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Continuum limit of amorphous elastic bodies:
A finite-size study of low-frequency harmonic vibrations
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The approach of the elastic continuum limit in small amorphous bodies formed by weakly polydisperse
Lennard-Jones beads is investigated in a systematic finite-size study. We show that classical continuum elas-
ticity breaks down when the wavelength of the solicitation is smaller than a characteristic length of approxi-
mately 30 molecular sizes. Due to this surprisingly large effect ensembles containinglep4®000 particles
have been required in two dimensions to yield a convincing match with the classical continuum predictions for
the eigenfrequency spectrum of disk-shaped aggregates and periodic bulk systems. The existence of an effec-
tive length scalée is confirmed by the analysis of tHeon-Gaussiannoisy part of the low frequency vibra-
tional eigenmodes. Moreover, we relate it to thenaffinepart of the displacement fields under imposed
elongation and shear. Similar correlatiofvertice9 are indeed observed on distances upt4e30 particle
sizes.
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I. INTRODUCTION benchmark systems with a well defined continuum limit ap-

Determining the vibration frequencies and the associategroach is crucial.
displacement fields of solid bodies with various shapes is a In this paper, we investigate the existence of a continuum
well studied area of continuum mecharticswith applica-  limit in the vibrational modes of two-dimensional amorphous
tions in fields as different as planetary science and nuclearanometric Lennard-Jones materials. The objects we con-
physics. The increasing development of materials containingider are either disk-shaped clusters of diamefy &s the
nanometric size structures leads one to question the limits aine shown on the left-hand side of Fig. 1, or bulk-like sys-
applicability of classical continuum elasticity theory, which tems without surfaces contained in a square of &ideith
is in principle valid only on length scales much larger thanperiodic boundary condition§Fig. 1(b)]. Technically, the
the interatomic distance€d. This question is relevant from an systems are formed by carefully quenching a slightly poly-
experimental viewpoint, since mechanical properties are indisperse liquid of spherical particles interacting via simple
ferred from spectroscopic measurements systematically in-ennard-JoneglLJ) pair potentials into the nearest energy
terpreted within the framework of continuum elastiGtfAs  minimum. Due to the polydispersity the resulting structures
increasingly smaller length scales are now investightid, are isotropic anémorphousi.e., exhibit no long range crys-
rect verification of this assumption is highly warranted. talline order. The force networkFig. 1) appears to be

For macroscopic systems, on the other side, it is welktrongly varying with weak and tensile zonesed embed-
known that the vibrational density of states in amorphousied within a rigid repulsive skeletofblack. These “force
glassy materials deviates from the classical spectrum at thehains” are very similar to those found in cohesionless
so called “Boson peak” frequency which is in the Terahertzgranular media without attractive forc&sThis feature may
range’ 2 The nature of the “Boson peak” is highly be added to the list of similarities which have been noticed
controversial*® However, this experimental fact suggests between granular and amorpholiggassy materials’®~2*As
that continuum theory is inappropriate at small length scalethe force network is strongly inhomogeneous, the relevance
where the disorder of the amorphous system may becomef the quenched stresses is a natural quetion.
relevant'® Obviously, one may ask if there is a finite length ~ We investigate the vibrational modes of these objects us-
scale below which the classical mechanical approach beang atomic level simulations. All particle coordinates and in-
comes inappropriate, and what the microscopic features aterparticle forces are exactly known here, and it is possible to
which determine if:*4~'6 Elaborating further the brief pre- calculate the vibration frequencies around an equilibrium po-
sentation given in Ref. 13, we show by means of a simplesition, by exact diagonalization of the so-called dynamical
generic simulation model that, indeed, a relatively large charmatrix?’ expressible in terms of the first and second deriva-
acteristic length exists, and, second, that it envolves colledives of the interparticle interaction potentials. We have car-
tive particle rearrangements. ried out a systematic comparison of these eigenfrequencies

The above questions are more generally related to the(p) (p being an index increasing with frequenaptained
propagation of waves in disordered materidland concern numerically with those predicted by continuum elasticity for
foan?® and emulsior’ as well as granular materiai®;2%?®  two-dimensional objects of increasingly large sizedle
when they are submitted to small amplitude vibrations. Asconcentrate on the lowest end of the vibrational spectrum,
for these systems of current interest, the existence of an elasince this is the part that corresponds to the largest wave-
tic limit is still a matter of debaté’ we believe that the lengths for the vibrations, and should reach first the con-
detailed characterization of strongly heterogeneous elastitnuum limit. These frequencies are also those which are
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FIG. 1. (Color Representation of the network of quenched stresses in two small quenched Lennard-Jones particle systems in two
dimensionsia) a disk-shaped aggregate of diamet&=232a containingN= 732 particlegprotocol ) on the left andb) a periodic bulk
system withL =32.9a andN= 1000 (protocol Ill) on the right-hand side. The line scale is proportional to the tension transmitted along the
links between beads. The black lines indicate repulsive foficegative tensionswhile the red links represent tensile forces between the
verticies. Both shown networks are very similar despite different symmetries and quench protocols. They are strongly inhomogeneous and
resemble the pattern seen in granular materials. Zones of weak attractive links appear to be embedded within the strong skeleton of repulsive
forces.

probed in low frequency Raman scattering experim@its, their departures from the continuum prediction are analyzed

order to determine the typical size of nanopatrticles. in Sec. VI. We conclude with a summary of our results in
The key result of this paper is to show the existence of &ec. VII.

characteristic wavelengttthus a characteristic sigbeyond

which the classical continuum limit is valid, but below which

it is erroneous. Moreover, we show the existence of rota-

tional structuregvortice9 of similar sizes, when the system A. Continuum description of an isotropic elastic body in 2D

is submitted to simple mechanical sollicitatiofisaction and

sheaJ. The size of these vortices is relatively large 30

Il. THEORY

The so-callectlassicalcontinuum theory of elasticity is

interatomic dist e di th lation b a theory that proposes to describe an elastic solid at a mac-
average interatomic distangesve discuss the relation be- roscopic level. Its main assumptigby opposition tonon-

tween the sizes of the vortices and the limit of <"‘ppl'cab'“tyclassicalcontinuum theories like Cosserat elasticity or oth-

of the_classmal continuum theory by computing the eIaSt'Cers is that the system can be entirely described by a unique
moduli, by studying the symmetry of the nanoscale stres

) e e Vector field: the displacement field(r), describing the dis-
tensor, %nd by identifying the low frequency vibrational placement of a volume element from its equilibrium position
eljgenmodes. ._r. In systems at zero temperature, energy and free energy are
dentical. The Landau expansfoaf the energysSE per unit

m ic relations and results of classical continuum . . S L
some basic relations and results of classical continuu volume is expressed in terms afand its first derivatives.

theory for two-dimensional elastic bodies. Simulation tech- . C = . :
. : Due to translational and rotational invariaftef SE, it de-
niques, sample parameters, and preparation protocols of our

. . gends only up to second order on the symmetric part of
model amorphous systems are explained in Sec. Ill an . . ; h
radu, the (linearized strain tensore,z=1/2 (du,/dxg

simple system properties are discussed. In Sec. IV we an _auﬁ_/ﬁxa) with x,=x and x,=y for the coordinates.

lyze histograms and spatial correlations of the quenche oreover in linear elasticitythat is in the lowest order in the
forces and of the stiffness of the bonds. A weak enhancement

of the rigid skeleton is demonstrated for small systems. Thé_andau expansignfor isotropic and homogeneous systems

next two sections contain the key results of this paper. InonIy two Landau parameters are required, thus in the absence

Sec. V we discuss the mechanical properties of a periodi8f any external field,
bulk system under elongation and shear, we compute the \
elastic moduli and we characterize the nonaffine displace- _ 2 2, 2 2

) ; . SE= = (et + + €, +2¢€,), 1
ment field generated. The eigenvalues and eigenvectors and 2 (€t €yy) "+ pl €t €yt 2€5) &
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where we have defined the two phenomenological Lame mated locally by plane wavesif(p) <R. Vibrational modes
efficientsh and . w is the so-called shear modulus, and of disks are either non degenerafer axially symmetric
is related to the compressibilitg=\+ w. The stress tensor mode$ or have twofold degeneracffor all other modes
can be defined as the conjugate variable of the strain tensdndeed, fork>0, for every solution whose amplitude is
«e'k? one finds a second solution, orthogonal to the first
0qp=00Eld€ . (2 one, with amplitudexe®(?+20 where A 6= 7/2k. Every
additional solution with the samieis a linear combination of

