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Continuum limit of amorphous elastic bodies:
A finite-size study of low-frequency harmonic vibrations

A. Tanguy,* J. P. Wittmer, F. Leonforte, and J.-L. Barrat
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~Received 11 April 2002; revised manuscript received 27 June 2002; published 27 November 2002!

The approach of the elastic continuum limit in small amorphous bodies formed by weakly polydisperse
Lennard-Jones beads is investigated in a systematic finite-size study. We show that classical continuum elas-
ticity breaks down when the wavelength of the solicitation is smaller than a characteristic length of approxi-
mately 30 molecular sizes. Due to this surprisingly large effect ensembles containing up toN540 000 particles
have been required in two dimensions to yield a convincing match with the classical continuum predictions for
the eigenfrequency spectrum of disk-shaped aggregates and periodic bulk systems. The existence of an effec-
tive length scalej is confirmed by the analysis of the~non-Gaussian! noisy part of the low frequency vibra-
tional eigenmodes. Moreover, we relate it to thenonaffinepart of the displacement fields under imposed
elongation and shear. Similar correlations~vortices! are indeed observed on distances up toj'30 particle
sizes.
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I. INTRODUCTION

Determining the vibration frequencies and the associa
displacement fields of solid bodies with various shapes
well studied area of continuum mechanics1–3 with applica-
tions in fields as different as planetary science and nuc
physics. The increasing development of materials contain
nanometric size structures leads one to question the limit
applicability of classical continuum elasticity theory, whic
is in principle valid only on length scales much larger th
the interatomic distances.3,4 This question is relevant from a
experimental viewpoint, since mechanical properties are
ferred from spectroscopic measurements systematically
terpreted within the framework of continuum elasticity.5–8As
increasingly smaller length scales are now investigated,8 di-
rect verification of this assumption is highly warranted.

For macroscopic systems, on the other side, it is w
known that the vibrational density of states in amorpho
glassy materials deviates from the classical spectrum at
so called ‘‘Boson peak’’ frequency which is in the Terahe
range.9–12 The nature of the ‘‘Boson peak’’ is highly
controversial.14,15 However, this experimental fact sugges
that continuum theory is inappropriate at small length sca
where the disorder of the amorphous system may bec
relevant.13 Obviously, one may ask if there is a finite leng
scale below which the classical mechanical approach
comes inappropriate, and what the microscopic features
which determine it.4,14–16 Elaborating further the brief pre
sentation given in Ref. 13, we show by means of a sim
generic simulation model that, indeed, a relatively large ch
acteristic length exists, and, second, that it envolves col
tive particle rearrangements.

The above questions are more generally related to
propagation of waves in disordered materials,17 and concern
foam25 and emulsions24 as well as granular materials,18–20,26

when they are submitted to small amplitude vibrations.
for these systems of current interest, the existence of an e
tic limit is still a matter of debate,22 we believe that the
detailed characterization of strongly heterogeneous ela
0163-1829/2002/66~17!/174205~17!/$20.00 66 1742
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benchmark systems with a well defined continuum limit a
proach is crucial.

In this paper, we investigate the existence of a continu
limit in the vibrational modes of two-dimensional amorpho
nanometric Lennard-Jones materials. The objects we c
sider are either disk-shaped clusters of diameter 2R, as the
one shown on the left-hand side of Fig. 1, or bulk-like sy
tems without surfaces contained in a square of sideL with
periodic boundary conditions@Fig. 1~b!#. Technically, the
systems are formed by carefully quenching a slightly po
disperse liquid of spherical particles interacting via simp
Lennard-Jones~LJ! pair potentials into the nearest energ
minimum. Due to the polydispersity the resulting structur
are isotropic andamorphous, i.e., exhibit no long range crys
talline order. The force network~Fig. 1! appears to be
strongly varying with weak and tensile zones~red! embed-
ded within a rigid repulsive skeleton~black!. These ‘‘force
chains’’ are very similar to those found in cohesionle
granular media without attractive forces.21 This feature may
be added to the list of similarities which have been notic
between granular and amorphous~glassy! materials.22–24As
the force network is strongly inhomogeneous, the releva
of the quenched stresses is a natural question.4

We investigate the vibrational modes of these objects
ing atomic level simulations. All particle coordinates and i
terparticle forces are exactly known here, and it is possibl
calculate the vibration frequencies around an equilibrium
sition, by exact diagonalization of the so-called dynami
matrix27 expressible in terms of the first and second deri
tives of the interparticle interaction potentials. We have c
ried out a systematic comparison of these eigenfrequen
v(p) (p being an index increasing with frequency! obtained
numerically with those predicted by continuum elasticity f
two-dimensional objects of increasingly large sizes.1 We
concentrate on the lowest end of the vibrational spectru
since this is the part that corresponds to the largest wa
lengths for the vibrations, and should reach first the c
tinuum limit. These frequencies are also those which
©2002 The American Physical Society05-1
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FIG. 1. ~Color! Representation of the network of quenched stresses in two small quenched Lennard-Jones particle system
dimensions:~a! a disk-shaped aggregate of diameter 2R'32a containingN5732 particles~protocol I! on the left and~b! a periodic bulk
system withL532.9a andN51000~protocol III! on the right-hand side. The line scale is proportional to the tension transmitted alon
links between beads. The black lines indicate repulsive forces~negative tensions!, while the red links represent tensile forces between
verticies. Both shown networks are very similar despite different symmetries and quench protocols. They are strongly inhomogen
resemble the pattern seen in granular materials. Zones of weak attractive links appear to be embedded within the strong skeleton o
forces.
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probed in low frequency Raman scattering experiments,8 in
order to determine the typical size of nanoparticles.

The key result of this paper is to show the existence o
characteristic wavelength~thus a characteristic size! beyond
which the classical continuum limit is valid, but below whic
it is erroneous. Moreover, we show the existence of ro
tional structures~vortices! of similar sizes, when the system
is submitted to simple mechanical sollicitations~traction and
shear!. The size of these vortices is relatively large ('30
average interatomic distances!. We discuss the relation be
tween the sizes of the vortices and the limit of applicabil
of the classical continuum theory by computing the elas
moduli, by studying the symmetry of the nanoscale str
tensor, and by identifying the low frequency vibration
eigenmodes.

Our paper is arranged as follows: In Sec. II we summar
some basic relations and results of classical continu
theory for two-dimensional elastic bodies. Simulation tec
niques, sample parameters, and preparation protocols o
model amorphous systems are explained in Sec. III
simple system properties are discussed. In Sec. IV we
lyze histograms and spatial correlations of the quenc
forces and of the stiffness of the bonds. A weak enhancem
of the rigid skeleton is demonstrated for small systems. T
next two sections contain the key results of this paper.
Sec. V we discuss the mechanical properties of a perio
bulk system under elongation and shear, we compute
elastic moduli and we characterize the nonaffine displa
ment field generated. The eigenvalues and eigenvectors
17420
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their departures from the continuum prediction are analy
in Sec. VI. We conclude with a summary of our results
Sec. VII.

II. THEORY

A. Continuum description of an isotropic elastic body in 2D

The so-calledclassicalcontinuum theory of elasticity28 is
a theory that proposes to describe an elastic solid at a m
roscopic level. Its main assumption~by opposition tonon-
classicalcontinuum theories like Cosserat elasticity or ot
ers! is that the system can be entirely described by a uni
vector field: the displacement fieldu(r ), describing the dis-
placement of a volume element from its equilibrium positi
r . In systems at zero temperature, energy and free energ
identical. The Landau expansion2 of the energydE per unit
volume is expressed in terms ofu and its first derivatives.
Due to translational and rotational invariance28 of dE, it de-
pends only up to second order on the symmetric part
grad u, the ~linearized! strain tensoreab[1/2 (]ua /]xb
1]ub /]xa) with x15x and x25y for the coordinates.
Moreover in linear elasticity~that is in the lowest order in the
Landau expansion!, for isotropic and homogeneous system
only two Landau parameters are required, thus in the abse
of any external field,

dE5
l

2
~exx1eyy!

