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Two-loop functional renormalization group theory of the depinning transition
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We construct the field theory of quasistatic isotropic depinning for interfaces and elastic periodic systems at
zero temperature, taking properly into account the nonanalytic form of the dynamical action. This cures the
inability of the one-loop flow equations to distinguish between statics and quasistatic depinning, and thus to
account for the irreversibility of the latter. We prove two-loop renormalizability, obtain the two-loopb-function
and show the generation of ‘‘irreversible’’ anomalous terms, resulting from the nonanalyticity of the theory,
which cause statics and driven dynamics to differ at two loops. We give the exponentsz ~roughness! and z
~dynamics! to ordere2. This tests previous conjectures based on the one-loop result: It shows that random-field
disorder indeed attracts all shorter range disorder. The conjecturez5e/3 is incorrect, with violationz
5 (e/3) (110.14331e), e542d. This solves a longstanding discrepancy with simulations. For long-range
elasticityz5(e/3)(110.39735e), e522d ~vs the standard predictionz51/3 for d51), in reasonable agree-
ment with simulations. The high value ofz'0.5 in experiments both on Helium contact line depinning and on
slow crack fronts is discussed.

DOI: 10.1103/PhysRevB.66.174201 PACS number~s!: 64.60.Ak
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I. INTRODUCTION

A. Overview

Pinning of coherent structures by quenched disorder,
one of its most striking manifestations, the depinning tran
tion, are important, ubiquitous, and not fully understo
phenomena.1–3 Even a single particle in a quenched rando
potential exhibits a depinning threshold at zero temperat
Unbounded motion occurs only when the additional exter
applied forcef exceeds a critical forcef c . Depinning also
occurs for systems with many interacting particles, and
pending on the degree of order in the structure, it ran
from the so-called plastic depinning4 to elastic depinning.
Here we focus on elastic depinning where the particles fo
a lattice or more generally a well ordered structure. The
pinning transition is then a rather nontrivial collective ph
nomenon, intrinsically out of equilibrium and irreversible:
is well known, for instance, to be a source of hysteresis
magnets and superconductors.5

For many experimental systems which exhibit a dep
ning transition a modelization in terms of an elastic obj
pinned by random impurities is a good starting point. T
type of disorder, which they experience, depends on t
symmetries and their local environment. Domain walls
magnets,6 whose study is of importance to information sto
age technology, behave as elastic interfaces and can ex
ence either random-bond~RB! disorder, which is short rang
~SR!, or random-field~RF! disorder, which has long-rang
~LR! spatial correlations. Dislocation lines in metals exhi
a depinning threshold as the stress is increased.7 Charge den-
sity waves~CDW’s! in solids exhibit a similiar conduction
threshold. If the applied electric field becomes large enou
the CDW starts to slide.8 As they are periodic objects th
disorder they feel is also periodic.9 This is also the case fo
superconductors, where vortex lines form, in presence
weak disorder, a quasi ordered periodic Bragg gl
0163-1829/2002/66~17!/174201~34!/$20.00 66 1742
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phase.10,11These systems have similarities with~vortex free!
continuousXY spins in presence of random fields, and ge
erally constitute the random-periodic~RP! universality class.

The contact line of a liquid helium meniscus on a rou
substrate can be thought of as an interface, but is gove
by long range elasticity and so are slowly propagat
cracks.2,12–15Solid friction is another example of a depinnin
phenomenon. Of course, in each of these systems it mus
checked separately whether the elastic description holds
depinning. It is far from obvious that this is true for all re
evant scales. In any case, in order to be capable to confirm
rule out such a description, it is necessary to first obt
precise theoretical predictions for the expected behavio
the case of elastic depinning, what we aim to achieve he

It was proposed some time ago, starting from the study
a fully connected mean-field-type model,16 that the elastic
depinning transition can be viewed in the framework of sta
dard critical phenomena. The ordered phase is then the m
ing phase with forcef . f c , and the order parameter the v
locity v, which vanishes asv;( f 2 f c)

b at the critical point
f 5 f c . The analogy with standard critical phenomena in
pure system, however, has some limits: Additional fluctu
tion exponents were later identified,9,17 and some nonuniver
sality was noticed in the fully connected model.16,18

It is thus important to develop a renormalization-gro
description of depinning. An important step in that directi
was performed within the framework of the so-called fun
tional renormalization group~FRG!, to one-loop order using
the Wilson scheme.17,19–21The upper critical dimension wa
identified asduc54, d being the internal dimension of th
elastic manifold. The peculiarity of the problem is that f
d,duc54 an infinite set of operators becomes relevant,
rametrized by a full functionD(u), the second cumulant o
the random pinning force. This problem turns out to
closely related to the statics, i.e., describing the pinned s
with minimal energy in the absence of an applied forcef
©2002 The American Physical Society01-1
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50 for which the FRG was initially developed22 @there, the
flowing function is the second cumulantR(u) of the random
potential#. Both problems are notably difficult due to so
called dimensional reduction~DR! which renders the naive
T50 perturbation theory useless.6,23–27 Indeed toany order
in the disorder at zero temperatureT50, any physical ob-
servable is found to beidentical to its ~trivial! average in a
Gaussian random force~Larkin! model. This phenomenon i
not restricted to elastic manifolds in disorder, but occurs i
broad class of disordered systems as, e.g., random field
models and solving it here may open the way to a solution
other models as well. The FRG at depinning and in the s
ics seems to provide a way out of the DR puzzle: the k
feature is that the coarse grained disorder correlator beco
nonanalyticbeyond the Larkin scaleLc , yielding large-scale
results distinct from naive perturbation theory, which a
sumes an analytic disorder correlator. Explicit solution of
one-loop functional RG equation~FRG! for the disorder cor-
relators R(u) and D(u) gives several nontrivial attractiv
fixed points~FP’s! ~Refs. 10, 22! and critical exponents fo
statics and depinning10,17,19,21,22to lowest order ine542d.
All these fixed points exhibit a ‘‘cusp’’ singularity, which ha
the formD* (u)2D* (0);uuu at smalluuu. The existence of
the cusp nicely accounts for the existence of a critical thre
old force,19 as it is found thatf c;d/duuu501D* (u).

There are, however, several highly unsatisfactory a
puzzling features within the one-loop treatment, whi
prompted the present and related works. First it was fo
that the FRG flow equation for the statics and depinning
identical to one loop@with D(u)52R9(u)]. This implies
for instance that, within a given universality class~RB, RF,
and RP!, the one-loop RG isa priori unable to distinguish
static observables, such as the roughness exponentz at zero
applied forcef 50 from those at depinningf 5 f c . This is a
rather surprising and unphysical result since one knows
depinning is an irreversible out of equilibrium process, qu
different from the statics. In an attempt to recover the
pected physics, and to extend conclusions from the one-
study to higher orders, threeconjectures were put
forward.17,19,20,21

~1! At more than one-loop order depinning should diff
from statics.

~2! At depinning the RB universality class should flow
the RF universality class: Indeed, since forf→ f c

1 the mani-
fold does not move backward it cannot feel the ‘‘potentia
character of RB disorder.

~3! The roughness exponent of the RF universality clas
depinning isz5e/3 to all orders@the Narayan Fisher~NF!
conjecture17,21#, with e542d for standard manifold elastic
ity and e522d for LR elasticity.

While conjectures~1! and ~2! seem reasonable on phys
cal grounds, we emphasize that they were based on qua
tive arguments: In the absence of any~renormalizable!
theory beyond one loop, they appear putative. A one-lo
study including the effect of a finite velocity28 indeed indi-
cated that~2! is correct. It strongly relies on a finite velocity
and the behavior in the limitv501 was found to be subtle
and difficult to fully control within that approach.
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The NF conjecture~3! is based on a study of the structu
of higher orders, but it lacks a controlled field theory arg
ment. With the time, it got more and more in disagreem
with numerical simulations and experiments, as we disc
below. In addition, if one considers that this valuez5e/3 is
expected instead for thestaticsRF class, the NF conjectur
seems rather unnatural.

There are also more fundamental reasons to study
FRG beyond one loop. In the last fifteen years since,16,22 no
study has addressed whether the FRG yields, beyond
loop, a renormalizable field theory able to predict univer
results. There have been two-loop studies previously but t
assumed an analytic correlator and thus they only app
below the Larkin length.29–31 Doubts were even raised32

about the validity of thee expansion beyond ordere.
The aim of the present paper is to develop a more syst

atic field theoretic description of depinning which exten
beyond one loop. A short summary of our study was alrea
published33 together with a companion study on the static
The main and highly nontrivial difficulty is the nonanalyt
nature of the theory~i.e., of the fixed-point action! at T
50, which makes ita priori quite different from conven-
tional critical phenomena. It is not even obvious whether t
is a legitimate field theory and how to construct it. For t
depinning transition withf 5 f c

1 , which is the focus of the
present paper, we are able to develop a meaningful pertu
tion theory in a nonanalytic disorder which allows us
show renormalizability at two-loop order. Even the wa
renormalizability works here is slightly different from th
conventional one. To handle the nonanalyticity in the sta
problem is even more challenging, and we propose a solu
of the problem to two-loop33,34and three-loop35 order as well
as at large-N.36

In this paper we focus on the so-called ‘‘isotropic dep
ning’’ universality class. This means that the starting mo
has sufficient rotational invariance, as discussed bel
which guarantees that additional Kardar-Parisi-Zhang te
are absent. A general discussion of the various universa
classes can be found in Refs. 37, 38 and an application of
nonanalytic field theory~NAFT! methods to the case of ‘‘an
isotropic depinning’’ will be presented in Ref. 39. Before w
summarize the novel results of the present paper, let us re
some important features about the model, the scaling
statistical fluctuations at the depinning threshold.

B. Model, scaling, and fluctuations

Elastic objects can be parametrized by aN-component
height or displacement fieldux , where x denotes the
d-dimensional internal coordinate of the elastic object~we
will use uq to denote Fourier components!. An interface in
the three-dimensional~3D! random field Ising model hasd
52, N51, a vortex latticed53, N52, a contact lined
51 andN51. In this paper we restrict our study toN51.
In the presence of a random potential the equilibrium pr
lem is defined by the Hamiltonian

H5E
q

c~q!

2
uqu2q1E

x
V~ux ,x! ~1.1!
1-2
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with c(q)5cq2 for standard short-range elasticity,c(q)
5cuqu for long-range elasticity, and we denote*q
5*ddq/(2p)d and*x5*ddx. Long-range elasticity appear
e.g., for the contact line by integrating out the bulk-degre
of freedom.40 For periodic systems the integration is over t
first Brillouin zone. More generally a short scale UV cutoff
implied at q;L, and the system size is denoted byL. As
will become clear later, the random potential can witho
loss of generality be chosen Gaussian with second cumu

V~u,x!V~u8,x8!5R~u2u8!dd~x2x8!. ~1.2!

Periodic systems are described by a periodic functionR(u),
random bond disorder by a short range function, and rand
field disorder of amplitudes by R(u);2suuu at largeu.

We study the overdamped dynamics of the manifold
this random potential, described~in the case of SR elasticity!
by the equation of motion

h] tuxt5c¹x
2uxt1F~x,uxt!1 f ~1.3!

with friction h. In presence of an applied forcef the center
of mass velocity isv5L2d*x] tuxt . The pinning force is
F(u,x)52]uV(u,x) and thus the second cumulant of th
force is

F~x,u!F~x8,u8!5D~u2u8!dd~x2x8!, ~1.4!

such thatD(u)52R9(u) in the bare model. As we will see
below it does not remain so in the driven dynamics. T
‘‘isotropic depinning’’ class contains more general equatio
of motion than Eq.~1.3!. For instance some cellular autom
ton models are believed to be in this class.41 They must obey
rotational invariance, as discussed in Refs. 37–39, wh
prevents the additional KPZ terml(¹xuxt)

2 to be generated
at f 5 f c

1 . There is always a KPZ term generated atv.0
from the broken symmetryx→2x, but l can vanish or not
as v→01, depending on whether rotational invariance
broken or not. Here this symmetry is implied by the statis
cal tilt symmetry~STS! ~Refs. 42,43! uxt→uxt1gx . It also
holds in the statics and accounts for the nonrenormaliza
of the elastic coefficient, here set toc51.

A quantity measured in numerical simulations and exp
ments is the roughness exponent at the depinning thres
f 5 f c

CL~x2x8!5uu~x!2u~x8!u2;ux2x8u2z, ~1.5!

which can be compared to the static onezeq. Other expo-
nents have been introduced.16,17,19–21The velocity near the
depinning threshold behaves asv;( f 2 f c)

b; the dynamical
response scales with the dynamical exponentt;xz and the
local velocity correlation lengthj diverges at threshold with
j;( f 2 f c)

2n. There have also been some studies be
threshold.9,44The following exponent relations were found
hold:19

b5n~z2z!, ~1.6!

n5
1

22z
~1.7!
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the latter using STS. There are various ways to measure
roughness exponent. In some simulations45–47 it has been
extracted from the critical configuration, i.e., asf is increased
to f c in a given sample it is obtained from the last blockin
configuration. It can also be defined as the limitv→01 of
the roughness in the moving state, which we will refer to
the ‘‘quasistatic’’ depinning limit to distinguish it from the
previous one. This is the situation studied in this paper.
though it is widely believed that both are the same, the
pinning theory has enough peculiarities that one should
careful. In particular, beyond scaling arguments and simu
tions, there is presently no rigorous method capable to c
nect the behavior below and above threshold.

Another peculiarity was noted in Ref. 17. It was foun
that the finite-size fluctuations of the critical force can sc
with a different exponent

f c~L !2 f c;L21/nFS ~1.8!

and it was questioned whethernFS5n. The bound

nFS>2/~d1z! ~1.9!

follows from a general argument of Ref. 48. For charge d
sity waves wherez50 one sees thatn51/2 and thusn and
nFS must be different ford,4. For interfaces it was noted17

that n5nFS is possible providedz>e/3. If one assumesn
5nFS, the NF conjecturez5e/3 is then equivalent to satu
rating the bound~1.9!. We will address the question o
whethern5nFS below.

Finally note that atf 5 f c the condition of equilibrium of a
piece of interface expresses that the elastic force, which
only on the perimeter, balances the excess force on the b
yielding the scaling

Ld21u~a,L !;@ f c~L !2 f c#L
d, ~1.10!

where u(a,L);ACL(a) is the relative displacement~1.5!
between two neighbors averaged over the perimeter. T
shows that

u~a,L !;L121/nFS ~1.11!

thus for CDW the displacements between two neighb
grows unboundedly49 with L for d<2. For interfaces~non-
periodic disorder!, if one assumesn5nFS one obtains that
the displacements between two neighbors grows withL only
whenz.1.

C. Summary of results

Let us now discuss the main results of our study. First
show that, at depinning, one- and two-loop diagrams can
computed using a nonanalytic action in an unambiguous
well defined way, allowing to escape dimensional reducti
The mechanism is nontrivial and works because the mani
only moves forward in the steady state which allows to
move all ambiguities. We show that the limitv→01 can be
taken safely without additional unexpected singularities a
ing in this limit.