In this definitiono 4 is obviously a symmetric tensor. We ; )
i Y & Sy these two vectors. For axially symmetric modé&s-Q), the

will see later that anicroscopicallyconstructed stress tensor ) o .
can, however, violate this symmetry condition at smal|bove argument does not apply; any e_ldqmon_al solution
length scale¢Sec. \J. Using Eq.(2), we obtain the Hooke’s found by turning the coordinate system is identical to the
relations that are used in Sec. V to measure directly the'Lam@rSt one.

coefficients from the forces generated in a macroscopic pe- Ve finally stress the obvious: degenerate eigenvalues are
riodic box under external strain inherent to the continuum treatment of highly symmetric sys-

As it is well known? the equations of motion tems. The failure to observe them indicates either the lifting
- . . , of the relevant symmetry or the breakdown of continuum
pdo,pldx,=u, together with the constitute Hooke’s rela-

tions correspond to wave equations with boundary conditions eon.
depending on the problem of interest: for the periodic box
problem the solutions must have the same periodicity, and B. Pair potential systems with central forces
the freely floating disk-shaped aggregate requires vanishing |n a simulation one has the advantage to know all the
lateral and radial stresses on its surface. The velocities ghdividual contributions to the total energy. The situation is
transverse and longitudinal waves which solve these wavgarticularly simple if one has to deal with interparticle pair
equations are given in terms of the Larmeefficients, i.e., potentialsU(r;;) (r;; being the interparticle distancsuch as
one hascé=pu/p, andc?=(\+2u)/p wherep is the par-  the LJ potential we use, and if we stay at zero temperature. In
ticle density* We are reminded that, >cr and that trans- this case, the difference of the total potential energy,
verse modes thus correspond generally to smaller eigenfre-
guencies. N-1 N

The solutions for the periodic box case are of course the E,= > > U(rij) (6)
plane waves with a wave vector quantified by the boundary =1 7=

conditions, f.ky)=(2a/L)(n,m), with wavelength due to a displacement field can be written to second order

2 L as a Hessian formSEp=%u‘~M~E in terms of the ()
AMp)=A(n,m)= W: —n (3)  X(2N) dynamical matrixM whose elements are given for
=1 (07 i+] by =

and with dimensionless frequency ) ,
—TiiMig,jp=Tijtij(Sap—NaNp) T riiCiiNNg,  (7)

w(p)L)2

QZ E( :n2—|— m2, 4

T,L(p) 27TCT,L @) Mia,iﬁ:_szia'jﬁ’ ®
with two quantum numbers,m=0,1, ... . Therunning in-  , yeing the unit vector of the bor@r simplicity, we do not

dex p increases with frequency. In the continuous case, thg,gicate the dependence ofon the particle indicesandj),
dispersion relation is linear, and the frequency is straightfor; = gU(r;;)/dr, the tension and; =d2U(r, )/dr2 the stiff-
ward. Hence, eigenfrequencies are characterized by a pair t.c of the bond between two ilhteractiné]] beialxjiadj. The
different integers. They are eightfold degeneratedh#m ot one is related to the stresses “quenched” in the bulk, but
#0 and fourfold in all other cases. The associated plangg \ve will see later it is in general small in comparison with

waves travel in two opposite and orthogonal directions. o second one. As in the present study the mnasé each
The situation for disk-shaped objects is somewhat more,onomer is set equal to unitgven though the particle di-

complex, with again two quantum numbersandk charac- 5 merers are polydispepsthe Euler—Lagrange equatidvi
terizing the eigenmodes. The quantum numkeés associ- . ) . _ o =
ated with the angular dependency of the displacement fielgtd+mu=0 is solved directly by diagonalization of the dy-

(and is due to the 2 periodicity), and the numben to its namical matrix which yields the eigenfrequencies as eigen-
radial dependency. The eigenfrequencies are obtained Wlues and the corresponding displacement fields as eigen-

solving the nonlinear dispersion relation. They are of the/€ctors. _ _
form A central aspect of this work concerns the possible role of

the nonaffine displacement field which is neglected at mac-
2 roscopic level. In order to compare this assumption with our
Q%,L(D)E( ) =fo(v), (5  results, it is useful to estimate the elastic moduli with an
hypothetical affine displacement field. Assumingnstant
where v=\/(\+2u) is the Poisson ratit? The eigenvec- deformations under elongation and shear, one may use the
tors are related to Bessel functidnshich may be approxi- dynamical matrix expression of the free energy to calculate

w(p)2R
ZWCT,L
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TABLE |. Some properties characterizing disk-shaped clusters TABLE Il. Some properties characterizing disk-shaped clusters
generated by a slow aggregation following protocol | with MD generated with the fast quench protocol Il which takes advantage of
steps aflf=0.1,0.05,0.01,0.005, and 0.001. We have indicated thealready quenched periodic bulk systefpsotocol Ill). As in the
particle sizeN, the number of configurations in the ensemidlethe first table we indicate the radil® of the initial disk, the number of
radiusR; of the initial sphere, the mean radisof the final glob-  configurations in the ensembld, the (mean particle number, the
ule, the mean density, the excentricitye obtained from the inertia mean density, the excentricitye, the interaction energy per par-
tensor of the cluster, the interaction energy per parfiglthe Lame  ticle E, the Lamecoefficients\,, and u, and the mean spring
coefficients\,, andu, obtained using Eq9) and the mean spring constant(rﬁcij). The final cluster radius is not given as it is essen-
constant(rﬁcij>. The mean tensiofr;;t;;) and, hence, the pressure tially identical toR; . Note that in the second protocol the particle

are too tiny to be measured accurately. numberN fluctuategvery weakly around its mean valugN) while
it is a constant operational parameter in the first protocol. The ex-
N M R/a Ra p e E  Na Ma (rﬁ-cij> centricity is much smaller here than in the first more realistic pro-
tocol. The information contained in the last four columns is very
8192 5 54 535 00912 0.25-2.81 248 249 319 similar to the one in the corresponding columns of Table | and Table
10000 6 60 59.1 0.912 0.2}2.81 248 249 319 | despite the fact that different quench protocols have been used.
16384 4 85 76.9 0.882 0.16-2.80 23.9 241 32.0
32768 1 120 109.9 0.864 0.1+2.80 235 23.1 320 R/a M (N) p e E Na  Ma (rﬁ-cij)
52 5 7848 0.917 0.08-2.81 249 249 319
the Lamecoefficients. Comparing the Landau expression 60 8 10448 00919 0.05-2.81 250 251 319
Eqg. (1) and the microscopic energy information in E®) 85 8 20968 0917 0.06-2.82 251 250 318
yields 120 4 37030 0.910 0.04—-2.84 259 259 329

)\_EE t 22+2 4+4/2_222
ATA 5 Lrijtiy ey i Cij (M) My, The quench generally starts with molecular dynamics
9) (MD) at some fixed temperature using a simple velocity res-
1 caling thermostat***The temperature remains constant over
Ma=p 2 rﬁcijnfni, a fixed time interval of 1000 unit time for each temperature
4 step(see the caption of the tables for more dejailhis was
with A being the total surface. The sums run over all pairs ofufficient to relax systems into a steady-stateviously, not
particles. As anaffine displacement field is assumed to be Necessarily the equilibriumas monitored by pressure and
valid down to atomic distances the coefficients have beegyStem energy. Unfortunately, no more detailed characteriza-
assigned an indea to distinguish them from the true mac- tion of the aging as a function of the quench rate has been
roscopic Lamecoefficients that will be calculated later. Note "ecorded. Following the initial MD sequence we quench the
that this is a crude approximatinthat is widely used but Systems further down using an overdamged) algorithm.
can give strong errors on the estimate elastic moduli, as afFinally, the conjugate gradient meth¢@G) (Refs. 35 and
ready mentioned in Ref. 4. We will test the affinity assump-36) was |_terated until the configurations reach their local en-
tion in Sec. V and estimate the length below which the affineefgy minima. .
approximation becomes problematic. An example for a disk-shaped aggregate has already been
presented in Fig. (B). Two different protocols have been
employed to generate such disks:

Protocol I: The starting point of the first protocol is a not

Systems with two different boundary conditiodisks too dense LJ liquid droplet of radiug; and p;~0.9 and
and periodic bulk systemand three quench protocols have temperaturd;=0.1. The initial radius; is chosen such that
been simulated. In this section we discuss some technic#he final mean radiu® becomes not too different. We cool
points concerning the simulation methods and the sampléhe systems with MD steps at decreasingly sriialAs de-
preparation protocols and parameters. The details of the precribed above, we finally quench each system into its local
tocols and some properties of the final configurations argninimum using a sequence of OD and CG steps. See Table |
summarized in the Tables I, I, and Il for details.

