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Quasienergy band structure of the harmonically drivend-function chain
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We study the quasienergy band structure of a potential consisting of a periodic array of harmonically
oscillating d functions. The perturbative and non-perturbative regimes are investigated using Floquet-Bloch
states and the Floquet translation matrix whose eigenvalues and eigenvectors are given in terms of continued
fractions. We study the structure of these eigenstates and relate it to the structure of the quasibound state of a
single d-function potential. We also study the dynamics of the bands as a function of the strength of the
oscillating potential and find that the collapse of one of the quasienergy bands is related to the quenching of the
transmission through a singled-function potential.
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I. INTRODUCTION

Since the 1930s, the study of space-periodic potentials
yielded fundamental information about the properties
electrons in crystals. Tunneling and interference effects g
rise to the well-known energy band structure in such mat
als. For real crystals, in addition to the band structure,
has to consider the interaction of the electrons with impu
ties or defects, the electron-electron interaction, and
electron-phonon interaction to give an accurate descrip
of the dynamics of electrons in such materials.

The development of superlattices and the more recent
vances in atom optics have brought to the forefront the st
of space periodic potentials since, for the first time, it h
been possible to observe fundamental quantum effects,
solely to the spatial periodicity of the potential, that had be
predicted long ago. These include Landau-Zener tunnel
Wannier-Stark ladders, and Bloch oscillations, which oc
in a periodic system driven by a DC electric field.1

The effects of time-periodic forces on spatially period
systems have also been studied and interesting phenom
have been predicted~and some observed experimentall!
such as dynamical localization~mini-band collapse!,2,3

photon-assisted tunneling,4 quantum Hamiltonian ratchets,5,6

chaos-assisted tunneling,7–11 dynamic Anderson-
localization12 and quantization of particle transport.13

Because of the myriad of phenomena that have been
sociated with space-time periodic potentials, it is interest
to study one of the simplest potentials which has both p
odicities: a spatially periodic chain ofd-function potentials
whose strength oscillates periodically in time. The ma
ematical simplicity of this potential permits an analytic com
putation of its eigenstates and eigenvalues with the us
continued fractions. This simplicity also allows for a cle
understanding of the basic dynamical properties of a qu
tum particle under a space-time periodic potential. This s
tem is special because its classical analog
quasi-integrable,14 whereas most other systems of this ty
are non-integrable.

In Sec. II we derive the Floquet-Bloch~FB! Hamiltonian
0163-1829/2002/66~17!/174306~14!/$20.00 66 1743
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for the oscillating delta chain and use it to investigate
quasienergy~QE! band structure in the perturbative regim
In Sec. III we construct the Floquet translation matrix~TM!.
In Sec. IV, we solve for the eigenvalues and eigenvectors
the TM matrix using continued fractions. In Sec. V, we stu
the structure of the eigenvectors in the negative energy ch
nels and relate it to some scattering properties of the sin
d-function potential which are derived in Appendices A a
B. In Sec. VI, we study how the QE band structure chan
as a function of the strength of the oscillating potential. A
finally in Sec. VII, we make some concluding remarks.

II. FLOQUET-BLOCH APPROACH

The Hamiltonian we will study in this paper is of the form

H5
p2

2m
1@Ṽ01Ṽ1 cos~vt !# (

m52`

`

d~x2mL!. ~1!

Here,p andx are the momentum and position operators,m is
the effective mass of the particle,Ṽ0 is the strength of the
static part of the potential,Ṽ1 is the strength of the oscillat
ing part of the potential,v is the frequency of the oscillation
t is the time, andL is the distance between neighboring de
functions.

Since a wave function that satisfies Schro¨dinger’s equa-
tion i\(]C/]t)5HC with Hamiltonian~1! must be periodic
in time and space~Floquet-Bloch theorem!, the solutions are
of the form

Ce,k~x,t !5e2 i et/\eikx (
n52`

`

(
m52`

`

cn,me2pmi(x/L)e2 invt,

~2!

where \ is Planck’s constant,cn,m is a probability ampli-
tude, e is the quasienergy~with allowed values 0<e
<\v), and k is the Bloch momentum~for which the first
Brillouin zone is taken to be2p/L<k<p/L). If we sub-
stitute the stateCe,k(x,t) into the Schrodinger equation an
use the fact that (1/L)*2L/2

L/2 dx exp@2pi/L(m2m8)x#
©2002 The American Physical Society06-1
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5dm,m8,(1/T)*o
Tdt exp@iv(n2n8)t#5dn,n8 , we obtain an eigen-

value equation for the amplitudecn,m ,

(
n852`

`

(
m852`

`

H̃n,n8,m,m8
FB cn8,m85e cn,m , ~3!

whereH̃FB is the FB Hamiltonian

H̃n,n8,m,m8
FB

5F \2

2m S k1
2p

L
mD 2

2n\vGdn,n8dm,m81
Ṽ0

L
dn,n8

1
Ṽ1

2L
~dn21,n81dn11,n8!. ~4!

Diagonalization of this matrix yields the quasienergies a
eigenvectors as a function of the Bloch-momentumk:

For computational purposes, it is convenient to define
following dimensionless quantities,

«[e/\v, l[LA2mv

\
, k[kA \

2mv
,

x8[xA2mv

\
, t5vt, ~5!

V1[
mṼ1

2\2A2mv/\
, V0[

mṼ0

\2A2mv/\
, HFB[H̃FB/\v.

In terms of these dimensionless variables, the FB Ham
tonian takes the form

Hn,n8,m,m8
FB

5S 1

l 2
~kl12pm!22nD dn,n8dm,m812

V0

l
dn,n8

12
V1

l
~dn21,n81dn11,n8!. ~6!

