouin zone. For collapsed band is very small. Fbe=5, only the positive

lpziiiswe can obtain the location in quasienergy of the f'xedenergy components of an eigenstate could contribute to this

current since the current due to the negative energy compo-
m: mar/l. (59) nents is aIreaQy very sme{ilt qecays gxpgnentially yvith).
' Because of this, each oscillatiffunction in the chain must
From this and the additional condition<C, ,<1 we obtain  reflect the incident positive energy components of an eigen-
the first threeg ;= 0.395,&, ,=0.579, anct; 3=0.553. The  state in a collapsed band. This is only possible if the location
valueeqo=0 is not important because the wave function ofin quasienergy of the collapsed band is close to the quasien-

this state vanishes everywhere. _ _ergy value for which a transmission zero occurs in a single
These three fixed points have been marked with arrows iy_fynction potential®

the different panels in Fig. 8. It is important to mention that |, Fig. 9a), the transmission probability through ome

th_ere are an infinite num_ber of tlhese point_s: In the panels if,ntion has been plotted alongside the band structure of the
Fig. 8, only those associated .W'th the positive energy Chan|'nfinite chain shown in Fig. @). These figures show that the
nels,lnjd_,, are sh_?wn.tThe hlg_?ﬁrt;nek:)rgydchar?nels arz gol cation of the collapsed band and the location of the zero of
ﬁglt.lpg dl:r::eaasr:gnslilcrigc;?ycr:\gn e i?] tr?gms shown an ransmission are very close. Other collapses are expected for
P y sl 9 ' values of V; that satisfy the approximate relation
Vf (mod1)~=0.767. A relationship between the suppression
of tunneling and band collapse has been pointed out before
As can be seen in Fig. 9, near the vallie=0.767, one of by Gomez-Llorenteet al,!’ although within the two-band
the three QE bands that participated in the exchange deypproximation.

C. Band collapse
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In Fig. 9c), we enlarge the region occupied by the col- simple procedure to calculate the components of a quasi-
lapsed band. It reveals that the band has a finite width bound state associated with one of the poles of an S matrix.
~0.008:w. Several avoided crossings with other bands can We studied the dynamics of the band structure as a func-
be seen. In Fig. @) we only needed to include Floguet chan- tion of the strength of a time periodic potential and found
nels withn=<1 in the calculation , which shows that the basicthat the lowest(in average energybands are strongly af-
structure of the band is determined by the coupling betweefected by this parameter and show an almost periodic depen-
the first propagating channab€0) and the negative energy dance on it, with successive exchanges of identity between
channels. Another way to obtain this basic structure is bythem.
using the diabatic representatitin® where all avoided We identified points in the quasienergy band structure re-
crossings with a gap smaller than a certain value are replacddted with standing waves whose nodes correspond to the
by crossings. In Fig. @), superimposed on the band is a plot location of the oscillatings functions in the chain. At these
of the function cos(®), which corresponds to the shape of points (at the edge and center of the momentum Brillouin
the band if only nearest-neighbor interaction is allowed. Thezone one of the bands that participate in an avoided crossing
relative displacement of the maxima in the two curves indi-remains pinned as the strength of the oscillating potential is
cates that there is a small amount of direct coupling betweenhanged.
non-adjacent cells. In Fig.(6) we show the average energy ~ We found that for certain values of the strength of the
of the eigenstate associated with the collapsed band and alsscillating potential, the width of one of the QE bands be-
the structure of two eigenstates at the points indicated. Neamomes very small. This phenomenon has been called in the
the edges of the Brillouin zonghe fixed point the structure literature “band collapse.” It provides a possible mechanism
of the eigenstate is dominated by the structure of the unpeto produce highly non-dispersieoherenk states in a wave-
turbed state, sitgx), which carries no current. The energy of guide or superlattice. We found that the “collapse” is related
the Floquet eigenstate near these points is therefore positivea the dynamical quenching of the transmission through a
As one moves from the edge to the center of the Brillouinsingle oscillatings-function potential.
zone the negative energy channels dominate and the average
energy becomes negative. ACKNOWLEDGMENTS
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been shown to have transmission zef@sonance$®?!and
therefore one might expect to observe QE band collapses APPENDIX A

associated with periodic chains of these potentials. . o ) o
For a single oscillating delta-function potential, it has