In the present study we use a shifted LJ potetftitor Protocol II: In the second case spherical disks of ra&ius
polydisperse particles. Natural LJ units are used, i.e., we savere cut out of amorphous periodic systems already prepared
the energy parameter=1, the particle massi=1, and the at T=0 (see Protocol Ilf and p=0.925 and the disks are
mean diametea=(a;)=1. Note that while the particle mass quenched as before with OD and CG. No finite temperature
is strictly monodisperse the particle diametarsare homo- MD step was included here. See Table Il for details. The
geneously distributed between 0.8 and 1.2, corresponding gecond protocol is much faster than the first one which
a polydispersity indexa/a~0.12 which is sufficient to pre- might, however, mimic better the actually occurring aggre-
vent large scale crystalline order. We did not attempt to mak@ation process in real systems.
the particles even more polydisperse fearing demixing or The radiusR=y2(l;+1,)/N of quenched cluster is ob-
systematic radial variation of particle sizes in the case ofained from the eigenvaluds> I, of the inertia tensor of the
disk-shaped aggregates. cluster. The mean densip/=(N/7R?) obtained accordingly

Ill. SAMPLE PREPARATION AND CHARACTERIZATION
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TABLE Ill. Some properties characterizing periodic bulk systems generated following protocol Il with
MD steps atT=1.0, 0.5, 0.1, 0.05, 0.01, 0.005, and 0.001. In addition to properties also recorded in the
previous tables we have included here the Ldawtors\ and u obtained from a macroscopic deformation
and the mean tensiofr;;t;;). Note that(rﬁcij>><rijtij>.

N L/a p M E P A ® Ng Ma o (rigti) (rizjcij>

5000 735 0925 20 —-2.84 029 396 11.3 26.2 265 -0.09 331
10 000 110 0.826 1 -278 -0.63 145 7.5 184 18.4 0.22 28.2
10 000 109 0.841 1 -281 -061 204 83 20.0 195 0.21 28.3
10 000 108 0.857 1 -281 -067 212 7.8 20.1 19.7 0.23 28.0
10 000 107 0.873 1 -281 -106 231 8.0 189 17.9 0.36 25.8
10 000 106 0.890 1 -282 -113 253 8.9 180 174 0.38 25.4
10 000 105 0.907 1 -284 -048 310 11.0 224 225 0.16 29.2
10 000 104 0925 20 -284 025 395 11.7 26.2 264 -0.19 32.9
10 000 103 0.943 1 —-283 124 474 133 313 314 -0.38 37.8
10 000 102 0.961 1 -278 271 595 149 377 393 —-0.77 44.0
10 000 101 0.980 1 —-272 425 69.7 18.8 447 46.6 —1.15 50.1
10 000 100 1.000 1 -262 596 840 190 519 548 —1.55 56.4
20 000 147.1  0.925 3 —-284 035 404 120 268 27.0 -0.11 334
40 000 208 0.925 2 -—-284 033 - - 26.7 271 -0.11 33.3

is a weakly decreasing function of the particle number. Thighat density is perfectly homogeneous down to a scale typical
is expected and in qualitative agreement with the decreasingf the interatomic distance and density fluctuations are easily
Laplace pressurP=1/R. Note that the pressure is very excluded as a microscopic candidate for explaining the slow
small for all the disks(Protocol | and Il alik¢ and is not continuum approach. Our systematic finite-size study, i.e.,
indicated. We have also tried to characterize the shape of thibe variation of box sizek, was performed at fixed density
disks and have indicated the eccentriaity V1—1,/1,. As  p=0.925. In order to scale correctly the eigenfrequencies of
can be seen, small aggregates are strongly elliptic, but thdie aggregates we have also recorded the "Laoedficients
effect is much stronger for the first slow aggregation proto-as a function of density. We have checked that the particle
col. This is probably due to capillary waves formedTat energiesE, Lamefactors\, and u,, mean effective spring
=0.1 which are subsequently frozen in. Obviously, ellipticity constants{rizjc”) (which are included in the different tab)es
is one possible cause for lifting of the eigenfrequency degendo not depend significantly on the different symmetries and
eracy. This effect should, however, become small for largeguench protocols, for a given density. It is reassuring that all
clusters wheree vanishes(Tables | and I. Moreover, we the results we obtained are robust with regard to the variation
will see later that the mechanical properties of our aggregatesf the quench protocol even though history dependence must
do not depend significantly on the quench protocol. obviously play a role for the details. Typically, we have gen-
Periodic bulk systems, such as the one presented in Figrated 20 configurations for eat¢hand in terms of CPU
1(b), have been prepared following a third protocol describechours this was the most demanding part of this study. The
here. We started with equilibrated liquids &&=1 which  simulations have been performed on a local workstation
were then cooled down in successive temperature s&ps cluster over a period of 1 year.

detailed in the caption of Table )Il Systems betweeh Interestingly, we notice in Table Il that the pressure, the
=7a and L=208 and containing fromN=50 up to N particle energy, and the Lanmeefficient\ increase system-
=40000 particles have been sampled. atically in small boxes. This is shown specifically forin

For N=10000 particles we have systematically scannedrig. 4(b). These finite-size effects indicate correlations on a
over density varying the box size frolm=100 toL=110.  similar length even in larger systems. We will now turn to the
This was done in order to find—for the given protocol—a characterization of these correlations, by first studying the
working point density for which large bulk systems corre- dynamical matrix, and the quenched stresses.
spond to a near zero pressure stBf=0)~0, thus the
mechanical properties of the bulk systems correspond to the
free-floating aggregates. Note that only one configuration has
been sampled for this measurement sequence. As a sideline,
we draw attention to the fact that systems witkcO while In this section we discuss various distributions and corre-
mechanically stable in a periodic box are thermodynamicallylation functions associated with the quenched particle posi-
unstable at low temperature. If more time would be given tations, forces and spring constants which contribute to the
the systems to equilibrate as allowed by the protocol phasdynamical matri{Eq. (7)]. We attempt a characterization of
separation would occur. Indeed we find evidence for the forthe frozen in disorder visualized in Fig. 1, where the snap-
mation of small holes fop<<0.85. In all other cases we find shots reveal strong spatially correlated fluctuations. Specifi-

IV. CONTRIBUTIONS TO THE DYNAMICAL MATRIX:
QUENCHED FORCES AND SPRING CONSTANTS
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in the current interest of their role in granular materials,
© =N foams, and glassy colloidal systefid2°It has been sug-
0 =n;n; gested by Alexand&rand others that the quenched forces
exp(-r/1.3a) ) might contribute to the unusual mechanical and rheological
* Random forces on links properties in these systems. However, to put this immedi-
ately into perspective, quenched forces are unlikely candi-
dates to rationalize alone the slow continuum approach dis-
cussed in Sec. VI, basically, since thaireragecontribution
to the dynamical matrix is weakrfc;j)>(r;t;;). This in-
equality is revealed in Table Ill. Note that, due to this result,
the possible contribution of a linear term in the macroscopic
expression1) for SE is not relevant to explain our results.
We come back to this in Sec. VI where we discuss the con-
tribution of the quenched forces to the eigenmodes.

