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Two-loop functional renormalization group theory of the depinning transition
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We construct the field theory of quasistatic isotropic depinning for interfaces and elastic periodic systems at
zero temperature, taking properly into account the nonanalytic form of the dynamical action. This cures the
inability of the one-loop flow equations to distinguish between statics and quasistatic depinning, and thus to
account for the irreversibility of the latter. We prove two-loop renormalizability, obtain the twogefymction
and show the generation of “irreversible” anomalous terms, resulting from the nonanalyticity of the theory,
which cause statics and driven dynamics to differ at two loops. We give the expahémisghnessand z
(dynamic$ to ordere?. This tests previous conjectures based on the one-loop result: It shows that random-field
disorder indeed attracts all shorter range disorder. The conjeétar@3 is incorrect, with violationZ
= (e/3) (1+0.1433%), e=4—d. This solves a longstanding discrepancy with simulations. For long-range
elasticity{=(€/3)(1+0.3973%), e=2—d (vs the standard predictiaf= 1/3 ford=1), in reasonable agree-
ment with simulations. The high value 6 0.5 in experiments both on Helium contact line depinning and on
slow crack fronts is discussed.
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I. INTRODUCTION phase'® These systems have similarities witrortex free
A. Overview continuousXY spins in presence of random fields, and gen-

erally constitute the random-periodiRP) universality class.

Pinning of coherent structures by quenched disorder, and The contact line of a liquid helium meniscus on a rough
one of its most striking manifestations, the depinning transisubstrate can be thought of as an interface, but is governed
tion, are important, ubiquitous, and not fully understoodby long range elasticity and so are slowly propagating
phenomena:3 Even a single particle in a quenched randomcracks>*?~**Solid friction is another example of a depinning
potential exhibits a depinning threshold at zero temperaturgphenomenon. Of course, in each of these systems it must be
Unbounded motion occurs only when the additional externathecked separately whether the elastic description holds for
applied forcef exceeds a critical forcé.. Depinning also depinning. It is far from obvious that this is true for all rel-
occurs for systems with many interacting particles, and deevant scales. In any case, in order to be capable to confirm or
pending on the degree of order in the structure, it rangegule out such a description, it is necessary to first obtain
from the so-called plastic depinnihdo elastic depinning. precise theoretical predictions for the expected behavior in
Here we focus on elastic depinning where the particles fornihe case of elastic depinning, what we aim to achieve here.
a lattice or more generally a well ordered structure. The de- It was proposed some time ago, starting from the study of
pinning transition is then a rather nontrivial collective phe-a fully connected mean-field-type modélthat the elastic
nomenon, intrinsically out of equilibrium and irreversible: It depinning transition can be viewed in the framework of stan-
is well known, for instance, to be a source of hysteresis irdard critical phenomena. The ordered phase is then the mov-
magnets and superconductors. ing phase with forcd >f_, and the order parameter the ve-

For many experimental systems which exhibit a depindocity v, which vanishes as~ (f—f.)# at the critical point
ning transition a modelization in terms of an elastic objectf =f.. The analogy with standard critical phenomena in a
pinned by random impurities is a good starting point. Thepure system, however, has some limits: Additional fluctua-
type of disorder, which they experience, depends on theition exponents were later identifi€d! and some nonuniver-
symmetries and their local environment. Domain walls insality was noticed in the fully connected mod&f?®
magnet$, whose study is of importance to information stor- It is thus important to develop a renormalization-group
age technology, behave as elastic interfaces and can expetiescription of depinning. An important step in that direction
ence either random-bor(&B) disorder, which is short range was performed within the framework of the so-called func-
(SR), or random-field(RF) disorder, which has long-range tional renormalization groufFRG), to one-loop order using
(LR) spatial correlations. Dislocation lines in metals exhibitthe Wilson schemé&’*%=?1The upper critical dimension was
a depinning threshold as the stress is increds@iarge den- identified asd,.=4, d being the internal dimension of the
sity waves(CDW’s) in solids exhibit a similiar conduction elastic manifold. The peculiarity of the problem is that for
threshold. If the applied electric field becomes large enoughd<<d,.=4 an infinite set of operators becomes relevant, pa-
the CDW starts to slid®.As they are periodic objects the rametrized by a full functiom\ (u), the second cumulant of
disorder they feel is also periodicThis is also the case for the random pinning force. This problem turns out to be
superconductors, where vortex lines form, in presence oflosely related to the statics, i.e., describing the pinned state
weak disorder, a quasi ordered periodic Bragg glassvith minimal energy in the absence of an applied fofce
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=0 for which the FRG was initially develop&d[there, the The NF conjecturé3d) is based on a study of the structure
flowing function is the second cumulaR{u) of the random  of higher orders, but it lacks a controlled field theory argu-
potential. Both problems are notably difficult due to so- ment. With the time, it got more and more in disagreement
called dimensional reductiofDR) which renders the naive With numerical simulations and experiments, as we discuss
T=0 perturbation theory usele$&>-?Indeed toany order ~ below. In addition, if one considers that this val{re /3 is

in the disorder at zero temperatufe=0, any physical ob- expected instead for thetaticsRF class, the NF conjecture
servable is found to biglentical to its (trivial) average in a S€€MS rather unnatural.

Gaussian random fordéarkin) model. This phenomenon is __There are also more fundamental reasons to_ study the

not restricted to elastic manifolds in disorder, but occurs in 4 RC Peyond one loop. In the last fifteen years sitfcé no

broad class of disordered systems as, e.g., random field sp?rtiUdy has addressed whether the FRG yields, beyond one

models and solving it here may open the way to a solution iAOOp' a renormalizable field theory able to predict universal

other models as well. The FRG at depinning and in the sta results. There have been two-loop studies previously but they

. ) assumed an analytic correlator and thus they only applied
ics seems to provide a way out of the DR puzzle: the ke elow the Larkinylengtﬁ9‘3l Doubts were evyen rgis P
feature is that the coarse grained disorder correlator becom% )