Next we identify the divergences in the two-loop di
grams using dimensional regularization ind542e. We
1-3
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TABLE I. Depinning exponentsa52. First column: Exponents obtained by settinge51 in the one-loop
result. Second column: Exponents obtained by settinge51 in the two-loop result. Third column: Conserva
tive estimates based on three Pade´ estimates, scaling relations and common sense. Fourth column: Resu
numerical simulations obtained directly without using scaling relations.

exponent dim 1-loop 2-loop estimate simulation

d53 0.33 0.38 0.3860.02 0.3460.01 ~Refs. 19,20!
z d52 0.67 0.86 0.8260.1 0.7560.02 ~Ref. 51,59!

d51 1.00 1.43 1.260.2 1.2560.01 ~Ref. 75!
1.2560.05 ~Ref. 51!

d53 1.78 1.73 1.7460.02 1.7560.15 ~Refs. 19,20!
z d52 1.56 1.38 1.4560.15 1.5660.06 ~Ref. 51!

d51 1.33 0.94 1.3560.2 1.4260.04 ~Ref. 51!
1.5460.05 ~Ref. 75!

d53 0.89 0.85 0.8460.01 0.8460.02 ~Refs. 19,20!
0.6560.05 ~Ref. 51!

b d52 0.78 0.62 0.5360.15 0.6460.02 ~Refs. 19,20!
0.6660.04 ~Ref. 52!
0.3560.04 ~Ref. 53!

d51 0.67 0.31 0.260.2 0.460.05 ~Ref. 75!
0.2560.03 ~Ref. 51!

d53 0.58 0.61 0.6260.01
n d52 0.67 0.77 0.8560.1 0.7760.04 ~Ref. 52!

d51 0.75 0.98 1.2560.3 160.05 ~Ref. 53!
1.160.1 ~Ref. 75!
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identify the one-loop and two-loop counterterms and perfo
the renormalization program. We find that the 1/e diver-
gences cancel nicely in theb function for the disorder cor-
relator and in the dynamical exponent. The theory is finite
two-loop order and yields universal results.

The obtained FRG flow equation for the disorder~the b
function! contains new ‘‘anomalous’’ terms, absent in an an
lytic theory ~e.g., in the flow obtained in Refs. 29,30!. These
terms are different in the static theory~obtained in Ref. 33!
and at depinning, showing that indeedstatic and depinning
differ to two loops. Thus the minimal consistent theory fo
depinning requires two loops.

Next we study the fixed point solutions of our two-loo
FRG equations at depinning. For nonperiodic disorder~e.g.,
interfaces! with correlator of range shorter or equal
random-field, we find that there is a single universality cla
the random-field class. Thus random-bond disorder does
to random field. Specifically we find that the flow of*D is
corrected to two loops and thus*D cannot remain at its
random-bond value, which is zero. This is explained in m
detail in Sec. IV. The problem does not remain potential a
irreversibility is manifest. For short range elasticity, we fi
the roughness exponent at depinning

z5
e

3
~110.143313e! ~1.12!

with e542d, and for long range elasticity

z5
e

3
~110.39735e! ~1.13!
17420
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with e522d. Thus the NF conjecture17,21 that z5e/3 is
incorrect. We also compute the dynamical exponentz and
obtain b and n by the scaling relations~1.6! and ~1.7!. We
also find thatnFS5n holds to two loops.

For periodic disorder, relevant for charge density wav
we find a fixed point which leads to a universal logarithm
growth of displacements. This fixed point is, however, u
stable, as an additional Larkin random force is genera
The true correlations are the sum of this logarithmic grow
and of a power law growth so that the truez5(42d)/2.
This is similar to Ref. 50. Then we find

n5
1

2
, ~1.14!

nFS5
2

d
, ~1.15!

which holds presumably to all orders.

D. Numerical simulations and experiments

Over many years, numerous simulations ne
depinning19,20,51–54accumulated evidence thatzÞe/3. In d
51 in particular often an exponentz.1 was observed. Ou
results show thatz.e/3 and thus resolve this long standin
discrepancy between numerical simulations and the re
malization group. They are summarized in Tables I and
where we compare them to numerical simulations. Of cou
it is not possible to give strict error bars from the FR
1-4
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TWO-LOOP FUNCTIONAL RENORMALIZATION GROUP . . . PHYSICAL REVIEW B 66, 174201 ~2002!
calculation without further knowledge of higher orders, b
one can still give rough estimates, based on different P´
approximants.

Let us in the following discuss recent numerical resu
which are in agreement with the earlier simulations.55 Fol-
lowing our paper,33 Rosso and Krauth obtained a set of pr
cision numerical results using a powerful algorithm to det
mine the critical configuration at depinning~the last blocking
configuration! up to large sizes.45–47They obtained results in
d51 which, despite being far fromd54, compare well with
our results. For short range elasticity they find

z51.2560.05 ~1.16!

close to our two-loop result~1.12!. Note that displacemen
correlations scaling as

uqu2q;q2(d12z) ~1.17!

with z.1 are perfectly legitimate. It simply means that

CL~x!;2E
q
@12cos~qx!#q2(d12z);L2(z21)x2.

~1.18!

The size-dependent factor comes from the infrared div
gence of the integral. Thus in a simulation neighbori
monomers will be spread further and further apart, which
fine if their attraction is purely quadratic. Of course in
realistic physical situation their bond will eventually brea
but as a model it is mathematically well defined. For t
anisotropic depinning universality class, not studied he
they foundz50.63 as many other authors using cellular a
tomaton models.56–58

For isotropic depinning with long range elasticity the
obtained

z50.39060.002, ~1.19!

which lies roughly at midpoint of the one-loop and two-loo
prediction settinge51 in ~1.13!. So do their most recen
estimates59 for SR disorder. In d52 this is z50.753
60.002 and ford53 they obtain 0.35,z,0.4. These re-
sults ~1.16! and ~1.19! are close to estimates from the tw
loop expansion and clearly rule out the NF conjecture.

Another recent work60 studies an interface in the rando
field Ising model in high dimensions. The authors confi
that d54 is the upper critical dimension. They further e

TABLE II. Depinning exponentsa51. First column: Expo-
nents obtained by settinge51 in the one-loop result. Second co
umn: Exponents obtained by settinge51 in the two-loop result.
Third column: Conservative estimates based on three Pade´ esti-
mates together with scaling relations between exponents.

exponents one loop two loop estimate simulation

z 0.33 0.47 0.560.1 0.39060.002~Ref. 46!
z 0.78 0.66 0.760.1 0.7460.03 ~Ref. 76!
b 0.78 0.59 0.460.2 0.6860.06
n 1.33 1.58 2.60.4 1.5260.02
17420
t
de

,

-
-

r-

s

,

,
-

tract the velocity exponentb and compare their results wit
our two-loop FRG prediction forb:

b512
e

9
10.040123e2. ~1.20!

The results are shown in Fig. 1. One can see a clear curva
downwards and that the straight line giving the 1-loop res
is well above the obtained results~the one-loop approxima
tion would predictb50.78 ind52). Thus, although there is
still some spread and uncertainty in the results, it seems
there is now a trend towards a convergence between th
and numerical simulations.

The situation concerning experiments is presently uncl
Let us first outline the generic findings before analyzing
details. The measured exponents corresponding to LR e
ticity and d51 seem to be consistently in the rangez'0.5
20.55. This is slightly above our two-loop result~1.13! but
not fully incompatible with it. Our calculation holds for qua
sistatic depinning, i.e.,v.0→01, and most experiments ar
also performed from the moving side, hopefully reaching
same quasistatic limitv→01. On the other hand if one be
lieves that the numerical result~1.19! ~also compatible with
our calculation, from below! obtained forf 5 f c

2 also holds
for quasistatic depinning~a rather natural, but as yet un
proved assumption! then one must conclude that the elas
models, in their simplest form at least, may not faithfu
represent the experimental situation. Care must, howeve
exercised before any such conclusion is reached. One c
argue that disorderD(u);u2a of range longer than RF (a
,1) could produce higher exponentsz5e/(21a) ~see end
of Sec. IV A! but that does not seem to apply to those e
periments where disorder is well controlled. Also, since
exponentz50.5 is the Larkin DR exponent, which shou
hold below the Larkin lengthLc one must make sure thatLc
is well identified and that one is not simply observing a slo
crossover to the asymptotic regime. In some of these exp
mentsLc has been identified to be rather small. Let us n
examine the situation in more detail.

FIG. 1. Figure from Ref. 60 which compares new numeric
values~black circles! and a previous one~white square! obtained
for the exponentb with our prediction from the FRG.
1-5
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One much studied experimental system is the contact
of a fluid.12,61 It advances on a rough substrate and is pus
by adding fluid to the reservoir. The elasticity of the line
short range at short scale but at larger scales it is mediate
the elasticity of the two dimensional meniscus and thu
becomes long range and should be compared with E
~1.13!, ~1.19!. Disorder is random-field, but one should di
tinguish between microscopic disorder, which is poorly ch
acterized, and macroscopic one which is well controlled. T
situation has been studied for a helium meniscus on a m
roscopically disordered substrate wherez50.55 was
found.61 Although there are good indications that these
periments probe quasistatic depinning~the contact line jumps
from a reproducible pinned configuration to the next one! the
precise nature of the dynamics remains open. Indeed it
found that propagation of perturbations along the line can
as fast as avalanches, showing inertial regime for helium62

Experiments were repeated for viscous liquids63 yielding z
50.5160.03. There it was checked that the system is ov
damped and near depinning. In both cases there is also
dence of thermal activation effects13 characteristic of depin-
ning ~not creep!. It was argued that these may be a signat
that a more complicated dynamics~e.g., plastic! takes place
at the very short scales and produces an effective dyna
at larger scales with complicated nonlinear~e.g., exponen-
tial! velocity- and temperature-dependent damping. V
similar effects have also been shown to occur in so
friction64 where the activation volume was also found to c
respond to microscopic scales.

Another class of much studied experimental systems
crack fronts in heterogeneous media.65,66 These are charac
terized by two displacement fields, one out-of-plane com
nent h and an in-plane onef. Cracks can either be studie
stopped or slowly advancing. At the simplest level the
plane displacementf is expected to be described as an elas
line d51, N51 with LR elasticity cuqu, at quasistatic
depinning.67 In experiments15,68 the observed roughness
againz'0.55. Since the crack propagates in an elastic m
dium, elastic waves which can in principle affect the roug
ness as the crack front advances producing a more com
cated dynamics than Eq.~1.3!. Some proposals have bee
put forward on mechanisms to produce higher roughn
exponents.69 They rely, however, on a finite velocity and it
unclear whether they can modify roughness in the quasis
limit. Even if instantaneous velocities during avalanches
come large enough, a detailed description on how th
could change the line configurations remains to be und
stood. Then of course a major issue is whether the exp
ment, and in which sense, is in the quasistatic limit. Th
again microscopic dynamics could be more complex as
small scales the material may be damaged and the notio
a single front may not apply. Finally, since there are t
components to displacement one should also be carefu
understand interactions between them near depinning.70

Another interesting experimental system is a domain w
in a very thin magnetic film71 which experiences RB disor
der. Up to now however only the thermally activated moti
has been studied, which gives a quite remarkable confir
tion of the creep law71 with RB exponents. It would be in
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teresting to study depinning there and to check whethe
also belongs to the isotropic universality class. In that ca
the crossover from RB to RF resulting in overhangs beyo
some scale at zero temperature (z.1) as well as the non-
trivial thermal rounding of depinning could be studied.

II. MODEL AND PERTURBATION THEORY

In this section we discuss some general features of
field theory of elastic manifolds in a random potential, bo
for the statics and for the dynamics, driven or at zero app
force. Some issues are indeed common to these three c
At the end we specialize to depinning.

A. Static and dynamical action and naive power counting

The static, equilibrium problem, can be studied using r
licas. The replicated Hamiltonian corresponding to Eq.~1.1!
is

H
T

5
1

2TEx
(

a
@~¹ux

a!21m2ux
a#2

1

2T2Ex
(
ab

R~ux
a2ux

b!,

~2.1!

where, for now, we consider SR elasticity.a runs from 1 ton.
We have added a small mass to provide an infrared cu
and we are interested in the large scale limitm→0. The limit
of zero number of replicasn50 is implicit everywhere.
Terms with sums over three replicas or more correspond
to third or higher cumulants of disorder are generated in
perturbation expansion. These should in principle be
cluded, but as we will see below higher disorder cumula
are not relevant for theT50 depinning studied below.

The dynamics, corresponding to the equation of mot
~1.3! is studied using the dynamical action averaged o
disorder

S@ û,u#5E
xt

i ûxt~h] t2]x
21m2!uxt2hTE

xt
i ûxti ûxt

2
1

2Extt8
i ûxti ûxt8D~uxt2uxt8!2E

xt
i ûxtf xt .

~2.2!

It generates disorder averaged correlations, e.g.,^A@uxt#&
5^A@uxt#&S with ^A&S5*D@u#D@ û#Ae2S and^1&S51, and
response functionsd^A@u#&/d f xt5^ i ûxtA@u#&S . The uni-
form driving force f xt5 f .0 ~beyond threshold atT50)
may produce a velocityv5] t^uxt&.0, a situation which we
study by going to the comoving frame~where ^uxt&50)
shifting uxt→uxt1vt, resulting in f→ f 2hv. This is im-
plied below. In general, for any value off, we study the
steady state, which at finite temperatureT.0 is expected to
be unique and time translational invariant~TTI! ~all averages
depend only on time differences!. In the zero temperature
limit, one needsa priori to distinguish theT50 TTI theory
as limL→`limT→0 ~e.g., the ground state in the static! and the
T501 theory as limT→0limL→` .
1-6
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TWO-LOOP FUNCTIONAL RENORMALIZATION GROUP . . . PHYSICAL REVIEW B 66, 174201 ~2002!
It is important to note that there are close connections,
the fluctuation dissipation relations, between the dynam
formalism and the statics. Indeed, at equilibrium~for f 50
and when time translation invariance is established! any
equal time correlation function computed with Eq.~2.2! is
formally identical~e.g., to all orders in perturbation theory!
to the corresponding quantity computed in the equilibriu
theory~which is a single replica average!. Similarly, the per-
sistent parts, i.e., those}d(v), of dynamical correlations
involving p mutually very separated times, are formally ide
tical to the corresponding averages in the replica theory
volving p replicas. The perturbative equilibrium calculatio
in the statics can thus be indifferently performed either w
replicas or with Eq.~2.2!. It is possible to generate all dy
namical graphs from static ones, a connection which, as
be further explained below, also carries to some extent to
casef .0 at T50.

We first study ‘‘naive’’ perturbation theory and powe
counting. The quadratic partS0 of the action~2.2! yields the
free response and correlation functions, used for perturba
theory in the disorder. They read

^ i ûq,t8u2q,t&05Rq,t2t85
u~ t2t8!

h
e2

(t2t8)
h (q21m2),

^uq,t8u2q,t&05Cq,t2t8 , ~2.3!

respectively, with the FDT relationTRq,t52]tCq,t (t
.0). Perturbation theory inD(u) yields a disorder interac
tion vertex and at each~unsplitted! vertex there is one con
servation rule for momentum and two for frequency. It
thus convenient to use splitted vertices, as represented in
2, where the rules for the perturbation theory of the sta
using replica are also given. For the dynamics one can
focus onT50 where graphs are made only with respon
functions and consider temperature as an interaction ve
The one-loop and two-loop diagrams which correct the d

FIG. 2. ~i! Diagrammatic rules for the statics: replica propaga
^uaub&0[Tdab /q2, unsplitted vertex, equivalent splitted verte
2(ab(1/2T2)R(ua2ub) and ~ii ! dynamics: response propagat

^ûu&0[Rq,t2t8 , unsplitted vertex, splitted vertexûxtûxt8D(uxt

2uxt8) and temperature vertex. Arrows are along increasing ti
An arbitrary number of lines can enter these functional vertices.~iii !
Unsplitted diagrams to one loop D, one loop with inserted one-lo
counterterm G and two-loop A,B,C,E,F.
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order atT50 are shown in Fig. 2~unsplitted vertices!. There
are three types of two-loop graphsA,B,C. The graphsE and
F lead to corrections proportional to temperature.