The second and more important point we want to make
0 2 4 6 here is that both firstquenched stresseand secondstiff-

r/a nesses of the bongslerivatives of the given potential are
expressions of the same disorder generated by the complex
cooling procedure; it is the final positional disorder which
matters, not the individual contributions to the dynamical
matrix. If the width of the lines between the particle posi-
tions shown in the snapshotBig. 1) has been chosen pro-
portional to the interaction force rather than the spring con-
stant this was done mainly fartistic reasons. Resembling
snapshots can be obtained, using as a scale for the line width
either the spring constants or the traog =M, jx+ My jy
of the dynamical submatrices. Such pictures are direct visu-
alizations of the dynamical matrix.

The snapshots in Fig. 1 reveal that the structure of the
force network is very inhomogeneous, but isotropic on larger
scale. They show also evidently that the quenched disorder is
not much affected by the different symmetriésrcle or
square and quench protocols. This corroborates the robust-
b/a ness of the system properties with regard to the chosen pro-

tocol mentioned in the previous section. This is also sup-

FIG. 2. Correlations of frozen in forces for large periodic sys- ported by the different histograms regrouped in Fig. 3.
tems:(a) pair correlation(cog(7)) versus distance Herer denotes Systems of the three protocols are included in first of both
either the angle between the directarsandn; of the linksi andj graphs Fig. 8 where we discuss the distribution of dis-
(symbolg or the angle between the director of link i and the  tances of interacting particlégse) r;; /r, and of the tensile
direction n;; between the links andj (lines). The decay of the forcest;; (main figure for relatively large systems contain-
envelope is exponential with a length scale of the order of the meaihg N=10 000 particles. Comparison shows that there is es-
bead size, hence, this does not introduce a new length scale. TRentially no dependence on quench protocol. Note that this is
dots correspond to an artificial force network obtained by shufflingonly a technical point and will make life easier when we
randomly the tensions between existing links. The sinusoidabna|yze the eigenvalue spectrum of disk-shaped aggregates.
dashed line is a guide for the eyéb) The numbem, of boxes of The peak at; =r, in the inset corresponds to the peak for
s!zeb needed to cover the interactions traqsmitting repulsive tentij =0 in the lmain figure of Fig. @). Hence, most of the
sions smaller than,. The curves do not differ much from box jqseractions have achieved to minimize their energy although
counting results on sets of randomly drawn linfdashed lines  yoisis ot required for global mechanical stability. The dis-
Different slopes are included for comparison. The slope -1 corre; ..~ . - S
sponds to linear chain-like structures, the -2 slope to a compactt”bunon. of the repu_ISI_ve fo_rce@egatlve tensionss Gauss-
structure in 2D. lan. InC|dentaIIy,_th|s is qu[te @ffe_rent _from the recently re-
ported exponential force distributions in granular matter
cally, we ask if it is possible to extract a characteristic lengthinterestingly however, the tail of the force distribution be-
scale solely from the distribution of weak and rigid regionscomes more and more exponential upon decreasing of the
which might be a candidate to explain the large crossovesystem size. We do not show this here, as the same effect is
length scaleé mentioned in the Introduction. We start by presented in the second pafElg. 3(b)] for the trace of the
giving some additional information concerning the snap-dynamical submatrices. Various system sizes as indicated in
shots, turn then to the histograms and discuss finally théhe figure are given here for the third protocolpat 0.925.
fractal structure of the quenched forces. This demonstrates that the tail of distribution, which corre-

A timely justification for discussing quenched forces liessponds to very rigid contacts, becomes enhanced due to
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FIG. 3. Histograms of contributions to the dynamical mattaj:

comparison of the tensioty; for all three protocols al= 10 000.
Inset: Histogram of distances; /r, of interacting particles(b)
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(cog(7)) traced in Fig. 2a) attempt to put the visual impres-
sion of linear force chains in quantitative terms. Herde-
notes either the angle between the directgrandn; of the
links i andj (spheresor the angle between the direcigrof

link i and the directiom;; between the links andj (squares

The difference between the two methods is small. The cor-
relation dies out only after about six oscillations. No signifi-
cant difference have been found by increasing or decreasing
the threshold,. The decay of the envelope is exponential
with a length scale of the order of the mean bead size. Hence,
while rigid regions seems to be spatially correlated, this does
not, apparently, introduce a new length scale. Note that the
situation is similar in granular materizd®.

The second part of Fig. 2 shows a direct attempt to eluci-
date the fractal structure of the network of quenched forces
by means of the standard box counting technique. Here we
count the number of square boxes of linear $izeeeded to
cover all the links between beads carrying a repulsive force
smaller thart,,. For smallb where every box contains only
one link the differential fractal dimension is zero. In the op-
posite limit where the boxes are much larger than the average
distance between links, the differential fractal dimension
must equal the spatial dimension, i.&;=2. The power law
sloped;=1 in between both limits indicates the typical dis-
tance where the contact network with<t, has a linear
chain-like structure. For example, we find a tangent with
sloped;=1 atb~6a for t,= —5. This distance is strongly
increasing if we focus on more and more rigid subnetworks
(decreasingt,). Note, however, that there is nénite
b-window with d;=1 and in a strict sense there is again no
characteristic length scale associated with linear structures. A
simple visual inspection of Fig. 1 that would suggest a char-
acteristic length scale of the repulsive force network much
larger than the interatomic separation is apparently incorrect
and possibly caused by the natural tendency of our brains to
emphasize linear patteris.

As a simple benchmark for the spatial correlation of the
force network, we have distributed links randomly. The box

Trace of matrixmij = Mxi,xj+ Myi,yj for systems of various system Counting of these uncorrelated links giVGS the dashed lines.

sizes as indicated in the figuferotocol |). This demonstrates finite- Unfortunately, these are virtually identical to the fractal di-

size effects in the tail of the distributions of small systems with mension characterization of the force chains in the LJ sys-

<20 corresponding to an enhancement of the skeleton of very rigitems and it is a very tiny differendat least in this charac-

contacts. terization which is related to the spatial correlations.

Obviously, this does not mean the forces are uniformly dis-

finite-size effect for systems belolv~20a. A very similar  tributed as clearly shown by the snapshots and by the large

figure could be shown for the distribution of spring con- number of oscillations in the correlation function.

stants. Note that the peak on the left-hand side of Fig). i3 In summary, we provide evidence for a strong dispersion

due to the slow variation of the spring constant for largein the dynamical matrix, i.e., in thecal elastic properties of

distances and corresponds to distances seen in the shoulder systems. Although linear chain like structures exist ap-

on the right of the histogram in the inset. parently, this doesot give rise to an additional characteristic
In Fig. 2 we show two of several attempts to analyze thdength—defined as the screening length in an exponential

correlations and fractal structure of force chaifts the decay—much larger than the mean particle distance.

spring constanjsin view of extracting a characteristic size.

We_ focus on strong repulsive forces and strong positive \, | ONGATION AND SHEAR: ELASTIC MODULI

spring constants. Only_ resul_ts_from the first measurements AND NONAEFINE DISPLACEMENT EIELD

are reported as both yield similar results. In a first step we

obtain the network of all interactions witfmegative repul- A direct way of illustrating the failure of classical elastic-

sive tensions above some threshgjdand compute then on ity at small scales is to investigate the displacement field in a

these sets various correlation functions. The functiondarge, deformed sample. If the system is uniformly strained
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at large scales, e.g., by compressing or shearing a rectanguli

simulation box, classical elasticity implies that the strain is (@) YN [ |
uniform at all scales, so that the atomic displacement field a1
should be affine with respect to the macroscopic box defor- 4 mu ®
mation. If this is,true Eqs(9) should provide reliable esti- O\
mates of the Lameoefficients. Since the latter can be inde- 60 a ®
pendently measured in a computer experiment from the U, 6
generated stress differencies using Hooke’s L[&gs. (2)] %0 () g
t_his provides a direct and crucial test for the affinity assump- 20 | ) 8
tion.

Our numerical test proceeds in three steps: 30 | o @]

(1) Each initial configuration is given a first quick CG ) ® O
guench withquadrupleprecision to have a more precise es- 2 Q L g o H N
timate for the unstrained reference system. This is necessar I "
since the stress differences we compute are very small fo mEpan
strains in the linear response regime and the numerical accL 0 ‘ ‘
racy of double precision simulation runs turns out to be in- 08 085 08 095 !
sufficient.