For zero static potential,V050, and small V1, the
quasienergy bands can be labeled away from the avo
crossings, by the integer pair (n,m) as is shown in Fig. 1 for
the parametersV150.03,l 55. The FB eigenvector corre
sponding to the point« (n,m)(kl) on band (n,m), is a plane
wave with ~dimensionless! energyE5(n1«) and ~dimen-
sionless! momentumK5k1(2p/ l )m. The curve in Fig. 1
for the pair (n,m) is obtained by drawing a parabola ce
tered at the point (n,2pm) in the infinite plane (E,K). The
segment of the parabola that crosses the region 0<E<1,
2p/ l ,K<p/ l , gives rise to the quasienergy band labe
(n,m).

It is also useful to plot the average energy of the
eigenstates,Ce,k(x,t), which we define as

^E&[(
n

~«1n!(
m

ucn,mu2. ~7!

This is shown in Fig. 2 for the same parameters chosen
Fig. 1. Let us focus on three features, marked A,B,C, in F
1 and 2. We begin by studying B, an avoided crossing
17430
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tween bands~1,21! and ~2,1!. From first-order degenerat
perturbation theory we obtain the reduced 232 Hamiltonian
near the pointkl;1:

HFB5F «1,21
0 ~kl ! 2

V1

l

2
V1

l
«2,1

0 ~kl !
G , ~8!

where the unperturbed quasienergies are«1,21
0 (kl)5 1

25 (kl
22p)221,«2,1

0 (kl)5 1
25 (kl12p)222. The eigenvalues o

this Hamiltonian matrix give the quasienergy bands in
neighborhood of the crossing,

«6~kl !5 1
2 @«1,21

0 ~kl !1«2,1
0 ~kl !#

6 1
2A@«1,21

0 ~kl !2«2,1
0 ~kl !#2116S V1

l D 2

. ~9!

At the middle of the avoided crossing, where«1,21
0 5«2,1

0 ,
the distance between the bands,D, is

D54
V1

l
. ~10!

Note that the width of the avoided crossing does not dep
on the energy or momentum of the bands involved, which

FIG. 1. Quasienergy curves forV050,V150.03,l 55. Curves
have been labeled using (n,m) pairs, where the energy of the co
responding unperturbed state isE5(n1«)\v, and its wave vector
is K5k12pm/ l . FeaturesA, B, C, andD are indicated. The inse
shows a magnification of the dashed box.
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FIG. 2. Average energy,̂E&, vs Bloch mo-
mentum, k, for V050,V150.03,l 55. Features
A, B, C, and D ~discussed in the text! are indi-
cated.
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a peculiar feature of the delta-function chain. Therefore,
the delta-function chain, all first-order avoided crossin
have the same width,D.

Feature C is an example of a first-order avoided cross
between bands~0,0! and ~1,21!. Note that the first-order
avoided crossings in the quasienergy plot reveal themse
as crossings in the average energy plot. This happens
cause at an avoided crossing the two states exchange id
ties, and the average energy includes the contribution f
both states.

Feature A, in Fig. 2, is a second-order avoided cross
involving a two phonon process between the unpertur
states~2,1! and ~0,0!. This is evident in Fig. 2, where th
crossing occurs between a band with average energy
2\v and a band near 0\v.

Feature D in Fig. 2 cannot be explained using degene
perturbation theory. It is not the result of an avoided cross
between unperturbed states. This feature occurs when
unperturbed quasienergy band~1,21! ~in Fig. 1! crosses the
lower edge of the quasienergy Brillouin zone («50). This
sudden drop in the average energy of the eigenstate wil
discussed in Sec. IV.

III. TRANSLATION MATRIX

Let us now construct the Floquet translation matrix for t
d-function chain. This will be done in two steps. First, w
calculate the transfer matrix connecting the Floquet coe
cients of the wave function@Eq. ~2!# on the left and on the
right of a d function. Then we calculate the translation m
trix which connects the Floquet components of the wa
function on the left side of a delta function with the comp
nents on the left side of the nearest neighbor delta funct
The eigenvectors of this translation matrix will have eith
pure real ~norm of eigenvalue equal to one! or complex
~norm different from one! Bloch momentum. The cases wit
17430
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real Bloch momentum correspond to the physical sta
while the eigenfunctions with complex Bloch momentum a
not physical since they diverge in one direction along thx
axis.

A. Time periodicity

Let us write the FB state,Ce,k(x,t), in terms of dimen-
sionless variables, and in the form

C«~x8,t!5 (
n52`

`

cn~x8!e2 i («1n)t, ~11!

where cn(x8) contains all the spatial dependance of t
wave function. Since the potential is zero everywhere exc
at x85ml, we assumecn(x8) in regions I and II~on the left
and right of thed function atx850, respectively! to be of
the form

cn
I ~x8!5

1

Akn

~aneiknx81dne2 iknx8! for 2 l ,x,0,

~12!

cn
II~x8!5

1

Akn

~cneiknx81bne2 iknx8! for 0,x, l .

For finite chains, the factor 1/Akn is included to ensure uni
tarity of the S matrix;15 we also use that convention her
The dimensionless wave vectors,kn , are given by

kn[A«1n. ~13!

Note that forn,0 the wave vector is imaginary and give
rise to exponentially decaying and growing modes. Th
will be discussed later in Sec. V.

Continuity of C«(x8,t) at x850 gives

an1dn5cn1bn . ~14!
6-3
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Because of the delta function in the Hamiltonian, the spa
derivative ofC«(x8,t) at x850 is discontinuous and satis
fies

dC«

dx8
U

x8501

2
dC«

dx8
U

x8502

5@V01V1 cos~t!#C«~0,t!.

~15!

This leads to the condition

cn1dn2bn2an522i @sn~an1dn!1hn21~an211dn21!

1hn~an111dn11!#, ~16!

where

hn5
V1

~«1n!1/4~«1n11!1/4
, sn5

V0

A«1n
. ~17!