At T50 the model exhibits the property of dimension
reduction6,23–27 ~DR! both in the statics and dynamics. I
‘‘naive’’ perturbation theory, obtained by taking for the dis
order correlatorD(u) an analytic functionof u @or R(u) for
the statics#, has a triviality property. As is easy to show usin
the above diagrammatic rules the perturbative expansio
any correlation function̂) iuxi t i

&S in the derivativesD (n)(0)
yields to all orders the same result as that obtained from
Gaussian theory settingD(u)[D(0) ~the so called Larkin
random force model!. The same result holds for the static
for any correlation̂ ) iuxi

ai&S . At T50 these correlations ar

independent of the replica indicesai , their dynamical
equivalent being independent of the timest i . The two point
function thus reads to all orders:

^uq,t8u2q,t&DR5
D~0!

~q21m2!2
. ~2.4!

This dimensional reduction results in a roughness expon
z5(42d)/2 which is well known to be incorrect. On
physical reason, in the statics, is that this amounts to solv
the zero force equation which, whenever more than one
lution exists, is not identical to finding the lowest ener
configuration. Curing this problem, within a field theory,
highly nontrivial. One way to do that, as discussed later w
be to consider anonanalyticD(u).

It is important to note that despite the DR, dynamic
averages involving response fields remain nontrivial, eve
zero temperature. Perturbation theory at finite tempera
also remains nontrivial. It is thus still useful to do pow
counting with an analyticD(u), the modifications for a
nonanalyticD(u) being discussed in the following section

Power counting at the Gaussian fixed point yieldst;x2

and ûu;x2d. At T50 nothing else fixes the dimensions
u, sinceu→lu, û→l21û leaves theT50 action invariant.
Denoting u;xz, z is for now undetermined. The disorde
term then scales asx42d12z. It becomes relevant ford,4
providedz,(42d)/2 which is physically expected@for in-
stance, in the random periodic case,z50 is the only possible
choice, and for other casesz5O(e)]. With this power count-
ing the temperature term scales asx2u with u5d2212z
and is thus formally irrelevant near four dimension. In t
end z will be fixed by the disorder distribution at the fixe
point.22

A more detailed study of divergences in the vertex fun
tions allows to identify all counter-terms needed to rend
the theory finite. We denote by

G û•••û;u•••u~ q̂i ,v̂ i ,qi ,v i !

5)
i 51

Eu d

duqi ,v i

)
j 51

Eû d

dûq̂j ,v̂ j

G@u,û#uu5û50 ~2.5!

the irreducible vertex functions~IVF’s! with Eu external
fields u ~at momentaqi ,v i , i 51, . . . ,Eu) and Eû external

r

.

p

1-7
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FIG. 3. Construction of diagrams startin
from an unsplitted static diagram via two splitte
static diagrams~two-replica component! to the
corresponding dynamical diagrams as explain
in the text.
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fields ~at momentaq̂i ,v̂ i , i 51, . . . ,Eû). Being the deriva-
tive of the effective action functionalG@u,û# they are the
important objects since all averages of products ofu and û
fields are expressed as tree diagrams of the IVF. Finitene
the IVF thus imply finiteness of all such averages. T
present theory has the property of covariance under the
known statistical tilt symmetry STSuxt→uxt1gx , which
yields that the two point vertexG ûu(v50) remains uncor-
rected to all orders. This allows to fix the elastic constanc
51 and shows that the mass term is uncorrected and
thus safely be used as an IR cutoff. It also implies that
higher IVF’s vanish when any of thev i is set to zero. The
DR result is a perturbative triviality statement abo
G û•••û(q̂i ,v̂ i) at T50, all other cases remain nontrivial. In
sense we will now expand around dimensional reducti
Similar replica IVF’s can be defined for the statics.

Perturbation expansion of a given IVF to any given ord
in the disorder can be represented by a set of one par
irreducible ~1PI! graphs. As mentionned above there is
simple rule to generate the dynamical graphs from the st
ones. The static propagator being diagonal in replicas, e
static graph occurring in ap replica IVF containsp con-
nected components. AtT50 the rule is then to attach on
response field to each connected component of the static
gram, each replica graph then generating one or more
namical graphs. The place where the response field is
tached is theroot of the diagram. The direction of th
remaining response functions is then fixed unambiguou
always pointing towards the root. This procedure to ded
the dynamical diagrams from the static ones isuniqueand
exhaustiveand is illustrated in Fig. 3. A generalization exis
at T.0 but is not needed here.

Any graph corresponding to a given dynamical IVF co
tainsp connected components~in the splitted diagrammatics!
with 1<p<Eû (p5Eû at T50), each one leading to a con
servation rule between external frequencies, and thus one
write symbolically:

G û•••û;u•••u~ q̂i ,v̂ i ,qi ,v i !

5dS ( q̂2( qD)
i 51

p

dS ( v̂2( v D G̃.

~2.6!
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Let us compute the superficial degree of UV divergencea of
such a graph withvD disorder vertices andvT temperature
factors contributing toG̃;La. Using momentum and fre
quency conservation laws at each vertex, and since there
only response functionsEû1I 52(vD1vT) we obtain

a5d12p2dEû1~d24!vD1~d22!vT . ~2.7!

At T50 (vT50,p5Eû) at the critical dimensiond54 the
only superficially UV divergent IVF are those with one e
ternal û ~quadratic divergence! or two externalû ~logarith-
mic divergence LD!. The STS further restricts the possib
divergent diagrams. One sees that only three types
counter-term are neededa priori. One counterterms is
needed for theL2 divergence ofG û(q50,v50) ~excess
force f 2hv in driven dynamics!. This is analogous to the
mass in thef4 theory, i.e., the distance to criticality. If we
are exactly at the depinning critical point (f 5 f c) we need
not worry about this divergence. Another counterterm is
sociated with the LD inh and the last one with the LD in the
second cumulant of disorderD(u), i.e., a full function,
which makes it different from the conventional FT for crit
cal phenomena~e.g.,f4). One notes that higher cumulan
are formally irrelevant, as they involveEû.2.

One sees from Eq.~2.7! that each insertion of a tempera
ture vertex yields an additional quadratic divergence ind
54, more generally a factorTLd22. Thus to obtain a theory
where observables are finite asL→` one must start from a
model where the initial temperature scales with the UV c
off as

T5T̃m2uS m

L D d22

. ~2.8!

This is similar to thef4 theory where it is known that af6

term can be present and yields a finite UV limit~i.e., does
not spoil renormalizability! only if it has the form
g6f6/Ld22. It then produces only a finite shift tog4 without
changing universal properties.72 Here eachT̃ factor will thus
come with aL22d factor which compensates the UV dive
gence. Computing the resulting shift inD(u) to orderD2 by
resumming the diagramsE and F of Fig. 2 and all similar
diagrams to any number of loops has not been attemp
here.
1-8
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For convenience we have inserted factors ofm in the defi-
nition of the rescaled temperature, using the freedom to
caleu by m2z andû by mz. The disorder term then reads a
in Eq. ~2.2! with D(u) replaced byD0(u)5me22zD̃(umz) in
terms of a dimensionless rescaled functionD̃.

B. Nonanalytic field theory and depinning
in the quasistatic limit

From now on we study the zero temperature limitT50.
To escape the DR triviality phenomenon, and since the fi
points found in one-loop studies exhibit a cusp atu50, we
must consider perturbation theory in anonanalyticdisorder
correlator. In this section we show how to develop pertur
tion theory and diagrammatics in a nonanalytic theory a
what are the nontrivial issues which arise.

For now the considerations apply for zero or finite appl
force. In usual diagrammatics, extracting a leg from a ver
corresponds to a derivation. Here this can be done as u
with no ambiguity, provided the corresponding vertex
evaluated at a genericu ~e.g., the graphs in Fig. 3!. If the
vertex is evaluated atu50 ~here and in the following we cal
them saturated vertices! one must go back to a careful ap
plication of Wick’s rules. Any graph containing such a vert
and which vanishes in the analytic theory is called anom
lous. Let us write the series expansion in powers ofuuu:

D~u!5D~0!1D8~01!uuu1
1

2
D9~01!u21••• . ~2.9!

Wick’s rules can then be applied but usually end up in eva
ating nontrivial averages of, e.g., sign or delta functions.

Let us consider as an example the following two-loop 1
diagram~notede1 in what follows! which is a correction to
the effective action of the form:

~2.10!

Here four Wick contractions have been performed, as in
of the other thirty two-loop diagrams of the form A~studied
in the next section!. In an analytic theory performing th
local time expansion this would result in a two-loop corre
tion to D(u) proportional toD9(u) but with a zero coeffi-
cient since theD8 functions are evaluated at zero argume
In the nonanalytic theory, inserting the expansion~2.9! yields
~upon some change of variables!

e15D8~01!2D9~u!E
t i.0,r i

Rr 1 ,t1
Rr 1 ,t2

Rr 32r 1 ,t3
Rr 3 ,t4

Fr i ,t i
,

Fr i ,t i
5^sgn~X!sgn~Y!&, ~2.11!
17420
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X5ur 1 ,2t3
2ur 1 ,2t42t1

,

Y5u0,2t4
2u0,2t32t2

terms of higher order in Eq.~2.9! do not contribute since we
are atT50 and we have exhausted the number ofû to con-
tract ~i.e., those terms would yield higher orders inT). The
remaining average in Eq.~2.11! is evaluated with respect to
Gaussian measure, and can thus be performed. It can b
fined by using theT.0, v.0 Gaussian measure (uxt→vt
1uxt) and taking the limitT→0, v→0. The result is a con-
tinuous function ofv2/T and its value depends on how th
limit is taken.

In the static theory one should takeT→0 at v50. This
yields

^sgn~X!sgn~Y!&5
2

p
asin~s! ~2.12!

s5
^XY&

A^X2&A^Y2&
,

i.e., the result for centered Gaussian variables. Expres
the averages in Eq.~2.12! using correlation functionsCq,t
yields a complicatedT50 expression fore1. This expression
will be discussed in a companion paper on the statics.34 A list
of all anomalous diagrams is presented in Appendix K.

The opposite limitv→0 at T50 yields much simpler
expressions:

^sgn~X!sgn~Y!&→sgn~ t41t12t3!sgn~ t31t22t4!.

More generally this procedure corresponds to the substitu
D (n)(ur ,t2ur ,t8)→D (n)@v(t2t8)# in any ambiguous vertex
evaluated atu50. That this is the correct definition of th
theory of the quasistatic depinning as the limitv501 is
particularly clear here since it is well known~the no passing
property9,44! that theur ,t are increasing functions of time in
the steady state. Of course it remains to be shown that
procedure actually works and does not produce sing
terms such asd(vt). It also remains to be shown that
yields a renormalizable continuum theory where all div
gences can be removed by the appropriate counterterms.
is far from trivial and will be achieved below.

Let us comment again on the connections between
namics and statics. Consider aT50 dynamical diagram with
p connected components evaluated at zero external freq
cies. All response functions can be integrated over the tim
from the leaves towards the root on each connected com
nent. Using the FDT relation this replaces response by
relations and thus exactly reproduces ap replica static dia-
gram except that it is differentiated once with respect to e
replica field~the sums over all possible positions of the r
sponse field reproduces the derivation chain rule!. One
simple way to establish this rule is to consider the form
limit h→01 ~equivalently expansion ofRq,v in powers of
frequency!, i.e., formally replaceRq,t,t8→d tt8 /q2 ~keeping
track of causality!. This reproduces exactly the zero freque
cies dynamical diagrams and treats ‘‘replicas’’ as ‘‘times.’
1-9
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Thus thepth derivative of ap replica static diagram give
a set of dynamical diagrams withp connected components
For p52 this ensures, e.g., that the relationD(u)5
2R9(u) remains uncorrected to all orders. The flaw in th
argument comes from the anomalous diagrams~both in stat-
ics and dynamics!. In the analytic theory the dynamical dia
grams with response fields on a saturated vertex vanis
cancel in pairs. This just expresses that taking a derivativ
a static saturated vertex gives zero and the rule still wo
But in the nonanalytic theory the anomalous diagrams do
vanish and contain an additional time dependence.
above integration of response functions from the leaves
the root cannot be performed for these anomalous diagra
As a result they can give nontrivial contributions both
statics and dynamics which violate relations such asD(u)
52R9(u), thus allowing us to distinguish statics from d
pinning.

To conclude this section: The perturbative calculation
the effective action and of the IVF vertices can also be p
formed in a nonanalytic theory. It can be expressed as s
of the same diagrams one writes in the analytic theory, w
the same graphical rules todraw and generate the diagram
starting from the statics. However the way to compute th
diagrams and theirvalues is different from the analytic
theory. The time ordering of vertices comes in a non-triv
way and produces results which can be different at depinn
f 5 f c

1 (v501) and in the staticsf 50, as illustrated on the
diagrame1 above. Thus we see the principle mechanism
which the statics and the depinning can yield different fi
theories, which is a novel result. It remains to perform
actual calculation of these nonanalytic diagrams, which
performed in the following sections.

III. RENORMALIZATION PROGRAM

In this section we will compute the effective action
two-loop order atT50 for depinning. From the above analy
sis we know that we only need to compute the one- a
two-loop corrections toD(u) andh.

A. Corrections to disorder

We start by the corrections to the disorder, first at o
loop and then at two-loop order.

FIG. 4. One-loop dynamical diagrams correctingD.
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1. One loop

At leading order, there are four diagrams, depicted in F
4. Since diagram~d! is proportional toD8(u)D8(0), it is an
odd function ofu, and thus does not contribute to the reno
malization ofD. However its repeated counterterm will ap
pear at two-loop order. Diagram~a! is proportional to
2D(u)D9(u), diagram~b! to 2D8(u)2 and diagram~c! to
D9(u)D(0). All come with a combinatorial factor of 1/2
from Taylor-expanding the exponential function, 1/2 fro
the action and 4 from combinatorics. Together, they add
to the one-loop correction to disorder

d1D~u!5
4

2!2
$2D8~u!22@D~u!2D~0!#D9~u!%I 1 ,

I 1ªE
q

1

~q21m2!2
, ~3.1!

with I 15*qe2q2
G(22d/2)m2e5(4p)2d/2G(22d/2)m2e.

2. Two loops

First, we have to find all diagrams correcting disorder
second order. AtT50 they can be grouped in three class
A, B, and C for the three possible diagrams for unsplitt
vertices. Class C does not contribute as is shown in App
dix C. We begin our analysis with class A.

We now need to write all possible diagrams with splitt
vertices of type A. A systematic procedure is to start from
possible static diagrams given in Fig. 6. This relies on
fact that dynamics and statics are related—recall that in g
eral a dynamic formulation can be used to obtain the ren
malization of the statics. As mentioned in the previous s
tion, to go from the statics to the dynamics, one attaches
response field to a root on each connected component o
diagramsa to f in Fig. 6 and orient each component towar

FIG. 5. The three possible classes at second order correc
disorder atT50. Only classes A and B will contribute.

FIG. 6. Static graphs at 2-loop order in the form of a hat~class
A in Fig. 5! contributing to two replica terms. Adding a respons
field to each connected component leads to the dynamic diagr
of Fig. 7.
1-10
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FIG. 7. Dynamical diagrams at two-loop or
der of type A with two external response field
~two connected components! correcting the disor-
der; derived from the two replica static diagram
of Fig. 6.
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the root. The result is presented in Fig. 7.
The next step is to eliminate all diagrams which yield o

functions ofu and thus do not contribute to the renormaliz
disorder. The list is the following:

a15a45c35d15d35d55d75e25e35 f 15 f 35 f 45 f 5

50. ~3.2!

Further simplifications come from diagrams, which mutua
cancel. Again this uses thatD8(u) is an odd function. This
gives

c21c55d21d45d61d850. ~3.3!

In addition

c450, ~3.4!

since* tt8RxtRxt8D8(t2t8)50. This is explained in more de
tails in Appendix K where the list of all anomalous~nonodd!
graphs is given together with their expressions in the nona
lytic field theory.