(2) Second, we perform an affine strain of ordeof both (b)

the box shape and the particle coordinates. We consider bot
e 50 @

an elongation inx-direction[L,—L,(1+¢€),ry—r,(1+e¢€)]

and a pure shear using Lees-Edwards boundary conditions Py

together withr,—r,+rye. [We refer here to the principal 40 o0 o060 09 o

box particle coordinatesrg,r,) of the periodic configura-

tions]

(3) Finally, we quench with CG the configurations into the 30
local minima while maintaining the strain at the boundaries. B ) Q@ o o O 0O0oo
For given boundary conditions in the linear regime the solu-
tion must be unique.

The differences of particle positions, forces and total en-
ergies computed at each step are recorded. We stress thattt 10| HE guE BN p BN u
procedure is technically not trivial and that great care is
needed to measure physically sound properties.

We have systematically varied over several orders of 0 10
magnitude frome= 102 down toe=10"° (not shown. The L/a
induced displacement field is reversible and linear in the am-
plitude of the imposed initial strain for an initial strain in a  FIG. 4. Lamecoefficients\ and x obtained for periodic bulk
window 10 "< e< 10~ % which decrease@or unknown rea- Systemsi(a) density variation folN=210 000, (b) size variation for
song somewhat with system size. Obviously, for higher p=0.925. Full symbols correspond to the direct measurement using
strains the linearity of Eq(2) must eventually break down. Hooke’s law, open symbols are obtained using E@s. Naturally,

The departure from linearity below the given strain windowa!l La_me coefficients rise with density as the number and strength
is due to numerical accuracy. of pair interactigns increasgs. Note thgt W.hueren)a?ns more or

Using Eq.(2) for the stress tensor averaged on the whold€ss constani increases with decreasirlg in a similar way as
system and the averaged strain field, we obtain the true mafressure and particle energgable Ill).
roscopic Lamecoefficients\ and . Within the given strain
window the measured and u coefficients are strain inde- the energy fraction,/u~1/2 is even larger; only the com-
pendent, thus confirming the linearity of the elastic responseressibility K=\ + x remains unchanged. Hence, in quanti-
in this range. The values qf and\ are presented in Fig. 4 tative terms the nonaffinity of the atomic displacements is
where we have compared them with the affine field predicnot a negligible effect.
tions. (Note that the Poisson ratio~2/3 is larger than 1/2 The nonaffine componerdlu of the atomic displacement
which is permissible in a 26P) The coefficients relying on a field in large systems subject to an elongatiorxidirection
negligible nonaffine fieldopen symbols, obtained from Eq. is illustrated in the snapshot of Fig(&. A similar snapshot
(9)] differ by a factor as large as 2 from the true ones.holds in case of a pure shd#ig. 5b)]. In some regions, the
Clearly, a calculation taking into account the nonaffine chardisplacement is much larger than expected from a purely
acter of the displacements is necessary for disordered syaffine transformation(Note that even the nonaffine part of
tems. It is simple to work out from the values given in thethe displacement field is strictly linear iwithin the strain
figures that, in a simple elongation, a finite energy fractioninterval indicated abovgLocal displacements transverse to
(Nat+2u)/(N+2u)—1~1/4 of the total strain can be re- the direction of the elongation are allowed, and organize co-
covered from the nonaffine displacements. In a pure sheanerently into vortices. The transversal direction thus cannot

20 |

100
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FIG. 5. Comparison of nonaffine displacement fiéla(r) with eigenvector fieldsv ,(r) for periodic box of sizeL =104a containing
N=10 000 particlesa) nonaffine displacement field under elongatiox irection,(b) same for plain shear using Lees—Edwards boundary
conditions(Ref. 34, (c) eigenvector field fop=3, and(d) eigenvector field fop=7. This confirms that the different noise fields are
non-Gaussiarand are highly correlated in space and with respect to each other. Detailed inspection shows vortices like in turbulent flow.

be neglected, showing that the modelling approach put for- 1

ward in Ref. 18 is not realistic. The crossover lengtmen- U= > ou(r;) (10)
tioned in the Introduction manifests itself througbrrelated prey,

deviationsfrom a purely affine displacement. Visual inspec-

tion tells us that the sizes of the vortices afiet30a are  of all N; beads contained within the square volume element
comparable. V; of linear size b. The mean-squared average,(b)

The two correlation functions presented in Fig. 6 confirmz<5z,{)2(’j>j1’2 is plotted versus the size of the coarse-graining
this visual impression. The first one shows the correlatiorvolume elemenb. We have normalized the function by its
function C,(r)=(du(r)-su(0)). The striking anticorrela- value atb=1. The coarse-grained field decreases very
tion for r<30a is in agreement with the size of the vortices weakly for b<30a and only for much larger volume ele-
seen in the displacement fields. That the displacement field imients we find the power law slopel expected for uncor-
indeed correlated over a similar size is further elucidated irrelated events. As for symmetry reasons the total or mean
Fig. 6(b). Here we consider the systematic coarse-graining ofionaffine field vanishes we hawd,(b—L)—0 for very
the nonaffine displacement field large volume elements. Apart from this trivial system size

174205-9
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FIG. 7. Asymmetry of the stress tensor of the forces generated
in simple sheafLees—Edwards boundary conditigrfer a system
containing 10 000 particles. We measure the “microscopic stress”
acting on a volume element as shown in the sketch on the right. In
the main figure we plot the average mean-squared stress difference
((oxy— ay) 2y versus the linear sizeof the volume element. For
small box sizedh<30a we evidence power law behavior which
crosses to an exponential decay at large volume sizes.

U,(b)/U,(1)

LS this definition of the stress tensor, doest correspond
\

—— N=100,L=10.4 \ strictly to the usudi®® microscopic Kirkwood definition
— N=500,L=23.3 \ (—Ejtijna.nﬁ) which is necessarily symmetric. Both quan-
- miégggg'tﬂg;1 \ tities yield the same macroscopic stress tensor, but the defi-
= = \| nition we are using is more appropriate to illustrate devia-
10° L . _1 tions from macroscopic behavior at small scales. We see
10 10 e clearly in the Fig. 7 that for a siZe<30a, this stress tensor

is asymmetric, and that the asymmetry decreases exponen-
tially to zero for larger sizes. The usual, macroscopic proof
éu-field obtained by simple elongatiorta) correlations functiqn gcﬂ}grs%rrzrgse g):eoézao?tjrsar?ggg.cjk? gmt:r: :;?g etzr)]qaate::r':;eg;nc’)l-me-
8”([)) /=U< 5%(21’ 3u(0)), th(b) . E:)neafmth Coarse'_gra'_n?d Bf'etlr? try of the microscopic stress tensdobtained from the
«(b)/Uy(b=1) versus the sizd of the coarse-graining. BOth  wp ) roscopic” definition) only for volume elements of size
functions become system size independent for ldrgghe first - oy on |arger than the range of intermolecular forces. How-
figure on the_ Ieft-hand_5|de shov_vs clearly an aptlcc_)rrelatlon Nover. as very recently pointed out in Ref. 33, thigroscopic
agreement with the vortices seen in the snapshot in kig. 5 stress tensor needs not to be symmetric. The well known
o macroscopiargument does not apply due to the local disor-
dependencél, approaches a system size independent enVejer and the resultant contribution to the elastic energy of the
lope forb<L, as can be clearly seen from the figure. work of the fluctuating forces on the fluctuating partuoflt
Barely distinguishable functions have been obtained foiyas shown in Ref. 33 that this last contribution vanishes only
Uy (not depicted which demonstrates the isotropy of the for very large systems.
nonaffine displacement fields which may also be inferred e note that the length scales observed in all these plots
straight from the snapshots and appropriately chosen correre relatively large compared to the particle size, butnare
lations functions. Similar characterizations can be obtaineéh the classical sense characteristic lengths appearing in the
from a standard Fourier transform é6fi(x,y) and from the exponential decay of a correlation function. An important
gradient fields defined on the coarse-grained field, . consequence of the large spatial correlations is that calcula-
These are again not presented. tions of Lamecoefficients are prone to finite-size effects for
In the rest of this section, we consider the local stressesystem sizes similar and belagv This explains qualitatively
generated by the applied macroscopic deformation. We shoifie peculiar system size dependence of the Leowdficients
in Fig. 7 the variance(o,—,,)?) averaged on various eported in Fig. 4).
boxes of sizéh. Here, the stress tensat,; has been defined,
as in classical mechanics, as the average force per unit length
exerted in thex direction through the side perpendicular to  In this section we discuss finally the eigenvalues and
the B direction of the volume element of size Note that eigenvectors of the different systems we have generated. For

FIG. 6. Characterization of nonaffine displacement field

VI. VIBRATION MODES
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each configuration the lowesp£ 1000) vibration eigenfre- (a) (N=723,2R=32a

guencies and eigenvectors have been determined using t 1000 | []N=4096 2R-75.4a 0
version of the Lanczos method implemented in BABPACK AN=3276;3,2R=220a

numerical packag® As stressed in the Introduction we con- B <N>=4180,2R=76a E é
centrate on the lowest end of the vibrational spectrum, sinc a5 | ®)

this is the part that corresponds to the largest wavelengths fc
the vibrations.