. . S Dout the validity of thes expansion beyond orde:
nonanalyticbeyond the Larkin scalke,, yielding large-scale The aim of the present paper is to develop a more system-

results distinct from naive perturbation theory, which as-aiic field theoretic description of depinning which extends
sumes an analytic disorder correlator. Explicit solution of theoeyond one loop. A short summary of our study was already
one-loop functional RG equatidi¥RG) for the disorder cor-  pyplished® together with a companion study on the statics.
relators R(u) and A(u) gives several nontrivial attractive The main and highly nontrivial difficulty is the nonanalytic
fixed points(FP's) (Refs. 10, 22 and critical exponents for nature of the theoryi.e., of the fixed-point actionat T
statics and depinnin§*”19?*%40 lowest order ine=4—d. =0, which makes ita priori quite different from conven-
All these fixed points exhibit a “cusp” singularity, which has tional critical phenomena. It is not even obvious whether this
the formA* (u) —A* (0)~|u| at smalllu|. The existence of is a legitimate field theory and how to construct it. For the
the cusp nicely accounts for the existence of a critical threshdepinning transition with‘=f§ , Which is the focus of the
old force?® as it is found thaf .~ d/dul,_¢+A* (u). present paper, we are able to develop a meaningful perturba-
There are, however, several highly unsatisfactory andion theory in a nonanalytic disorder which allows us to
puzzling features within the one-loop treatment, whichshow renormalizability at two-loop order. Even the way
prompted the present and related works. First it was foundenormalizability works here is slightly different from the
that the FRG flow equation for the statics and depinning areonventional one. To handle the nonanalyticity in the static
identical to one loop[with A(u)=—R"(u)]. This implies  problem is even more challenging, and we propose a solution
for instance that, within a given universality clag®B, RF,  of the problem to two-loop>*and three-loopy order as well
and RB, the one-loop RG is priori unable to distinguish as at largeN.3®
static observables, such as the roughness exp@nantzero In this paper we focus on the so-called “isotropic depin-
applied forcef =0 from those at depinnin§=f.. Thisis a ning” universality class. This means that the starting model
rather surprising and unphysical result since one knows thdtas sufficient rotational invariance, as discussed below,
depinning is an irreversible out of equilibrium process, quitewhich guarantees that additional Kardar-Parisi-Zhang terms
different from the statics. In an attempt to recover the ex-are absent. A general discussion of the various universality
pected physics, and to extend conclusions from the one-looglasses can be found in Refs. 37, 38 and an application of our
study to higher orders, threeconjectures were put nonanalytic field theoryNAFT) methods to the case of “an-

forward?!”19:2021 isotropic depinning” will be presented in Ref. 39. Before we
(1) At more than one-loop order depinning should differ summarize the novel results of the present paper, let us recall
from statics. some important features about the model, the scaling and

(2) At depinning the RB universality class should flow to statistical fluctuations at the depinning threshold.
the RF universality class: Indeed, since fer f. the mani-
fold does not move backward it cannot feel the “potential” B. Model, scaling, and fluctuations
character of RB disorder.

(3) The roughness exponent of the RF universality class e\% )
depinning is{=€/3 to all orders[the Narayan Fishe(NF) el
conjecturé’?Y, with e=4—d for standard manifold elastic-

ity and e=2—d for LR elasticity. : . : ;
While conjectureg1) and(2) seem reasonable on physi- 1"; tthe:eid'rge\?;'tcg)‘(ag?icgnfgmNf'ilg ls;ncg:orr:lgiflli:i

cal grounds, we emphasize that they were based on qualita- ! .
tive arguments: In the absence of afigenormalizablg =1 andN=1. In this paper we fes‘F'Ct our study N’Zl'
theory beyond one loop, they appear putative. A one-loo;%n th_e presence of a rando_m p_otent|al the equilibrium prob-
study including the effect of a finite velociindeed indi- 1M is defined by the Hamiltonian

cated that2) is correct. It strongly relies on a finite velocity,

and the behavior in the limig=0" was found to be subtle H= f ﬂu U .+ f V(uy ,X) (1.
and difficult to fully control within that approach. q A '

Elastic objects can be parametrized byNscomponent
ght or displacement fieldi,, where x denotes the
d-dimensional internal coordinate of the elastic objage

will use ug to denote Fourier component#n interface in

2
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with c(q)=cq? for standard short-range elasticitg(q) the latter using STS. There are various ways to measure the

=clg| for long-range elasticity, and we denot§, roughness exponent. In some simulatiBid’ it has been

= [dY/(27)% and[,= fd. Long-range elasticity appears, extracted from the critical configuration, i.e.,fds increased

e.g., for the contact line by integrating out the bulk-degreego f. in a given sample it is obtained from the last blocking

of freedom?® For periodic systems the integration is over theconfiguration. It can also be defined as the limit-0" of

first Brillouin zone. More generally a short scale UV cutoff is the roughness in the moving state, which we will refer to as

implied atq~A, and the system size is denoted byAs the “quasistatic” depinning limit to distinguish it from the

will become clear later, the random potential can withoutprevious one. This is the situation studied in this paper. Al-

loss of generality be chosen Gaussian with second cumulatiiough it is widely believed that both are the same, the de-

pinning theory has enough peculiarities that one should be

V(u,x)V(u’,x")=R(u—u’")8%x—x"). 1.2 careful. In particular, beyond scaling arguments and simula-

o . L tions, there is presently no rigorous method capable to con-
Periodic systems are described by a periodic funcién), nect the behav?or belozv and %bove threshold. P

random bond disorder by a short range function, and random Another peculiarity was noted in Ref. 17. It was found

f|el\(jvd|s?rgert(r3]f amphguder bé’ S(U)N._duf' taht Iargeq% \q inthat the finite-size fluctuations of the critical force can scale
e study the overdamped dynamics of the manifold i, o diterent exponent

this random potential, describéit the case of SR elasticity

by the equation of motion fo(L)—fo~L~Yrrs (1.9
N0 Uy=CV 2Uy+ F (X,Uy) + f (1.3y and it was questioned whethegs=v. The bound
with friction #. In presence of an applied foréghe center ves=2/(d+ {) (1.9

of mass velocity isv=L"9f,d,u,,. The pinning force is
F(u,x)=—d,V(u,x) and thus the second cumulant of the follows from a general argument of Ref. 48. For charge den-
force is sity waves wherg=0 one sees that=1/2 and thusy and

vrs Must be different fod<4. For interfaces it was notéd
F(x,u)F(x’,u’)=A(u—u’)8%x—x"), (1.4  thatv=vegis possible provided=e/3. If one assumes
=vgg, the NF conjecture = €/3 is then equivalent to satu-

such thatA (u) = —R"(u) in the bare model. As we will see ating the bound(1.9. We will address the question of
below it does not remain so in the driven dynamics. Theynethery= v below.

“isotropic depinning” class contains more general equations Finally note that af = f, the condition of equilibrium of a

of motion than Eq(1.3). For instance some cellular automa- niece of interface expresses that the elastic force, which acts

ton models are believed to be in this ‘?'égg-hey must obey  only on the perimeter, balances the excess force on the bulk,
rotational invariance, as discussed in Refs. 37-39, whicRje|ding the scaling

prevents the additional KPZ teri(V,u,,)? to be generated
at f=f) . There is always a KPZ term generatedvat 0 L9 u(a,L)~[fo(L)—f LY, (1.10

f th k try— — tA ish t . . .
rom the broken symmetry X, buth can vanish or no where u(a,L)~+C_(a) is the relative displacemeri.5)

asv—0", depending on whether rotational invariance isb i ¢ iahb d th imeter. Thi
broken or not. Here this symmetry is implied by the statisti-sﬁowzetr;]a\t’vo neighbors averaged over the perimeter. This

cal tilt symmetry(STS (Refs. 42,43 u,— U, +0y. It also
holds in thg staticsf gnd accounts for the nonrenormalization u(a,L)~L1 s (1.11)
of the elastic coefficient, here setd¢e-1.