Using Eqs.~14! and~16! we solve forcn andbn in terms of
an anddn to obtain

cn5an2 isnan2 ihn21an212 ihnan112 isndn2 ihn21dn21

2 ihndn11 ~18!

and

bn5dn1 isnan1 ihn21an211 ihnan111 isndn1 ihn21dn21

1 ihndn11 . ~19!

It is useful to define the column vectorsA, B, C, andD with
componentsan , bn , cn , and dn , respectively. Then Eqs
~18! and ~19! can be written in matrix form as

C5~12X!•A2X•D, ~20!

B5X•A1~11X!•D, ~21!

where the matrixX has components

@X#n,n85dn8,n21ihn81dn8,n11ihn8211dn8,nisn . ~22!

This system of equations can also be written as

S C

BD 5M•S A

DD ~23!

with

M5F12X 2X

X 11XG . ~24!

The matrix M relates components of the eigenstates on
posite sides of a singled function in the infinite chain.

B. Spatial periodicity

Because of the spatial periodicity of the Hamiltonian E
~1!, Floquet-Bloch states have the property

T lC«,k~x8!5C«,k~x81 l !5lC«,k~x8!, ~25!
17430
l

p-

.

whereT l is the spatial translation operator andl is its eigen-
value, which satisfiesl5eikl for k real whenC«,k(x8) is a
Bloch function. Imposing this condition on the wave fun
tion and its derivative at the pointx852 l /2, we obtain

l~ane2 iknl /21dneiknl /2!5cneiknl21bne2 iknl /2,
~26!

l~ane2 iknl /22dneiknl /2!5cneiknl /22bne2 iknl /2.

We can write this set of equations as

lFT2 l /2 T l /2

T2 l /2 2T l /2
G S A

DD 5FT l /2 T2 l /2

T l /2 2T2 l /2
G S C

BD , ~27!

where the matrixT6 l /2 is diagonal and has matrix elemen
e6 iknl /2. We can now write

lS A

DD 5FT2 l /2 T l /2

T2 l /2 2T l /2
G21FT l /2 T2 l /2

T l /2 2T2 l /2
G S C

BD
5

1

2 F T l /2 T l /2

T2 l /2 2T2 l /2
GFT l /2 T2 l /2

T l /2 2T2 l /2
G S C

BD
5FT

l
0

0 T2 l
G S C

BD . ~28!

If combine Eqs.~23!, ~24!, and~28!, we obtain

TM S A

DD 5lS A

DD , ~29!

where

TM 5FT
l
~12X! 2T

l
X

T2 lX T2 l~11X!
G ~30!

is the Floquet translation matrix. After diagonalizing the T
matrix, one selects the eigenvectors corresponding to eig
valuesulu51. These are the Floquet-Bloch states of the s
tem.

C. Static potential case„V0Å0,V1Ä0…

For a purely static potential, the TM matrix is a 232
matrix with two distinct eigenvalues and correspondi
eigenvectors. It can be shown that

TM5F eikl S 11
Vo

2ik D eikl S Vo

2ik D
e2 ikl S 2

Vo

2ik D e2 ikl S 12
Vo

2ik D G , ~31!

wherek5A2E.
A graph of the absolute value of the two eigenvalues

TM, as a function of energy, for the static delta chain
shown in Fig. 3~a!. The prohibited energy regions are th
regions occupied by the ‘‘bubbles.’’ These occur at energ
for which the absolute value of the eigenvalues of TM is n
one. The well-known band structure for this potential is o
tained by plotting energy versus Bloch momentum as sho
in Fig. 3~b!. For the parameters chosen in Fig. 3, the de
6-4
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FIG. 3. ~a! Energy,E, plotted as a function of
the absolute value of eigenvaluesl1,2 of the TM
matrix ~measured in units of the bound-state e
ergy of one d-function potential, Ebound

52mVo
2/2\2521). ~b! Energy vs Bloch mo-

mentum,k, for a static chain. Parameters used a
V052A2, V150, l 55, m51, and\51.
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function potential has a bound state atE521. That is pre-
cisely the location of the negative energy band, which oc
pies the region21.025,E,20.975. The width of this band
is known to decrease rapidly with the distance betwe
wells.22 For l 55 it is already of the order of 1023.

It is now interesting to use the Floquet TM matrix deriv
in Secs. III A and III B for the case whenV0Þ0,V150 as a
way to test the Floquet formalism and to gain insight into
effect of a time periodic perturbation in the band structure
the static potential. Using the Floquet TM matrix of Eq.~30!
and the same parameters is in Fig. 3, we obtain in Fig. 4~a!,
a plot of the eigenvalues of the TM matrix as a function
the quasienergy. In Fig. 4~b!, we obtain a plot of the quasien
ergy versus Bloch momentum. The relation between Fig
and Fig. 3 is simple. The energy axes in Figs. 3~a! and 3~b!
have been divided into intervals of width\v and the inter-
vals have been mapped into the region 0<e<\v in Figs.
4~a! and 4~b!, respectively. The way to recover the results
17430
-

n

e
f

f

4

Fig. 3 starting with Fig. 4 is to ‘‘unfold’’ the quasienergy ax
by calculating the ‘‘average’’ energy, as defined in Eq.~7!,
for each eigenvector in the QE bands. This shows us
when the oscillating part of the potential is small compar
to the static part, the quantity that approximately preser
the band structure of the static potential is^E&. The effect of
a small oscillating potential is only important when the d
tance between two unperturbed energy bands is a multipl
\v ~in the neighborhood of a quasienergy avoided crossin!;
this is where the deviations of^E& from the band structure o
the static potential occur, as was shown in Sec. II, Figs. 1
2. Thus, the average energy is a useful quantity sinc
smoothly becomes the energy as the oscillating potentia
turned off.