We continue and finish first the discussion of disk-shapec
aggregates which started with the snapshot Fig). Trhis
being done we focus more extensively on the simpler peri

odic glassy systemé@rotocol Ill) and discuss subsequently @

500 -

<(2Ro)>>

their eigenfrequencies and eigenvectors. This allows us t 250 |-
pay attention to central questions of strongly disordered elas
tic materials without being sidetracked by additional physics
at cluster boundariellipticity, radial variation of material 0 . ‘
properties, etg. 8 g 2

A. Eigenmodes of disk-shaped aggregates (b)

[ﬂ
The first no_ntrivial eigenvalues &p=<11) _for the two i@mﬂg%éo
protocols for disk-shaped clusters are shown in Fig).8he EEBEH?O

O

first three eigenmodes have vanishing eigenfrequencies b
cause of two translational and one rotational invariance. Ag 2000 .ﬁg@@
gregates of different sizes are presented as indicated in tt
figure. The frequencies are rescaled with the disk diamete
2R as suggested by dimensional considerations or continuul
theory. This scaling is roughly successful for all systems in-
cluded. For the smaller systens.g., for the example with ’i@@m
N=732 given o do not present the degeneracies of the con O OL=33a,N=1000
tinuum theory. If we increase the system size steps appe: g@-@@ [1L=208a,N=40000
and the eigenfrequencies start to regroup in pairs of two fol
lowing the continuum prediction. This is well verified for the 0 L ‘ l . ‘ |
largest disk we have created containiNg=32 768 beads. 3 7 11 15 23 27
The horizontal lines are comparisons with continuum theory P
with appropriate density and where the Lameefficients
(and, hence, the sound velocitigzave been taken accord-
ingly from Table Ill. The comparison of the two prqtocojls degeneracies for sufficiently large samples. In small systems, the
and 1) for N=4096 shows that, perhgps surprisingly, thedegeneracy is lifted. The frequencies are rescaled with the system
quench protocol does not matter much if only the clusters argjze (as indicatel and compared with the theoretical predictions
large enough and the excentricity sufficiently weak. NOt€(norizontal line The open symbols ifa) correspond to the slow
that t_hl_s is definitely not true for small disks where the ex-quench(protocol ), the full symbols to a rapid quencprotocol 1)
centricity matters. showing that the results of both protocols become similar for large
The next step is now to characterize the continuum apdisks. The open and full squares(is) correspond to two different
proach as a function of system size. Our analysis presentamnfigurations with the same parameters.
in Fig. 9a) is similar to the finite-size studies of phase tran-
sitions and critical phenomena. The rescaled eigenfrequerier the larger systems; for(R)> ¢ the lowest frequencies
cies for givenp are plotted vs the rescaled inverse systemeven matchjuantitativelythe predictions. There is no adjust-
size £/2(R) in such a way that the vertical axi€¥®> able parameter left for the vertical scale. The crossover at
=((wR/mc)?) should become independent of the cluster¢/2(R)~1 for the smallest eigenfrequencies justifies the
properties(size, density, Lameoefficient$ in the limit of  (somewhat arbitrasychoice of the numerical value of.
large systems{ is the crossover length defined in the previ- Interestingly, the continuum limit is approached im@nmo-
ous section. We have takef=30a. The horizontal lines notonousfashion and very small systems vibrate at higher
correspond to the continuum predictions for quantum numfrequencies. One cause for this is certainly the higher excen-
bers f,k) as indicated. Both axes are dimensionless. For théricity of smaller clusters. As we will see below, however,
p given in the figure only transversal modes are expecteddditional and more fundamental physics plays also a role.
and, hence, we have used the transversal sound velocity Every data point corresponds to an average over an en-
=cq(p) everywhere. Fop<14 all modes should be twofold semble with identical operational parameters. The number of
degenerated and one expects eveil symbolg and odd configurations in every ensemble have been chosen such that
(open symbolsmodes to regroup in pairs. This is born out the (not indicated error bar is of the order of the symbol

<(Lo)’>
O
O

FIG. 8. Comparison of the first nontrivial eigenvalues tay
disk-shaped clusters arit) bulk systems confirming the predicted
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(a) We have presented in the figure data from the first proto-
col of elaboration. Data from the second protocol looks quite
A similar. For small systems there are differences probably due
to the higher eccentricity as mentioned above. As some of
-4 p=10 the results presented here, such as the nonmonotonous varia-
& tion, could be due to spurious surface and excentricity effects
in circular systems, we now turn our attention for the rest of
& p=8 this section to the periodic glassy systems.

O

> D>

-# p=6 B. Eigenfrequencies of periodic bulk systems

oCHD ¢ b [>

[ 6] Nulk 3o s
eomO ¢ C p >
e om0 & <

O Raw data for eigenfrequencies for systems generated fol-
‘@ p=4 lowing the third protocol are given in Fig.(l® for two ex-
o amples ap=0.925. As there is no rotational invariance in a
10' periodic box only the first two modgs=1 andp=2 vanish.

The vibration frequencies do not display the degeneracies of
the continuum in the smaller system with=32.9 (spheres
It appears that the finite-size effects are much more pro-
nounced in the eigenfrequencies compared to the weak ef-
fects discussed in Fig.(B) on the stiffness. In contrast to
small systems, the degeneracy steps are clearly visible for the
largest configurationgsquare symbojswe have sampled
with N=40000. The quantitative agreement with continuum
prediction is then satisfactory and deteriorates only slightly
with increasingp, i.e., with decreasing wavelength(p).
Two configurations have been obtained in the latter case
(open and full symbo)s Interestingly, the self-averaging is
such that both are barely different, even where they depart
from the classical theory.

Figure 9b) shows the eigenfrequencies for bulk systems
as a function of box sizk in analogy to the characterization

1 presented above for disks. The horizontal axis is &,

&L the vertical axisQ?={(wL/2ct)?). While the continuum

FIG. 9. Finite-size scaling of reduced eigenfrequenciesapproach is somewhat smoother in the bulk case than for the

02(p,L) = ((w(p,L)L/27C1)?) versusé/L with £=30a: (a) disk- disks essentially both sets of data shown in Fig. 9 carry the
shaped aggregates from protocol | with=2R, (b) periodic bulk same message. They In_dlcate that f(_)r_system Sizmslow{
systems alp=0.925 (protocol Ill). The mode indexy increases the predictions of cont_lnuum elasticity beco_me erroneous
from bottom to top, some of the are specifically givertfull sym- even for. the.smal_lest e|genques_. The classical degene_racy
bols). In both cases the degeneracy is systematically lifted for smalP the vibration eigenfrequencies is lifted and the resulting
systems and the continuum predictiégiven by the horizontal ~density of states, becomes a continuous function. The ap-
lines is approached nonmonotoneously. The pairs of quantum numProach of the elastic limit is again nonmonotonous. This is

bers 1,k) and (h,m) associated with the predictions are indicated NOt related to the dispersion due to the discreteness of an
in (a) and(b), respectively. atomic model, which would result into a monotonous ap-

proach to the elastic limit, as can be easily checked on one-
dimensional models. As we have no surface effects here the
I3f‘fect must be due the frozen-in disorder. Obviously, the

%hysics at play should also be relevant for the disk-shaped

(b)

size. The dispersion of an individual measurement is muc

frequency difference between subsequent madgs+ 1)?