21m~exx
2 1eyy

2 12exy
2 !, ~1!
5-2
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CONTINUUM LIMIT OF AMORPHOUS ELASTIC . . . PHYSICAL REVIEW B 66, 174205 ~2002!
where we have defined the two phenomenological Lame´ co-
efficientsl andm. m is the so-called shear modulus, andl
is related to the compressibilityK5l1m. The stress tenso
can be defined as the conjugate variable of the strain ten

sab[]dE/]eab . ~2!

In this definitionsab is obviously a symmetric tensor. W
will see later that amicroscopicallyconstructed stress tenso
can, however, violate this symmetry condition at sm
length scales~Sec. V!. Using Eq.~2!, we obtain the Hooke’s
relations that are used in Sec. V to measure directly the La´
coefficients from the forces generated in a macroscopic
riodic box under external strain.

As it is well known,1,2 the equations of motion
r]sab /]xa5üa together with the constitute Hooke’s rela
tions correspond to wave equations with boundary conditi
depending on the problem of interest: for the periodic b
problem the solutions must have the same periodicity,
the freely floating disk-shaped aggregate requires vanis
lateral and radial stresses on its surface. The velocitie
transverse and longitudinal waves which solve these w
equations are given in terms of the Lame´ coefficients, i.e.,
one hascT

25m/r, andcL
25(l12m)/r wherer is the par-

ticle density.1 We are reminded thatcL.cT and that trans-
verse modes thus correspond generally to smaller eigen
quencies.

The solutions for the periodic box case are of course
plane waves with a wave vector quantified by the bound
conditions, (kx ,ky)5(2p/L)(n,m), with wavelength29

l~p!5l~n,m!5
2p

uukuu
5

L

~n21m2!1/2
~3!

and with dimensionless frequency

VT,L
2 ~p![S v~p!L

2pcT,L
D 2

5n21m2, ~4!

with two quantum numbersn,m50,1, . . . . Therunning in-
dex p increases with frequency. In the continuous case,
dispersion relation is linear, and the frequency is straight
ward. Hence, eigenfrequencies are characterized by a pa
different integers. They are eightfold degenerated ifnÞm
Þ0 and fourfold in all other cases. The associated pl
waves travel in two opposite and orthogonal directions.

The situation for disk-shaped objects is somewhat m
complex,1 with again two quantum numbersn andk charac-
terizing the eigenmodes. The quantum numberk is associ-
ated with the angular dependency of the displacement fi
~and is due to the 2p periodicity!, and the numbern to its
radial dependency. The eigenfrequencies are obtained
solving the nonlinear dispersion relation. They are of
form,

VT,L
2 ~p![S v~p!2R

2pcT,L
D 2

5 f nk~n!, ~5!

wheren5l/(l12m) is the Poisson ratio.30 The eigenvec-
tors are related to Bessel functions1 which may be approxi-
17420
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mated locally by plane waves ifl(p)!R. Vibrational modes
of disks are either non degenerate~for axially symmetric
modes! or have twofold degeneracy~for all other modes!.
Indeed, for k.0, for every solution whose amplitude i
}eiku, one finds a second solution, orthogonal to the fi
one, with amplitude}eik(u1Du), where Du5p/2k. Every
additional solution with the samek is a linear combination of
these two vectors. For axially symmetric modes (k50), the
above argument does not apply; any additional solut
found by turning the coordinate system is identical to t
first one.

We finally stress the obvious: degenerate eigenvalues
inherent to the continuum treatment of highly symmetric s
tems. The failure to observe them indicates either the lift
of the relevant symmetry or the breakdown of continuu
theory.

B. Pair potential systems with central forces

In a simulation one has the advantage to know all
individual contributions to the total energy. The situation
particularly simple if one has to deal with interparticle pa
potentialsU(r i j ) (r i j being the interparticle distance! such as
the LJ potential we use, and if we stay at zero temperature
this case, the difference of the total potential energy,

Ep5 (
i 51

N21

(
j . i

N

U~r i j ! ~6!

due to a displacement fieldu can be written to second orde
as a Hessian formdEp5 1

2 ut
•M•u in terms of the (2N)

3(2N) dynamical matrixM whose elements are given fo
iÞ j by

2r i j
2 Mia, j b5r i j t i j ~dab2nanb!1r i j

2 ci j nanb , ~7!

Mia,ib52S jM ia, j b , ~8!

n being the unit vector of the bond~for simplicity, we do not
indicate the dependence ofn on the particle indicesi and j ),
t i j []U(r i j )/]r i j the tension andci j []2U(r i j )/]r i j

2 the stiff-
ness of the bond between two interacting beadsi and j. The
first one is related to the stresses ‘‘quenched’’ in the bulk,
as we will see later it is in general small in comparison w
the second one. As in the present study the massm of each
monomer is set equal to unity~even though the particle di
ameters are polydisperse! the Euler–Lagrange equationM

•u1mü50 is solved directly by diagonalization of the dy
namical matrix which yields the eigenfrequencies as eig
values and the corresponding displacement fields as ei
vectors.

A central aspect of this work concerns the possible role
the nonaffine displacement field which is neglected at m
roscopic level. In order to compare this assumption with o
results, it is useful to estimate the elastic moduli with
hypothetical affine displacement field. Assumingconstant
deformations under elongation and shear, one may use
dynamical matrix expression of the free energy to calcul
5-3
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the Lamécoefficients. Comparing31 the Landau expressio
Eq. ~1! and the microscopic energy information in Eq.~6!
yields

la5
1

A (
i j

@r i j t i j nx
2ny

21r i j
2 ci j ~~nx

41ny
4!/222nx

2ny
2!#,

~9!

ma5
1

A (
i j

r i j
2 ci j nx

2ny
2 ,

with A being the total surface. The sums run over all pairs
particles. As anaffine displacement field is assumed to b
valid down to atomic distances the coefficients have b
assigned an indexa to distinguish them from the true mac
roscopic Lame´ coefficients that will be calculated later. No
that this is a crude approximation32 that is widely used but
can give strong errors on the estimate elastic moduli, as
ready mentioned in Ref. 4. We will test the affinity assum
tion in Sec. V and estimate the length below which the affi
approximation becomes problematic.

III. SAMPLE PREPARATION AND CHARACTERIZATION

Systems with two different boundary conditions~disks
and periodic bulk systems! and three quench protocols hav
been simulated. In this section we discuss some techn
points concerning the simulation methods and the sam
preparation protocols and parameters. The details of the
tocols and some properties of the final configurations
summarized in the Tables I, II, and III.

In the present study we use a shifted LJ potential34 for
polydisperse particles. Natural LJ units are used, i.e., we
the energy parametere[1, the particle massm[1, and the
mean diametera5^ai&51. Note that while the particle mas
is strictly monodisperse the particle diametersai are homo-
geneously distributed between 0.8 and 1.2, correspondin
a polydispersity indexda/a'0.12 which is sufficient to pre-
vent large scale crystalline order. We did not attempt to m
the particles even more polydisperse fearing demixing
systematic radial variation of particle sizes in the case
disk-shaped aggregates.

TABLE I. Some properties characterizing disk-shaped clus
generated by a slow aggregation following protocol I with M
steps atT50.1,0.05,0.01,0.005, and 0.001. We have indicated
particle sizeN, the number of configurations in the ensembleM, the
radiusRi of the initial sphere, the mean radiusR of the final glob-
ule, the mean densityr, the excentricitye obtained from the inertia
tensor of the cluster, the interaction energy per particleE, the Lame´
coefficientsla , andma obtained using Eq.~9! and the mean spring
constant̂ r i j

2 ci j &. The mean tension̂r i j t i j & and, hence, the pressur
are too tiny to be measured accurately.