Thus, the only nonzero graphs which we have to calcu
are a2 ,a3 ,b1 , . . . ,b6 , c1 , e1, and f 2. These calculations
are rather cumbersome, due to the appearance of theta
tions of sums or differences of times as a result of
nonanalyticity of the theory. The correction to disorder is
17420
a-

te

nc-
e

d2D~u!5
1

3!

2

23
3~23!( ~ai1bi1••• !

5( ~ai1bi1••• !,

where the combinatorial factors are 1/3! from the Taylor e
pansion of the exponential function, 2/23 from the explicit
factors of 1/2 in the interaction, a factor of 3 to choose t
vertex at the top of the hat, and a factor of 2 for the possi
two choices in each of the vertices. Furthermore below so
additional combinatorial factors are given: a factor of 2 f
generic graphs and 1 if it has the mirror symmetry w
respect to the vertical axis: each diagram symbol (ai•••)
denotes the diagram including the symmetry factor.

We recall that we have definedsaturatedvertices as ver-
tices evaluated atu50 while unsaturatedvertices still con-
tain u explicitly. Diagrams with response functions added
unsaturated vertices can be obtained by deriving static
grams

a21a35second derivative of the statics,

b11b21b31b41b51b6

5second derivative of the statics. ~3.5!

The graphs which contain external response fields
saturatedvertices cannot be derivatives from static ones. F
class A, the hat diagrams, the only nonzero such graph isc1.

Explicitly, this reads
1-11
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FIG. 8. Two-loop dynamical diagrams of typ
B ~see Fig. 5!.
o
n-

t

s

ave
ese
a21a352]u
2@2R9~0!R-~u!2#I A , ~3.6!

where@see Eq.~A18!#

I AªE ddq1

~2p!d

ddq2

~2p!d

1

q1
21m2

1

q2
21m2

1

@~q11q2!21m2#2

5S 1

2e2
1

1

4e
1O~e2!D ~eI 1!2. ~3.7!

Furthermore, we find

(
i 51

6

bi52]u
2@R9~u!R-~u!2#I A ~3.8!

and

c152D8~01!2D9~u!I A . ~3.9!

The diagrame1 is an explicit example for the appearance
nontrivial sign functions resulting from the monotonic i
crease of the displacement. It was already discussed in
previous section. In the quasistatic depinning limit~2.11!
gives ~details are given in Appendix A!:

e15D8~01!2D9~u!E
q1 ,q2

E
t1 ,t2 ,t3 ,t4.0

3e2$(q1
2
1m2)t11(q2

2
1m2)t21[(q11q2)21m2]( t31t4)%

3sgn~ t12t31t4!sgn~ t22t41t3!. ~3.10!

The result of the explicit integration is

e15D8~01!2D9~u!@ I l2I A1finite#, ~3.11!
17420
f

he

I lªE
q1 ,q2

1

~q1
21m2!~q2

21m2!~q3
21m2!~q1

21q3
212m2!

5
ln 2

2e
~eI 1!21finite. ~3.12!

The last diagramf 2 also involves a sign function and read

f 252D8~01!2D9~u!E
q1 ,q2

E
t1 ,t2 ,t3 ,t4.0

sgn~ t42t32t2!

3e2{ @(q11q2)21m2]( t31t4)1(q1
2
1m2)t11(q2

2
1m2)t2}

52D8~01!2D9~u!I l . ~3.13!

In Appendix A we show that~for any given elasticity! the
sum of e11 f 2 only involves the integralI A , and that the
combination takes the simpler form

e11 f 252D8~01!2D9~u!I A . ~3.14!

We now turn to graphs of type B~bubble diagrams, see
Fig. 8!.

Again diagrams, which are odd functions ofu vanish.
These are

h15h25 i 15 j 15k25k35 l 25 l 35 l 450. ~3.15!

Two other diagram mutually cancel:

k11 l 150, ~3.16!

as discussed in Appendix K.
The diagrams that are second derivative of the static h

all their response fields on their unsaturated vertices. Th
are
1-12
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g11g21g31g45]u
2F1

2
D~u!2D9~u!G I 1

2 ,

h31h41h51h65]u
2@2D~0!D~u!D9~u!#I 1

2 ,

i 25 j 25]u
2F1

4
D~0!2D9~u!G I 1

2 .

The surprise is thati 3, which is not the second derivativ
of a static diagram, since it has both response fields on s
rated vertices, is nontrivial:

i 352D8~01!2D9~u!I 1
2 . ~3.17!

To summarize, for the driven problem atT50 in pertur-
bation ofD[D(u), the contributions to the disorder to on
and two loops, i.e., the corresponding terms in the effec
actionG@u,û# are

d1D~u!52$D8~u!21@D~u!2D~0!#D9~u!%I 1 ~3.18!

d2D~u!5$@D~u!2D~0!#D8~u!2%9I A1
1

2
$@D~u!2D~0!#2

3D9~u!%9I 1
21D8~01!2D9~u!~ I A2I 1

2!. ~3.19!

Curiously, even though two diagrams contain contributio
proportional toI l; ln 2, these contributions cancel in the fi
nal result for the corrections to the disorder.

B. Corrections to the friction h

We now calculate the divergent corrections toh, which
will require a counterterm proportional toi û u̇. Let us illus-
trate their calculation at leading order. We start from the fi
order expansion of the interactione2Sint, which can be writ-
ten as

E
t.t8,x

iûxtD~uxt2uxt8!i ûxt8 . ~3.20!

Contracting onei ûxt8 leads to

E
t.t8,x

iûxtD8~uxt2uxt8!Rr 50,t2t8 . ~3.21!

The response function contains a short-time divergen
which we deal with in an operator product expansion. E
pandingD8(uxt2uxt8) to the necessary order yields

E
t.t8,x

iûxt@D8~01!1~uxt2uxt8!D9~01!1•••#Rr 50,t2t8 .

~3.22!

The first term of this expansion, proportional toD8(01), is
strongly UV divergent and nonuniversal and gives the cr
cal force to lowest order in disorder. Since we tunef to be
exactly at the depinning threshold we do not need to cons
it. The second contribution, proportional toD9(01), corrects
the friction: due to the short-range singularity in the respo
17420
tu-

e

s

t

e,
-

-

er

e

function, we can expand (uxt2uxt8) in a Taylor-series, of
which only the first term contributes. Equation~3.22! be-
comes

E
t.t8,x

iûxt@~ t2t8!u̇xt1O~ t2t8!2#D9~01!Rr 50,t2t8 .

~3.23!

The correction to friction at leading order thus is~see Fig. 9!

dh52D9~01!E
t
tRr 50,t . ~3.24!

Here, the response function is taken at spatial argument 0
momentum representation, the same expression reads

dh52D9~01!E
t
E

q
tRq,t52D9~01!E

t
E

q
te2t(q21m2)

52D9~01!E
q

1

~q21m2!2
52D9~01!I 1 ~3.25!

with the already known integralI 1, Eq. ~3.1!.
We now turn to the two-loop corrections. There are sev

contributions, drawn on Fig. 10. Their contribution toh is

dh52
1

8
3432@a1b1c1d1e1 f 1g#. ~3.26!

The combinatorial factor is 1/8 from the interaction, 4 fro
the time ordering of the vertices, and an additional factor
2 for the symmetry of diagramsa, b, e, f, andg. Details of
the calculation of diagramsa to g are given in Appendix D.
Grouping diagrams, which partially cancel, we find

a1g52D9~01!2I 1
2 , ~3.27!

FIG. 9. One-loop dynamical diagram correcting the friction.

FIG. 10. Two-loop dynamical diagrams correcting the frictio
They all have multiplicity 8 exceptc andd which have multiplicity
4.
1-13
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b1c1d52
1

2
D-~01!D8~01!I 1

2 , ~3.28!

e52D-~01!D8~01!I h , ~3.29!

f 522D-~01!D8~01!I A22D9~01!2I A . ~3.30!

This involves the nontrivial diagramI h

I hªE
q1 ,q2

1

~q1
21m2!~q2

21m2!2~q2
21q3

212m2!

5S 1

2e2
1

122 ln 2

4e D ~eI 1!21finite ~3.31!

calculated in Appendix E.

C. Renormalization program to two loops and calculation
of counter-terms

1. Renormalization of disorder

Let us now discuss the strategy to renormalize the pre
theory where the interaction is not a single coupling co
stant, but a whole function, the disorder correlatorD(u). We
denote byD0 the bare disorder—this is the object in whic
perturbation theory is carried out—i.e., one consider the b
action ~2.2! with D→D0. We denote here byD the renor-
malized dimensionless disorder i.e. the corresponding t
in the effective actionG@u,û# is meD.

We define the dimensionless bilinear one-loop and tri
ear two-loop symmetric functions@see Eqs.~3.18! and
~3.19!# such that

d (1)~D,D!5med1D, ~3.32!

d (2)~D,D,D!5m2ed2D ~3.33!

thus extended to nonequal argument usingf (x,y)ª 1
2 @ f (x

1y,x1y)2 f (x,x)2 f (y,y)# and a similar expression fo
the trilinear function. Whenever possible we will use t
shorthand notation d (1)(D)5d (1)(D,D) and d (2)(D)
5d (2)(D,D,D). The expression ofD obtained perturbatively
in powers ofD0 at two-loop order reads

D5m2eD01d (1)~m2eD0!1d (2)~m2eD0!1O~D0
4!.
~3.34!

It contains terms of order 1/e and 1/e2. This is sufficient to
calculate the RG functions at this order.~In principle, one
has to keep the finite part of the one-loop terms, but we w
work in a scheme, where these terms are exactly 0, by
malizing all diagrams by the one-loop diagram!. Inverting
this formula yields

D05me@D2d (1)~D!2d (2)~D!1d (1,1)~D!1•••#,
~3.35!

whered (1,1)(D) is the one-loop repeated counterterm

d (1,1)~D!52d (1)@D,d (1)~D,D!#. ~3.36!
17420
nt
-

re

m

-

ll
r-

The b function is by definition the derivative ofD at fixed
D0. It reads

2m]mDuD0
5e@m2eD012d (1)~m2eD0!13d (2)~m2eD0!

1•••#. ~3.37!

Using the inversion formula~3.35!, the b function can be
written in terms of the renormalized disorderD:

2m]mDuD0
5e@D1d (1)~D!12d (2)~D!2d (1,1)~D!1•••#.

~3.38!

In order to proceed, let us calculate the repeated one-l
countertermd1,1(D). We start from the one-loop counterter
~3.18!, which has the bilinear form

d (1)~ f ,g!52
1

2
$2 f 8~u!g8~u!1@ f ~u!2 f ~0!#g9~u!

1@g~u!2g~0!# f 9~u!% Ĩ 1 ~3.39!

with the dimensionless integralĨ 1ªI 1um51; we will use the
same convention forĨ AªI Aum51. Thusd1,1(D) reads

d (1,1)@D~u!#52d (1)@D,d (1)~D!#5$@D~u!2D~0!#2D9~u!

1@D8~u!22D8~0!2#@D~u!2D~0!#%9 Ĩ 1
2 .

~3.40!

Note that this counterterm is nonambiguous foru→0. Fi-
nally, as discussed at the end of the previous section at
point we can rescale the fieldsu by mz. This amounts to
write the b function for the functionD(u)5m22zD̃(umz)
which will be implicit in the following ~in addition we will
drop the tilde superscript!.

The two-loopb function ~3.38! then becomes with the
help of Eq.~3.40!

2m]mD~u!5~e22z!D~u!1zuD8~u!

2
1

2
$@D~u!2D~0!#2%9~e Ĩ 1!

1$@D~u!2D~0!#D8~u!2%9e~2 Ĩ A2 Ĩ 1
2!

1D8~01!2D9~u!e~2 Ĩ A2 Ĩ 1
2!. ~3.41!

One of our main results is now apparent: the 1/e2 terms
cancel in the corrections to disorder. If it had not been
case it would lead to a term of order 1/e in the b function
and thus to nonrenormalizability. Thus theb function is fi-
nite to two loops a hallmark of a renormalizable theory. No
that this happened in a rather nontrivial way since it requi
a consistent evaluation of all anomalous nonanalytic d
grams. Furthermore the precise type of cancellation is
usual: usually the two-loop bubble diagrams of type B a
simply the square of the one-loop ones. Here the ea
missed and nontrivial bubble diagrami 3 was crucial in
achieving the above cancellation.

In order to simplify notations and further calculations, w
absorb a factor ofe Ĩ 1 in the definition of the renormalized
1-14
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disorder~or equivalently in the normalization of momentu
or space integrals!. With this, theb function takes the simple
form

2m]mD~u!5~e22z!D~u!1zuD8~u!

2
1

2
$@D~u!2D~0!#2%9

1
1

2
$@D~u!2D~0!#D8~u!2%9

1
1

2
D8~01!2D9~u!. ~3.42!

Note several interesting features of this two-loopb func-
tion. First it contains a nontrivial so called ‘‘anomalou
term’’ ~the last one! which is absent in an analytic theor
Second, it can be shown to exhibit irreversibility, precise
due to this term. Although, surprisingly, it can be formally
integrated twice overu the resulting flow equation for the
double primitive ofD(u) does not, however, have the r
quired property for the flow of a potential function, i.e.,
second cumulant of the random potential in the static. T
will be shown in details in Sec. IV where we find that th
fixed points of the above equation are manifestly nonpot
tial. In Ref. 33 we have obtained the corresponding b
function for R(u) in the statics. The corresponding forc
force correlatorDstat(u)52R9(u) obeys the same equatio
as Eq.~3.42! but with the opposite sign for the anomalo
term! This shows that statics and depinning are indeed
different theories at two loops.

2. Renormalization of friction and dynamical exponent z

In Sec. III B, we have calculated the effective~renormal-
ized! friction coefficienthR as a function of the bare oneh0
and the bare disorderD0:

hR5h0Z@m2eD0#21. ~3.43!

This identifies the renormalization groupZ factor as

Z21@m2eD0#512D09~01!I 11@D09~01!#2@ I 1
212I A#

1D0-~01!D08~01!F1

2
I 1

212I A1I hG .
~3.44!

The dynamical exponentz is then given by

z521m
d

dm
ln Z~m2eD0!. ~3.45!

Equation~3.44! yields

ln Z2152D09~01!I 11D09~01!2F1

2
I 1

212I AG
1D0-~01!D08~01!F1

2
I 1

212I A1I hG ~3.46!
17420
is

-
a

o

and thus~remind thatI 1;m2e and I A;I h;m22e)

m
d

dm
ln Z215D09~01!~eI 1!2D09~01!2e~ I 1

214I A!

1D0-~01!D08~01!e~ I 1
214I A12I h!.

~3.47!

We now have to expressD0 in terms of the renormalized
disorderD using Eq.~3.35!. For the second-order terms, th
relation is simplyD05meD. The nontrivial term isD9(01).
Using Eq.~3.18!, derived twice at 01, we get@with the fac-
tor of (eI 1) absorbed into the renormalized disorder#

D09~01!5~eI 1!21
„$D9~01!1 Ĩ 1@4D-~01!D8~01!

13D9~01!2#%…. ~3.48!

Putting everything together, the result is

m
d

dm
ln Z215D9~01!1eS 2

e2
2

4I A

~eI 1!2D D9~01!2

1eS 3

e2
2

4I A

~eI 1!2
2

2I h

~eI 1!2D D-~01!D8~01!.

~3.49!

Again there is a nontrivial cancellation of the 1/e terms, an-
other manifestation of the renormalizability of the theo
Inserting the values of the integralsI A andI h , the dynamical
exponentz becomes

z522D9~01!1D9~01!21D-~01!D8~01!F3

2
2 ln 2G .

~3.50!