—w(p)®. As the problem seems to be strongly self-  Ag a sideline we report here briefly that we have also
averaging, as one expects, the dispersion between differepfyestigated the role of the quenched stresses on the eigen-
representations of an ensemble goes strongly down with sy$requency spectrum. This can be readily done by switching
tem size. Note that the diameter® and the densitiep of  off the contribution from the tensions in the dynamical ma-
each configuration in an ensemble vary somewhat and weix Eq. (7). The correspondingutificial system appears to
have used in the averaging procedure the sound velocitiggmain mechanically stablee., all eigenvalues remain posi-
associated with every specific sample density. This was donéve), however, it does not correspond to any realistic inter-
by means of interpolating the numerical values of the Lameaction potential. A finite-size plot analog to the ones shown
coefficients shown in Fig.(4). The dispersion of sound ve- in Fig. 9 has been computed for periodic systems. This yields
locities within an ensemble is, however, relatively weak evera result qualitatively very similar to the curves presented
though the Lameoefficients depend strongly on density.  here, albeit the crossover to continuum occurs for slightly
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smaller box sizes. The point we want to make here is two

fold: On the one side quenched forces matter if it comes tc (a) O
guantitative comparisons and evaluation of an analytical 10 0
model, on the other hand, they do not generate new physic & oo
The role of quenched stresses is simply to maintain a loce %DO
equilibrium in systems with strong positional disorder. The 9,
results presented here, and particularly the deviation fron 0.9
classical continuum theory, appears to be due to local diso
der and simple harmonic but disordered couplings woulc
give analogous results.

As in the study of critical phenomena where finite-size mel = L=104,N=10000
effects reveal correlations at wavelength@.,p) in much ’ o L=147.1,N=20000
larger systems where>\ one naturally expects that the © L=208,N=40000
results of Fig. 9 are also relevant for the description of highe
eigenmodes and their departure from continuum theory. W .
demonstrate in Fig. 10 that the crossover to continuum i 070 °
indeed characterized by the ratio of wavelength and the col ﬁ/lcom
relation lengthé. The numerical eigenfrequenci€sare res-
caled by their expectatior) ,,(n,m) from continuum (b)
theory [Eq. (4)] and plotted vs the inverse wavelength 1 O
&N\ condN, M), where the wavelength is inferred from E) ’ 8<>
for the quantum numbens and m associated with the mode o
index p. Again we set(to some extend arbitrarilyé=30a. 0o
As can be seen, all the data sets obtained for various sizt o
collapse and confirm within numerical accuracy the choice
of the scaling variables. Interestingliwo separate scaling
functions appear for transverse and longitudinal modes ant «
for clarity, we have plotted both in two different graphs. The
crossover occurs at aboNt,,~ ¢ for the transverse modes
in agreement with the observations in FigbP In contrast,
about twice as large wavelengths are required for longitudi
nal modes to obtain a satisfactory match with continuun
theory as shown in Fig. 1b). Both scaling curves are simi- 0757 0°
lar nevertheless and could indeed be brought to collapse k E_,/x
choosing a largeg for the longitudinal waves. That de-

pends somewhat on the type of mode is not surprising. HOW- g\ 10. Scaling ofa) transverse antb) longitudinal modes for

ever, it would be of course more appealing if one would haveyifrerent box sizes as indicated. The rescaled frequedB02,

a simple physical argument explaining thlewer crossover =(w?)/ w2, is plotted versus the inverse wavelengi coy. The

for longitudinal waves. theoretically expected wavelength,,=L/(n?+m?)/? is given by

the quantum numbersi(m) associated with the mode indexWe

have again sef=30a. The crossover to continuum theory occurs at

N~ ¢ for transverse modes and at about twice as large wavelengths
For periodic bulk systems of sufficiently large size, thefor longitudinal modes. The success of both scaling plot suggests

low frequency modes turn out to be intricate linear superpothat ¢ is frequency independent for sufficiently large system sizes

sitions of plane waves. But as the existence of the continuurwhere\ (p) <L, but does depend the wave type. We regard this as

limit for the largest of our systems is now sufficiently dem- the new central results of this paper.

onstrated we focus in the reminder of this paragraph on the

departurefrom the continuum prediction. number. The three particular eigenvectors considered in Fig.
In order to characterize the departure of the numericall1, belong to sets of fourfold degenerate eigenstates. Hence,

eigenvector displacement field¢p) from continuum theory if noise could be discarded the projections onto plane waves

we project them onto plane waveg,(d), i.e., we compute would be of width four, corresponding to an average over all

their Fourier amplitudesA,(q) =(v(p)|veon(a)). This is  possible random phases. Accordingly, the projection of

shown in Fig. 11 for the eigenvectops=3, 11 and 27. The eigenvectors belonging to an eightfold degenerated set would

average(- - -) is taken over the ensemble. The amplitudeshave a width eightnot shown. As anticipated by our dis-

are plotted versug—p, i.e. we have shifted the abscissa axiscussion of the eigenvalues the overlap between numerical

horizontally in such a way as to emphasize the contributiorand theoretical eigenmodes deteriorates with increasing

of the pth elastic mode to the computed eigenvector with themode indexp. This is seen from the decreasing peak height

same number. Indeed, the main contribution is seen to be dwnd the increasing width of the functigk,(q—p) with in-

to the plane wavépropagativgé mode with the same mode creasingp. The enlargement of the peak to neighboring fre-
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o\ e s TS e Y FIG. 12. Correlation functiofiév ,(r)|6v,(0)) of the eigenvec-
-50.0 0.0 50.0 100.0 150.0 tor noise fields fop=3 and 11 vs distance The curves are similar
(Py—p) to the ones shown in Fig.(#& and feature again prominent anticor-
relations. Inset: {;(p) characterizing the anticorrelation for
FIG. 11. Construction of noisy eigenvector field for periodic box N=10 000(dotted liné and N=5 000 (bold line). Also included is

configurations withN=10000,p=0.925. Main figure: projection the wavelength from Eq(3) associated with each continuum mode
amplitude of empirical eigenvectops=3, 11, and 27 on the theo- (top line).

retical plane waves which are indexed witwith increasing fre-
quency. Only the transverse modes are included for clarity. Insert: L€t us now study the structure of the noisy part of the
relative amplitude of noise as a function of waveleny(ip). The ~ wave vector. Assuming a scattering process, it would be par-
dotted line is a fit with exp{\.,/30a) in agreement with the es- ticularly interesting to determine the dependency of a pos-
timation £~ 30a for the characteristic wavelength. The long-dashedsible mean free path into the wavelength,, of the eigen-
line is a fit with A ~2 in agreement with a scattering process. mode. Two examples for eigenvector noise fiedidgp) are
presented in Figs.(6) and §d) for the modesp=3 andp

quencies suggests a scattering process in agreement with7, respectively. They are compared with the non-affine
Refs. 16,17. Note the asymmetric character of the projectionfields obtained for the same configuration in an elongational
amplitudes, which must vanish far<3. Interesting, even and pure shear displacement field. The vortices are again the
for small p, the amplitudes do not completely vanish for MOSt stnkmg _features. The four fleld_s given look mdged re-
largeq— p, but become more or less constant. This indicateé“ar_kamy S|'m|Iar: The sizes and positions of thg vortices are
a Fourier transformedocalized noise term, in agreement obwously highly corr_elated. T(_) put this in qqantltatlve terms
with the quasilocalized modes described in Ref. 14. As wdve con5|d_er cor_relat|on functions for t_he eigenvector noise
shall elaborate now below, this is due to vortices in analogy€!ds designed in analogy to those discussed for the non-
to those depicted in Fig. 5. affine fields. _ .