IV. EIGENVECTORS OF THE FLOQUET TRANSLATION
MATRIX

The solution to the eigenvalue equation@Eq. ~29!# can be
obtained in terms of continued fractions. The procedure
-

FIG. 4. ~a! Quasienergy,«, vs the absolute
value of the eigenvaluesl of the Floquet TM
matrix. ~b! Quasienergy,«, vs the Block momen-
tum, k. Parameters used areV052A2, V150,
and l 55. Only 8 positive energy channels in
cluded.
6-5
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follow is similar to the one used in the study of the scatter
properties of a single oscillatingd-function potential.15

Equation~29! can be written in the form

~12X!•A2X•D5lT2 l•A,

~11X!•D1X•A5lT l•D. ~32!

Adding these two equations, we obtain a relationship
tween the components ofA andD,

Dn5hnAn ,

with

hn52
12eikle2 iknl

12eikleiknl
, ~33!

where the dimensionless quantitieskn , k, and l @defined in
Eqs. ~5! and ~13!# have been used. The relation betweenA
andD is purely kinematic; it does not depend on the pote
tial. If we combine Eqs.~32! and ~33!, we obtain

~12lT2 l !•A5X•P•A, ~34!

whereP is a diagonal matrix with matrix elements

Pn[@P#n,n5
e2 iknl2eiknl

12eikleiknl
eikl . ~35!

We now define

Qn5@12lT2 l #n,n512e2 iknleikl . ~36!

Using this, and Eq.~22! we obtain from Eq.~34!,

Rnan2 ihn21Pn21an215 ihnPn11an11 , ~37!

where

Rn5Qn2 isnPn . ~38!

Using the method of continued fractions we now obtain fro
Eq. ~37! an expression for the ratioan /an11. Let us define

f n5
an

an11
. ~39!

If we substitute Eq.~39! into Eq. ~37!, we obtain

Rn2 ihn21Pn21f n215
ihnPn11

f n
. ~40!

Solving Eq.~40! for f n in terms of f n21 gives

f n5
ihnPn11

Rn2 ihn21Pn21f n21
, ~41!

and solving Eq.~40! for f n21 in terms of f n gives

f n215
1

ihn21Pn21
S Rn2

ihnPn11

f n
D . ~42!
17430
g

-

-

Thus, from Eqs.~41! and ~42!, we can obtain two different
expressions for the quantityf n . If we iterate Eq.~41! we
obtain

f n
↓5

ihnPn11

Rn1
hn21

2 Pn21Pn

Rn211
hn22

2 Pn22Pn21

Rn221
hn23

2 Pn23Pn22

A

, ~43!

where the downward arrow indicates that the indices of
quantities ~except Pn11) run over integers equal to o
smaller thann. If we iterate Eq.~42! we obtain

f n
↑5

1

ihnPn S Rn111
hn11

2 Pn11Pn12

Rn121
hn12

2 Pn12Pn13

Rn131
hn13

2 Pn13Pn14

A
D ,

~44!

where the upward arrow indicates that the indices of
quantities run over integers equal or greater thann. It is
important to note that these two functions have very differ
dependence on n. Whenunu→`, f n

↑→` . This implies that
for unu large,an@an11 ~the components of the eigenvect
decay forn positive and grow forn negative!. On the other
hand, whenunu→`, f n

↓→0. This implies that forunu large
an!an11 ~the components of the eigenvector grow forn
positive and decay for n negative!. This means that to obtain
eigenvectors that have support in a finite number of chan
one has to usef n

↑ for n@1 and f n
↓ for n!21.

We can now derive a general prescription to generate
components of an eigenvector starting from an arbitraryan
51. By applying repeatedly the definition off n5an /an11,
we obtain

am1n5
am

f m1n21
↑ f m1n22

↑ . . . f m
↑ , ~45a!

am2n5 f m21
↓ f m22

↓ . . . f m2n
↓ am ~45b!

for anyn.0. One can avoid having to use both equations
generate the components of an eigenvector by using
~45a! and starting with anm negative enough so that a
eigenvectors have support on channels higher thanm. This
can be done since for any eigenvector, and forn negative and
large, an!an11. Then, the contribution of large negativ
components to any eigenvector will be negligible.

Let us now define the function,

Pn~«,k!5P i 52m
n 1

f i
↑~«,k!

, ~46!

wherem is chosen so all eigenvectors have support on ch
nels higher thanm. Using this function we can construct th
positive momentum components of any eigenvectorCT
6-6
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FIG. 5. Plots of components ofA and D for
two FB eigenvectors with («50.586,k50.01)
and («50.07,k50.01) for V050,V151.0,l 55.
~a! Eigenvector of the TM matrix with («
50.586,k50.01). ~b! Eigenvector of the TM ma-
trix with («50.07,k50.01). ~c! Plots ofA andD
obtained from Eqs.~47! and~33!. These plots are
indicative of the pole structure ofPn . The
dashed line corresponds to («50.586,k50.01)
and the solid line to («50.07,k50.01).
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5(AT,DT), whereT denotes transpose, starting with an ar
trarily fixed a2m51 ~before the vector is normalized!. We
can write

AT5@ . . . ,1,P2m~«,k!,P2m11~«,k!, . . . ,Pn~«,k!, . . . #.
~47!

The negative momentum components,D, are obtained from
Eq. ~33!.

For any point («,k) chosen, there is a band that pass
arbitrarily close to that point~the bands fill the first Brillouin
zone densely!. At this point, several componentsPn have a
pole. Each divergingPn gives a nonzero component of th
eigenvector corresponding to this point. After obtaining t
D components and normalizing we end up with the full
genvector which can be compared to the eigenvectors
tained from direct numerical diagonalization of the mat
TM at the same point.

