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Lattice thermal conductivity in cubic silicon carbide
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10129 Torino, Italy
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The lattice thermal conductivity of cubic silicon carbide is evaluated by means of a microscopic model
considering the discrete nature of the lattice and its Brillouin zone for phonon dispersions and scattering
mechanisms. The phonon Boltzmann equation is solved iteratively, with the three-phonon normal and umklapp
collisions rigorously treated, avoiding relaxation-time approximations. Good agreement with the experimental
data is obtained. Moreover, the role of point defects, such as antisites, on the lattice thermal conductivity is
discussed.
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Starting from 1960, thermal characterization of solids
vealed that most of the high thermal conducting materials
adamantine~diamondlike! compounds such as diamond, Si
AlN, GaN, Silicon, etc.1 These compounds are used for co
pact semiconductor devices, where an efficient heat rem
can be crucial to give good performances. To see if it
possible to increase the device substrate ability in the ther
management, experimental investigations have been rec
done on some of these materials~diamond, silicon, and also
germanium2–7! to establish the role on the phonon condu
tivity of defects, impurities, grain boundaries, and so on.

Good thermal conductors are important not only for t
device itself, but also for the development of new comp
nents in the semiconductor processing equipments, as
vealed by the market of SiC and AlN ceramics that registe
a strong increase in past few years.8 At present, silicon car-
bide is one of the most widely used ceramics for high th
mal conductor applications, as well as for applications wh
strength and high mechanical stability are required.

Lattice conductivity of SiC in the chemical vapor depo
tion grade is around 300 W m21 K21 and 100 W m21 K21

in ceramics, at room temperature~see data from Insaco, Inc.9

and from Saint-Gobain, Advanced Ceramics10!: heat trans-
port is lower than in diamond, the best heat conducting m
terial, but of the same order as in copper. It can sound q
surprising but, in some cases, phonons are much more
cient to carry heat than electrons in metals.

Silicon carbide crystallizes in different polytypic forms:
occurs in cubic (b-SiC, also called 3C-SiC!, but also in com-
plex, long-range-ordered hexagonal and rhombohedral st
tures. First-principles investigations11,12 of structural, lattice-
dynamical, and electronic properties have been perform
with some attempts to explain the phenomenon of
polytypism,13 and ‘‘ab initio’’ calculations were also made t
obtain lattice properties.14 The thermal conductivity was con
sidered by means of a molecular-dynamics simulation15 with
an empirical potential~Tersoff model!, obtained by matching
the individual Tersoff models for Si and C.16–18 The
molecular-dynamics simulation gives good agreement w
experimental data in the temperature range between 40
and 1100 K.

In this paper, theb-SiC thermal conductivity is obtaine
by solving the phonon transport equation through an itera
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procedure previously introduced for rare-gas solids19,20 and
then extended to diamondlike solids~Si, Ge, and
diamond!.21,22 For these materials, the predicted temperat
behavior of the thermal conductivity was found in excelle
agreement with experimental data and a satisfactory ex
nation of the isotope scattering effect was obtained.

The interaction between atoms is expressed in terms
pair potential with parameters obtained by fitting the expe
mental phonon spectrum. The iterative approach allows
to take into account the discrete nature of crystal lattice
its true Brillouin zone for the calculation of phonon dispe
sion and for the determination of three-phonon scatter
processes. Moreover, the probability rates of various sca
ing mechanisms contributing to the thermal resistance is c
sidered without the use of the relaxation-time approximati

As we shall see, the calculation of thermal conductivityk
of b-SiC shows good agreement with experimental data
the evaluation ofk the role of point defects, in particula
antisites defects, will be specifically considered. Antisi
produce a strong reduction in lattice heat transport andk
turns out to be only slightly depending on the temperat
for high concentrations of defective lattice sites.

As previously done for Si, Ge, and diamond,21,22 let us
consider the phonon system for a cubic solid with a d
mondlike lattice, with two atoms in the lattice cell with dif
ferent masses. The elementary crystal excitation in the
monic approximation is a phonon described by wave vec
q and polarization indexp. The frequency of the excitation
will be indicated byvq,p and byeqp,b the polarization vector
associated to the vibration of the atom at the positionb in the
lattice cell situated at the position vectorl. In the case of
diamondlike silicon carbide, vectorb has only two possible
determinations.