A quantity measured in numerical simulations and experithus for CDW the displacements between two neighbors
ments is the roughness exponent at the depinning threshofifows unboundedfy with L for d<2. For interfacegnon-
f="f. periodic disordey, if one assumes = vrg one obtains that

the displacements between two neighbors grows witimly
CL(x=x")=|u(x)—u(x")|?>~|x—x"|%, (1.5 when¢>1.

which can be compared to the static ofig. Other expo-
nents have been introduc&t”*°~21The velocity near the C. Summary of results
depinning threshold behaves as (f —f.)#; the dynamical Let us now discuss the main results of our study. First we
response scales with the dynamical exportenx” and the  show that, at depinning, one- and two-loop diagrams can be
local velocity correlation lengtl§ diverges at threshold with  computed using a nonanalytic action in an unambiguous and
E~(f—f.) 7. There have also been some studies belowvell defined way, allowing to escape dimensional reduction.
threshold’** The following exponent relations were found to The mechanism is nontrivial and works because the manifold
hold:® only moves forward in the steady state which allows to re-
move all ambiguities. We show that the limit-0" can be
B=v(z={), (1.6 taken safely without additional unexpected singularities aris-
ing in this limit.
o 17 Next we identify the divergences in the two-loop dia-
' grams using dimensional regularization d+=4—e¢€. We
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TABLE I. Depinning exponents=2. First column: Exponents obtained by settigl1 in the one-loop
result. Second column: Exponents obtained by settind. in the two-loop result. Third column: Conserva-
tive estimates based on three Padéimates, scaling relations and common sense. Fourth column: Results of
numerical simulations obtained directly without using scaling relations.

exponent dim 1-loop 2-loop estimate simulation
d=3 0.33 0.38 0.380.02 0.34-0.01 (Refs. 19,20
14 d=2 0.67 0.86 0.820.1 0.75-0.02 (Ref. 51,59
d=1 1.00 1.43 1.20.2 1.25-0.01 (Ref. 79
1.25+0.05(Ref. 5]
d=3 1.78 1.73 1.740.02 1.75-0.15(Refs. 19,20
z d=2 1.56 1.38 1.450.15 1.56-0.06 (Ref. 51
d=1 1.33 0.94 1.350.2 1.42+0.04 (Ref. 5]
1.54+0.05(Ref. 795
d=3 0.89 0.85 0.840.01 0.84-0.02 (Refs. 19,20
0.65*+0.05(Ref. 51
B d=2 0.78 0.62 0.530.15 0.64+ 0.02 (Refs. 19,20
0.66+0.04 (Ref. 52
0.35+0.04 (Ref. 53
d=1 0.67 0.31 0.20.2 0.4+ 0.05(Ref. 75
0.25+0.03 (Ref. 5))
d=3 0.58 0.61 0.620.01
v d=2 0.67 0.77 0.850.1 0.77-0.04 (Ref. 52
d=1 0.75 0.98 1.250.3 1+0.05(Ref. 53

1.1+0.1 (Ref. 79

identify the one-loop and two-loop counterterms and perfornwith e=2—d. Thus the NF conjectuté?! that {=€/3 is
the renormalization program. We find that thee Miver-  incorrect. We also compute the dynamical exporeiind
gences cancel nicely in the function for the disorder cor- obtain 8 and v by the scaling relation§l.6) and (1.7). We
relator and in the dynamical exponent. The theory is finite taalso find thatvgs= » holds to two loops.
two-loop order and yields universal results. For periodic disorder, relevant for charge density waves,
The obtained FRG flow equation for the disordtre 8 we find a fixed point which leads to a universal logarithmic
function) contains new “anomalous” terms, absent in an ana-growth of displacements. This fixed point is, however, un-
lytic theory (e.g., in the flow obtained in Refs. 29)30hese  stable, as an additional Larkin random force is generated.
terms are different in the static theofgbtained in Ref. 38  The true correlations are the sum of this logarithmic growth
and at depinning, showing that indesthtic and depinning and of a power law growth so that the trde=(4—d)/2.
differ to two loops Thus the minimal consistent theory for This is similar to Ref. 50. Then we find
depinning requires two loops.
Next we study the fixed point solutions of our two-loop 1
FRG equations at depinning. For nonperiodic disor@eg., V=75, (1.149
interface$ with correlator of range shorter or equal to
random-field, we find that there is a single universality class,
the random-field class. Thus random-bond disorder does flow 2
to random field. Specifically we find that the flow fA is VEsT (119
corrected to two loops and thuSA cannot remain at its
randpm-bond value, which is zero. This is explained in MOr&yhich holds presumably to all orders.
detail in Sec. IV. The problem does not remain potential and
irreversibility is manifest. For short range elasticity, we find

the roughness exponent at depinning D. Numerical simulations and experiments
Over many years, numerous simulations near
€ depinning®2°*1-%4accumulated evidence thét /3. In d
=-(1+0.143313 1.1 . .
¢ 3( ) (1.12 =1 in particular often an exponegt-1 was observed. Our

results show thaf> e/3 and thus resolve this long standing

with e=4—d, and for long range elasticity discrepancy between numerical simulations and the renor-
malization group. They are summarized in Tables | and I,
€ where we compare them to numerical simulations. Of course
==(1+0. . I . . .
¢ 3(1 0.3973%) (.13 it is not possible to give strict error bars from the FRG
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TABLE I1l. Depinning exponentse=1. First column: Expo- ' ' ' ' '

nents obtained by setting=1 in the one-loop result. Second col- 1.0 | _Dg'g:gr‘;:fd Usadel
umn: Exponents obtained by settikg=1 in the two-loop result.
Third column: Conservative estimates based on three Rate 08 | |
mates together with scaling relations between exponents.
exponents one loop two loop estimate simulation - 0.6 r 17
I4 0.33 0.47 0.530.1 0.390-0.002(Ref. 46 04 | | |
z 0.78 0.66 0.20.1 0.74-0.03(Ref. 79 ’ i
B 0.78 0.59 0.40.2 0.68:0.06 ) b
0.2 o & |
v 1.33 1.58 204 1.52-0.02 P S
2 3 4 4 6
d
) ] ] 0.0 -
calculation without further knowledge of higher orders, but 2 3 4 d, 6
one can still give rough estimates, based on different Pade d
approximants. _ . ' FIG. 1. Figure from Ref. 60 which compares new numerical
|_-et usin the following q|SCUSS "eC?m Uume”_CEU results,values(black circles and a previous onéwhite squarg obtained
which are in agreement with the earlier simulatiGh&ol-  for the exponenj3 with our prediction from the FRG.

lowing our papef® Rosso and Krauth obtained a set of pre-

cision numerical results using a powerful algorithm to deter+,5¢t the velocity exponeng and compare their results with
mine the critical configuration at depinnirithe last blocking two-loop FRG prediction foB:

configuration up to large size§>~*'They obtained results in

d=1 which, despite being far fromi=4, compare well with

our results. For short range elasticity they find B=1— f+0 04012322 (1.20
g to0 . .