D. Finiteness and scaling form of correlations
and response functions

To complete the two-loop renormalizability program o
must check that all correlation and response functions
rendered finite by the above counterterms. In a more conv
tional theory that would be more or less automatic. He
however, there are additional subtleties. The disorder co
terterm is a full function and is purely static. This counte
term, and its associated FRG equation~3.42! cannot be read
at u50 because of the nonanalytic action~this point is fur-
ther explained in Appendix K!. Indeed, this equation and th
cancellation of divergent parts was established only fou
Þ0. It remains to be checked that irreducible vertex fun
tions which areu50 quantities are also rendered finite b
the above staticuÞ0 counterterms.

We first examine the two point correlation function. W
will first show that it ispurely static. Then, in Appendix K
we show that it is finite and perform its calculation in th
renormalized theory. One has

^uqvu2q2v&5RqvR2q,2vG i û i û~qv!, ~3.51!
1-15
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where Rqv is the ~exact! response function. We will thus
only computeG i û i û(qt) ~in time variable!. The one-loop
counterterm forh is absent in thisO(D2) calculation of the
proper vertex but it enters the calculation of^uqvu2q2v& ~it
dresses the external legsRqv into Rqv). In fact since we find
that G i û i û(qt) is static~independent oft) we will need only
the exact response at zero frequency, which is the bare
because of STS.

To one loop, the proper vertexG i û i û(qv) is the sum of the
graphs~a!, ~b!, ~c!, and~d! of Fig. 9 evaluated at finite fre
quency and momentum, so we writeG i û i û(qv)5a1b1c
1d. The suma1b yields after two Wick contractions an
short distance expansion a term proportional to

E
k,t i

i û ti û t8D9~ut2ut8!D~ut1
2ut2

!

3~Rk,t82t2
2Rk,t2t2

!~Rk,t2t1
2Rk,t82t1

!, ~3.52!

where we have kept all times explicitly to resolve any am
guity. ExpressingD in a series as in Eq.~2.9!, the lowest
order term is purely static~since one can integrate freely ov
t1 ,t2), and proportional toD9(01)D(0)*kk

24, but vanishes
from the cancellation between graphsa andb. As explained
in detail in Appendix K there can bea priori another contri-
bution coming from 2D8(01)2d(u)u in the expansion of
D9D. It produces a termd„v(t2t8)…vut12t2u which van-
ishes when multiplied with the above response function co
bination ~since it vanishes att5t8).

Thus the only contribution comes fromc1d. There the
D8 yields sign functions and there are no ambiguities. O
finds ~we setm50 for simplicity of notation!

d522D8~01!2E
t1 ,t2.0

@sgn~ t2t2!1sgn~2t2t2!#

3E
k
e2k2t2e2(k1q)2t1

522D8~01!2E
k

1

k2~k1q!2
e2k2utu/h,

b5D8~01!2E
t1 ,t2.0

sgn~t11t/h!sgn~t22t/h!

3E
k
e2k2t2e2(k1q)2t1

5D8~01!2E
k

1

k2~k1q!2
~2e2k2utu/h21!,

where we have accounted for the extra combinatoric fa
of 2 for graphd and used

E
t.0

e2q2tsgn~t2t !5
1

q2
@u~ t !~2e2q2t21!1u~2t !#.

~3.53!
17420
ne
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We thus find that although each graph is time depend
this time dependence cancels in the sum. Thus we fin
static result

G i û i û~qv!5d~v!FD~0!2D8~01!2E
k

1

k2~k1q!2G .

~3.54!

The static one-loop counterterm should thus be sufficien
cancel the divergence of Eq.~3.54!. This is further analyzed
in Appendix J where the full correlation function is com
puted.

We have thus found the commutationG i û i û(u50,q)
5G i û i û(u501,q). Note that if all correlation functions are
purely static, i.e., strictly time independent, it implies th
commutation of the limits. Then it also implies the finitene
since these static divergences have been removed. We
not pushed the analysis further but we found a simple ar
ment which indicates that all correlations are indeed sta
We found that the time dependence in diagrams cancels
subsets, noting73 that graphs can be grouped in subsets~e.g.,
pairs ac, bd, e f in Fig. 6! which vanish by shifting the
endpoint of an internal line within a splitted vertex.

Finally, let us note that our result that correlations at t
quasistatic depinning are purelystatic for v501 is at vari-
ance with previous works.19,20Thus the only functions where
the dynamical exponent comes in are response function.

E. Long range elasticity

As was discussed in the Introduction there are phys
systems where the elastic energy does not scale with
square of the wave vectorq as Eelastic;q2 but as Eelastic
;qa. In this situation, the upper critical dimension isdc
52a and we define

eª2a2d. ~3.55!

The most interesting case,a priori relevant to model wetting
or crack-front propagation isa51, thusdc52.

In order to proceed, we have again to specify a cut
procedure. For calculational convenience, we choose
elastic energy to be

Eelastic;~q21m2!a/2. ~3.56!

This changes the response function to

Rq,t5Q~ t !e2(q21m2)a/2t. ~3.57!

Since contributions proportional toI l , see Eq.~A26!, cancel,
the only integrals which appear in theb function are

I 1
(a)5E

q

1

~q21m2!a
5m2e

G~e/2!

G~a!
E

q
e2q2

~3.58!

I A
(a)5E

q1 ,q2

1

~q1
21m2!a/2~q2

21m2!a@~q11q2!21m2#a/2
.

~3.59!
1-16
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The important combination is again 2I A
(a)2(I 1

(a))2. One
finds ~see Appendix F!

X(a)
ª

2e@2I A
(a)2~ I 1

(a)!2#

~eI 1
(a)!2

5E
0

1dt

t

11ta/22~11t !a/2

~11t !a/2

1
G8~a!

G~a!
2

G8S a

2 D
GS a

2 D 1O~e!. ~3.60!

Since this term is finite, theb function is finite; this is of
course necessary for the theory to be renormalizable. Fo
cases of interesta51 anda52, we find

X(2)51, ~3.61!
o
on

ffe
-
n

G

17420
he

X(1)54 ln 2. ~3.62!

Since there is only one nontrivial diagram at second order
two-loop terms in theb function get multiplied byX(a):

2m]mD~u!5~e22z!D~u!1zuD8~u!

2
1

2
$@D~u!2D~0!#2%9

1
X(a)

2
$@D~u!2D~0!#D8~u!2%9

1
X(a)

2
D8~01!2D9~u!. ~3.63!

The diagrams involved in the dynamics also change. In
dition to I 1

(1) and I A
(1) given above we need
I h
(1)
ªE

q1 ,q2

1

~q1
21m2!1/2~q2

21m2!@~q2
21m2!1/21~q3

21m2!1/2#
5S 1

2e2
1

ln 22
p

4

e
D ~eI 1

(1)!21finite ~3.64!
rty,

-

ei-
ing

d

G
pin-
s

calculated in Appendix G.
Starting from Eq.~3.49!, the dynamical exponentz is then

in straightforward generalization of Eq.~3.50! given by

z5a2D9~01!1X(a)D9~01!21Y(a)D-~01!D8~01!
~3.65!

with X(a) given above and

Y(a)5X(a)1
2I h

(a)2~ I 1
(a)!2

e~ I 1
(a)!2

, ~3.66!

Y(1)56 ln 22
p

2
, ~3.67!

Y(2)5
3

2
2 ln 2. ~3.68!

The casea52 reproduces Eq.~3.50!. Since bothX(1) and
Y(1) are finite, we have checked that also in the case
long-range elasticity the theory is renormalizable at sec
order.

IV. ANALYSIS OF FIXED POINTS AND PHYSICAL
RESULTS

The FRG equation derived above describes several di
ent physical situations: periodic systems~such as charge den
sity waves! where the disorder correlator is periodic and no
periodic systems~such as a domain wall in a magnet!. Within
the latter, SR~random bond! and LR~random field! disorder
must a priori be distinguished. In our analysis of the FR
equations, we have to study these situations separately.
f
d

r-

-

Before we do so, let us mention an important prope
valid under all conditions: IfD(u) is solution of Eq.~3.63!,
then

D̃~u!ªk2D~u/k! ~4.1!

is also a solution. We can use this property to fixD(0) in the
case of nonperiodic disorder.~For periodic disorder the solu
tion is unique, since the period is fixed.!

A. Nonperiodic systems

We now start our analysis with non-periodic systems,
ther with random field disorder or any correlator decreas
faster than RF. Let us first recall that at the level of thebare
model the static RF obeysR(u);2suuu at large uuu and
thus*0

`duD(u)5R8(01)2R8(`)52s (s is the amplitude
of the random field! while RB or any correlator decaying
faster than RF satisfies*D50.

Let us first integrate the disorder flow equation~3.63!
from u501 to u51`. We obtain

2m]mE
0

`

D~u!du5~e23z!E
0

`

D~u!du2X(a)D8~01!3.

~4.2!

The only assumption that we have made here is thatuD(u)
goes to zero atu51`, which is the case both for RB an
RF.

Let us first recall the one-loop analysis, where in the FR
equation there is no distinction between statics and de
ning. The last term in Eq.~4.2! is then absent. Thus one find
either fixed points with*D5s.0 with z5e/3, the RF uni-
versality class, or others with*D50 for z,e/3 which cor-
1-17
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responds to disorder with shorter range correlations than
This includes the RB fixed point with exponentially decayi
correlator andzRB50.208e. It also includes a continuou
family of intermediate power law fixed points32,36with decay
at largeu as D(u)52R9(u);(a22)(a21)u2a with a*
.a.1. These havez(a)5e/(21a) ~from solving the lin-
ear part of the FRG equation! andz(a* )5zRB.

The last term in Eq.~4.2! shows that things work differ-
ently to two loops at depinning. The condition*D50 is no
longer possible at the fixed point. Starting from RB one d
velops a positive value for*D, i.e., a random field compo
nent. The natural conclusion is then that all correlatio
shorter range than RF flow to the RF universality clas74

Furthermore the fixed point condition~3.63! equals 0 implies
a unique well defined value forz identical for all ranges
shorter than RF~including RB!. This value takes the form

z5
e

3
2

X(a)D8~01!3

3E
0

`

D

5
e

3
1z2e21O~e3!, ~4.3!

where z2.0 can be obtained from the knowledge of t
one-loop fixed pointD;O(e) only.

Before we computez2 and obtain the depinning fixe
point to two loop, let us note that in the static case33 the last
term in Eq.~3.63! has the opposite sign and, integrating ov
u one finds that there is thus no term proportional toD8(01)
in Eq. ~4.2!. Thus for the RF disorder 0,*D,1` one can
again conclude that

zeq
RF5

e

3
~4.4!

to ~at least! second order. In fact, as discussed in Ref. 33 t
is expected to be exact to all orders due to the potentia
requirement of the static FRG equation, which also impl
that *D50 holds to all orders at the static RB fixed poin
The corresponding value forzeq

RB is given to ordere2 in Ref.
33.

We now want to find the fixed-point function of Eq
~3.63!. Using the reparametrization-invariance~4.1!, we set
~with the factors 1/3 and 1/18 chosen for later convenien!

D~u!5
e

3
y1~u!1

e2

18
y2~u!1O~e3!, ~4.5!

y1~0!51, ~4.6!

y2~0!50, ~4.7!

wherey1(u) is the one-loop fixed point function for the R
case. It was obtained in Ref. 22 and further studied in R
28. Let us recall its properties. To lowest order ine the
one-loopb function ~3.63! reads

e

3
D~u!1

e

3
uD8~u!2

1

2
$@D~u!2D~0!#2%950. ~4.8!

Inserting Eq.~4.5! the functiony1(u) must satisfy
17420
F.

-

s

r

is
ty
s

f.

@uy1~u!#85
1

2
$@y1~u!2y1~0!#2%9, ~4.9!

which can be first integrated to

uy1~u!5@y1~u!21#y18~u!, ~4.10!

using Eq.~4.6! in the last line. A second integration with th
boundary conditions implied by Eq.~4.6! yields

y1~u!2 ln y1~u!511
1

2
u2. ~4.11!

This function is plotted in Fig. 11. The derivatives ofy1(u)
at u50 will be needed below. Deriving Eq.~4.10! succes-
sively with respect tou, we find

y1~0!51, y18~01!521,

y19~01!5
2

3
, y1-~01!52

1

6
. ~4.12!

We have also determined the fixed-point function at sec
ordery2(u), which is given in Appendix H.

In order to extractz from Eq. ~4.2!, we need

A2g5E
0

`

y1~u!du, ~4.13!

which was computed in Ref. 28. The method is to conv
Eq. ~4.13! into an integral overyªy1:

E
0

`

ydu52E
0

1

y
du

dy
dy52E

0

1 y

y8
dy

52E
0

1

dy
y21

A2Ay2 ln y21
, ~4.14!

where in the last equality~4.11! has been used. Integratin
by parts, this yields

g5E
0

1

dyAy2 ln y21'0.5482228893••• . ~4.15!

Combining the definition ofD(u) in Eq. ~4.5! with Eqs.
~4.12! and ~4.15!, we find

FIG. 11. The fixed-point functiony1(u) at one-loop order for
nonperiodic disorder.
1-18
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z25
X(a)

27A2g
~4.16!

and thus forz

z5
e

3
1

X(a)e2

27A2g
1O~e3!. ~4.17!

This result violates the conjecture of Ref. 21, thatz5e/3 to
all orders ine. To compare Eq.~4.17! with simulations, we
have to specify to the cases of interest: First, for short-ra
elasticity, i.e.,a52, we find

z5
e

3 S 11
e

9A2g
D 5

e

3
~110.143313e!. ~4.18!

Our results are in excellent agreement with the numer
simulations, see Table I.

For long-range elasticity, i.e.,a51, Eq. ~4.17! reads

z5
e

3 S 11
4 ln 2

9A2g
e D 5

e

3
~110.39735e!. ~4.19!

This is in reasonable agreement with simulations, as sh
in Table II.

We now turn to the calculation of the dynamical expone
z. As can be seen from the general result of Eq.~3.65!, we
needD8(01), D9(01), andD-(01), at leading order, which
can be inferred from Eqs.~4.5! and ~4.12!. We further need
D9(0) at second order. Expanding Eq.~3.63! to ordere3, and
Taylor expanding to second order inu, we can solve for
y29(0), which yields

D9~0!5
e

3
y19~0!1

e

18
y29~0!5

2e

9
1

e2

3 S 10X(a)

27
2z2D .

~4.20!

Specializing to the SR case (a52) yields with the help of
Eq. ~3.50!

z522D9~01!1D9~01!21D-~01!D8~01!S 3

2
2 ln 2D

522
2e

9
1e2S z2

3
2

ln 2

54
2

5

108D
5220.222222e20.0432087e2. ~4.21!

The agreement with the numerical simulations given in Ta
I is again good. Finally, the exponentsb andn are obtained
from scaling relations. Fora52 ~SR! they read

b5
z2z

22z
512

e

9
1e2S z2

6
2

1

24
2

ln 2

108D
512

e

9
10.040123e2, ~4.22!
17420
e

al

n

t

e

n5
1

22z
5

1

2
1

e

12
1e2S z2

4
1

1

72D5
1

2
1

e

12
10.0258316e2.

~4.23!

We now turn to long range elasticityaÞ2. The general for-
mula for z reads

z5a2
2

9
e1e2S z2

3
2

2X(a)

27
1

Y(a)

54 D . ~4.24!

Specifying toa51 yields

z512
2

9
e1e2S z2

3
2

p120 ln 2

108 D512
2

9
e20.1132997e2.

~4.25!

Again b andn are obtained from scaling as (a51)

b5
z2z

12z
512

2

9
e1e2S z2

3
2

2

27
2

p120 ln 2

108 D
512

2

9
e20.1873737e2, ~4.26!

n511
e

3
1e2S 1

9
1z2D511

e

3
10.24356e2. ~4.27!

Numerical values are given in Table II.
Note that to two loops at the RF fixed point there does

appear to be any unstable direction. We thus conclude, a
Ref. 21 that

nFS5n. ~4.28!