N M Ri /a R/a r e E la ma ^r i j
2 ci j &

8192 5 54 53.5 0.912 0.2522.81 24.8 24.9 31.9
10 000 6 60 59.1 0.912 0.2122.81 24.8 24.9 31.9
16 384 4 85 76.9 0.882 0.1622.80 23.9 24.1 32.0
32 768 1 120 109.9 0.864 0.1122.80 23.5 23.1 32.0
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The quench generally starts with molecular dynam
~MD! at some fixed temperature using a simple velocity r
caling thermostat.34,35The temperature remains constant ov
a fixed time interval of 1000 unit time for each temperatu
step~see the caption of the tables for more details!. This was
sufficient to relax systems into a steady-state~obviously, not
necessarily the equilibrium! as monitored by pressure an
system energy. Unfortunately, no more detailed character
tion of the aging as a function of the quench rate has b
recorded. Following the initial MD sequence we quench
systems further down using an overdamped~OD! algorithm.
Finally, the conjugate gradient method~CG! ~Refs. 35 and
36! was iterated until the configurations reach their local e
ergy minima.

An example for a disk-shaped aggregate has already b
presented in Fig. 1~a!. Two different protocols have bee
employed to generate such disks:

Protocol I: The starting point of the first protocol is a n
too dense LJ liquid droplet of radiusRi and r i'0.9 and
temperatureTi50.1. The initial radiusRi is chosen such tha
the final mean radiusR becomes not too different. We coo
the systems with MD steps at decreasingly smallT. As de-
scribed above, we finally quench each system into its lo
minimum using a sequence of OD and CG steps. See Ta
for details.

Protocol II: In the second case spherical disks of radiusRi
were cut out of amorphous periodic systems already prep
at T50 ~see Protocol III! and r50.925 and the disks are
quenched as before with OD and CG. No finite temperat
MD step was included here. See Table II for details. T
second protocol is much faster than the first one wh
might, however, mimic better the actually occurring agg
gation process in real systems.

The radiusR5A2(I 11I 2)/N of quenched cluster is ob
tained from the eigenvaluesI 1.I 2 of the inertia tensor of the
cluster. The mean densityr5^N/pR2& obtained accordingly

s

e

TABLE II. Some properties characterizing disk-shaped clust
generated with the fast quench protocol II which takes advantag
already quenched periodic bulk systems~protocol III!. As in the
first table we indicate the radiusRi of the initial disk, the number of
configurations in the ensembleM, the ~mean! particle number, the
mean densityr, the excentricitye, the interaction energy per par
ticle E, the Lame´ coefficientsla , and ma and the mean spring
constant̂ r i j

2 ci j &. The final cluster radius is not given as it is esse
tially identical toRi . Note that in the second protocol the partic
numberN fluctuates~very weakly! around its mean valuêN& while
it is a constant operational parameter in the first protocol. The
centricity is much smaller here than in the first more realistic p
tocol. The information contained in the last four columns is ve
similar to the one in the corresponding columns of Table I and Ta
III despite the fact that different quench protocols have been us

Ri /a M ^N& r e E la ma ^r i j
2 ci j &

52 5 7848 0.917 0.08 22.81 24.9 24.9 31.9
60 8 10 448 0.919 0.0522.81 25.0 25.1 31.9
85 8 20 968 0.917 0.0622.82 25.1 25.0 31.8
120 4 37 030 0.910 0.0422.84 25.9 25.9 32.9
5-4
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TABLE III. Some properties characterizing periodic bulk systems generated following protocol III
MD steps atT51.0, 0.5, 0.1, 0.05, 0.01, 0.005, and 0.001. In addition to properties also recorded
previous tables we have included here the Lame´ factorsl andm obtained from a macroscopic deformatio
and the mean tension̂r i j t i j &. Note that^r i j

2 ci j &@^r i j t i j &.

N L/a r M E P l m la ma ^r i j t i j & ^r i j
2 ci j &

5000 73.5 0.925 20 22.84 0.29 39.6 11.3 26.2 26.5 -0.09 33.1
10 000 110 0.826 1 22.78 -0.63 14.5 7.5 18.4 18.4 0.22 28.2
10 000 109 0.841 1 22.81 -0.61 20.4 8.3 20.0 19.5 0.21 28.3
10 000 108 0.857 1 22.81 -0.67 21.2 7.8 20.1 19.7 0.23 28.0
10 000 107 0.873 1 22.81 -1.06 23.1 8.0 18.9 17.9 0.36 25.8
10 000 106 0.890 1 22.82 -1.13 25.3 8.9 18.0 17.4 0.38 25.4
10 000 105 0.907 1 22.84 -0.48 31.0 11.0 22.4 22.5 0.16 29.2
10 000 104 0.925 20 22.84 0.25 39.5 11.7 26.2 26.4 20.19 32.9
10 000 103 0.943 1 22.83 1.24 47.4 13.3 31.3 31.4 20.38 37.8
10 000 102 0.961 1 22.78 2.71 59.5 14.9 37.7 39.3 20.77 44.0
10 000 101 0.980 1 22.72 4.25 69.7 18.8 44.7 46.6 21.15 50.1
10 000 100 1.000 1 22.62 5.96 84.0 19.0 51.9 54.8 21.55 56.4
20 000 147.1 0.925 3 22.84 0.35 40.4 12.0 26.8 27.0 20.11 33.4
40 000 208 0.925 2 22.84 0.33 - - 26.7 27.1 20.11 33.3
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is a weakly decreasing function of the particle number. T
is expected and in qualitative agreement with the decrea
Laplace pressureP}1/R. Note that the pressure is ver
small for all the disks~Protocol I and II alike! and is not
indicated. We have also tried to characterize the shape o
disks and have indicated the eccentricitye5A12I 2 /I 1. As
can be seen, small aggregates are strongly elliptic, but
effect is much stronger for the first slow aggregation pro
col. This is probably due to capillary waves formed atT
50.1 which are subsequently frozen in. Obviously, elliptic
is one possible cause for lifting of the eigenfrequency deg
eracy. This effect should, however, become small for lar
clusters wheree vanishes~Tables I and II!. Moreover, we
will see later that the mechanical properties of our aggreg
do not depend significantly on the quench protocol.

Periodic bulk systems, such as the one presented in
1~b!, have been prepared following a third protocol describ
here. We started with equilibrated liquids atT51 which
were then cooled down in successive temperature step~as
detailed in the caption of Table III!. Systems betweenL
57a and L5208a and containing fromN550 up to N
540 000 particles have been sampled.

For N510 000 particles we have systematically scann
over density varying the box size fromL5100 to L5110.
This was done in order to find—for the given protocol—
working point density for which large bulk systems corr
spond to a near zero pressure stateP(T50)'0, thus the
mechanical properties of the bulk systems correspond to
free-floating aggregates. Note that only one configuration
been sampled for this measurement sequence. As a side
we draw attention to the fact that systems withP,0 while
mechanically stable in a periodic box are thermodynamic
unstable at low temperature. If more time would be given
the systems to equilibrate as allowed by the protocol ph
separation would occur. Indeed we find evidence for the
mation of small holes forr,0.85. In all other cases we fin
17420
s
ng

he

he
-

n-
r

es

ig.
d

d

he
as
ne,

y
o
se
r-

that density is perfectly homogeneous down to a scale typ
of the interatomic distance and density fluctuations are ea
excluded as a microscopic candidate for explaining the s
continuum approach. Our systematic finite-size study, i
the variation of box sizesL, was performed at fixed densit
r50.925. In order to scale correctly the eigenfrequencies
the aggregates we have also recorded the Lame´ coefficients
as a function of density. We have checked that the part
energiesE, Laméfactorsla andma , mean effective spring
constantŝ r i j

2 ci j & ~which are included in the different tables!
do not depend significantly on the different symmetries a
quench protocols, for a given density. It is reassuring that
the results we obtained are robust with regard to the varia
of the quench protocol even though history dependence m
obviously play a role for the details. Typically, we have ge
erated 20 configurations for eachL and in terms of CPU
hours this was the most demanding part of this study. T
simulations have been performed on a local workstat
cluster over a period of 1 year.

Interestingly, we notice in Table III that the pressure, t
particle energy, and the Lame´ coefficientl increase system
atically in small boxes. This is shown specifically forl in
Fig. 4~b!. These finite-size effects indicate correlations on
similar length even in larger systems. We will now turn to t
characterization of these correlations, by first studying
dynamical matrix, and the quenched stresses.