If N is the total number of cells in the crystal, the expa
sion of the displacement fieldhlb in terms of phonon absorp
tion and creation operatorsaqp , aqp

† , can be written in the
form

hlb5 i S \

2MbND 1/2

(
qp

1

Avqp

@eqp,b* e2 iq• laqp2eqp,be
iq• laqp

† #,

~1!
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whereMb is the atomic mass of (l,b) site. This representa
tion corresponds to that introduced by Srivastava.23

Using a pair potentialV(r ), where r is the interatomic
distance, one can easily expand functionV in terms of the
displacementshlb , obtaining the second-order term of th
potential energy of the interaction between two atoms at
sitions (l,b) and (l8,b8):

Vlb,l8b8
(2)

5
1

2
$g lb,l8b8D•D1b lb,l8b8 @~ l8Àl¿b8Àb!•D#2%,

~2!

whereD5hl8b82hlb and the coefficientsg lb,l8b8 , b lb,l8b8 are
related to the first- and second-order derivatives of the
tential. The coupling coefficients take values that will
denoted byg and b, respectively, for atoms at the neare
neighbor distanceR and byg8 andb8 for atoms at the next-
nearest-neighbor distanceR8 ~let us assume forg8,b8 the
same value for Si-Si and C-C interactions!. In Ref. 21 adi-
mensional parameters were introduced:r5g/(bR82),r8
5g8/(bR82). For the lattice constant of cubic SiC, the val
4.35931028 cm is assumed.

The parametersb, b8, g, andg8 are governing the equa
tion of atomic motion and can be obtained by fitting t
experimental phonon-dispersion curves. For the problem
der consideration, that is the study of thermal conductiv
the use of a more sophisticated potential, such as a Te
potential, is not essential. The Tersoff potential is a pair
tential with coefficients depending on the loc
environment16 and is then fundamental to obtain reticul
configurations and defect energies. For the thermal cond
tivity evaluation, the pair potential used in this paper is n
less convenient than a Tersoff potential, due to the fact t
in both cases, adjustable parameters are introduced to fi
phonon-dispersion curves.

As in Ref. 21, the equation of motion can be solved
obtain phonon frequency and polarization vectors. The m
difference of atoms in the lattice cell produces an ove
lowering of the acoustic-phonon branches. The pair poten
alone is not able to give the splitting atq50 of the optical
modes and the raising of the longitudinal-optical~LO! mode
frequency above that of the transverse-optical~TO! mode,
since these effects are due to the long-range contributio
the Coulomb interaction.

The shift of LO mode is here considered as a perturba
in the phonon Hamiltonian, changing the LO frequency b
factor Aeo /e`, where eo ,e` are the static and the high
frequency dielectric constants, as discussed by Born
Huang.24 For b-SiC, eo59.71, e`56.52,25 giving a shift of
22%, the same value that one can obtain by fitting
phonon-dispersion data of the LO branch.

In Fig. 1 the result of the calculation of phonon dispe
sions by means of the atomic motion equation is shown:
parameters are chosen to have the best possible agree
with the experimental data26,27 and turn out to ber50.06
and b54.6,b850.18 (b,b8 are in units of
1020 g cm22 s22). The value ofr8 is assumed to ber8
52r/8, as was obtained in Ref. 21. The main role in t
equation of motion is played byb and r, while b8, r8
17430
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slightly improve the fit to the experimental data. The a
sumption of a common parameter to account for the ne
nearest-neighbor interactions, for any pair of atoms un
consideration, is then justified.

In order to avoid the use of relaxation-time approximati
and consider the discrete lattice nature and the true Brillo
zone, we introduce the third-order contribution of the int
action energy between the two reticular centers atl,b and
l8,b8:19,20

Vlb,l8b8
(3)

5 1
6 a lb,l8b8 @~ l82 l1b82b!•D#31 1

2 b lb,l8b8 @~ l82 l

1b82b!•D#@D•D# ~3!

wherea lb,l8b8 involves the third-order derivatives of the po
tential. By summing over all the lattice sites, the total anh
monic contributionH (3) to the crystal energy is obtained an
the matrix elements ^q9p9uH (3)uqp,q8p8& and
^qpuH (3)uq8p8,q9p9& can be evaluated. The probability rate
connected with the above matrix elements will be denoted

Q qp,q8p8
q9p9 , Q qp

q8p8,q9p9 , respectively. In the three-phonon pro
cesses, the phonon wave vectorq belongs to the true Bril-
louin zone of the lattice and the momentum conservation
rigorously treated also in the umklapp case.

Considering only nearest-neighbor interactions in
evaluation of three-phonon scattering, the anharmonic
mensionless parameter«52R82a/b can be used. To esti
mate parameter« it is necessary to know the Gru¨neisen con-
stantg of the material: in the case ofb-SiC, a value ofg
51.2 at high temperatures, giving«535, can be deduced
from Ref. 14.