Finally, for depinning there should also be a family of fixe
points corresponding to correlations of theforce which are
long range withD(u);u2a anda>a* >1. The linear part
of the FRG equation implies thatz(a)5e/(21a) and a
crossover from the RF fixed point occurs whenz(a* )
5zRF5e/31z2e21O(e3). We have not studied these LR
fixed points in details.

B. Periodic systems

For periodicD(u) as, e.g., CDW depinning,17,21 there is
another fixed point of Eq.~3.63!. It is sufficient to study the
case where the period is set to unity, all other cases are e
obtained using the reparametrization invariance of Eq.~4.1!.
This means, that no rescaling is possible in that directi
and thus the rescaling factor is

z50. ~4.29!

The fixed-point function is then periodic, and can in the
terval @0,1# be expanded in a Taylor series inu(12u).
Evenmore, the ansatz

D~u!5~a1e1a2e21••• !1~b1e1b2e21••• !u~12u!
~4.30!

allows us to satisfy the fixed-point equation~3.63! to order
e2, with coefficients
1-19



ity

s
b

in
u
r

he
es
o
e
-

ity
a

th

te

n-

rm

x-
in
-

ery
a

uld

ces
ect

ants.

ith
ur-

ory
er.
y-

ish

PIERRE LE DOUSSAL, KAY JO¨ RG WIESE, AND PASCAL CHAUVE PHYSICAL REVIEW B66, 174201 ~2002!
D* ~u!5
e

36
1

e2X(a)

108
2S e

6
1

e2X(a)

9 Du~12u!.

~4.31!

In the physically interesting situation of charge dens
waves, the elasticity is short range, i.e.,a52 andX(a)51
which yields

D* ~u!5
e

36
1

e2

108
2S e

6
1

e2

9 Du~12u!. ~4.32!

This fixed point is manifestly nonpotential, i.e., it describe
force-force correlation function, where the forces cannot
derived from a potential. In a potential environment, the
tegral of the force over one period must vanish, and so m
the force-force correlation function. In contrast we find he

E
0

1

duD* ~u!52
e2X(a)

108
——→

a→2
2

e2

108
. ~4.33!

Thus to two loop the fixed point correctly accounts for t
irreversibility in the driven system, which becomes manif
beyond the Larkin length. This was not apparent to one lo

An important feature of the periodic case is that the fix
point is unstable. The direction of instability is simply add
ing a constant toD(u) and its eigenvalue is trivial equal toe
to two loops and presumably to all orders. The full stabil
analysis is performed in Appendix I but it can be seen
ready from

2m]mE
0

1

D~u!du5eE
0

1

D~u!du22X(a)D8~01!3

~4.34!

obtained by integration of the two-loop FRG equation on
interval@01,12#. One sees that*D flows away if it does not
coincide with its fixed point value~4.33!.

Thus the asymptotic flow as the dimensional parame
m→0 takes the simple form

Dm~u!5D* ~u!1cm2e, ~4.35!

c5m0
eE

0

1

„Dm0
~u!2D* ~u!…du, ~4.36!

i.e., it takes the fixed point form shifted by a growing co
stant. In the statics*0

1duDm5*0
1duD* 50 from potentiality

@the last term in Eq.~4.34! is absent# and thusc50. At
depinningc is nonzero at two-loop order (c'2*0

1D* .0)
using that the bare disorder has zero integral! and this has
several consequences. First one obtains the static defo
tions as the sum

~ux2u0!25Bnl~x!1BRF~x! ~4.37!

of a universal logarithmic growth term

Bnl~x!5Adlnuxu ~4.38!

Ad5
1

18
e1

2X(a)23

108
e2 ~4.39!
17420
a
e
-
st
e

t
p.
d

l-

e

r

a-

~the calculation ofAd is presented in Appendix J as an e
ample of an explicit calculation of a correlation function
the renormalized theory!; and of the contribution of the gen
erated ‘‘random force’’ of the Larkin type

BRF~x!;cuxu42d, ~4.40!

which completely decouples from the other one. This is v
similar to what was found in other driven systems where
random force is generated.50,77 In particular this implies that
the true roughness exponent at depinning is notz50 but

zdep5
42d

2
. ~4.41!

Another consequence is that the the two exponentsn and
nFS are different. We find

n5
1

22z
5

1

2
, ~4.42!

nFS5
1

22zdep
5

2

d
~4.43!

and given the generality of the above argument this sho
hold to all orders. Note then that the CCFFS bound48 for nFS
is saturated. This is very different to the case of interfa
~saturation of the bound there would lead to the incorr
resultz5e/3).

The dynamical exponentz is

z5a2
e

3
2

e2X(a)

9
——→

a→2
22

e

3
2

e2

9
. ~4.44!

Curiously, it does not depend on the diagramI h or equiva-
lently Y(a).

In CDW depinning, the best observable quantity isb.
From the scaling relation17,19–21 b5(z2z)/(22z), and z
50, we findb5z/2 and thus for CDW (a52)

b512
e

6
2

e2

18
. ~4.45!

This expansion is, however, ill behaved, at least at largee. It
therefore seems advisable, to use one of the Pade-vari
The only one which respects common sense down tod51
and even beyond, is the Pade~0,2!, reading

b5
1

11~e/6!1~e2/12!
. ~4.46!

Again simulations are in reasonable good agreement w
our theoretical predictions, as can be seen in Table III. F
ther simulations would be welcome.

V. CONCLUSION

To conclude we have constructed a consistent field the
of isotropic depinning at zero temperature to two-loop ord
While the one-loop flow-equations for statics and driven d
namics are identical, our two-loop equations distingu
1-20
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these physically different situations, yielding different un
versal predictions for both cases. This is an encourag
progress. The nonanalytic field theory that we have de
oped here will be discussed in companion studies34,35 for the
static theory to two and three loops.

A lot remains to be done and understood. If universality
to hold at depinning then a renormalizable theory sho
exist to any number of loops. We have not attempted a pr
to all orders here, and the mechanism in which the 1/e di-
vergences cancel is nontrivial. We have, however, chec
the applicability of formal constructions such as the subtr
tion operatorR on sample diagrams. This could further b
tested in a three-loop calculation. Although short time sin
larities @d(vt) terms# did not appear their role to any orde
remains to be clarified. Next, effects of temperature have
been included here. One expects that although atT50 the
statics and the depinning should be two distinct field th
ries, this distinction becomes blurred at finite temperatu
How this will work out is not yet elucidated. Some efforts
that direction are reported in Ref. 78. Similarly it would b
quite interesting to understand how to describef 5 f c

2 , i.e.,
the approach to the threshold from below. From the con
erations here this appears to be quite non-trivial.

Extension of the present method to systems withN.1 is
also far from trivial. The monotonous increase ofut does not
apply to all components, which leads to complications. T
large-N limit of the static FRG was solved exactly recently36

and it would be interesting to extend it to the dynami
Finally the threshold dynamics of other systems, such as
dom field spin models, which can be described by the FR
is of interest.

From the point of view of simulations our results togeth
with recent more powerful algorithms offer hope that mo
precise comparisons could be made, not only for expon
but also for other universal quantities which offer strong
tests such as scaling functions, amplitudes or finite size
fects. The exponentnFS should be measured independent
We encourage further precise numerical studies on b
manifolds and CDW with a comparison to theory in min
Agreement between numerics and theory would allow to r
out or to accept elastic models for the description of m
complex experimental situations.

TABLE III. Depinning exponents for CDW. First column: Ex
ponents obtained by settinge51 in the one-loop result. Secon
column: Exponents obtained by settinge51 in the two-loop result.
Third column: Conservative estimates based on three Pade´ esti-
mates, scaling relations and common sense. Fourth column: S
lations from Ref. 9.

exponent dimension one-loop two-loop estimate simulat

d53 0.83 0.78 0.7860.03 0.8160.03
0.8460.05

b d52 0.67 0.44 0.5260.08 0.6360.06
0.6860.07

d51 0.5 0. 0.260.2
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APPENDIX A: CORRECTIONS TO DISORDER:
DIAGRAMS OF TYPE A

In the following, we give explicit expressions for the dia
grams contributing to the renormalization of disorder.
simplify notations, we have introducedq3ªq12q2 and set
the massm to zero. The mass-dependence can easily be
constructed by replacingqi

2 by qi
21m2. We start with the

diagrams of class A, given in Fig. 7. For illustration, w
show the complete calculation of the first nonvanishing d
grama2:

~A1!

For the fieldu, we have given the time-arguments, but su
pressed the spatial arguments, since the result is take
constant background field. We also do not write explicitly t
two response fields. The given configuration is fort2s
large, and we can setuªut82us8 for all t85t6 somet i ,
s85s6 somet i since thet i are small~due to the exponen
tially suppressing factors! compared to the difference oft
2s. Finally, sinceD is continuous,D(ut2t3

2ut2t22t4
) can

be replaced byD(0). Integrating over all times leads to

a2522D~0!D8~u!D-~u!E
q1 ,q2

1

q1
2q2

2q3
4

. ~A2!

Similarly, we find

a3522D~0!D9~u!2E
q1 ,q2

1

q1
2q2

2q3
4
, ~A3!

a21a352]u
2FD~0!D8~u!2E

q1 ,q2

1

q1
2q2

2q3
4G , ~A4!

b152D8~u!2D9~u!E
q1 ,q2

1

q1
2q2

2q3
4

, ~A5!

b252D~u!D8~u!D-~u!E
q1 ,q2

1

q1
2q2

2q3
4

, ~A6!

b35D~u!D9~u!2E
q1 ,q2

1

q1
2q2

2q3
4

, ~A7!

u-
1-21
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b45D9~u!D8~u!2E
q1 ,q2

1

q1
2q2

2q3
4

, ~A8!

b552D9~u!D8~u!2E
q1 ,q2

1

q1
2q2

2q3
4

, ~A9!

b65D~u!D9~u!2E
q1 ,q2

1

q1
2q2

2q3
4

. ~A10!

The contribution of thebi ’s can be summed as

(
i 51

6

bi5]u
2FD~u!D8~u!2E

q1 ,q2

1

q1
2q2

2q3
4G . ~A11!

Diagramc1 is

c152D8~01!2D9~u!E
q1 ,q2

1

q1
2q2

2q3
4

. ~A12!

All these diagrams contain the hat diagram known from
statics andf4 theory. It can be calculated as follows:

~A13!

where we split the divergent integralJ in pieces, which are
either finite or where the divergence can be calculated a
lytically:

J5E
0

`

daE
0

`

db
b

~a1b1ab!2

~a1b1ab!e/2

~a1b11!e

5J11J21J3 , ~A14!
17420
e

a-

J15E
0

`

daE
0

1

db
b

~a1b1ab!2

~a1b1ab!e/2

~a1b11!e

5 ln 21O~e!, ~A15!

J25E
0

`

daE
1

`

dbS b

~a1b1ab!2

~a1b1ab!e/2

~a1b11!e

2
1

~11a!22e/2b11e/2D 52 ln 21O~e!, ~A16!

J35E
0

`

daE
1

`

db
1

~11a!22e/2b11e/2
5

2

e
111O~e!.

~A17!

This gives the final result for the hat diagram

~A18!

We now turn to the nontrivial diagrame1. At finite velocity
v, the diagram is

~A19!

In the limit of vanishing velocityv→0, we can replace
D8„v(t21t32t4)… by D8(01)sgn(t21t32t4) a.s.o. Let us
stress that this replacement is correct both before and a
reaching the Larkin length. Its result is

e15D8~01!2D9~u!

3E
q1 ,q2

E
t3 ,t4.0

e2q3
2(t31t4)I ~ t3 ,t4 ,q1 ,q2!, ~A20!

I ~ t3 ,t4 ,q1 ,q2!5E
t1 ,t2

u~ t1!u~ t2!sgn~ t11t42t3!

3sgn~ t21t32t4!e2(q1
2t11q2

2t2). ~A21!

Using e2(q1
2t11q2

2t2)5@1/(q1
2q2

2)#] t1
] t2

e2(q1
2t11q2

2t2) and inte-

grating I by parts int1 and t2 yields

I ~ t3 ,t4 ,q1 ,q2!5
1

q1
2q2

2 @2u~ t32t4!e2q1
2(t32t4)

12u~ t42t3!e2q2
2(t42t3)21)].

~A22!
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The integral over the two remaining timest3 and t4 in Eq.
~A20! gives

E
t3 ,t4.0

I ~ t3 ,t4 ,q1 ,q2!

5
1

q1
2q2

2 S 1

q3
2~q1

21q3
2!

1
1

q3
2~q2

21q3
2!

2
1

q3
4D ~A23!

and thus

e15D8~01!2D9~u!

3E
q1 ,q2

1

q1
2q2

2q3
2 S 1

q1
21q3

2
1

1

q2
21q3

2
2

1

q3
2D ~A24!
s

17420
with q35q12q2. In presence of a mass this reads

e15D8~01!2D9~u!

3E
q1 ,q2

1

~q1
21m2!~q2

21m2!~q3
21m2!

3S 1

q1
21q3

212m2
1

1

q2
21q3

212m2
2

1

q3
21m2D .

~A25!

We now calculate the new integral. It is relatively simp
since it has only a single pole in 1/e:
I lªE
q1 ,q2

1

~q1
21m2!~q2

21m2!~q3
21m2!~q1

21q3
212m2!

5E
q1 ,q3

E
a.0,b.0,g.0,d.0

e2a(q1
2
1m2)2b((q11q3)21m2)2g(q3

2
1m2)2d(q1

2
1q3

2
12m2)

5S E
q
e2q2D 2E

a.0,b.0,g.0,d.0
e2m2(a1b1g12d)FDetS a1b1d b

b b1d1g D G2d/2

5S E
q
e2q2D 2E

a.0,b.0,g.0,d.0
e2m2d(a1b1g12)d32d~11g1a12b1ab1ag1bg!2d/2

5G~42d!S E
q
e2q2D 2E

a.0,b.0,g.0
~11g1a12b1ab1ag1bg!2d/2@m2~a1b1g12!#d24

5S E
q
e2q2D 21

e
m22eE

a.0,b.0,g.0
~11g1a12b1ab1ag1bg!221finite

52 ln 2S E
q
e2q2D 21

e
m22e1finite5

ln 2

2e
~eI 1!21finite. ~A26!
This gives the final result fore1

e15D8~01!2D9~u!~2I l2I A!. ~A27!

The last nonvanishing diagram isf 2:

f 252D8~01!2D9~u!E
q1 ,q2

e2q3
2(t31t4)2(q1

2t11q2
2t2)

3sgn~ t42t32t2!. ~A28!

Integrating first overt4 and then over the remaining time
gives
f 2522D8~01!2D9~u!E
q1 ,q2

1

q1
2q2

2q3
2~q2

21q3
2!

.

~A29!

The integral has already been calculated in Eq.~A26!, yield-
ing the result

f 2522D8~01!2D9~u!I l . ~A30!

Note that the nontrivial integrals ine1 and f 2 are in fact
identical and cancel:

e11 f 252D8~01!2D9~u!I A . ~A31!
1-23
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APPENDIX B: CORRECTIONS TO DISORDER:
DIAGRAMS OF TYPE B

In this appendix, we calculate diagrams of type B~the
bubble chains!.

The diagrams which are odd functions ofu are

h15h25 i 15 j 15k25k35 l 25 l 35 l 450. ~B1!

The diagrams that are second derivative of static ones h
all their response fields on their unsaturated vertices. Th
are

g15D9~u!2DI 1
2 , ~B2!

g252D8~u!D-~u!D~u!I 1
2 , ~B3!

g35D8~u!2D9~u!I 1
2 , ~B4!

g45
1

2
D~u!2D-8~u!I 1

2 , ~B5!

g11g21g31g45]u
2F1

2
D~u!2D9~u!G I 1

2 , ~B6!

h352D~0!D-8~u!D~u!I 1
2 , ~B7!

h452D~0!D9~u!2I 1
2 , ~B8!

h55h652D~0!D-~u!D8~u!I 1
2 , ~B9!

h31h41h51h65]u
2@2D~0!D~u!D9~u!#I 1

2 , ~B10!

i 25 j 25
1

4
D~0!2D-8~u!I 1

2, ~B11!

k152 l 152D~u!9D9~01!D~0!I 1
2 . ~B12!