IV. CONTRIBUTIONS TO THE DYNAMICAL MATRIX:
QUENCHED FORCES AND SPRING CONSTANTS

In this section we discuss various distributions and cor
lation functions associated with the quenched particle p
tions, forces and spring constants which contribute to
dynamical matrix@Eq. ~7!#. We attempt a characterization o
the frozen in disorder visualized in Fig. 1, where the sn
shots reveal strong spatially correlated fluctuations. Spe
5-5



gt
ns
ve
y
p
th

es

ls,

es
ical
di-
di-

dis-

lt,
pic
.
on-

ke

e
plex

ch
al
i-
-
on-

idth

isu-

the
ger
er is

st-
pro-
up-

oth
-

-
es-
is is
e

ates.
or

gh
is-

e-

e-
the

ct is

d in

re-
e to

s

ea
. T
in
ida

en
x

rre
pa

A. TANGUY et al. PHYSICAL REVIEW B 66, 174205 ~2002!
cally, we ask if it is possible to extract a characteristic len
scale solely from the distribution of weak and rigid regio
which might be a candidate to explain the large crosso
length scalej mentioned in the Introduction. We start b
giving some additional information concerning the sna
shots, turn then to the histograms and discuss finally
fractal structure of the quenched forces.

A timely justification for discussing quenched forces li

FIG. 2. Correlations of frozen in forces for large periodic sy
tems:~a! pair correlation̂ cos2(t)& versus distancer. Heret denotes
either the angle between the directorsni andnj of the links i and j
~symbols! or the angle between the directorni of link i and the
direction ni j between the linksi and j ~lines!. The decay of the
envelope is exponential with a length scale of the order of the m
bead size, hence, this does not introduce a new length scale
dots correspond to an artificial force network obtained by shuffl
randomly the tensions between existing links. The sinuso
dashed line is a guide for the eyes.~b! The numberNb of boxes of
size b needed to cover the interactions transmitting repulsive t
sions smaller thantu . The curves do not differ much from bo
counting results on sets of randomly drawn links~dashed lines!.
Different slopes are included for comparison. The slope -1 co
sponds to linear chain-like structures, the -2 slope to a com
structure in 2D.
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in the current interest of their role in granular materia
foams, and glassy colloidal systems.4,21–26 It has been sug-
gested by Alexander4 and others that the quenched forc
might contribute to the unusual mechanical and rheolog
properties in these systems. However, to put this imme
ately into perspective, quenched forces are unlikely can
dates to rationalize alone the slow continuum approach
cussed in Sec. VI, basically, since theiraveragecontribution
to the dynamical matrix is weak:^r i j

2 ci j &@^r i j t i j &. This in-
equality is revealed in Table III. Note that, due to this resu
the possible contribution of a linear term in the macrosco
expression~1! for dE is not relevant to explain our results
We come back to this in Sec. VI where we discuss the c
tribution of the quenched forces to the eigenmodes.

The second and more important point we want to ma
here is that both first~quenched stresses! and second~stiff-
nesses of the bonds! derivatives of the given potential ar
expressions of the same disorder generated by the com
cooling procedure; it is the final positional disorder whi
matters, not the individual contributions to the dynamic
matrix. If the width of the lines between the particle pos
tions shown in the snapshots~Fig. 1! has been chosen pro
portional to the interaction force rather than the spring c
stant this was done mainly forartistic reasons. Resembling
snapshots can be obtained, using as a scale for the line w
either the spring constants or the tracemi j 5Mix, jx1Miy , jy
of the dynamical submatrices. Such pictures are direct v
alizations of the dynamical matrix.

The snapshots in Fig. 1 reveal that the structure of
force network is very inhomogeneous, but isotropic on lar
scale. They show also evidently that the quenched disord
not much affected by the different symmetries~circle or
square! and quench protocols. This corroborates the robu
ness of the system properties with regard to the chosen
tocol mentioned in the previous section. This is also s
ported by the different histograms regrouped in Fig. 3.

Systems of the three protocols are included in first of b
graphs Fig. 3~a! where we discuss the distribution of dis
tances of interacting particles~inset! r i j /r 0 and of the tensile
forcest i j ~main figure! for relatively large systems contain
ing N510 000 particles. Comparison shows that there is
sentially no dependence on quench protocol. Note that th
only a technical point and will make life easier when w
analyze the eigenvalue spectrum of disk-shaped aggreg
The peak atr i j 5r 0 in the inset corresponds to the peak f
t i j 50 in the main figure of Fig. 3~a!. Hence, most of the
interactions have achieved to minimize their energy althou
this is not required for global mechanical stability. The d
tribution of the repulsive forces~negative tensions! is Gauss-
ian. Incidentally, this is quite different from the recently r
ported exponential force distributions in granular matter.21,23

Interestingly however, the tail of the force distribution b
comes more and more exponential upon decreasing of
system size. We do not show this here, as the same effe
presented in the second panel@Fig. 3~b!# for the trace of the
dynamical submatrices. Various system sizes as indicate
the figure are given here for the third protocol atr50.925.
This demonstrates that the tail of distribution, which cor
sponds to very rigid contacts, becomes enhanced du
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finite-size effect for systems belowL'20a. A very similar
figure could be shown for the distribution of spring co
stants. Note that the peak on the left-hand side of Fig. 3~b! is
due to the slow variation of the spring constant for lar
distances and corresponds to distances seen in the sho
on the right of the histogram in the inset.

In Fig. 2 we show two of several attempts to analyze
correlations and fractal structure of force chains~or the
spring constants! in view of extracting a characteristic size
We focus on strong repulsive forces and strong posi
spring constants. Only results from the first measureme
are reported as both yield similar results. In a first step
obtain the network of all interactions with~negative! repul-
sive tensions above some thresholdtu and compute then on
these sets various correlation functions. The functio

FIG. 3. Histograms of contributions to the dynamical matrix:~a!
comparison of the tensiont i j for all three protocols atN510 000.
Inset: Histogram of distancesr i j /r 0 of interacting particles.~b!
Trace of matrixmi j 5Mxi,x j1M yi,y j for systems of various system
sizes as indicated in the figure~protocol I!. This demonstrates finite
size effects in the tail of the distributions of small systems withL
,20 corresponding to an enhancement of the skeleton of very r
contacts.
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^cos2(t)& traced in Fig. 2~a! attempt to put the visual impres
sion of linear force chains in quantitative terms. Heret de-
notes either the angle between the directorsni andnj of the
links i andj ~spheres! or the angle between the directorni of
link i and the directionni j between the linksi andj ~squares!.
The difference between the two methods is small. The c
relation dies out only after about six oscillations. No signi
cant difference have been found by increasing or decrea
the thresholdtu . The decay of the envelope is exponent
with a length scale of the order of the mean bead size. He
while rigid regions seems to be spatially correlated, this d
not, apparently, introduce a new length scale. Note that
situation is similar in granular materials.20

The second part of Fig. 2 shows a direct attempt to elu
date the fractal structure of the network of quenched for
by means of the standard box counting technique. Here
count the number of square boxes of linear sizeb needed to
cover all the links between beads carrying a repulsive fo
smaller thantu . For smallb where every box contains onl
one link the differential fractal dimension is zero. In the o
posite limit where the boxes are much larger than the aver
distance between links, the differential fractal dimensi
must equal the spatial dimension, i.e.,df52. The power law
slopedf51 in between both limits indicates the typical di
tance where the contact network witht i j ,tu has a linear
chain-like structure. For example, we find a tangent w
slopedf51 at b'6a for tu525. This distance is strongly
increasing if we focus on more and more rigid subnetwo
~decreasingtu). Note, however, that there is nofinite
b-window with df51 and in a strict sense there is again
characteristic length scale associated with linear structure
simple visual inspection of Fig. 1 that would suggest a ch
acteristic length scale of the repulsive force network mu
larger than the interatomic separation is apparently incor
and possibly caused by the natural tendency of our brain
emphasize linear patterns.37

As a simple benchmark for the spatial correlation of t
force network, we have distributed links randomly. The b
counting of these uncorrelated links gives the dashed lin
Unfortunately, these are virtually identical to the fractal d
mension characterization of the force chains in the LJ s
tems and it is a very tiny difference~at least in this charac
terization! which is related to the spatial correlation
Obviously, this does not mean the forces are uniformly d
tributed as clearly shown by the snapshots and by the la
number of oscillations in the correlation function.