{=1.25+0.05 (1.16

close to our two-loop resulfl.12). Note that displacement
correlations scaling as

The results are shown in Fig. 1. One can see a clear curvature
downwards and that the straight line giving the 1-loop result
is well above the obtained resulithe one-loop approxima-
$~q—(d+zg (1.17 tion would predict3=0.78 ind=2). Thus, although there is
ard still some spread and uncertainty in the results, it seems that
with {>1 are perfectly legitimate. It simply means that there is now a trend towards a convergence between theory
and numerical simulations.
The situation concerning experiments is presently unclear.
Let us first outline the generic findings before analyzing the
(1.18  details. The measured exponents corresponding to LR elas-
) ) . ticity andd=1 seem to be consistently in the range 0.5
The size-dependent factor comes from the infrared diver-_ 5’55 This is slightly above our two-loop res@it. 13 but
gence of the integral. Thus in a simulation neighboring, fylly incompatible with it. Our calculation holds for qua-
monomers will be spread further and further apart, which is;isiatic depinning, i.eq>0—0", and most experiments are
fine if their attraction is purely quadratic. Of course in a 5150 performed from the moving side, hopefully reaching the
realistic physical situation their bond will eventually break, ¢5me quasistatic limit—0*. On the other hand if one be-
but as a model it is mathematically well defined. For thejie\eq that the numerical result.19 (also compatible with
anisotropic depinning universality class, no_t studied hereour calculation, from belowobtained forf=f_ also holds
they found{=0.63 as many other authors using cellular alfor quasistatic depinnindga rather natural, but as yet un-

6-58
tomaton mOd?'g- . . . proved assumptignthen one must conclude that the elastic
F(_)r isotropic depinning with long range elasticity they models, in their simplest form at least, may not faithfully
obtained represent the experimental situation. Care must, however, be
_ exercised before any such conclusion is reached. One could
£=0.390-0.002, (1.19 argue that disordeA (u)~u~“ of range longer than RFa(
which lies roughly at midpoint of the one-loop and two-loop <1) could produce higher exponents ¢/(2+ ) (see end
prediction settinge=1 in (1.13. So do their most recent of Sec. IV A) but that does not seem to apply to those ex-
estimate® for SR disorder. Ind=2 this is {=0.753 periments where disorder is well controlled. Also, since the
+0.002 and ford=3 they obtain 0.35{<0.4. These re- exponent{=0.5 is the Larkin DR exponent, which should
sults (1.16) and (1.19 are close to estimates from the two- hold below the Larkin lengtl., one must make sure thhat
loop expansion and clearly rule out the NF conjecture. is well identified and that one is not simply observing a slow
Another recent wor¥ studies an interface in the random crossover to the asymptotic regime. In some of these experi-
field I1sing model in high dimensions. The authors confirmmentsL. has been identified to be rather small. Let us now
thatd=4 is the upper critical dimension. They further ex- examine the situation in more detail.

CL(X)NZJ [1—cogqx)]q (@20~ 2~ 1)x2,
q
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One much studied experimental system is the contact lingeresting to study depinning there and to check whether it
of a fluid }#62 |t advances on a rough substrate and is pushedlso belongs to the isotropic universality class. In that case,
by adding fluid to the reservoir. The elasticity of the line is the crossover from RB to RF resulting in overhangs beyond
short range at short scale but at larger scales it is mediated [gpme scale at zero temperatug>1) as well as the non-
the elasticity of the two dimensional meniscus and thus itrivial thermal rounding of depinning could be studied.
becomes long range and should be compared with Egs.

(1.13, (1.19. Disorder is random-field, but one should dis- Il. MODEL AND PERTURBATION THEORY
tinguish between microscopic disorder, which is poorly char- _ ) _
acterized, and macroscopic one which is well controlled. The !N this section we discuss some general features of the

situation has been studied for a helium meniscus on a madi€!d theory of elastic manifolds in a random potential, both
roscopically disordered substrate wherg=0.55 was for the statics and for the dynamics, driven or at zero applied

found®! Although there are good indications that these exforce. Some issues are indeed common to these three cases.

periments probe quasistatic depinnitige contact line jumps At the end we specialize to depinning.

from a reproducible pinned configuration to the next)che

precise nature of the dynamics remains open. Indeed it was A. Static and dynamical action and naive power counting
found that propagation of perturbations along the line can be ¢ static, equilibrium problem, can be studied using rep-

as fast as avalanches, showing inertial regime for heftim. licas. The replicated Hamiltonian corresponding to Bq1)
Experiments were repeated for viscous ligfifdgelding ¢ is

=0.51*+0.03. There it was checked that the system is over-
damped and near depinning. In both cases there is also evi-

dence of thermal activation effeéfscharacteristic of depin- E: — | > [(Vud)2+mPud]—- if > R(UA—ud),
ning (not creep. It was argued that these may be a signature T 2T)x43 2T?J)x"ap
that a more complicated dynami¢s.g., plasti¢ takes place (2.1

at the very short scales and produces an effective dynamics

a rger Scles wi complcated roninaag. exporen- IS 01 MR e onscer R Aeetomns en Lo
tial) velocity- and temperature-dependent damping. Ver . ) - - !
) Y b P ping Y nd we are interested in the large scale limit-0. The limit

similar effects have also been shown to occur in solid®

friction® where the activation volume was also found to Cor_'(l)'farzr:srowirt]rl:ns]l?r?]rs %fv:glr:?::] :30Iiéislngfllﬁgreevce()?/rggegiain
respond to microscopic scales. P P 9