The surprise is thati 3, which is not the second derivative o
a static diagram~since it has bothû on saturated vertices! is
non trivial:

i 352D8~01!2D9~u!I 1
2 . ~B13!

This diagram is necessary to ensure renormalizability.

APPENDIX C: CORRECTIONS TO DISORDER:
DIAGRAMS OF TYPE C

In this appendix, we show that diagrams of type C~see
Fig. 12! do not contribute to the renormalization of disord
This is fortunate, since they involve a strongly divergi
diagram ~the tadpole!, which would render perturbation
theory nonuniversal.

The diagrams which are odd functions ofu are

m15m35m45m55n15n35n45n55p25p35q25q350.
~C1!

The following diagrams cancel:

m21n250, ~C2!
17420
ve
se

.

p11q150, ~C3!

p41q450. ~C4!

No contribution remains.

APPENDIX D: CORRECTIONS TO h: 2-LOOP
DIAGRAMS

In this appendix, we give all diagrams contributing to t
correction ofh at second order. For simplicity of notation
we again drop the explicit mass dependence. We group
gether those diagrams which partially cancel. We dem
strate explicitly how to calculate the first diagrama from the
very beginning.

~D1!

We have drawn three response functions. We have chose
start counting time at 0 for vertexa, such that vertexb is at
time 2t1, vertex g at time 2t12t2, and vertexd at time
2t12t22t3. This gives the times for the arguments ofD.
The upperD in diagrama has one time derivative, the lowe
vertex two, resulting inD8 and 2D9, respectively~the mi-
nus sign is a consequence of the both response funct
entering at different ‘‘ends’’ ofD). We have suppressed th
space-arguments in the fieldsu, since all diagrams correcting
h are calculated at a spatially constant background field.
serting the response functionsRqt5Q(t)e2q2t, we arrive at

a52E
q1 ,q2

E
t1 ,t2 ,t3.0

e2q1
2(t11t3)2q2

2t2

3D8~u02u2t12t22t3
!D9~u2t1

2u2t12t2
!. ~D2!

The crucial point is now that this diagram corrects the cr
cal force andh. The correction to the critical force is ob
tained by setting the arguments of theD ’s to 01 ~unique here
due to the time arguments!. This contribution is non-
universal and we shall not calculate it in the following. Th
universalcorrection toh is obtained by Taylor expanding th
argument of, e.g.,D8(u02u2t12t22t3

) as

u02u2t12t22t3
'~v1u̇0!~ t11t21t3! ~D3!

and thus

D8~u02u2t12t22t3
!'D9~01!u̇0~ t11t21t3!, ~D4!

which naturally leads to the generation of a correction
friction. For our diagram, this is~sloppily droppingu̇0 and
the response field for simplicity of notation!
1-24
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FIG. 12. Two-loop diagrams of class C.
2 2

e

-
riti-
rm

x.
a52E
q1 ,q2

E
t1 ,t2 ,t3.0

e2q1(t11t3)2q2t2

3@D9~01!2~ t11t21t3!1D8~01!D-~01!t2#

52E
q1 ,q2

D9~01!2S 2

q1
6q2

2
1

1

q1
4q2

4D
1D8~01!D-~01!

1

q1
4q2

4
, ~D5!

where in the last line we have explicitly performed the tim
integrations.

Diagramg is

g5E
q1 ,q2

E
t1 ,t2 ,t3.0

e2q1
2(t11t3)2q2

2t2

3D8~u02u2t12t3
!D9~u2t1

2u2t12t2
!

5E
q1 ,q2

E
t1 ,t2 ,t3.0

e2q1
2(t11t3)2q2

2t2

3@D9~01!2~ t11t3!1D8~01!D-~01!t2#

5E
q1 ,q2

D9~01!2
2

q1
6q2

2
1D8~01!D-~01!

1

q1
4q2

4
.

~D6!

Thus
17420
a1g52E
q1 ,q2

D9~01!2
1

q1
4q2

4
52D9~01!2I 1

2 . ~D7!

Note that both diagramsa and g contain a tadpolelike sub
divergence, which is canceled by a counterterm for the c
cal force. However, their sum does not involve such a te
and thus there is no need to specify it.

Graphsb, c, andd:

b52E
q1 ,q2

E
t1 ,t2 ,t3.0

e2q1
2(t11t3)2q2

2t2

3D-~u02u2t2
!D~u2t3

2u2t12t2
!

52E
q1 ,q2

E
t1 ,t2 ,t3

e2q1
2(t11t3)2q2

2t2

3@D-8~01!D~0!t21D-~01!D8~01!ut11t22t3u#

~D8!

while

c5d5
1

2Eq1 ,q2

E
t1 ,t2 ,t3.0

e2q1
2(t11t3)2q2

2t2

3@D-8~01!D~0!t21D-~01!D8~01!ut12t3u#.

~D9!

Note the factor 1/2 for the symmetry in the lower verte
Together they are
1-25
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b1c1d5D-~01!D8~01!E
q1 ,q2

E
t1 ,t2 ,t3

e2q1
2(t11t3)2q2

2t2

3~ ut12t3u2ut11t22t3u!. ~D10!

Changing variables tou5t12t3 ands5 1
2 (t11t3), the inte-

gral * t1 ,t3.0 becomes*0
`ds*22s

2s du. The integral overu can
be performed, but for fixeds the second term in Eq.~D10!
depends on the value oft2. Distinguishing the both cases, w
obtain

b1c1d5D-~01!D8~01!E
q1 ,q2

E
s.0

e22q1
2s

3F E
0

`

dt2e2q2
2t24s22E

0

2s

dt2e2q2
2t2~ t2

214s2!

2E
2s

`

dt2e2q2
2t24st2G

52D-~01!D8~01!E
q1 ,q2

1

q1
2q2

4~q1
21q2

2!
.

~D11!

This integral can be simplified through symmetrizatio
Using

E
q1 ,q2

F 1

q1
2q2

4~q1
21q2

2!
1

1

q1
4q2

2~q1
21q2

2!
G5E

q1 ,q2

1

q1
4q2

4
5I 1

2 ,

~D12!

we obtain

b1c1d52
1

2
D-~01!D8~01!I 1

2 . ~D13!

The next diagram ise:

e5E
q1 ,q2

E
t1 ,t2 ,t3

e2q1
2t12q2

2t22q3
2t3D9~u02u2t22t1

!

3D8~u2t2
2u2t3

!

5E
q1 ,q2

E
t1 ,t2 ,t3

e2q1
2t12q2

2t22q3
2t3@D-~01!D8~01!

3~ t21t1!sgn~ t32t2!1D9~01!2~ t32t2!#. ~D14!

By symmetrizing in (2↔3), the term proportional tot1 and
the term proportional to (t32t2) vanish. The remaining term
can be written as

e52
1

2Eq1 ,q2

E
t1 ,t2 ,t3

e2q1
2t12q2

2t22q3
2t3

3D-~01!D8~01!ut22t3u. ~D15!

Making the same change of variables tou and s as for Eq.
~D11!, the integration overu, s, and t1 can be performed in
this order, distinguishing the casesu,0 and u.0. Both
cases give the same result for a total of
17420
.

e52D-~01!D8~01!E
q1 ,q2

1

q1
2q2

4~q2
21q3

2!
. ~D16!

This contains the new integral~given regularized!

I hªE
q1 ,q2

1

~q1
21m2!~q2

21m2!2~q2
21q3

212m2!
.

~D17!

It is related toI l , see, Eq.~A26! and I A , see Eq.~A18!:

I h1I l5I A . ~D18!

It is calculated in Appendix E. The last diagram to be calc
lated isf:

f 5E
q1 ,q2

E
t1 ,t2 ,t3

e2q1
2t12q2

2t22q3
2t3

3D9~u02u2t12t2
!D8~u2t12t22t3

2u2t2
!

52E
q1 ,q2

E
t1 ,t2 ,t3

e2q1
2t12q2

2t22q3
2t3

3@D-~01!D8~01!~ t21t1!1D9~01!2~ t11t3!#

522D-~01!D8~01!I A22D9~01!2I A . ~D19!

APPENDIX E: THE INTEGRAL I h

We have to calculate the integralI h defined as

I hªE
q1 ,q2

1

~q1
21m2!~q2

21m2!2~q2
21q3

212m2!
. ~E1!

This is done as follows:

I h5E
q1 ,q2

E
a,b,g.0

be2a(q1
2
1m2)2b(q2

2
1m2)2g(q2

2
1q3

2
12m2)

5S E
q
e2q2D 2E

a,b,g.0
b e2m2(a1b12g)

3FDetS a1g g

g b12g D G2d/2

5S E
q
e2q2D 2E

a,b,g.0
b g32de2m2g(a1b12)

3~112a1b1ab!2d/2

5S E
q
e2q2D 2

G~42d! m22eJ ~E2!

with

JªE
0

`

daE
0

`

db
b

~112a1b1ab!2

~112a1b1ab!e/2

~a1b12!e

5J11J21J3 , ~E3!
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J1ªE
0

`

daE
0

1

db
b

~112a1b1ab!2

~112a1b1ab!e/2

~a1b12!e

52 ln 323 ln 21O~e!, ~E4!

J2ªE
0

`

daE
1

`

dbF b

~112a1b1ab!2

~112a1b1ab!e/2

~a1b12!e

2
1

~11a!22e/2b11e/2G5 ln 222 ln 31O~e!, ~E5!

J3ªE
0

`

daE
1

`

db
1

~11a!22e/2b11e/2
5

2

e
111O~e!.

~E6!

Thus

I hªE
q1 ,q2

1

~q1
21m2!~q2

21m2!2~q2
21q3

212m2!

5S 1

2e2
1

122 ln 2

4e D ~eI 1!21finite. ~E7!

APPENDIX F: INTEGRALS IN LONG RANGE
ELASTICITY CALCULATION

In the long-range case, there are two integrals which c
tribute to the renormalization of the disorder. At one-lo
order this is

I 1
(a)

ªE
q

1

~q21m2!a
5

1

G~a!
E

0

`ds

s
saE

q
e2s(q21m2)

5m2e

GS e

2D
G~a! S E

q
e2q2D . ~F1!

At two-loop order, this is

I A
(a)

ªE
q1 ,q2

1

~q1
21m2!a/2~q2

21m2!a@~q11q2!21m2#a/2

~F2!

This is evaluated as follows:
17420
n-

I A
(a)5E

0

`ds

s

sa/2

GS a

2 D E0

`dt

t

ta

G~a!
E

0

`du

u

ua/2

GS a

2 D
3E

q1 ,q2

e2s(q1
2
1m2)2t(q2

2
1m2)2u[(q11q2)21m2]

5S E
q
e2q2D 2E

0

`ds

s

sa/2

GS a

2 D E0

`dt

t

ta

G~a!
E

0

`du

u

ua/2

GS a

2 D
3FdetS s1u u

u t1uD G2d/2

e2(s1t1u)m2
. ~F3!

Making the replacements→su and t→tu and integrating
over u, we obtain

I A
(a)5S E

q
e2q2D 2

m22e
G~e!

G~a!GS a

2 D 2

3E
s,t.0

sa/221ta21

~st1s1t !a
~st1s1t !e/2~11s1t !2e

5S E
q
e2q2D 2

m22e
G~e!

G~a!GS a

2 D 2 @J11J21J31O~e!#,

~F4!

J15E
0

1

dtE
0

`

ds
sa/221ta21

~st1s1t !a
, ~F5!

J25E
1

`

dtE
0

`

ds sa/221ta21

3@~st1s1t !2a2~11s!2at2a#, ~F6!

J35E
1

`

dtE
0

`

ds sa/221~11s!e/22at212e/2

5
2

e

GS a

2 DGS a2e

2 D
GS a2

e

2D . ~F7!

J1 andJ2 are now both integrated overs. Changing inJ2 the
integration overt to that over 1/t, we obtain

J11J25212aAp

GS a

2 D
GS 11a

2 D E0

1

dt
11ta/22~11t !a/2

t~11t !a/2
,

~F8!

~J11J2!ua5250, ~F9!
1-27
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~J11J2!ua5152p ln 2. ~F10!

Putting everything together, the final result is

I A
(a)5F 1

2e2
1

1

4e S E
0

1

dt
11ta/22~11t !a/2

t~11t !a/2

1
G8~a!

G~a!
2

G8S a

2 D
GS a

2 D D G ~eI 1
(a)!21O~e0!,

~F11!
17420
I A
(1)5F 1

2e2
1

ln 2

e G ~eI 1
(1)!21O~e0!, ~F12!

I A
(2)5F 1

2e2
1

1

4eG ~eI 1
(2)!21O~e0!. ~F13!

APPENDIX G: CALCULATION OF THE INTEGRAL I h
a

The calculations for the corrections to friction are t
same as with short-range elasticity, except that the integ
I 1 , I A , and I h change. The first two have already been c
culated in Appendix F. We now attack the masterpiece,I h

(a) .
For simplicity, we restrict ourselves toa51:
I h
(1)
ªE

q1 ,q2

1

~q1
21m2!1/2~q2

21m2!@~q2
21m2!1/21~q3

21m2!1/2#
. ~G1!

Using

e2Ax5
1

2Ap
E

0

`

ds s23/2e21/4se2sx ~G2!

we have

1

Aa1Ab
5E

t3.0
e2t3(Aa1Ab)5

1

4pEt3 ,s1 ,s2.0
~s1s2!23/2e21/4s121/4s2e2s1t3

2a2s2t3
2b. ~G3!

With the help of Eq.~G3!, we can writeI h
(1) as

I h
(1)5

1

4p

1

GS 1

2D Eq1 ,q2

E
t1 ,t2 ,t3 ,s1 ,s2.0

t1
21/2~s1s2!23/2e2t1(q1

2
1m2)2(t21s1t3

2)(q2
2
1m2)2s2t3

2(q3
2
1m2)e21/4s121/4s2

5
1

4p

1

GS 1

2D S E
q
e2q2D 2E

t1 ,t2 ,t3 ,s1 ,s2.0

t1
21/2~s1s2!23/2e2m2[ t11t21(s11s2)t3

2]e21/4s121/4s2

@ t1t21s1s2t3
41~s11s2!t1t3

21s2t2t3
2#12e/2

5
1

4p

1

GS 1

2D S E
q
e2q2D 2E

t1 ,t2 ,t3 ,s1 ,s2.0
t3

2112e
t1

21/2~s1s2!23/2e2m2t3
2(t11t21s11s2) e21/4s121/4s2

@ t1t21s1s21~s11s2!t11s2t2#12e/2

5
1

4p

1

GS 1

2D S E
q
e2q2D 2 G~e!

2
m22eE

t1 ,t2 ,s1 ,s2.0

t1
21/2~s1s2!23/2e21/4s121/4s2

@ t1t21s1s21~s11s2!t11s2t2#12e/2~ t11t21s11s2!e

5
1

4p

1

GS 1

2D S E
q
e2q2D 2 G~e!

2
m22eJ. ~G4!
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In the third line we have made the replacementt1→t3
2t1 and

t2→t3
2t2. In the fourth line we have integrated overt3. The

integral J is again decomposed in converging parts~which
can be evaluated ate50) and parts that can be integrate
analytically:

J5J11J21J31O~e!, ~G5!

J15E
t1 ,s1 ,s2.0

t1
21/2~s1s2!23/2e21/4s121/4s2

3E
t2.1

1

t1t21s1s21~s11s2!t11s2t2
2

1

t2~s21t1!
,

~G6!