In summary, we provide evidence for a strong dispers
in the dynamical matrix, i.e., in thelocal elastic properties of
our systems. Although linear chain like structures exist
parently, this doesnot give rise to an additional characterist
length—defined as the screening length in an exponen
decay—much larger than the mean particle distance.

V. ELONGATION AND SHEAR: ELASTIC MODULI
AND NONAFFINE DISPLACEMENT FIELD

A direct way of illustrating the failure of classical elastic
ity at small scales is to investigate the displacement field
large, deformed sample. If the system is uniformly strain

id
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at large scales, e.g., by compressing or shearing a rectan
simulation box, classical elasticity implies that the strain
uniform at all scales, so that the atomic displacement fi
should be affine with respect to the macroscopic box de
mation. If this is true Eqs.~9! should provide reliable esti
mates of the Lame´ coefficients. Since the latter can be ind
pendently measured in a computer experiment from
generated stress differencies using Hooke’s Law@Eqs. ~2!#
this provides a direct and crucial test for the affinity assum
tion.

Our numerical test proceeds in three steps:
~1! Each initial configuration is given a first quick CG

quench withquadrupleprecision to have a more precise e
timate for the unstrained reference system. This is neces
since the stress differences we compute are very smal
strains in the linear response regime and the numerical a
racy of double precision simulation runs turns out to be
sufficient.

~2! Second, we perform an affine strain of ordere of both
the box shape and the particle coordinates. We consider
an elongation inx-direction @Lx→Lx(11e),r x→r x(11e)#
and a pure shear using Lees-Edwards boundary conditio34

together withr x→r x1r ye. @We refer here to the principa
box particle coordinates (r x ,r y) of the periodic configura-
tions.#

~3! Finally, we quench with CG the configurations into th
local minima while maintaining the strain at the boundari
For given boundary conditions in the linear regime the so
tion must be unique.

The differences of particle positions, forces and total
ergies computed at each step are recorded. We stress tha
procedure is technically not trivial and that great care
needed to measure physically sound properties.

We have systematically variede over several orders o
magnitude frome51023 down toe51029 ~not shown!. The
induced displacement field is reversible and linear in the a
plitude of the imposed initial strain for an initial strain in
window 1027<e<1024 which decreases~for unknown rea-
sons! somewhat with system size. Obviously, for high
strains the linearity of Eq.~2! must eventually break down
The departure from linearity below the given strain windo
is due to numerical accuracy.

Using Eq.~2! for the stress tensor averaged on the wh
system and the averaged strain field, we obtain the true m
roscopic Lame´ coefficientsl andm. Within the given strain
window the measuredl and m coefficients are strain inde
pendent, thus confirming the linearity of the elastic respo
in this range. The values ofm andl are presented in Fig. 4
where we have compared them with the affine field pred
tions. ~Note that the Poisson ration'2/3 is larger than 1/2
which is permissible in a 2D.30! The coefficients relying on a
negligible nonaffine field@open symbols, obtained from Eq
~9!# differ by a factor as large as 2 from the true one
Clearly, a calculation taking into account the nonaffine ch
acter of the displacements is necessary for disordered
tems. It is simple to work out from the values given in t
figures that, in a simple elongation, a finite energy fract
(la12ma)/(l12m)21'1/4 of the total strain can be re
covered from the nonaffine displacements. In a pure sh
17420
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the energy fractionma /m'1/2 is even larger; only the com
pressibilityK5l1m remains unchanged. Hence, in quan
tative terms the nonaffinity of the atomic displacements
not a negligible effect.

The nonaffine componentdu of the atomic displacemen
field in large systems subject to an elongation inx direction
is illustrated in the snapshot of Fig. 5~a!. A similar snapshot
holds in case of a pure shear@Fig. 5~b!#. In some regions, the
displacement is much larger than expected from a pu
affine transformation.~Note that even the nonaffine part o
the displacement field is strictly linear ine within the strain
interval indicated above.! Local displacements transverse
the direction of the elongation are allowed, and organize
herently into vortices. The transversal direction thus can

FIG. 4. Lamécoefficientsl and m obtained for periodic bulk
systems:~a! density variation forN510 000, ~b! size variation for
r50.925. Full symbols correspond to the direct measurement u
Hooke’s law, open symbols are obtained using Eqs.~9!. Naturally,
all Lamécoefficients rise with density as the number and stren
of pair interactions increases. Note that whilem remains more or
less constantl increases with decreasingL in a similar way as
pressure and particle energy~Table III!.
5-8



ary
re
nt flow.

CONTINUUM LIMIT OF AMORPHOUS ELASTIC . . . PHYSICAL REVIEW B 66, 174205 ~2002!
FIG. 5. Comparison of nonaffine displacement fielddu(r ) with eigenvector fielddvp(r ) for periodic box of sizeL5104a containing
N510 000 particles:~a! nonaffine displacement field under elongation inx direction,~b! same for plain shear using Lees–Edwards bound
conditions~Ref. 34!, ~c! eigenvector field forp53, and~d! eigenvector field forp57. This confirms that the different noise fields a
non-Gaussianand are highly correlated in space and with respect to each other. Detailed inspection shows vortices like in turbule
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be neglected, showing that the modelling approach put
ward in Ref. 18 is not realistic. The crossover lengthj men-
tioned in the Introduction manifests itself throughcorrelated
deviationsfrom a purely affine displacement. Visual inspe
tion tells us that the sizes of the vortices andj'30a are
comparable.

The two correlation functions presented in Fig. 6 confi
this visual impression. The first one shows the correlat
function Cu(r )5^du(r )•du(0)&. The striking anticorrela-
tion for r !30a is in agreement with the size of the vortice
seen in the displacement fields. That the displacement fie
indeed correlated over a similar size is further elucidated
Fig. 6~b!. Here we consider the systematic coarse-graining
the nonaffine displacement field
17420
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dUj[
1

Nj
(

i PVj

du~r i ! ~10!

of all Nj beads contained within the square volume elem
Vj of linear size b. The mean-squared averageUx(b)
[^dUx, j

2 & j
1/2 is plotted versus the size of the coarse-grain

volume elementb. We have normalized the function by it
value at b51. The coarse-grained field decreases v
weakly for b,30a and only for much larger volume ele
ments we find the power law slope21 expected for uncor-
related events. As for symmetry reasons the total or m
nonaffine field vanishes we haveUx(b→L)→0 for very
large volume elements. Apart from this trivial system si
5-9
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A. TANGUY et al. PHYSICAL REVIEW B 66, 174205 ~2002!
dependenceUx approaches a system size independent en
lope for b!L, as can be clearly seen from the figure.

Barely distinguishable functions have been obtained
Uy ~not depicted! which demonstrates the isotropy of th
nonaffine displacement fields which may also be infer
straight from the snapshots and appropriately chosen co
lations functions. Similar characterizations can be obtai
from a standard Fourier transform ofdu(x,y) and from the
gradient fields defined on the coarse-grained fielddUj .
These are again not presented.

In the rest of this section, we consider the local stres
generated by the applied macroscopic deformation. We s
in Fig. 7 the variancê (sxy2syx)

2& averaged on various
boxes of sizeb. Here, the stress tensorsab has been defined
as in classical mechanics, as the average force per unit le
exerted in thea direction through the side perpendicular
the b direction of the volume element of sizeb. Note that

FIG. 6. Characterization of nonaffine displacement fie
du-field obtained by simple elongation:~a! correlations function
Cu(r )5^du(r )•du(0)&, ~b! mean coarse-grained fiel
Ux(b)/Ux(b51) versus the sizeb of the coarse-graining. Both
functions become system size independent for largeL. The first
figure on the left-hand side shows clearly an anticorrelation
agreement with the vortices seen in the snapshot in Fig. 5~a!.
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this definition of the stress tensor, doesnot correspond
strictly to the usual4,33 microscopic Kirkwood definition
(2S j t i j na .nb) which is necessarily symmetric. Both qua
tities yield the same macroscopic stress tensor, but the d
nition we are using is more appropriate to illustrate dev
tions from macroscopic behavior at small scales. We
clearly in the Fig. 7 that for a sizeb,30a, this stress tenso
is asymmetric, and that the asymmetry decreases expo
tially to zero for larger sizes. The usual, macroscopic proo2,3

of the symmetry ofsab is based on the fact that intermo
lecular forces are short-ranged. Hence, one expects sym
try of the microscopic stress tensor~obtained from the
‘‘‘macroscopic’’ definition! only for volume elements of size
b much larger than the range of intermolecular forces. Ho
ever, as very recently pointed out in Ref. 33, themicroscopic
stress tensor needs not to be symmetric. The well kno
macroscopicargument does not apply due to the local dis
der and the resultant contribution to the elastic energy of
work of the fluctuating forces on the fluctuating part ofu. It
was shown in Ref. 33 that this last contribution vanishes o
for very large systems.