We have now developed three different methods to ob
Floquet-Bloch states for our system.~1! We can find the
eigenvectors of the F.B. Hamiltonian, Eq.~6!. ~2! We can
find the poles of Eq.~47!. ~3! We can find by numerica
diagonalization the eigenvectors of the TM matrix in E
~30!. In the first two approaches, one specifies both
quasienergy and the Bloch momentum, and then one
ceeds to find the corresponding eigenvector. In the third
proach, Eq.~30!, only the quasienergy is required, the Blo
momentum is a result of the calculation of the eigenvalue
the TM matrix.

In Figs. 5~a! and 5~b!, we show a plot of two eigenfunc
tions obtained by constructing the translation matrix, TM,
parametersV151.0,V050, and then numerically finding its
eigenvalues and eigenvectors. EigenvectorC1 has quantum
numbers, («50.586,k50.01), and eigenvectorC2 has quan-
tum numbers, («50.07,k50.01). In Fig. 5~c! we show a
graph of the positive momentum components,A, and nega-
tive momentum components,D, of these eigenvectors as
17430
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function of « for k50.01, calculated using Eqs.~47! and
~33!. The components are arranged in decreasing orde
energy~from left to right!. There are very narrow peaks fo
all components shown, at quasienergies 0.586 and 0.0
can be seen in the insets. The profile of an eigenstate
obtained by connecting its corresponding peaks, is in v
good agreement with the results obtained by diagonaliz
the TM matrix.

By plotting the componentP8(«,k) in the interval 0<«
<1,0<kl<p, one can see the band structure of this pot
tial. We include bands whose eigenvectors have compon
in channelsn8<8. Figure 6~a! shows a contour plot of val-
ues ofP8(«,k). Figure 6~b! shows the QE bands obtaine
by diagonalizing TM.

As mentioned earlier, feature D in Fig. 2 cannot be e
plained using degenerate perturbation theory because it is
the result of an avoided crossing. To examine this feature
us consider the functionsf 0

↓ and f 21
↓ , @see Eq.~43!#. When

«→0, h0;1/Ak0→`, h21;1/Ak0→`, and P0;k0→0.
Therefore f 0

↓→` when «→0, which implies a0/a1 →`.
One can also show thatf 21

↓ →0 as «→0, which implies
a0 /a1→`. This means thata0 is the only non-zero compo
nent of an eigenvector corresponding to a quasienergy b
at the point«50. Therefore, the average energy of the
genvector goes to zero at this point. This explains the plu
observed in Fig. 2 at point D. In principle there should be
feature like D for any band that crosses the line«50. How-
ever, the width of the ‘‘plunge’’ in the average energy ba
depends on the size of the componenta1 of the eigenvector
as one approaches the bottom of the energy Brillouin zo
The higher the average energy of the band where the plu
occurs, the narrower it is, because thea1 component of the
eigenvector is smaller for higher average energies. This
sult might indicate that a free particle~plane wave! moving
with an energyE could be forced to lose all its energy whe
turning on a space-time periodic potential that oscillates w
a frequencyv5E/\.
6-7
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FIG. 6. V050,V150.3,l 55.
~a! Quasienergy curves obtaine
by numerical diagonalization o
the Floquet TM matrix.~b! Con-
tour plot of the function
P8(«,kl).
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V. CONTRIBUTION OF THE NEGATIVE ENERGY
CHANNELS

In this section we look at an interesting feature of t
delta chain, which establishes a nice connection with
scattering properties of a single oscillatingd-function poten-
tial. In what follows, we assume the static potential is ze
@sn50 in Eq. ~38!# and ask the question: how do negati
energy channels contribute to the Floquet eigenstates o
17430
e

o

he

system? This question is motivated by the fact that, when
parameterl is large, numerical diagonalization of the TM
matrix becomes very inaccurate because the termseiknl be-
come very large for negative energy channels~imaginary
momentumkn). Knowing how those channels contribute
the QE band structure is therefore an important question

In Fig. 7~a! we show the location, in the QE band stru
ture, of two eigenvectors of the system, and in Fig. 7~b! we
-

-

FIG. 7. ~a! Quasienergy band
structure forV050,V151.2,l 55.
Arrows show locations, («
50.775,k50) and («50.462,k
50), of two eigenvectors plotted
in ~b!. ~b! Absolute value of the
Floquet components of eigenvec
tors: ~1! («50.775,k50); and~2!
(«50.462,k50). ~c! Comparison
of the negative energy contribu
tions~D part! of the two eigenvec-
tors in ~b! with that of the quasi-
bound state of a singled-function
potential.
6-8
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plot the contribution to these eigenvectors from the vario
Floquet channels. It is important to notice the shape of D
the negative energy channels is very similar for the t
eigenvectors despite their different quantum numbers («,k).
Why is there a peak in channel -5 in all eigenvectors? W
determines this structure? For a given amplitude ofa0, the
e
c

n

rg

e

at
a
ho
ft
io

17430
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structure of any eigenvectorC can be written in the follow-
ing form:

CT5~AT,DT!, ~48!

where
AT5~ . . . ,a2 ,a1 ,a0 , f ↓
21a0 , f ↓

22f ↓
21a0 , f ↓

23f ↓
22f ↓

21a0 , . . . !, ~49!

and

DT5~ . . . ,h2a2 ,h1a1 ,h0a0 ,h21f ↓
21a0 ,h22f ↓

22f ↓
21a0 , . . . !. ~50!
e-

e

e

t
for

-

The structure of the negative energy part of the eigenv
tors can be studied by looking at the sequen
@ f ↓

21 ,( f ↓
22f ↓

21),( f ↓
23f ↓

22f ↓
21), . . . #. Let us begin by

defining the quantitiesrn andbn as

rn[
12e2iknl

e2 ikl2eiknl
, bn[eiknl2eikl , ~51!

so that

Pn5e2 iknlrn , Rn5e2 iknlbn . ~52!