Another class of much studied experimental systems arlf third or higher cumulants of disorder are ge_ne_rated in t.he
crack fronts in heterogeneous meffid® These are charac- perturbation expansion. These should in principle be in-
terized by two displacement fields, one out-of-plane compopIUded' but as we will see be'O.W h|gher dl_sorder cumulants
nenth and an in-plane oné Cracks can either be studied are not relevant for thé =0 depmnmg studied pelow. .
stopped or slowly advancing. At the simplest level the in- Th? dyna_mlcs, porrespondmg Fo the ?q“a“on of motion
plane displacemeritis expected to be described as an elastic(l_'g) Is studied using the dynamical action averaged over
line d=1, N=1 with LR elasticity c|g|, at quasistatic disorder
depinning®” In experiment®® the observed roughness is
again{~0.55. Since the crack propagates in an elastic me- S[(J,u]:f iUy 70— 02+ M) Uy — ,]Tf Ui U
dium, elastic waves which can in principle affect the rough- xt xt
ness as the crack front advances producing a more compli-

: 1 I -
cated dynamics than Ecq_l.S). Some proposals have been __f Ui Uy A (U — uxt’)_f iUyfy .
put forward on mechanisms to produce higher roughness 2 )t xt
exponent§?® They rely, however, on a finite velocity and it is 2.2

unclear whether they can modify roughness in the quasistatic

limit. Even if instantaneous velocities during avalanches bey; generates disorder averaged correlations, €A Hy])
come large enough, a detailed description on how thesg<A[u 1) with (A) = [D[u]D[U]Ae S and(1)s=1, and
X ’

could change the line configurations remains to be under- T e i )
stood. Then of course a major issue is whether the exper[€SPonse functions\{(A[u])/ 5f = (iuAlul)s. The uni-

ment, and in which sense, is in the quasistatic limit. Therd®'m driving force f,;=f>0 (beyond threshold aT =0)
again microscopic dynamics could be more complex as ahay produce a velocity = di(uy)>0, a situation which we
small scales the material may be damaged and the notion study by going to the comoving fram@vhere (uy)=0)
a single front may not apply. Finally, since there are twoshifting u,—u,+uvt, resulting inf—f—»v. This is im-
components to displacement one should also be careful tolied below. In general, for any value ¢f we study the
understand interactions between them near depinfling. steady state, which at finite temperatdre 0 is expected to

Another interesting experimental system is a domain walbe unique and time translational invarigii|) (all averages
in a very thin magnetic filft which experiences RB disor- depend only on time differencesin the zero temperature
der. Up to now however only the thermally activated motionlimit, one needsa priori to distinguish theT=0 TTI theory
has been studied, which gives a quite remarkable confirmaas lim _..limy_q (e.g., the ground state in the staténd the
tion of the creep la# with RB exponents. It would be in- T=0" theory as liig_glim,__...
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FIG. 2. (i) Diagrammatic rules for the statics: replica propagator
(UaUp)o=Td,p/0?, unsplitted vertex, equivalent splitted vertex
—3.6(1/2T?)R(u,—u,) and (i) dynamics: response propagator
(Uuyo=Rg_/, unsplitted vertex, splitted verteXi,Uy,A(Uy

\?_______
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order atT=0 are shown in Fig. 2unsplitted vertices There
are three types of two-loop graphsB,C. The graph£€ and
F lead to corrections proportional to temperature.

At T=0 the model exhibits the property of dimensional
reductio?"?*=2" (DR) both in the statics and dynamics. Its
“naive” perturbation theory, obtained by taking for the dis-
order correlatoA (u) ananalytic functionof u [or R(u) for
the static has a triviality property. As is easy to show using
the above diagrammatic rules the perturbative expansion of
any correlation functiofIT;u,, ) s in the derivativesi " (0)
yields to all orders the same result as that obtained from the
Gaussian theory setting(u)=A(0) (the so called Larkin
random force model The same result holds for the statics,

for any correlatior(Hiuj_i>3. At T=0 these correlations are
independent of the replica indices;, their dynamical

equivalent being independent of the tintes The two point
function thus reads to all orders:

—U,) and temperature vertex. Arrows are along increasing time.

An arbitrary number of lines can enter these functional vertigiés.

Unsplitted diagrams to one loop D, one loop with inserted one-loop

counterterm G and two-loop A,B,C.E,F.

A(0)

(qz—f——mz)z. (24)

<uq,t’ufq,t>DR:

This dimensional reduction results in a roughness exponent

It is important to note that there are close connections, vig=(4—d)/2 which is well known to be incorrect. One
the fluctuation dissipation relations, between the dynamicabhysical reason, in the statics, is that this amounts to solving

formalism and the statics. Indeed, at equilibrigfar f=0
and when time translation invariance is establighedy
equal time correlation function computed with EQ.2) is
formally identical(e.g., to all orders in perturbation thegry

the zero force equation which, whenever more than one so-
lution exists, is not identical to finding the lowest energy
configuration. Curing this problem, within a field theory, is
highly nontrivial. One way to do that, as discussed later will

to the corresponding quantity computed in the equilibriumpe to consider monanalyticA (u).

theory (which is a single replica averageSimilarly, the per-

It is important to note that despite the DR, dynamical

sistent parts, i.e., those §(w), of dynamical correlations averages involving response fields remain nontrivial, even at
involving p mutually very separated times, are formally iden- zero temperature. Perturbation theory at finite temperature
tical to the corresponding averages in the replica theory inalso remains nontrivial. It is thus still useful to do power
volving p replicas. The perturbative equilibrium calculations counting with an analyticA(u), the modifications for a

in the statics can thus be |nd|fferently performed either WIthnonana]yuCA(u) bemg discussed in the fo||0W|ng section.
replicas or with Eq(2.2). It is possible to generate all dy-  power counting at the Gaussian fixed point yieldsx?

namical graphs from static ones, a connection which, as WI|(linduu ~x~9. At T=0 nothing else fixes the dimensions of

be further explained below, also carries to some extent to the PN o .
casef>0 atT=0. U, sinceu— AU, u—\"~U leaves theT=0 action invariant.