To obtain the thermal conductivity, we linearize the Bo
zmann equation for the phonon distribution. In terms of t
deviation functioncqp , linking the perturbed and unper
turbed phonon distributionsnqp andnqp

o in this manner

FIG. 1. Theoretical phonon-dispersion curves~continuous lines!
for cubic SiC, in comparison with experimental data~Ref. 26!.
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LATTICE THERMAL CONDUCTIVITY IN CUBI C . . . PHYSICAL REVIEW B 66, 174301 ~2002!
nqp5nqp
o 2cqp

]nqp
o

]~\vqp!
, ~4!

the linearized Boltzmann equation for a solid subjected t
thermal gradient“T can be written in the following form:28

kBT vqp•“T
]nqp

o

]T
5 (

q8p8
(
q9p9

Q qp,q8p8
q9p9 @cq9p92cq8p82cqp#

1
1

2 (
q8p8

(
q9p9

Q qp
q8p8,q9p9@cq9p91cq8p8

2cqp#1 (
q8p8

Qqp
q8p8@cq8p82cqp#

2
1

tqp
cqpnqp

o ~11nqp
o !, ~5!

where the first and the second terms on the right-hand
describe three-phonon scattering processes, the third ter
the elastic scattering due to impurities, and the fourth te
provides a phenomenological description of boundary s
tering in terms of relaxation timestqp . The phonon group
velocity ]vqp /]q is denoted byvqp .

An iterative procedure is used for solving the Boltzma
equation:20,21 oncenqp is known, the heat current density

U5
1

V (
qp

\vqpvqpnqp ~6!

is evaluated (V is the total volume of the crystal!, and from
the i th component ofU with respect to the Cartesian refe
ence frame

Ui52(
j

k i j

]T

]xj
~7!

the tensor representative of the thermal conductivity of
materialk i j , is immediately obtained.

Parametersr, r8, b, b8, and« are the only parameter
that must be inserted in the calculation of the thermal c
ductivity: let us stress that all the parameters employed in
theory have been independently justified through the h
monic and anharmonic vibrational properties of the crys
that is, phonon-dispersion experimental curves and Gr¨n-
eisen parameter.

The thermal conductivity of the cubic SiC is shown
Fig. 2: it is in full agreement with the experimental condu
tivity values obtained in Refs. 29 and 30. If only thre
phonon scattering mechanisms are considered,k sharply in-
creases at low temperatures~see curvea in Fig. 2!. No
difficulties are found in the evaluation ofk at low tempera-
tures, while relevant problems are known to arise in
molecular-dynamics calculations.15

The relaxation-time approximation is avoided for t
three-phonon scatterings but is introduced for boundary s
tering in the form oftp5L/sp , whereL represents a char
acteristic length in the sample,28 andsp the velocity of sound
for a phonon with polarization indexp.
17430
a

de
is

t-

e

-
e
r-
l,

-

e

t-

From the comparison of the theoretical calculations w
the experimental data, we can see that a scattering me
nism different from three-phonon processes becomes im
tant below 400 K. The origin of the mechanism can
viewed in the presence of microcrystallites, whose gr
boundaries are scattering phonons in the experime
samples. As discussed by Ziman, a simple form of relaxa
time, as the one used for scattering due to sample bou
aries, can be introduced for the grain-boundary scattering
Fig. 2, curveb represents the behavior of thermal conduct
ity with a relaxation time of the Ziman form: the value ofL
used to fit experimental data turns out to be;2 mm.

The calculation of the grain-boundary effect used here
be only qualitative: as discussed in Ref. 31, the role of gr
boundaries in diffracting phonons is much more compl
but the experimental data in the low-temperature region
SiC are really too poor for a reliable comparison.

The microscopic model used in the calculation of thre
phonon scattering allows the evaluation of the role played
optical phonons, and in particular by the LO mode. In Ta
I, the values ofk are listed, referring to a calculation with a
the acoustic- and optical-phonon modes included in the s
tering mechanisms~first column kall). The other two col-
umns in Table I show the results obtained considering~a! in
the second column marked bykac1to , phonons of acoustic
and transverse optical modes, and~b! in the third column
markedkac only phonons in the acoustic modes. Let us no
that the role of optical phonons is considerable at high te
peratures.

Comparing the values ofkall andkac1to , one must con-
clude that the LO mode plays a certain role, in spite of

FIG. 2. Thermal conductivity~in W cm21 K21) of cubic SiC, as
a function of temperature, resulting from the present iterative c
culation ~continuous lines!. Curvea represents the theoretical con
ductivity obtained when only three-phonon scattering processes
considered. Curveb is obtained including the presence of micro
rystallites in the sample. Curvesa,b are compared with experimen
tal data of Tayloret al. ~Ref. 29! (1) and of Senoret al. ~Ref. 30!
(h).
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frequency shift. If the LO mode is considered without t
Born shift, the thermal conductivity turns out to be furthe
more reduced by;8%.