Using this in Eq.~43!, we obtain an alternative expressio
for f 2n

↓ ,

f 2n
↓ 5

ih2nr2n11e2 i (k2n112k2n) l

b2n1
h2n21

2 r2n21r2n

b2n211
h2n22

2 r2n22r2n21

b2n221
h2n23

2 r2n23r2n22

A

.

~53!

For n.1 this expression can be simplified. Sincer2n.eikl

andbn.2eikl , f 2n
↓ becomes

f 2n
↓ 5

ih2ne2 i (k2n112k2n) l

11
h2n21

2

11
h2n22

2

11
h2n23

2

A

. ~54!

From Eq.~54!, one can conclude that for the negative ene
channels, the positive momentum components,A, of the ei-
genvector decay exponentially withn; f 2n

↓ }e2 l /2n. This can
be seen in Fig. 7~b! where it is evident that the negativ
energy components ofA decay very quickly withn. In con-
trast, the vector,D, has a different structure, with a peak
n525. It is in this part of the eigenvector where the neg
tive energy components contribute the most. If we had c
sen to construct the TM matrix for translations to the le
then the A part would have shown the biggest contribut
c-
e

y

-
-

,
n

from the negative channels. From Eq.~33! and for negative
energy channelsd2n.e2 ik

2n
la2n . Hence,

d
2n

d
2n11

5Z2n[
ih2n

11G2n
, ~55!

where the CF,Gn , can be defined recursively as

Gn5
hn21

2

11Gn21
. ~56!

This functionGn is precisely the same function used to d
scribe the transmission through a single oscillatingd
function.15 As shown in Appendix A, the ratio between th
diagonal components,C2n , of the transmission matrix for a
singled function is

C2n*

C2n11*
52Z

2n
* 2 ,

where the~* ! denotes evaluation at the pole of theS matrix.
The relationship actually goes further. In Appendix B w

look at the quasibound state of the singled-function poten-
tial and prove that its components~only the transmission par
is considered, since the reflection should be identical
symmetry reasons! can be written as

V
QB

T 5~ . . . ,1,Z21* ,Z21* Z22* ,Z21* Z22* Z23* , . . . ! ~57!

whereas according to Eq.~55!, the negative energy compo
nents of the vector,D, can be written as

DT5~ . . . ,1,f 21
↓ , f 21

↓ Z22 , f 21
↓ Z22Z23 , . . . !. ~58!

The difference between Eqs.~58! and~59! is in the behavior
of the function f 21

↓ («,k), which for a certain range of«
~because of its dependence on the Bloch momentum k! can
be considerably different fromZ21(«). The other difference
concerns the fact that in Eq.~58! the Z2n functions are
evaluated at the pole whereas the functions in Eq.~59! are
evaluated at different values along the bands. In Fig. 7~b! we
show two eigenvectors of the infinite chain, and in Fig. 7~c!
we compare the negative energy components ofD with the
6-9
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FIG. 8. Series of plots show-
ing the evolution of QE bands~the
four lowest in average energy! as
the parameterV1 is increased with
fixed V050 and l 55. Three of
the bands~A,B,C! participate in a
periodic exchange of identity
Band A initially related to unper-
turbed state~0,0!, band B related
to unperturbed states~1,1!,~0,21!,
and band C related to state
~1,21!, ~2,1!. Arrows indicate the
position of some of the fixed
points in the QE band structure.
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quasibound state of the singled-function system. The agree
ment is quite good for all the eigenvectors that we cons
ered. The reason for such agreement, which seems t
independent of the particular quasienergy of the eigenstat
simple: the functionsZ2n are fairly smooth in the complex
plane, therefore, their value atE* and their value on the rea
axis are very close in most cases.

When the strength,V1, is small, the different Floque
eigenstates are exponentially localized about the unpertu
states. As the strengthV1 increases and the eigenstates g
support in the negative energy channels, they develop a c
acteristic peak in those channels, which can actually do
nate the structure of the vector,D, for the eigenstates with
lowest average energy.

In general we can say that the structure of all FB eig
vectors of the infinite chain consists of two very distin
parts, the positive energy components which are sensitiv
the Bloch-momentumk, and the negative energy componen
which are independent ofk and are closely related to th
quasibound state of the singled-function potential. We ex-
pect this to be a general feature that should occur in o
space-time periodic potentials such as an oscillat
Kroenig-Penney potential.

VI. BAND DYNAMICS

In this section we discuss some general features of
behavior of the quasienergy bands as the strengthV1 of the
oscillating potential is changed. In Sec. VI A we discuss
almost periodic behavior of the QE bands with lowest av
age energy asV1 is changed. In Sec. VI B we discuss th
existence of points in the QE band structure which are
17430
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affected by a change in the parameterV1. Sec. VI C deals
with the collapse~significant reduction of its width! of one of
the QE bands for particular values ofV1.

A. Periodicity of the band structure

In the sequence of plots in Fig. 8, we show the ban
associated with eigenvectors whose main support is on c
nelsn<4. We focus on these bands because they have e
cially interesting behavior as the parameterV1 is changed.
Inspection of these plots shows that asV1 is varied, the band
patterns come close to repeating their structure in an alm
periodic manner. In going fromV150 to V151.0 there
is one complete exchange of identity for each band:(0,0)
→(0,21)2(1,1), (0,21)2(1,1)→(1,21)2(2,1),
(1,21)2(2,1)→(0,0). From V151.0 to V151.414 there
is another exchange. This periodicity occurs as a function
V1

2. A similar quasiperiodic behavior was found for the tran
mission through a single oscillating delta-functio
potential,15 where the dynamics of the zeros and poles of
system depend almost periodically on the parametera[V1

2.
The period inV1

2 is one: the equivalent of panelV1
250.25 is

panel V1
251.25, the equivalent of panelV1

250.5 is V1
2

51.5, and so on.
This periodicity is another manifestation of the correlati

between the structure of the quasibound state in the si
delta scattering problem and the structure of the eigenvec
with support in the lowest energy channels in the infin
chain.