We note that the length scales observed in all these p
are relatively large compared to the particle size, but arenot
in the classical sense characteristic lengths appearing in
exponential decay of a correlation function. An importa
consequence of the large spatial correlations is that calc
tions of Lamécoefficients are prone to finite-size effects f
system sizes similar and belowj. This explains qualitatively
the peculiar system size dependence of the Lame´ coefficients
reported in Fig. 4~b!.

VI. VIBRATION MODES

In this section we discuss finally the eigenvalues a
eigenvectors of the different systems we have generated.

n

FIG. 7. Asymmetry of the stress tensor of the forces genera
in simple shear~Lees–Edwards boundary conditions! for a system
containing 10 000 particles. We measure the ‘‘microscopic stre
acting on a volume element as shown in the sketch on the righ
the main figure we plot the average mean-squared stress differ
^(sxy2syx)

2&1/2 versus the linear sizeb of the volume element. For
small box sizesb,30a we evidence power law behavior whic
crosses to an exponential decay at large volume sizes.
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each configuration the lowest (p<1000) vibration eigenfre-
quencies and eigenvectors have been determined using
version of the Lanczos method implemented in thePARPACK

numerical package.38 As stressed in the Introduction we co
centrate on the lowest end of the vibrational spectrum, si
this is the part that corresponds to the largest wavelength
the vibrations.

We continue and finish first the discussion of disk-shap
aggregates which started with the snapshot Fig. 1~a!. This
being done we focus more extensively on the simpler p
odic glassy systems~Protocol III! and discuss subsequent
their eigenfrequencies and eigenvectors. This allows u
pay attention to central questions of strongly disordered e
tic materials without being sidetracked by additional phys
at cluster boundaries~ellipticity, radial variation of material
properties, etc.!.

A. Eigenmodes of disk-shaped aggregates

The first nontrivial eigenvalues (4<p<11) for the two
protocols for disk-shaped clusters are shown in Fig. 8~a!. The
first three eigenmodes have vanishing eigenfrequencies
cause of two translational and one rotational invariance.
gregates of different sizes are presented as indicated in
figure. The frequencies are rescaled with the disk diam
2R as suggested by dimensional considerations or contin
theory. This scaling is roughly successful for all systems
cluded. For the smaller systems~e.g., for the example with
N5732 given! v do not present the degeneracies of the c
tinuum theory. If we increase the system size steps ap
and the eigenfrequencies start to regroup in pairs of two
lowing the continuum prediction. This is well verified for th
largest disk we have created containingN532 768 beads.
The horizontal lines are comparisons with continuum the
with appropriate density and where the Lame´ coefficients
~and, hence, the sound velocities! have been taken accord
ingly from Table III. The comparison of the two protocols~I
and II! for N54096 shows that, perhaps surprisingly, t
quench protocol does not matter much if only the clusters
large enough and the excentricity sufficiently weak. No
that this is definitely not true for small disks where the e
centricity matters.

The next step is now to characterize the continuum
proach as a function of system size. Our analysis prese
in Fig. 9~a! is similar to the finite-size studies of phase tra
sitions and critical phenomena. The rescaled eigenfrequ
cies for givenp are plotted vs the rescaled inverse syst
size j/2^R& in such a way that the vertical axisV2

5^(vR/pc)2& should become independent of the clus
properties~size, density, Lame´ coefficients! in the limit of
large systems.j is the crossover length defined in the pre
ous section. We have takenj[30a. The horizontal lines
correspond to the continuum predictions for quantum nu
bers (n,k) as indicated. Both axes are dimensionless. For
p given in the figure only transversal modes are expec
and, hence, we have used the transversal sound velocc
5cT(r) everywhere. Forp,14 all modes should be twofold
degenerated and one expects even~full symbols! and odd
~open symbols! modes to regroup in pairs. This is born o
17420
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for the larger systems; for 2^R&@j the lowest frequencies
even matchquantitativelythe predictions. There is no adjust-
able parameter left for the vertical scale. The crossover
j/2^R&'1 for the smallest eigenfrequencies justifies th
~somewhat arbitrary! choice of the numerical value ofj.
Interestingly, the continuum limit is approached in anonmo-
notonousfashion and very small systems vibrate at highe
frequencies. One cause for this is certainly the higher exce
tricity of smaller clusters. As we will see below, however
additional and more fundamental physics plays also a role

Every data point corresponds to an average over an e
semble with identical operational parameters. The number
configurations in every ensemble have been chosen such t
the ~not indicated! error bar is of the order of the symbol

FIG. 8. Comparison of the first nontrivial eigenvalues for~a!
disk-shaped clusters and~b! bulk systems confirming the predicted
degeneracies for sufficiently large samples. In small systems, t
degeneracy is lifted. The frequencies are rescaled with the syste
size ~as indicated! and compared with the theoretical predictions
~horizontal lines!. The open symbols in~a! correspond to the slow
quench~protocol I!, the full symbols to a rapid quench~protocol II!
showing that the results of both protocols become similar for larg
disks. The open and full squares in~b! correspond to two different
configurations with the same parameters.
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size. The dispersion of an individual measurement is m
larger, however, for smaller systems and of the order of
frequency difference between subsequent modesv(p11)2

2v(p)2. As the problem seems to be strongly se
averaging, as one expects, the dispersion between diffe
representations of an ensemble goes strongly down with
tem size. Note that the diameters 2R and the densitiesr of
each configuration in an ensemble vary somewhat and
have used in the averaging procedure the sound veloc
associated with every specific sample density. This was d
by means of interpolating the numerical values of the La´
coefficients shown in Fig. 4~a!. The dispersion of sound ve
locities within an ensemble is, however, relatively weak ev
though the Lame´ coefficients depend strongly on density.

FIG. 9. Finite-size scaling of reduced eigenfrequenc
V2(p,L)5^(v(p,L)L/2pcT)2& versusj/L with j[30a: ~a! disk-
shaped aggregates from protocol I withL52R, ~b! periodic bulk
systems atr50.925 ~protocol III!. The mode indexp increases
from bottom to top, some of thep are specifically given~full sym-
bols!. In both cases the degeneracy is systematically lifted for sm
systems and the continuum prediction~given by the horizontal
lines! is approached nonmonotoneously. The pairs of quantum n
bers (n,k) and (n,m) associated with the predictions are indicat
in ~a! and ~b!, respectively.
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We have presented in the figure data from the first pro
col of elaboration. Data from the second protocol looks qu
similar. For small systems there are differences probably
to the higher eccentricity as mentioned above. As some
the results presented here, such as the nonmonotonous v
tion, could be due to spurious surface and excentricity effe
in circular systems, we now turn our attention for the rest
this section to the periodic glassy systems.

B. Eigenfrequencies of periodic bulk systems

Raw data for eigenfrequencies for systems generated
lowing the third protocol are given in Fig. 8~b! for two ex-
amples atr50.925. As there is no rotational invariance in
periodic box only the first two modesp51 andp52 vanish.
The vibration frequencies do not display the degeneracie
the continuum in the smaller system withL532.9 ~spheres!.
It appears that the finite-size effects are much more p
nounced in the eigenfrequencies compared to the weak
fects discussed in Fig. 3~b! on the stiffness. In contrast to
small systems, the degeneracy steps are clearly visible fo
largest configurations~square symbols! we have sampled
with N540 000. The quantitative agreement with continuu
prediction is then satisfactory and deteriorates only sligh
with increasingp, i.e., with decreasing wavelengthl(p).
Two configurations have been obtained in the latter c
~open and full symbols!. Interestingly, the self-averaging i
such that both are barely different, even where they de
from the classical theory.