The next step consists in the construction of the noise 1N€ correlation functiorC,(r)=(du(r)| 6v(0)) is pre-

field by substracting the contributions of the dominant peai®€nted in Fig. 12 for two modes=3 andp=11. As ex-
from the numerical eigenvectorgp), pected from the noise field snapshots we find again the anti-

correlations similar to those presented for the nonaffine fields

in Fig. 6(@). The anticorrelation extends even to somewhat
dv(p)=v(p)— ED Ay(@)vconfQ), (1) Jarger distances. We realize that the mode dependence while

4= visible is weak. In the inset we have plotted the first node of

whereD,, is the set of 4or 8) plane wavesg) that contribute  the anticorrelation/;(p). Also included is the wavelength

most to the Fourier decomposition of the mguébviously, corresponding to the mode numharWe find that/, does

| 6v(p)||= \/EquAp(q)z should decrease with the wave- not vary much with\, unlike thex*-dependence of the mean

length. We have computed the dimensionless ratidr€® path in scattering processes. Thus the noise displays a

|6v(p)||/|lv(p)|| and plotted this quantity in the inset of characteristic lengtlf, comparable t& and independent on

Fig. 11 vs the wavelength.,{p). This curve is in qualita- the quep_. We stress that the resulting partlupatlon ratio of

tive agreement with a scattering process of Rayleigh ¥pe, th_e noise is weak, thus our _results_ are in corrlplete agrement

where|| 8u(p)||/||v(p)||=\ 2. We have compared the data with previous works or(quaswlocahzedmodesl. ‘However,

with the exponential decay expl.../30a). Interestingly, _the slov_v(non exponentla\.ldepaySOZfOthe correlation function

the characteristic wavelength defined here is equal ur IS @IS0 in favor ofdelocalization'™

data do not allow us to discriminate between both fits. The

conclusion is thus that, whatever the origin of the ndssmt-

tering process or nptthe noise is small compared to the  In summary, we have presented extensive simulations of

propagative theoretical mode whap>¢£. mechanical and low-frequency vibrational properties of

VII. DISCUSSION
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guenched amorphous disk-shaped aggregates and periodicsufficiently large length scale solely from the frozen local
bulk systems. Two-dimensional ensembles containing up tdisorder. There must be a mechanism which amplifies these
40000 polydisperse Lennard-Jones particles have been gein- such a way that the deformation fields as the ones dis-
erated and analyzed in terms of sample size, density, sampjgayed in Fig. 5 become nonaffine on scales comparable to
symmetry, and quench protocol. We have focused on systen#=30a. Incidentally, this mechanism is not directly related
with densities close to the zero-pressure state to have similao the mean free path that can be computed in diffusion
conditions for the two boundary symmetries studied. Theprocesse$ as can be shown by the absence of any
eigenmodes of the structures are calculated by diagonaliza~dependence. The Rayleigh scattering thus appears not to
tion of the dynamical matrix and the eigenfrequencies arde the unique way to localization. One marked difference is
compared with the predictions from classical continuumthat the mean free path is obtained in one-dimensional
theory where we concentrate on the low frequency end. Thenodels!”*® however the characteristic length is related in
second key calculation we performed consists in macroeur study to vortices, implying a displacement in the trans-
scopic deformationgpure elongation and pure shgaf a  verse direction. A one-dimensional model of the displace-
periodic box in order to obtain the elastic moddliame ment field in a two-dimensional medium as in Ref. 18 ap-
coefficienty and the microscopic displacement fields. Thesepears thus to be unrealistic. Unfortunately, we are not able at
are in turn compared with the noisy part of the correspondinghe moment to propose a definite relation between the size of
eigenvector fields. the vortices and the local properties of the system. Prelimi-
The central results of this study are as follows: nary studie¥’ suggest a strong correlation between the vor-
(1) The application of continuum elasticity theory is sub- tices and the occurrence under mechanical solicitation of
ject to strong limitations in amorphous solids, for systemnodes of stresses acting as bolts and forcing a displacement
sizes below a length scafeof typically 30 interatomic dis- in the transverse direction. This must be related to the local
tances. This length scale is revealed in a systematic finiteanisotropy of forces as already been suggested in Ref. 40 in
size study of the eigenfrequencies and in the crossover scanother context.
ing of modesp for fixed system size with the wavelength  Interestingly, sizes similar t§, or somewhat smaller, are
\(p). This size is much larger than the discretization, andoften invoked] as typical of the heterogeneities that give
sound wave dispersion is of course irrelevant at this scale.rise to anomalies in the vibrational properties of disordered
(2) The success of the scaling of the eigenfrequenciesolids (glassek in the Terahertz frequency domain, the so-
with the wavelength demonstrates tliats a critical wave-  called boson peak. In particular, Ref. 9 considers the exis-
length It is within numerical accuracy independent of the tence of rigid domains separated by softer interfacial zones,
mode and of the system size. The crossover behaviors afot unlike those revealed by the nonaffine displacement pat-
transverse and longitudinal modes are similar, although th&ern of Fig. %a). Our work offers a new vantage point on this
latter is somewhat slower, i.e., slightly larger systems ardeature. Inhomogeneities of sizelcorresponding to Thz fre-
required to match the same mode with continuum theory. quency in the displacement field could provide an interpre-
(3) The macroscopic deformation experiments demontation of the discrepancy between the measured vibrational
strate that the nonaffine displacements of the atoms on thaensity of states and that of a continuum, elastic mdihe
local scale matter: a finite amount of energy is stored in thdebye model
nonaffine field and there is a large difference between the The present study documents the importance of system-
true Lamecoefficients and those obtained from the dynami-atic finite-size characterizations for the computational inves-
cal matrix, assuming an affine displacement field on alltigations of glassy systems well below the glass transition. It
scales. suggests that numerical investigation of vibrational proper-
(4) Below a length scale similar t§ both the nonaffine ties should systematically make use of samples much larger
displacement field and the noisy part of the eigenvector fieldshan &, in order to avoid finite-size effects and to be statisti-
displays vortex-like structures. These structures are respomally significant. Too small systems tend to be slightly more
sible for the striking anticorrelations in the vectorial pair cor-rigid and have higher pressures and system energies.
relation functions of both types of fields. We have identified Finally, let us mention that such vortices have been stud-
in this paper the nonaffine field as the central microscopided in disordered materials in the context of large deforma-
feature that makes the continuum approach inappropriate. tions and flow?®?*We show here that the same mechanism
Inhomogeneities in local elastic coefficients, are an esseriiappens even in the elastic regime, for very small deforma-
tial ingredient in several recent calculations on disorderedions in a quasistatic motion. Vortex-like deformation pat-
elastic system&-'?Indeed, the origin of the departure from terns have also been identified, and associated with, in simu-
elastic behavior seen in the two key computer experiments itions of granular materiaf®.Our studies clearly shows that
ultimately related to the local disorder. This disorder is re-very simple models, involving only conservative forces, are
vealed by the structure of the force network frozen into thesufficient to reproduce such patterns. Disorder appears to be
solid, as shown in Fig. 1. Interestingly, weak finite-size ef-much more relevant than the “granular” aspdetg., fric-
fects are evidenced in properties of the frozen local disordetional termg for this type of property.
like the pressure, the particle energy and one of the Lame The above conclusions are obviously subject to the con-
coefficients and in the histograms of forces, coupling conditions under which our simulations have been performed.
stants and dynamical matrix trace. The most serious limitation of this work is certainly that we
Surprisingly at first sight, we have been unable to identifyhave only reported results on two-dimensional samples. Of
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course, one expects correlations to be reduced in higher dspecifically the quench protocol should be systematically al-
mensions and finite-size effects should be less troublesontered to further the understanding of the origins of the dem-
there. However, this study initially originated from an at- onstrated correlations. We have not seen within the accuracy
tempt to compute the vibrational modes of three dimensionabf our data any systematic effect of the quench protocol on
clusters. Surprisingly, we have been unable to reach there thiee the characteristic length. However, more attention
elastic limit even for systems containing 10000 atoms andghould certainly be paid to the aging processes occurring in
had to switch to the simpler two dimensional case which is inguenched samples as a function of system size.

terms of particle numbers less demanding even though the

length scal& might ultimately turn out to be smaller in three

dimensions. Indeed, we believe that a systematic finite-size
analysis of mechanical and vibrational properties in three-
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