B. Fixed points in the band structure

Suppose that before we turn on the oscillating potent
we have a state which is a superposition of two plain wav
6-10
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FIG. 9. ~a! The transmission
probability for a single oscillating
d-function potential as a function
of quasienergy for V050,V1

50.767,l 55. ~b! The quasienergy
band structure of the infinite chain
for V050,V150.767,l 55. The
collapsed QE band is the thic
line. ~c! Magnification of the re-
gion in ~b! occupied by the col-
lapsed band.~d! The band~solid
line! without the small avoided
crossings with higher energy
bands ~diabatic representation!.
The function cos(2kl) is plotted
for comparison~dot-dashed line!.
~e! The average energy along th
collapsed band and the compo
nents of eigenstates from two dif
ferent locations on the collapse
band.
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in particular fn(x)5(1/2i )(eiknx2e2 iknx)5sin(knx). If kn
satisfies the condition,kn5mp/ l with 2`<m<`, then
sin(knl)50, which means that the wave function has node
the location of thed functions. This implies that this particu
lar state will not be affected as the potential is turned
~whether thed-function potential is oscillating or not!. This
state is a Bloch state since it is periodic in space and it m
belong to a band of the perturbed system. Therefore, fo
infinite chain of d functions, oscillating or not, there ar
fixed points in the band structure, in the sense that for anyV1
and V0 there is always a band attached to the points t
satisfy the conditionkn5mp/ l . This is a special feature o
the delta function potential. The fixed points are at the ed
~m odd! and the center (m even! of the Brillouin zone. For
l 55, we can obtain the location in quasienergy of the fix
points,

A«m,n1n5mp/ l . ~59!

From this and the additional condition 0<«m,n<1 we obtain
the first three,«0,150.395,«1,250.579, and«3,350.553. The
value«0,050 is not important because the wave function
this state vanishes everywhere.

These three fixed points have been marked with arrow
the different panels in Fig. 8. It is important to mention th
there are an infinite number of these points. In the panel
Fig. 8, only those associated with the positive energy ch
nels,n<4, are shown. The higher energy channels are
coupled in a significant way with the bands shown and
not produce any significant change in them.

C. Band collapse

As can be seen in Fig. 9, near the valueV150.767, one of
the three QE bands that participated in the exchange
17430
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scribed in Sec. VI A becomes practically flat, that is, t
width of that QE band has collapsed to its minimum valu
This collapse occurs almost periodically as a function ofV1

2.
Collapse of QE bands in a periodic potential driven by
oscillating electric field has been studied before using o
band and two-band approximations.2 It was shown there tha
in the single-band nearest-neighbor tight binding approxim
tion, the collapse is complete~the width of the band goes to
zero! and is determined by the zeros of the Bessel funct
J0. In the same paper, numerical calculations show that
collapse is not complete as it is expected from the v
Neumann-Wigner non-crossing rule.16

The probability current associated with an eigenstate i
collapsed band is very small. Forl 55, only the positive
energy components of an eigenstate could contribute to
current since the current due to the negative energy com
nents is already very small~it decays exponentially withl ).
Because of this, each oscillatingd function in the chain must
reflect the incident positive energy components of an eig
state in a collapsed band. This is only possible if the locat
in quasienergy of the collapsed band is close to the quas
ergy value for which a transmission zero occurs in a sin
d-function potential.15

In Fig. 9~a!, the transmission probability through oned
function has been plotted alongside the band structure of
infinite chain shown in Fig. 9~b!. These figures show that th
location of the collapsed band and the location of the zero
transmission are very close. Other collapses are expecte
values of V1 that satisfy the approximate relatio
V1

2 (mod1)'0.767. A relationship between the suppress
of tunneling and band collapse has been pointed out be
by Gomez-Llorenteet al.,17 although within the two-band
approximation.
6-11
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In Fig. 9~c!, we enlarge the region occupied by the co
lapsed band. It reveals that the band has a finite widthD
'0.008\v. Several avoided crossings with other bands c
be seen. In Fig. 9~c! we only needed to include Floquet cha
nels withn<1 in the calculation , which shows that the bas
structure of the band is determined by the coupling betw
the first propagating channel (n50) and the negative energ
channels. Another way to obtain this basic structure is
using the diabatic representation,18,19 where all avoided
crossings with a gap smaller than a certain value are repla
by crossings. In Fig. 9~d!, superimposed on the band is a pl
of the function cos(2kl), which corresponds to the shape
the band if only nearest-neighbor interaction is allowed. T
relative displacement of the maxima in the two curves in
cates that there is a small amount of direct coupling betw
non-adjacent cells. In Fig. 9~c! we show the average energ
of the eigenstate associated with the collapsed band and
the structure of two eigenstates at the points indicated. N
the edges of the Brillouin zone~the fixed point! the structure
of the eigenstate is dominated by the structure of the un
turbed state, sin(k0x), which carries no current. The energy
the Floquet eigenstate near these points is therefore pos
As one moves from the edge to the center of the Brillo
zone the negative energy channels dominate and the ave
energy becomes negative.

It has been shown before that a relationship exists
tween dynamical suppression of tunneling and band colla
In this work we have shown a relationship between dyna
cal suppression of transmission and band collapse. Othe
calized potentials such as the square well~or barrier! have
been shown to have transmission zeros~resonances!20,21 and
therefore one might expect to observe QE band collap
associated with periodic chains of these potentials.

VII. CONCLUSIONS

We studied the dynamical properties of a spatially pe
odic chain of oscillating delta-function potentials, using tw
basic methods: degenerate perturbation theory and the
quet translation matrix. Degenerate perturbation theory
developed to give a physical picture for the avoided cro
ings in the perturbative regime. The translation mat
method was developed as a more efficient method to ca
late the eigenstates of the system. Also we were able to s
an important relation with the scattering of a sing
d-function potential.