So far the discussion has been concerned with an i
crystal and, for the low-temperature region, a crystal w
grain boundary effect. Let us now discuss the role of po
defects such as substitutional impurities. A point def
means first of all a mass difference in the lattice posit
where the defect is placed, giving a scattering probabi
rate of a phononqp into a phononq8p8 of the form

Pqp
q8p85

p

2 S DM

M D 2 1

N2
vqpvq8p8ueqp•eq8p8u

2d~vqp

2vq8p8!nqp
o ~11nq8p8

o
!, ~8!

where DM is the mass variation. As discussed
Gurevich,32 the defect gives also a potential-energy pertur
tion that can be included into Eq.~8! by the substitution

ueqp•eq8p8u→Ueqp•eq8p81
S

DM

e ie i 8qlql 8

vqpvq8p8
U2

, ~9!

where tensorS has dimensions of energy. The two terms a
of comparable order providedDM is of the order ofM and
then the role of the point-defect perturbation can be eva
ated, in a long-wave phonon approximation, as a contri
tion that turns out to be twice the contribution of the fir
term.

If the defects are assumed to be present in a fractionf i of
crystal sites, since the total number of atoms is twice
total number of cellsN, there will be 2N fi centers producing
elastic scattering in Eq.~5!. Moreover, these defects are co
sidered statistically distributed in both sitesb of the lattice
cell.

The probability rate can then be evaluated as in Ref.
In the calculation, a concentration of 0.5% point defects w
assumed, each defect being considered as an antisite, w
an Si atom is substituted by a C atom or vice versa. In Fig. 3
the result ~curve b) of the present iterative procedure
shown with the data~points 3) obtained by Ju Liet al.15

with molecular-dynamics~MD! simulations. The figure also
reports, for comparison, the thermal conductivity for a p
fect crystal obtained with the iterative procedure~curvea),

TABLE I. Thermal conductivity of cubic silicon carbide resul
ing from the present iterative calculation. The First column lists
value of conductivitykall obtained considering all the phono
~acoustic and optical! modes. In the second column, the conduct
ity kac1to is evaluated without considering in the calculatio
phonons of the LO mode. The last column givesk obtained with
only acoustic phonons present in the lattice. The values ofk are in
W cm21 K21. Note that the role of optical phonons is considera
at high temperatures.

T(K) kall kac1to kac

800 1.35 1.61 2.48
1600 0.57 0.78 1.24
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and the data obtained with the MD simulation15 (3). The
experimental data of the sample without defects (1 and h
points! are also reproduced.

Antitsite produce a strong reduction ofk and the lattice
conductivity turns out to have only a slight temperature d
pendence: this is in agreement with the data obtained by
15 with MD simulation and with the experimental observ
tions in irradiated specimens.30,33,34

In fact there is a difference between the defect microstr
ture assumed in calculations, where the defect distributio
thought to be a random distribution, and the defect arran
ment in irradiation experiments.15 First of all, in the scatter-
ing probability rate, point defects are considered as isola
defects at the same concentration throughout the entire ra
of temperatures. The defect microstructure in the actual i
diated specimens can be expected to vary appreciably
temperature. For a high defect concentration of 0.5%, de
clusters and void formation can occur as the tempera
increases, particularly in the range above 1200 K. In Ref.
it is suggested that the role of crystal defects on therm
conduction will saturate; once this occurs, the defect dis
bution no longer matters for the behavior ofk.

The calculation ofb-SiC thermal conductivity shows tha
the iterative approach to the Boltzmann equation is able
handle lattices with a complex structure. Through a limit
number of parameters, determined by means of the exp
mental phonon dispersion of the crystal and by its Gru¨neisen
constant, one is able to give a reliable calculation of therm
conductivity, where no approximations are introduced: t
means that the model automatically includes both acou
and optical modes with dispersion, correct umklapp p
cesses, avoiding relaxation-time approximation for thr
phonon scatterings.

e

FIG. 3. Thermal conductivity~in W cm21 K21) of cubic SiC, as
a function of temperature. Curvea results from the present calcu
lation in the case of a perfect crystal, whereas curveb is obtained
for a crystal with antisite defects~0.5% of the lattice sites!. Curves
a,b are compared with experimental data~Refs. 29 and 30!
(1,h) and with data obtained by Ju Liet al. ~Ref. 15! by means of
molecular-dynamics simulations (3).
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In comparison with the MD simulations, the iterative a
proach does not show fluctuations in conductivity data at
temperatures, that is, forb-SiC, at room temperature. It i
then possible to improve the investigations, by consider
the role of extended defects~dislocations, grain boundaries
and so on!, and to study other polytypes of silicon carbide

As mentioned at the beginning of the paper, the use
high thermal conductivity materials is essential to therm
, J

tt.

u

.F

r,

n

P.
,

m
rk

.

17430
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management in compact packaging systems, a key to fur
progress in this field. But high thermal conductivity pol
crystalline materials are complex, and their optimization
quires the study of thermal transport at different scales~in-
cluding the effect of nanostructures and microstructur
which are present in the materials! to derive their macro-
scopic thermal behavior. The iterative technique can b
promising approach to the problem.
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