We first study “naive” perturbation theory and power Denotingu~x¢, £ is for now undetermined. The disorder

—dt2r
counting. The quadratic pa%, of the action(2.2) yields the €M then scales as' - It becomes relevant fod<4

free response and correlation functions, used for perturbatiobrovided{<(4—d)/2 which is physically expecteffor in-
theory in the disorder. They read stance, in the random periodic cage; 0 is the only possible

choice, and for other casés- O(¢€)]. With this power count-

_A o(t—t’) (t ) 2, 2 ing the temperature term scales s’ with =d—2+2¢
(iUgU_g o= Rq,t—t’:T Ty @), and is thus formally irrelevant near four dimension. In the
end ¢ will be fixed by the disorder distribution at the fixed
(122
UgtUogo=Ca_trs 2.3 ot . . .
{Ugt-q)0=Car- @3 A more detailed study of divergences in the vertex func-
respectively, with the FDT relationfR, ,=—d,C,, (v  tions allows to identify all counter-terms needed to render

>0). Perturbation theory i\ (u) yields a disorder interac-
tion vertex and at eactunsplitted vertex there is one con-
servation rule for momentum and two for frequency. It is
thus convenient to use splitted vertices, as represented in Fig.
2, where the rules for the perturbation theory of the statics
using replica are also given. For the dynamics one can also
focus onT=0 where graphs are made only with response
functions and consider temperature as an interaction vertethe irreducible vertex functionglVF's) with E, external
The one-loop and two-loop diagrams which correct the disfields u (at momentag; ,w;, =1, ... E,) andE; external

the theory finite. We denote by

Iy (ql!wliql!wl)
=
I1

1=

11

=1

—I[u,u]ly—i—0 (2.5

“j

~

1 6u;

5qu o, G
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FIG. 3. Construction of diagrams starting
from an unsplitted static diagram via two splitted
O static diagrams(two-replica componeiptto the
corresponding dynamical diagrams as explained
in the text.

i_i o

fields (at momentag; ,w;, i=1, . .. E;). Being the deriva- Let us compute Fhe superficial deg_ree of UV divergenasf
tive of the effective action functional[u,0] they are the Such a graph withv, disorder vertices andy temperature

important objects since all averages of products@indy  factors contributing tal’~A“. Using momentum and fre-
fields are expressed as tree diagrams of the IVF. Finiteness 8H€ncy conservation laws at each vertex, and since there are
the IVF thus imply finiteness of all such averages. Theonly response functiong;+1=2(v,+vy) we obtain

present theory has the property of covariance under the well

known statistical tilt symmetry ST$i,— Uy +0y, which a=d+2p—dE;+(d=4uvs+(d—2)vr. (27
yields that the two point vertek'j,(«=0) remains uncor- T=0 (v;=0p=E;) at the critical dimensiomi=4 the

rected to all orders. This allows to fix_ the elastic constant only superficially UV divergent IVF are those with one ex-
=1 and shows that the mass term is uncorrected and can ~ L ~ .
thus safely be used as an IR cutoff. It also implies that al €malu (quadratic divergengeor two externalu (logarith-

higher IVF's vanish when any of the; is set to zero. The mic divergence L. The STS further restricts the possible

DR result is a perturbative triviality statement aboutd'vergent diagrams. One sees that only three types of

<X - o counter-term are needed priori. One counterterms is
I';...3(0i ,w;) at T=0, all other cases remain nontrivial. In a

) . . 2 needed for theA? divergence ofl';(q=0,0=0) (excess
sense we will now expand around dimensional reduction¢, . ¢_ mv in driven dynamics This is analogous to the

Similar replica [VF's can be defined for the statics. mass in theg* theory, i.e., the distance to criticality. If we

Perturbation expansion of a given IVF to any given order, exactly at the depinning critical point=f.) we need

in the disorder can be represented by a set of one particig,; oy apout this divergence. Another counterterm is as-

ir.reducible (1P graphs. As mentipnned above there is 4sociated with the LD iy and the last one with the LD in the
simple rule to generate the dynamical graphs from the stati econd cumulant of disordek(u), i.e., a full function

ones. The static propagator being diagonal in replicas, ea hich makes it different from the conventional FT for criti-

stat|tcdgraph occut[nngN;E Ozp)t;]epllcla I_VFthcon:am?{) Cr?n' cal phenomenge.g., ¢*). One notes that higher cumulants
nected components. At= € rule i1s then to attach one .o formally irrelevant, as they involve;>2.

response field to each connected component of the static dia- One sees from Eq2.7) that each insertion of a tempera-

gram, '”TaCh rﬁpllc_F;lhgrth therr: gen;ahratlng one orf_n:gr_e d ure vertex yields an additional quadratic divergencedin
namical graphs. The place where the response held IS ak 4 e generally a factdfA 2. Thus to obtain a theory

tache.d. Is theroot of the .diag'fam- Th? it .Of the where observables are finite As—c one must start from a

remaining response functions is then fixed unamb'QUOUS|ymodel where the initial temperature scales with the UV cut-

always pointing towards the root. This procedure to deduc%ﬁ as

the dynamical diagrams from the static onesusque and

exhaustiveand is illustrated in Fig. 3. A generalization exists B m\d-2

at T>0 but is not needed here. T=Tm“’(x> ) (2.9
Any graph corresponding to a given dynamical IVF con-

tainsp connected componenti® the splitted diagrammaties  Thjs is similar to thes* theory where it is known that &°

with 1<p<E; (p=E; atT=0), each one leading to a con- term can be present and yields a finite UV lirtiie., does

servation rule between external frequencies, and thus one cat spoil renormalizability only if it has the form

write symbolically: g6#% A972. It then produces only a finite shift @, without

changing universal propertiééHere eachT factor will thus

To o u(Q @5 ,05 0 ; ) .
R come with aA 2~ 9 factor which compensates the UV diver-

. P . - gence. Computing the resulting shift &(u) to orderA? by
:5(2 q—E Q)H 5(2 w—E w)T. resumming the diagrams and F of Fig. 2 and all similar
=1 diagrams to any number of loops has not been attempted
(2.6 here.
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For convenience we have inserted factorsnah the defi- X=U;. _o.—Ur. —¢ 1,
nition of the rescaled temperature, using the freedom to res- e e
caleu by m~¢ andu by m¢. The disorder term then reads as Y=Up_( —Ug_r.¢

v 4 v 13 2

in Eq. (2.2) with A(u) replaced byAo(u)=me= %A (umf) in

terms of a dimensionless rescaled functibn terms of higher order in Eq2.9) do not contribute since we

are atT=0 and we have exhausted the numbetidb con-

tract (i.e., those terms would yield higher ordersTiy. The

remaining average in E¢2.11) is evaluated with respect to a

Gaussian measure, and can thus be performed. It can be de-
From now on we study the zero temperature lif#0.  fined by using theT>0, v>0 Gaussian measurei(— vt

To escape the DR triviality phenomenon, and since the fixed ) and taking the limiff—0, v—0. The result is a con-

points found in one-loop studies exhibit a cuspuat0, we  tinyous function ofv?/T and its value depends on how the
must consider perturbation theory innananalyticdisorder  |imit is taken.

correlator. In this section we show how to develop perturba- | the static theory one should taRe~0 atv=0. This
tion theory and diagrammatics in a nonanalytic theory an(i/iekjs
what are the nontrivial issues which arise.