Figure 9~b! shows the eigenfrequencies for bulk syste
as a function of box sizeL in analogy to the characterizatio
presented above for disks. The horizontal axis is nowj/L,
the vertical axisV25^(vL/2pcT)2&. While the continuum
approach is somewhat smoother in the bulk case than for
disks essentially both sets of data shown in Fig. 9 carry
same message: They indicate that for system sizesL belowj
the predictions of continuum elasticity become erroneo
even for the smallest eigenmodes. The classical degene
of the vibration eigenfrequencies is lifted and the result
density of states, becomes a continuous function. The
proach of the elastic limit is again nonmonotonous. This
not related to the dispersion due to the discreteness o
atomic model, which would result into a monotonous a
proach to the elastic limit, as can be easily checked on o
dimensional models. As we have no surface effects here
effect must be due the frozen-in disorder. Obviously,
physics at play should also be relevant for the disk-sha
clusters.

As a sideline we report here briefly that we have a
investigated the role of the quenched stresses on the ei
frequency spectrum. This can be readily done by switch
off the contribution from the tensions in the dynamical m
trix Eq. ~7!. The correspondingartificial system appears to
remain mechanically stable~i.e., all eigenvalues remain pos
tive!, however, it does not correspond to any realistic int
action potential. A finite-size plot analog to the ones sho
in Fig. 9 has been computed for periodic systems. This yie
a result qualitatively very similar to the curves presente
here, albeit the crossover to continuum occurs for sligh
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smaller box sizes. The point we want to make here is tw
fold: On the one side quenched forces matter if it comes
quantitative comparisons and evaluation of an analytic
model, on the other hand, they do not generate new phy
The role of quenched stresses is simply to maintain a lo
equilibrium in systems with strong positional disorder. T
results presented here, and particularly the deviation fr
classical continuum theory, appears to be due to local di
der and simple harmonic but disordered couplings wo
give analogous results.

As in the study of critical phenomena where finite-si
effects reveal correlations at wavelengthsl(L,p) in much
larger systems whereL@l one naturally expects that th
results of Fig. 9 are also relevant for the description of hig
eigenmodes and their departure from continuum theory.
demonstrate in Fig. 10 that the crossover to continuum
indeed characterized by the ratio of wavelength and the
relation lengthj. The numerical eigenfrequenciesV are res-
caled by their expectationVcont(n,m) from continuum
theory @Eq. ~4!# and plotted vs the inverse waveleng
j/lcont(n,m), where the wavelength is inferred from Eq.~3!
for the quantum numbersn andm associated with the mod
index p. Again we set~to some extend arbitrarily! j[30a.
As can be seen, all the data sets obtained for various s
collapse and confirm within numerical accuracy the cho
of the scaling variables. Interestingly,two separate scaling
functions appear for transverse and longitudinal modes a
for clarity, we have plotted both in two different graphs. T
crossover occurs at aboutlcont'j for the transverse mode
in agreement with the observations in Fig. 9~b!. In contrast,
about twice as large wavelengths are required for longitu
nal modes to obtain a satisfactory match with continu
theory as shown in Fig. 10~b!. Both scaling curves are simi
lar nevertheless and could indeed be brought to collaps
choosing a largerj for the longitudinal waves. Thatj de-
pends somewhat on the type of mode is not surprising. H
ever, it would be of course more appealing if one would ha
a simple physical argument explaining theslowercrossover
for longitudinal waves.

C. Eigenvectors: Noise and correlations

For periodic bulk systems of sufficiently large size, t
low frequency modes turn out to be intricate linear super
sitions of plane waves. But as the existence of the continu
limit for the largest of our systems is now sufficiently dem
onstrated we focus in the reminder of this paragraph on
departurefrom the continuum prediction.

In order to characterize the departure of the numer
eigenvector displacement fieldsv(p) from continuum theory
we project them onto plane wavesvcont(q), i.e., we compute
their Fourier amplitudesAp(q)5^v(p)uvcont(q)&. This is
shown in Fig. 11 for the eigenvectorsp53, 11 and 27. The
average^•••& is taken over the ensemble. The amplitud
are plotted versusq2p, i.e. we have shifted the abscissa ax
horizontally in such a way as to emphasize the contribut
of thepth elastic mode to the computed eigenvector with
same number. Indeed, the main contribution is seen to be
to the plane wave~propagative! mode with the same mod
17420
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number. The three particular eigenvectors considered in F
11, belong to sets of fourfold degenerate eigenstates. Hen
if noise could be discarded the projections onto plane wav
would be of width four, corresponding to an average over a
possible random phases. Accordingly, the projection o
eigenvectors belonging to an eightfold degenerated set wou
have a width eight~not shown!. As anticipated by our dis-
cussion of the eigenvalues the overlap between numeric
and theoretical eigenmodes deteriorates with increasin
mode indexp. This is seen from the decreasing peak heigh
and the increasing width of the functionAp(q2p) with in-
creasingp. The enlargement of the peak to neighboring fre

FIG. 10. Scaling of~a! transverse and~b! longitudinal modes for
different box sizes as indicated. The rescaled frequencyV2/Vcont

2

5^v2&/vcont
2 is plotted versus the inverse wavelengthj/lcont. The

theoretically expected wavelengthlcont5L/(n21m2)1/2 is given by
the quantum numbers (n,m) associated with the mode indexp. We
have again setj[30a. The crossover to continuum theory occurs a
l'j for transverse modes and at about twice as large waveleng
for longitudinal modes. The success of both scaling plot sugges
that j is frequency independent for sufficiently large system size
wherel(p)!L, but does depend the wave type. We regard this a
the new central results of this paper.
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quencies suggests a scattering process in agreement
Refs. 16,17. Note the asymmetric character of the project
amplitudes, which must vanish forq,3. Interesting, even
for small p, the amplitudes do not completely vanish f
largeq2p, but become more or less constant. This indica
a Fourier transformedlocalized noise term, in agreemen
with the quasilocalized modes described in Ref. 14. As
shall elaborate now below, this is due to vortices in analo
to those depicted in Fig. 5.

The next step consists in the construction of the no
field by substracting the contributions of the dominant pe
from the numerical eigenvectorsv(p),

dv~p![v~p!2 (
qPDp

Ap~q!vcont~q!, ~11!

whereDp is the set of 4~or 8! plane wavesq that contribute
most to the Fourier decomposition of the modep. Obviously,
uudv(p)uu5A(q¹Dp

Ap(q)2 should decrease with the wave
length. We have computed the dimensionless ra
uudv(p)uu/uuv(p)uu and plotted this quantity in the inset o
Fig. 11 vs the wavelengthlcont(p). This curve is in qualita-
tive agreement with a scattering process of Rayleigh typ17

whereuudv(p)uu/uuv(p)uu}l22. We have compared the da
with the exponential decay exp(2lcont/30a). Interestingly,
the characteristic wavelength defined here is equal toj. Our
data do not allow us to discriminate between both fits. T
conclusion is thus that, whatever the origin of the noise~scat-
tering process or not!, the noise is small compared to th
propagative theoretical mode whenl@j.

FIG. 11. Construction of noisy eigenvector field for periodic b
configurations withN510 000,r50.925. Main figure: projection
amplitude of empirical eigenvectorsp53, 11, and 27 on the theo
retical plane waves which are indexed withq with increasing fre-
quency. Only the transverse modes are included for clarity. Ins
relative amplitude of noise as a function of wavelengthl(p). The
dotted line is a fit with exp(2lcont/30a) in agreement with the es
timationj'30a for the characteristic wavelength. The long-dash
line is a fit with l22 in agreement with a scattering process.
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Let us now study the structure of the noisy part of t
wave vector. Assuming a scattering process, it would be p
ticularly interesting to determine the dependency of a p
sible mean free path into the wavelengthlcont of the eigen-
mode. Two examples for eigenvector noise fieldsdv(p) are
presented in Figs. 5~c! and 5~d! for the modesp53 andp
57, respectively. They are compared with the non-affi
fields obtained for the same configuration in an elongatio
and pure shear displacement field. The vortices are again
most striking features. The four fields given look indeed
markably similar: The sizes and positions of the vortices
obviously highly correlated. To put this in quantitative term
we consider correlation functions for the eigenvector no
fields designed in analogy to those discussed for the n
affine fields.