Analysis of the average energy of the eigenstates of
system when a harmonic~frequency v) perturbation is
present reveals an interesting effect when the energy of
unperturbed system is close to a multiple of\v. Turning on
the harmonic space-periodic potential might cause the
ticle to give away all its energy~emit photons!. This might
provide a means of ‘‘cooling’’ atoms in a standing light-wa
field.

We find that the lowest~in average energy! bands of the
infinite chain can be considered the ‘‘quasibound st
bands’’ in the following sense: their average energy is mo
negative~the corresponding eigenstates have their main s
port in the negative energy channels! and their structure is
very similar to the structure of the quasibound state o
single d-function potential. In Appendix B we provided
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simple procedure to calculate the components of a qu
bound state associated with one of the poles of an S ma

We studied the dynamics of the band structure as a fu
tion of the strength of a time periodic potential and fou
that the lowest~in average energy! bands are strongly af
fected by this parameter and show an almost periodic dep
dance on it, with successive exchanges of identity betw
them.

We identified points in the quasienergy band structure
lated with standing waves whose nodes correspond to
location of the oscillatingd functions in the chain. At these
points ~at the edge and center of the momentum Brillou
zone! one of the bands that participate in an avoided cross
remains pinned as the strength of the oscillating potentia
changed.

We found that for certain values of the strength of t
oscillating potential, the width of one of the QE bands b
comes very small. This phenomenon has been called in
literature ‘‘band collapse.’’ It provides a possible mechanis
to produce highly non-dispersive~coherent! states in a wave-
guide or superlattice. We found that the ‘‘collapse’’ is relat
to the dynamical quenching of the transmission throug
single oscillatingd-function potential.
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APPENDIX A

For a single oscillating delta-function potential, it ha
been shown15 that the elastic transmission amplitudeCn
obeys an equation of the form

Cn5
1

Fn1Gn
~A1!

with

Fn~e!511
hn

2~e!

Fn11~e!
, ~A2!

and

Gn~e!5
hn21

2 ~e!

11Gn21~e!
. ~A3!

Therefore,

C2n

C2n11
5

F2n11

11G2n
. ~A4!

When this expression is evaluated at the value of
quasienergy for which the S matrix has poles on each ch
nel, we obtain~* indicates that the corresponding function
evaluated at the pole! F2n11* 52G2n11* , and therefore,

C2n*

C2n11*
5

F2n11*

11G2n*
52

G2n11*

11G2n*
52

h2n
2*

~11G2n* !2
52Z

2n
* 2.

~A5!
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APPENDIX B

A quasibound state associated with the pole of anS ma-
trix can be found using the following argument. In gener
any complex symmetric matrix, for example theS matrix in
the complex plane, withn distinct eigenvalues can be writte
in the form23

S5VDVT, ~B1!

whereD is a diagonal matrix. This can be written as

S5a1V1`V1
T1a2V2`V2

T1 . . . , ~B2!

wherea1 ,a2 , . . . are the diagonal elements ofD ~which are
proportional to the eigenvalues ofS! andV1 ,V2 , . . . are the
columns ofV. As we approach a pole of theS matrix, E
→E* , and one of the eigenvalues ofS diverges. Therefore
S→S* , where
17430
,

S* 5aVQB`VQB
T ,

with

a→` as E→E* . ~B3!

VQB is the quasibound state, and it does not correspond
square integrable wave-function. We define it as the eig
vector ofS whose eigenvalue diverges at the pole. Now
proceed to show, using the exact solution for theS matrix of
the singled-function potential that, at the pole location,S
can be written in this way and we will find the correspondi
components ofVQB.

The diagonal elements of the transmission matrix
given by the quantitiesCn . From this diagonal one can pro
duce the rest of this matrix by using the functionsf n as
defined in Ref. 15. TheS matrix ~near the pole! can be writ-
ten as~only the transmission components are shown!
he
e

it can be
S* 5S � A A A A

••• 1 1/Z21* 1/~Z21* Z22* ! 1/~Z21* Z22* Z23* ! •••

••• Z21* 1 1/Z22* 1/~Z23* Z22* ! •••

••• Z21* Z22* Z22* 1 1/Z23* •••

••• Z21* Z22* Z23* Z22* Z23* Z23* 1 •••

A A A A �

D D, ~B4!

with D a diagonal matrix with diagonal elementsD5( . . . C0* ,C21* ,C22* . . . ). In theabove expression we made use of t
fact that to go down on a column starting from the diagonal matrix multiplies byZn* , and to go up on a column from th
diagonal matrix element divides byZn* ~this is only true at the pole, whereFn* 52Gn* ). From this, and usingD
5C0* ( . . . 1,Z21* 2 ,Z21* 2Z22* 2 ,Z21* 2Z22* 2Z23* 2 . . . ), wewrite S* as

S* 5C0*S � A A A

••• 1 Z21* Z21* Z22* •••

••• ~Z21* ! Z21* ~Z21* ! Z21* Z22* ~Z21* ! •••

••• ~Z21* Z22* ! Z21* ~Z21* Z22* ! Z21* Z22* ~Z21* Z22* ! •••

••• ~Z21* Z22* Z23* ! Z21* ~Z21* Z22* Z23* ! Z21* Z22* ~Z21* Z22* Z23* ! •••

A A A �

D . ~B5!

This expression has exactly the form anticipated in the discussion about the form of the S matrix near the pole, since
written as an external product,

S* 5C0* VQB`VQB
T , ~B6!

with

VQB
T 5~ . . . ,1,Z21* ,Z21* Z22* ,Z21* Z22* Z23* , . . . !, ~B7!

andC0* diverging at the pole.
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