B. Nonanalytic field theory and depinning
in the quasistatic limit

For now the considerations apply for zero or finite applied 2
force. In usual diagrammatics, extracting a leg from a vertex (sgn(X)sgnY))= ;asir(a) (212
corresponds to a derivation. Here this can be done as usual
with no ambiguity, provided the corresponding vertex is (XY)
evaluated at a generic (e.g., the graphs in Fig.)3If the 0= ——,
vertex is evaluated at=0 (here and in the following we call V(XE)V(Y?)

them saturated verticesone must go back to a careful ap-
plication of Wick’s rules. Any graph containing such a vertex
and which vanishes in the analytic theory is called anom
lous. Let us write the series expansion in powersupf

i.e., the result for centered Gaussian variables. Expressing
the averages in Eq2.12 using correlation function€,
aS/ields a complicated =0 expression foe;. This expression

will be discussed in a companion paper on the stafislist

1 of all anomalous diagrams is presented in Appendix K.
A(u)=A(0)+A’(0*)|u|+EA”(D*)uva--~ . (29 The opposite limitv—0 at T=0 yields much simpler
expressions:
Wick’s rules can then be applied but usually end up in evalu-
ating nontrivial averages of, e.g., sign or delta functions. (sgr(X)sgr(Y))—sgrts+t;—tg)sgrits+t,—ty).

_ Letus consider as an example the following two-loop 1Pl\jore generally this procedure corresponds to the substitution
d|agram(r_10tede.1 in what follows which is a correction to AM(u, —u, )= AM[v(t—t')] in any ambiguous vertex
the effective action of the form: evaluated au=0. That this is the correct definition of the
theory of the quasistatic depinning as the limi=0" is
particularly clear here since it is well knowithe no passing
property**) that theu, , are increasing functions of time in

=i, A,,(ur Uy 0’) . .
’ ’ the steady state. Of course it remains to be shown that the

rTro

procedure actually works and does not produce singular
X f,_>0 ,,_R"l*"z,fan*"z,sz"*"pst"*"z,u terms such asj(vt). It also remains to be shown that it
o yields a renormalizable continuum theory where all diver-
><A’(u,.l,T,,S—u,.l,T,,r,l) gences can be removed by the appropriate counterterms. This
is far from trivial and will be achieved below.
XAy o, =y rmty—1y)- (2.10 Let us comment again on the connections between dy-

namics and statics. Considefla 0 dynamical diagram with

}6 connected components evaluated at zero external frequen-
cies. All response functions can be integrated over the times
from the leaves towards the root on each connected compo-
nent. Using the FDT relation this replaces response by cor-
relations and thus exactly reproducep seplica static dia-
gram except that it is differentiated once with respect to each
replica field (the sums over all possible positions of the re-
sponse field reproduces the derivation chain )rul®ne

Here four Wick contractions have been performed, as in an
of the other thirty two-loop diagrams of the form(&tudied

in the next section In an analytic theory performing the
local time expansion this would result in a two-loop correc-
tion to A(u) proportional toA”(u) but with a zero coeffi-
cient since the\’ functions are evaluated at zero argument.
In the nonanalytic theory, inserting the expangi@r9) yields
(upon some change of variables

simple way to establish this rule is to consider the formal
e1=A’(O+)2A”(u)f Re R R R 6 Fry limit 7—0" (equivalently expansion ORg,., In powers of
>0y frequency, i.e., formally repIacequt,t/—>5tt,/q2 (keeping
_ track of causality. This reproduces exactly the zero frequen-
Frp . =(sgr(X)sgn’y)), (21D Gies dynamical diagrams and treats “replicas” as “times.”
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Thus thepth derivative of ap replica static diagram gives
a set of dynamical diagrams withh connected components. A B
For p=2 this ensures, e.g., that the relatiak(u)= <><>
—R”(u) remains uncorrected to all orders. The flaw in this
argument comes from the anomalous diagrébugh in stat-
ics and dynamigs In the analytic theory the dynamical dia-
grams with response fields on a saturated vertex vanish
cancel in pairs. This just expresses that taking a derivative o

a static saturated vertex gives zero and the rule still works. 1. One loop

But in the nonanalytic theory the anomalous diagrams do not . , ) L
vanish and contain an additional time dependence. The Atleading order, there are four diagrams, depicted in Fig.

above integration of response functions from the leaves t4- Since diagrantd) is proportional toA’(u)A’(0), itis an

the root cannot be performed for these anomalous diagram@dd function ofu, and thus does not contribute to the renor-

As a result they can give nontrivial contributions both in Malization ofA. However its repeated counterterm will ap-

statics and dynamics which violate relations suchAgg) ~ Pear at two-loop order. D|agran(1a)2 is proportional to

= —R"(u), thus allowing us to distinguish statics from de- ~A(U)A"(u), diagram(b) to —A’(u)* and diagram(c) to

pinning. A”(u)A(0). All come with a combinatorial factor of 1/2!
To conclude this section: The perturbative calculation offfom Taylor-expanding the exponential function, 1/2 from

the effective action and of the IVF vertices can also be perthe action and 4 from combinatorics. Together, they add up

formed in a nonanalytic theory. It can be expressed as suni§ the one-loop correction to disorder

of the same diagrams one writes in the analytic theory, with

the same graphical r_ules tiraw and generate the diagrams STA(u)= i{—A’(u)z—[A(u)—A(O)]A”(u)}l L

starting from the statics. However the way to compute these 212

diagrams and theivalues is different from the analytic

theory. The time ordering of vertices comes in a non-trivial 1

way and produces results which can be different at depinning | =f (2+—mz)2

f=f. (v=07) and in the static§=0, as illustrated on the a4

diagrame; above. Thus we see the principle mechanism byyith |1:fqefq2r(2_d/z)mfe:(47.,)fd/2r(2_d/2)mfe'

which the statics and the depinning can yield different field

theories, which is a novel result. It remains to perform the 2. Two loops

actual calculation of these nonanalytic diagrams, which is

performed in the following sections.

FIG. 5. The three possible classes at second order correcting
isorder afT=0. Only classes A and B will contribute.