The correlation functionCv(r )[^dv(r )udv(0)& is pre-
sented in Fig. 12 for two modesp53 and p511. As ex-
pected from the noise field snapshots we find again the a
correlations similar to those presented for the nonaffine fie
in Fig. 6~a!. The anticorrelation extends even to somewh
larger distances. We realize that the mode dependence w
visible is weak. In the inset we have plotted the first node
the anticorrelationz1(p). Also included is the wavelength
corresponding to the mode numberp. We find thatz1 does
not vary much withl, unlike thel4-dependence of the mea
free path in scattering processes. Thus the noise displa
characteristic lengthz1 comparable toj and independent on
the modep. We stress that the resulting participation ratio
the noise is weak, thus our results are in complete agrem
with previous works on~quasi-!localizedmodes.14 However,
the slow~non exponential! decay of the correlation function
is also in favor ofdelocalization.15,20

VII. DISCUSSION

In summary, we have presented extensive simulation
mechanical and low-frequency vibrational properties

rt:

FIG. 12. Correlation function̂dvp(r )udvp(0)& of the eigenvec-
tor noise fields forp53 and 11 vs distancer. The curves are similar
to the ones shown in Fig. 6~a! and feature again prominent antico
relations. Inset: z1(p) characterizing the anticorrelation fo
N510 000~dotted line! and N55 000 ~bold line!. Also included is
the wavelength from Eq.~3! associated with each continuum mod
~top line!.
5-14
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quenched amorphous disk-shaped aggregates and pe
bulk systems. Two-dimensional ensembles containing up
40 000 polydisperse Lennard-Jones particles have been
erated and analyzed in terms of sample size, density, sa
symmetry, and quench protocol. We have focused on syst
with densities close to the zero-pressure state to have sim
conditions for the two boundary symmetries studied. T
eigenmodes of the structures are calculated by diagona
tion of the dynamical matrix and the eigenfrequencies
compared with the predictions from classical continuu
theory where we concentrate on the low frequency end.
second key calculation we performed consists in mac
scopic deformations~pure elongation and pure shear! of a
periodic box in order to obtain the elastic moduli~Lamé
coefficients! and the microscopic displacement fields. The
are in turn compared with the noisy part of the correspond
eigenvector fields.

The central results of this study are as follows:
~1! The application of continuum elasticity theory is su

ject to strong limitations in amorphous solids, for syste
sizes below a length scalej of typically 30 interatomic dis-
tances. This length scale is revealed in a systematic fin
size study of the eigenfrequencies and in the crossover s
ing of modesp for fixed system size with the waveleng
l(p). This size is much larger than the discretization, a
sound wave dispersion is of course irrelevant at this sca

~2! The success of the scaling of the eigenfrequenc
with the wavelength demonstrates thatj is a critical wave-
length. It is within numerical accuracy independent of th
mode and of the system size. The crossover behavior
transverse and longitudinal modes are similar, although
latter is somewhat slower, i.e., slightly larger systems
required to match the same mode with continuum theory

~3! The macroscopic deformation experiments dem
strate that the nonaffine displacements of the atoms on
local scale matter: a finite amount of energy is stored in
nonaffine field and there is a large difference between
true Lamécoefficients and those obtained from the dynam
cal matrix, assuming an affine displacement field on
scales.

~4! Below a length scale similar toj both the nonaffine
displacement field and the noisy part of the eigenvector fie
displays vortex-like structures. These structures are res
sible for the striking anticorrelations in the vectorial pair co
relation functions of both types of fields. We have identifi
in this paper the nonaffine field as the central microsco
feature that makes the continuum approach inappropriat

Inhomogeneities in local elastic coefficients, are an ess
tial ingredient in several recent calculations on disorde
elastic systems.11,12 Indeed, the origin of the departure from
elastic behavior seen in the two key computer experimen
ultimately related to the local disorder. This disorder is
vealed by the structure of the force network frozen into
solid, as shown in Fig. 1. Interestingly, weak finite-size
fects are evidenced in properties of the frozen local disor
like the pressure, the particle energy and one of the La´
coefficients and in the histograms of forces, coupling c
stants and dynamical matrix trace.

Surprisingly at first sight, we have been unable to iden
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a sufficiently large length scale solely from the frozen loc
disorder. There must be a mechanism which amplifies th
in such a way that the deformation fields as the ones
played in Fig. 5 become nonaffine on scales comparabl
j530a. Incidentally, this mechanism is not directly relate
to the mean free path that can be computed in diffus
processes17 as can be shown by the absence of a
l-dependence. The Rayleigh scattering thus appears n
be the unique way to localization. One marked difference
that the mean free path is obtained in one-dimensio
models,17,18 however the characteristic length is related
our study to vortices, implying a displacement in the tran
verse direction. A one-dimensional model of the displa
ment field in a two-dimensional medium as in Ref. 18 a
pears thus to be unrealistic. Unfortunately, we are not abl
the moment to propose a definite relation between the siz
the vortices and the local properties of the system. Preli
nary studies39 suggest a strong correlation between the v
tices and the occurrence under mechanical solicitation
nodes of stresses acting as bolts and forcing a displacem
in the transverse direction. This must be related to the lo
anisotropy of forces as already been suggested in Ref. 4
another context.

Interestingly, sizes similar toj, or somewhat smaller, ar
often invoked,9,10 as typical of the heterogeneities that giv
rise to anomalies in the vibrational properties of disorde
solids ~glasses! in the Terahertz frequency domain, the s
called boson peak. In particular, Ref. 9 considers the e
tence of rigid domains separated by softer interfacial zon
not unlike those revealed by the nonaffine displacement
tern of Fig. 5~a!. Our work offers a new vantage point on th
feature. Inhomogeneities of sizej ~corresponding to Thz fre-
quency! in the displacement field could provide an interpr
tation of the discrepancy between the measured vibratio
density of states and that of a continuum, elastic model~the
Debye model!.

The present study documents the importance of syst
atic finite-size characterizations for the computational inv
tigations of glassy systems well below the glass transition
suggests that numerical investigation of vibrational prop
ties should systematically make use of samples much la
thanj, in order to avoid finite-size effects and to be statis
cally significant. Too small systems tend to be slightly mo
rigid and have higher pressures and system energies.

Finally, let us mention that such vortices have been st
ied in disordered materials in the context of large deform
tions and flow.20,24 We show here that the same mechani
happens even in the elastic regime, for very small deform
tions in a quasistatic motion. Vortex-like deformation pa
terns have also been identified, and associated with, in si
lations of granular materials.41 Our studies clearly shows tha
very simple models, involving only conservative forces, a
sufficient to reproduce such patterns. Disorder appears t
much more relevant than the ‘‘granular’’ aspect~e.g., fric-
tional terms! for this type of property.

The above conclusions are obviously subject to the c
ditions under which our simulations have been perform
The most serious limitation of this work is certainly that w
have only reported results on two-dimensional samples.
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course, one expects correlations to be reduced in highe
mensions and finite-size effects should be less troubles
there. However, this study initially originated from an a
tempt to compute the vibrational modes of three dimensio
clusters. Surprisingly, we have been unable to reach there
elastic limit even for systems containing 10 000 atoms a
had to switch to the simpler two dimensional case which is
terms of particle numbers less demanding even though
length scalej might ultimately turn out to be smaller in thre
dimensions. Indeed, we believe that a systematic finite-
analysis of mechanical and vibrational properties in thr
dimensional amorphous bodies is highly warranted and
are currently pursuing simulations in this direction.

Other system parameters like the polydispersity index
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