VIl. CONCLUSIONS been sho that the elastic transmission amplituds,

. . ) _ ~obeys an equation of the form
We studied the dynamical properties of a spatially peri-

odic chain of oscillating delta-function potentials, using two 1

basic methods: degenerate perturbation theory and the Flo- C”_Fn+ G, (A1)
quet translation matrix. Degenerate perturbation theory was.
developed to give a physical picture for the avoided cross‘-’vIth
ings in the perturbative regime. The translation matrix hﬁ(e)
method was developed as a more efficient method to calcu- Fnle)=1+ E (o (A2)
late the eigenstates of the system. Also we were able to show n+a(€)
an important relation with the scattering of a singleand
S-function potential. 2
Analysis of the average energy of the eigenstates of the Gy (€)= hn-1(e) . (A3)
system when a harmoni¢frequency w) perturbation is " 1+Gy-1(e)
present reveals an interesting effect when the energy of th?herefore,
unperturbed system is close to a multiplefia. Turning on
the harmonic space-periodic potential might cause the par- C_, F_n+1
ticle to give away all its energyemit photons This might [ 1+ G_, (Ad)
provide a means of “cooling” atoms in a standing light-wave . L
field. When this expression is evaluated at the value of the

We find that the lowestin average energybands of the quasienergy.forlwh'ich the S matrix has poIes_ on each chan-
infinite chain can be considered the “quasibound stat@el' we obtair(* |nd|catfs that the corresponding function is

—_ *
bands” in the following sense: their average energy is mosthyfvaluated at the polé==, ;= —G=,,,, and therefore,

negative(the corresponding eigenstates have their main sup- % * 2%
C7n _ I:7n+l _ an+1 _ h7n

port in the negative energy channetnd their structure is - - - —_7*2
very similar to the structure of the quasibound state of aC* ., 1+G*, 1+G*, (1+G*)? "
single s-function potential. In Appendix B we provided a (A5)
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APPENDIX B S = aVoa/\Vig,

A quasibound state associated with the pole ofSama-
trix can be found using the following argument. In general,
any complex symmetric matrix, for example tBamatrix in
the complex plane, with distinct eigenvalues can be written a—x as E—E*. (B3)

in the forn?® . . .
Vg is the quasibound state, and it does not correspond to a

square integrable wave-function. We define it as the eigen-

S=VDVT, (B1) vector of S whose eigenvalue diverges at the pole. Now we
whereD is a diagonal matrix. This can be written as proceed to show, using the exact solution for wmatrix of
the single 5-function potential that, at the pole locatio8,
S=a,ViAVI+aV,AVI+ (B2 can be written in this way and we will find the corresponding
components oV .
whereay,a,, ... are the diagonal elements®f(which are The diagonal elements of the transmission matrix are
proportional to the eigenvalues 8f andV,,V,, ... are the given by the quantitie€,,. From this diagonal one can pro-

columns ofV. As we approach a pole of th® matrix, E duce the rest of this matrix by using the functiofis as
—E*, and one of the eigenvalues 8fdiverges. Therefore, defined in Ref. 15. Th& matrix (near the polecan be writ-

S—S*, where ten as(only the transmission components are shpwn
1 1z*, WUzZ*,z%,) 1NZ*,Z*,Z*,)
A 1 1/z*, UNZ* ;7% )
S D, (B4)
A Ztlztz th 1 1/Zt3 :
Z*\7% 7%, ZF,7F, Z*, 1

with D a diagonal matrix with diagonal elemerits=( ...Cj ,C*,,C*,...). In theabove expression we made use of the
fact that to go down on a column starting from the diagonal matrix multiplieZ’py and to go up on a column from the
diagonal matrix element divides b¥; (this is only true at the pole, wherE}=—G}). From this, and usingd®
=C¥(...17%%,7*¥37*2 7*27*27*2 .. .), wewrite S* as

1 z*, 7*,7%,
. (Z* ) Z* (2% ) Z* 7% (2% )
st :CS * 7% * * ok * 7% * 7% ’ (BS)
cee (Z,lz,z) Z,l(Z,lZ,z) Z,lz,z(z,lz,z)

(Z%,Z%,Z%5) ZF,(Z%,Z%,2%5) 2% 2% ,(Z%,Z%,7% )

This expression has exactly the form anticipated in the discussion about the form of the S matrix near the pole, since it can be
written as an external product,

S*=C}Voe/\Vie, (B6)
with

Voe=( ... 12%,,Z%,Z%,, 2%\ Z% , 7% 5, .. ), (B7)

andCj diverging at the pole.
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