J25E
t1 ,s1 ,s2.0

t1
21/2~s1s2!23/2e21/4s121/4s2

3E
0,t2,1

1

t1t21s1s21~s11s2!t11s2t2
, ~G7!

J35E
t1 ,s1 ,s2.0

t1
21/2~s1s2!23/2e21/4s121/4s2

3E
t2.1

t2
212e/2~s21t1!211e/2. ~G8!

Integrating inJ3 over t2 , t1 , s1, ands2 ~in this order! we
find

J3522e
16p

e
GS 12e

2 D . ~G9!

In order to calculateJ1 and J2, it is convenient to do the
integration overt2 in both integrals first. Taking the sum
some terms cancel:

J11J25E
t1 ,s1 ,s2.0

t1
21/2~s1s2!23/2e21/4s121/4s2

3
ln~s21t1!2 ln@s1s21t1~s11s2!#

s21t1
. ~G10!

The logarithms have to be written as derivatives

J11J25
]

]b U
b50

E
t1 ,s1 ,s2.0

t1
21/2~s1s2!23/2e21/4s121/4s2

3$~s21t1!211b

2~s21t1!21@s1s21t1~s11s2!#b%. ~G11!

Making the change of variabless1→1/s1 , s2→1/s2 , t1
→t1 /s2, ands1→s1s2 ~in this order!, we obtain
17420
J11J25
]

]b U
b50

E
t1 ,s1 ,s2.0

s1
21/2s2

1/22bt1
21/2$~11t1!211b

2~11t1!21s1
2bs2

2b@11t1~11s1!#b%e2s2(11s1)/4.

~G12!

The integration overs2 can now be done analytically:

J11J25
]

]b U
b50

E
t1 ,s1

s1
21/2t1

21/2F GS 3

2
2bD

~11t1!12b S 11s1

4 D b23/2

2

GS 3

2
22bD @11t1~11s1!#b

~11t1!s1
b S 11s1

4 D 2b23/2G .

~G13!

In order to proceed, we split these integrals as follows:

J11J25K11K21K3 , ~G14!

K15
]

]b U
b50

E
t1 ,s1

s1
21/2t1

21/2

GS 3

2
2bD

~11t1!12b S 11s1

4 D b23/2

5
]

]bU
b50

8 p 42b GS 1

2
2bD , ~G15!

K252
]

]b U
b50

E
t1 ,s1

s1
21/2t1

21/2

GS 3

2
22bD

~11t1!s1
b S 11s1

4 D 2b23/2

52
]

]bU
b50

8 p3/242b G~122b!, ~G16!

K352
]

]b U
b50

E
t1 ,s1

s1
21/2t1

21/2

GS 3

2D @11t1~11s1!#b

~11t1!

3S 11s1

4 D 23/2

. ~G17!

To evaluateK3 one first has to take the derivative

K3528GS 3

2D E
t1 ,s1

ln@11t1~11s1!#

As1 At1 ~11t1!~11s1!3/2
.

~G18!

Integrating first overt1 and thens1 gives

K3524p3/2E
s1

2 atanh~1/A11s1!1 ln~s1!

As1 ~11s1!3/2

58p3/2~2 ln22p!. ~G19!

Putting everything together gives finally
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I h
(1)5S 1

2e2
1

ln 22
p

4

e
D ~eI 1

(1)!21finite. ~G20!

APPENDIX H: FIXED-POINT FUNCTION
AT SECOND ORDER

In this appendix, we show how to obtain the fixed-po
function forD(u) at second order. We restrict the discussi
to a52. We use the notations of Eq.~4.5!. First, one needs
the one-loop functiony1(u) both by solving Eq.~4.11! nu-
merically and as a Taylor series about 0. The latter is
tained by deriving the one-loopb function at the origin and
fitting the coefficients as

y1~u!512u1
u2

3
2

u3

36
2

u4

270
2

u5

4320
1

u6

17010
1

139u7

5443200

1
u8

204120
1

571u9

2351462400
2

281u10

1515591000

2
163879u11

2172751257600
2

5221u12

354648294000

2
5246819u13

10168475885568000
1

5459u14

7447614174000

1
534703531u15

1830325659402240000
••• . ~H1!

The b function at second order yields a linear different
equation fory2(u). It is numerically singular at smallu.
Therefore one has to expand it in a Taylor series abou
Using the above information and the knowledge ofz2, one
finds

y2~u!521.14012u10.967798u220.202495u3

20.019299u410.00259234u510.0015302u6

10.000286423u726.25533 1026 u8

20.0000206648u926.48801 1026 u10

27.85669 1027 u1111.88404 1027 u12

11.24668 1027 u1313.13093 1028 u141••• .

~H2!

The differential equation fory2(u) is then solved numeri-
cally, starting atu'0.5. By integrating from that point both
towards 0 and towards infinity, one verifies that Taylor e
pansion and numerically obtained curve coincide in their
spective domain of validity. This is shown on Fig. 13. O
also verifies that the numerically obtained function co
verges to 0 for large u, thus the exponentz2 obtained above
is correct.

It is a good question to ask for how largee the fixed-point
function D(u)5(e/3)y1(u)1(e2/18)y2(u) might be a good
approximation for the true disorder correlator. Let us n
17420
t

-

l

0.

-
-

-

e

that if one demands thatD(u).0, thus that forces be neve
anticorrelated, this is only satisfied if

e,ec'1.6. ~H3!

APPENDIX I: STABILITY OF THE FIXED POINTS

We now consider the stability of the periodic fixed poi
given in Eq.~4.32!. DefineK@ f # as

K@ f #ª lim
k→0

1

k
$b„D* ~u!1k f ~u!…2b„D* ~u!…%. ~I1!

The eigenfunctions and eigenvalues are

K@ f #5l f . ~I2!

We find the following solutions@with x5u(12u) and nor-
malized tof (0)51]:

l15e, f 151,

l252e2
7

3
e2, f 2512~614e!x,

l3524e25e2, f 3512~15120e!x1~45185e!x2,

l45
225e

3
2

140e2

9
,

f 4512S 281
238e

3 D x

1S 616

3
1

23548e

27 D x22S 4004

9
1

185402e

81 D x3,

l55214e235e2,

f 5512~451225e!x

1~58514500e!x22S 29251
110475e

4 D x3

1S 9945

2
1

424755e

8 D x4,

l65221e266e2,

f 6512~661517e!x

1~1320116148e!x2

2~112201169928e!x31S 426361
3672944e

5 D x4

2S 298452

5
1

28055588e

25 D x5. ~I3!

This shows that apart from the constant mode~the shift!
discussed in the text, the fixed point is stable.
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APPENDIX J: CALCULATION OF CORRELATION
FUNCTIONS

In this appendix we show how to compute a correlat
function in the renormalized theory. As an example we stu
the periodic case, i.e., we compute the amplitudeAd in Eq.
~4.39!. To do that we assume that we are exactly at the fi
point.

The correlation function is time-independent, as w
shown in Sec. III D, and takes the scaling form

^uqu2q&nl5
1

e Ĩ 1

D* ~0!m2dFdS q

mD , ~J1!

where we have restored the factor previously absorbed inD.
The scaling function is universal and satisfiesF(0)51 since
our calculation was performed at zero external momenta
presence of a mass andF(z);B/zd at largez. In d54 one
hasF4(z)51/(11z2)2. We want to obtain the scaling func
tion to the next order; in particular to computeAd we need
B511be1O(e2). The universal amplitude reads

Ad5
2Sd

~2p!de Ĩ 1

BD* ~0!

5~11be!~21e!S e

36
1

e2X(a)

108 D1O~e3!, ~J2!

which yields

Ad5
1

18
e1

2X(a)1316b

108
e2. ~J3!

Computingb requires computing diagrams with external m
mentum which we do now. Let us use straight perturbat
theory withD0, as in Sec. III C 1. One has

~q21m2!2^uqu2q&5D0~0!2D08~01!2I ~q!, ~J4!

I ~q!5E
p

1

~p21m2!@~p1q!21m2#
. ~J5!

Let us reexpress this by the renormalized dimensionless
order given in Eqs.~3.35! and ~3.18! at u50:

FIG. 13. The fixed-point function of the RG flowy2(u) at sec-
ond order ine. Upper curve: Numerical integration. Lower curv
Taylor-expansion about 0.
17420
y

d

s

in

n

is-

D0~0!5me@D~0!1D8~01!2meI ~0!#. ~J6!

This gives

~q21m2!2^uqu2q&5me$D~0!2D8~01!2me@ I ~q!2I ~0!#%

5me
1

e Ĩ 1

D* ~0!S 12e
1

e Ĩ 1

3me@ I ~q!2I ~0!# D , ~J7!

where we have reestablished the factorD(u)
5(1/e Ĩ 1)D* (u) and used the fixed point conditio
D* 8(01)25eD* (0) This substitution acts as a counter-ter
which exactly subtract the divergence as it should. The re
is finite. Using that

I ~q!5E
p
E

s,t.0
e2s(p1q/2)22t(p2q/2)22(s1t)m2

5E
p
e2p2E

s,t.0
~s1t !2d/2e2q2st/(s1t)2(s1t)m2

5E
p
e2p2

m2eGS 22
d

2D
3E

t.0
~11t !2d/2F ~11t !1

t

11t

q2

m2G2e/2

. ~J8!

One obtains the scaling function in the form (z5uqu/m)

Fd~z!5
1

~11z2!2 H 12E
0

`

dt
1

~11t !2

3F S 11
tz2

~11t !2D 2e/2

21G J
5

1

~11z2!2 H 11
e

2E0

1

ds ln@11z2~s2s2!#J 1O~e2!

5
1

~11z2!2 H 11
e

2 F221A41z2

z2

3@ ln 22 ln~21z22zA41z2!#G J 1O~e2!

——→
z→` 1

z4 H 11
e

2
@2212 lnz#J 1O~e2!. ~J9!

We want to match at largez

Fd~z!5
1

z4
~11be!ze5

1

z4
@11e~ ln z1b!1O~e2!#.

~J10!

The above result yields
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b521. ~J11!

APPENDIX K: ANOMALOUS AND NONODD GRAPHS

In this appendix we write all anomalous two-loop grap
contributing to the correction of a nonanalytic disorder. In
first step we make no assumption and give their general
pressions: Already at that stage some cancellations are a
ent. In a second step we consider the limitv→01 at T50.
We check all cancellations given in the text and show that
additional singularities occur. The multiplicity factors are i
cluded in the given expressions. Of course since we w
only corrections to disorder we will give only the expre
sions when the separations of the times between the
external response fields are much larger than the separa
within each connected component. If this were not the ca
as is needed, e.g., in the calculation of a two-point corre
tion function to orderD3, the above expressions should
reexamined separately. Equivalently, the expressions g
here are correct only foru.0 and may become incorrect a
u50.

Graphs which are odd need not be considered~see main
text!. Each remaining graph, e.g.,ci is written in the short-
hand notation form

graph ci5E
x,y
E

t i.0
Fcci . ~K1!

The only anomalous nonvanishing graphs of class A are

Fc5Ryt1
Ryt2

Rx2yt3
Rxt4

, ~K2!

c152^D8~u0
x2u2t32t22t4

x !D8~u2t3
y 2u2t32t22t1

y !&D9~u!,

~K3!

c252^D~u2t4
x 2u2t22t3

x !D9~u0
y2u2t22t1

y !&D9~u!,

~K4!

c452D8~u0
x2u2t22t32t4

x !D8~u2t42t2
y 2u2t42t1

y !D9~u!,

~K5!

c5522D~u2t12t22t3
x 2u2t12t4

x !D9~u0
y2u2t22t1

y !D9~u!,

~K6!

Fe5F f5Rx2yt1
Rx2yt2

Rxt3
Ryt4

, ~K7!

e15D9~u!^D8~u2t3
x 2u2t12t4

x !D8~u2t4
y 2u2t32t2

y !&,
~K8!

f 252D9~u!^D8~u2t3
x 2u2t32t22t1

x !D8~u2t22t3
y 2u2t4

y !&.
~K9!

For the graphsd one easily sees that the following relatio
are exact~with no other assumption thanuÞ0):

Fc5Fd5Ryt1
Ryt2

Rx2yt3
Rxt4

, ~K10!

d21d450, ~K11!
17420
x-
ar-

o

nt

o
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-
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d61d850. ~K12!

The only anomalous non-vanishing graphs of class B are

Fk5Fl5Rxt1
Rxt2

Ry2xt3
Ry2xt4

, ~K13!

k15cD9~u!^D9~u2t2
x 2u2t1

x !D~u2t22t4
y 2u2t12t3

y !&,
~K14!

l 152cD9~u!^D9~u2t2
x 2u2t1

x !D~u2t12t4
y 2u2t12t3

y !&,
~K15!

Fi5Rxt1
Rxt2

Ryt3
Ryt4

, ~K16!

i 352D9~u!^D8~u0
x2u2t12t2

x !D8~u0
y2u2t32t4

y !&.
~K17!

All graphs of class C exactly vanish. For instance,

m25D~0!D-~u02u2t3
!D8~u!, ~K18!

n252D~0!D-~u02u2t3
!D8~u!. ~K19!

We now evaluate these graphs in the quasi-static depin
limit, substitutingD(u) by its power series as a function o
u, as explained in the main text. We need in addition to E
~2.9!

D8~u!5D8~01!sgn~u!1D9~01!u1•••,

D9~u!52D8~01!d~u!1D9~01!1•••. ~K20!

In D9(u) evaluated at zero we have written thed-function
which may in principle be needed. If this were the case t
would pose two unpleasant problems: Firstly a differe
viewpoint were to argue thatD9(u) should simply be con-
tinued to zero which does not pose any problem since i
pair. Second it would open the possibility to problema
singular terms@d(v) or 1/v] as v→01. Fortunately, in all
our 2-loop calculations this never happens: thesed functions,
if put by hand, cancel. This confirms that, at least to t
order, no pathology arises.

Let us start with the sumc21c5. Using Eqs.~2.9! and
~K20! one sees that the term proportional toD(0)D9(01)
cancels. Let us test thed-function. Then one needs to go on
order further in the expansion of theD term since average
of the type d(u1)u2 have dimension one, similar to
^sgn(u1)sgn(u2)&, and can thus yield a nonzero result
zero temperature~higher order terms yielding dimensions a
positive powers of the field are not needed as they vanis
zeroT). This yields

c21c554D8~01!2D9~u!^~ uu2t4
x 2u2t22t3

x u

2uu2t12t22t3
x 2u2t12t4

x u!d~u0
y2u2t22t1

y !&,

~K21!

which strictly vanish upon the replacementut
x2ut8

x →v(t
2t8). This is fortunate since this term would have led to
1/v singularity. Note that all diagrams (a)2(g) in the two-
1-32
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loop correction toh could a priori suffer from the same
problem sinceD9 functions must be expanded. However o
notes that their arguments are always strictly positive in
depinning limit, which avoids, as it did here, the proble
Similarly one has

c452D8~01!2D9~u!^sgn~u0
x2u2t22t32t4

x !

3sgn~u2t42t2
y 2u2t42t1

y !&. ~K22!

Performing the replacementut
x2ut8

x →v(t2t8), since thet i

.0 and becauseFc is symmetric int1↔t2 one finds that

c21c55c450 ~K23!
d

yi,

,

,

n

17420
e
.

at depinning. Note that these cancellations do not happen
longer, if the field is not a monotonic function, a questi
which will be discussed in Ref. 34.

A similar calculation shows that at depinning one has a

k11 l 150. ~K24!

There, in the singular part, thed function implies thatt1
5t2 yielding the cancellation via a slightly different mech
nism than above. Finally we are left with the only nonze
anomalous nontrivial graphsc1 , e1 , f 2, and i 1 to compute,
which is done in the text.
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