(3.9

First, we have to find all diagrams correcting disorder at

second order. AT =0 they can be grouped in three classes

A, B, and C for the three possible diagrams for unsplitted

vertices. Class C does not contribute as is shown in Appen-
In this section we will compute the effective action to dix C. We begin our analysis with class A.

two-loop order aff =0 for depinning. From the above analy- ~ We now need to write all possible diagrams with splitted

sis we know that we only need to compute the one- andertices of type A. A systematic procedure is to start from all
two-loop corrections ta\ (u) and 7. possible static diagrams given in Fig. 6. This relies on the

fact that dynamics and statics are related—recall that in gen-
eral a dynamic formulation can be used to obtain the renor-
] ) i malization of the statics. As mentioned in the previous sec-
We start by the corrections to the disorder, first at onetjon, to go from the statics to the dynamics, one attaches one
loop and then at two-loop order. response field to a root on each connected component of the

diagramsatof in Fig. 6 and orient each component towards
a f I b L

IIl. RENORMALIZATION PROGRAM

A. Corrections to disorder

FIG. 6. Static graphs at 2-loop order in the form of a (céss
A in Fig. 5) contributing to two replica terms. Adding a response-
field to each connected component leads to the dynamic diagrams
FIG. 4. One-loop dynamical diagrams correctifig of Fig. 7.
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VANVANVAWYA

; [¢] : E (%] : E [&:} : E Ca z Cs
”' “ “ LN “ % hY . .
FIG. 7. Dynamical diagrams at two-loop or-

der of type A with two external response fields
d; ds ds d, (two connected componentsorrecting the disor-
; ; - der; derived from the two replica static diagrams
of Fig. 6.
; ds\\(, é ds\\/ é d7\\( é ds\\/

the root. The result is presented in Fig. 7. 1

The next step is to eliminate all diagrams which yield odd 5%A(u)= 3(23)2 (aj+bj+--+)
functions ofu and thus do not contribute to the renormalized
disorder. The list is the following:

=2 (at+bi+--),
a=8,=Cg=d1=ds=ds=d7=;=e3=T1=f3=T4=1s where the combinatorial factors are 1/3! from the Taylor ex-
=0. (3.2 pansion of the exponential function, 3/fom the explicit
factors of 1/2 in the interaction, a factor of 3 to choose the
Further simplifications come from diagrams, which mutually VErtex at the top of the hat, and a factor of 2 for the possible
cancel. Again this uses that’ (u) is an odd function. This two _c_h0|ces in egch 01_‘ the vertices. Fgrthermore below some
gives additional combinatorial factors are given: a factor of 2 for
generic graphs and 1 if it has the mirror symmetry with
respect to the vertical axis: each diagram symbml {-)
Cot+Cs=dy+dy=dg+dg=0. (3.3 denotes the diagram including the symmetry factor.
We recall that we have defineshturatedvertices as ver-

In addition tices evaluated at=0 while unsaturatedvertices still con-
tain u explicitly. Diagrams with response functions added to
unsaturated vertices can be obtained by deriving static dia-

c,=0, (34  grams
sincef 'Ry RywA’ (t—t")=0. This is explained in more de- a,+ag=second derivative of the statics,
tails in Appendix K where the list of all anomalogsonodd

graphs is given together with their expressions in the nonana- by +DFbs+Dy+bs g

lytic field theory. _ =second derivative of the statics. (3.5
Thus, the only nonzero graphs which we have to calculate

are a,,as,bq, ... bg, c1, €, andf,. These calculations The graphs which contain external response fields on

are rather cumbersome, due to the appearance of theta furgaturatedvertices cannot be derivatives from static ones. For
tions of sums or differences of times as a result of theclass A, the hat diagrams, the only nonzero such graph. is
nonanalyticity of the theory. The correction to disorder is Explicitly, this reads
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\0—<—0—<—0g \—<—O—<—Qg \—(—0—6’ ?—)—i—eo
1 i 1 52

LA e e
\7%\7*;%%

P LAy e ! ks P b

*7 , ’ 71 , . :—/<7 , . . FIG. 8. Two-loop dynamical diagrams of type

' VA . 't ' EA . 2 ' -A—/L . 3 B (see Fig. 5.

:7:<;j o~
P !
LT LT LTI

e . e A
//_/:ll )/12 L, L,

a,+az=—dJ[—R"(0)R"(u)?]l, (3.6) 1
I":f 2, N 2, 2 2. 2, 2, 2 2
where[see Eq(A18)] az.d2 (47+m*)(gz+m)(q3+m)(gi+gs+2m)
d d In2
|A=:f dg, digo 1 ! ! = 2% (el )2 +finite. (3.12
(2m)® (2m)? g3 +m? g5+m? [(qy+qp)2+m?)? 2¢€

The last diagrant, also involves a sign function and reads

1 1
=| —=+-—+0(€?) | (ely)? (3.7
2¢*  4e =2A'(0%)2A"(u) f sgrty,—t3—t,)
) a1,92J t1,tp,t53,t4>0
Furthermore, we find ) 5
x @~ {[(a1+a2)%+ M) (tg-+ 1) + (q7+ M)ty + (g5 + mP)tp)
6
> bi=— R (WR"(U)?]I A (3.9 =—A’(0")2A"(u)l, . (3.13
i=1
In Appendix A we show thatfor any given elasticity the
and sum ofe;+f, only involves the integral ,, and that the
2 combination takes the simpler form
C1=2A"(0")*A"(u)l 4. (3.9

— AT N2 AN
The diagrame; is an explicit example for the appearance of €+ = =A% (07) A (WA (3.14

nontrivial sign functions resulting from the monotonic in- Wi :

e now turn to graphs of type Boubble diagrams, see
crease of the displacement. It was already discussed in tl‘lglg 8 grap ype B g
previous section. In the quasistatic depinning lir@t11) Again diagrams, which are odd functions ofvanish.
gives(details are given in Appendix)A These are

(0 )ZAH(U) f h]_:hz:il:jl:k2:k3:|2:|3:|4:0. (313
G827 f2:13,44>0 Two other diagram mutually cancel:

*{(Cﬁ* mz)tfr(qurmz)ter[(‘11“12)2+ m?|(t3+tg)}
xXe

k1+|1:0, (316
XSty — 1+ ta)Sgrtz— ty Fty). B10 s discussed in Appendix K.
The result of the explicit integration is The diagrams that are second derivative of the static have
all their response fields on their unsaturated vertices. These
e;=A"(0")2A"(u)[1,—1 o+finite], (3.1) are
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H i\/’

1
g1+t02+03t0s= &3{§A(U)ZA”(U)

hs+h,+hg+hg= 03[—A(O)A(U)A”(u)]l 2 FIG. 9. One-loop dynamical diagram correcting the friction.

1 function, we can expandu(;—u,;) in a Taylor-series, of

izzjzzaﬁ[ZA(O)zA”(u) Ii. which only the first term contributes. Equati@8.22 be-
comes

The surprise is that;, which is not the second derivative
of a static diagram, since it has both response fields on satu- J iUy (1=t ) Uy + O(t—t")2]JA"(0")R, _ oy -
rated vertices, is nontrivial: t>t'x ' (3.23

Y W 2A M 2
i3=—A"(07)"A"(W13. (317 The correction to friction at leading order thugsee Fig. 9

To summarize, for the driven problem &&0 in pertur-
bation of A=A(u), the contributions to the disorder to one on= _A,,(O+)thr:O,t- (3.29
and two loops, i.e., the corresponding terms in the effective t

actionI'[u,u] are Here, the response function is taken at spatial argument 0. In
" ) , momentum representation, the same expression reads
S A(u)=—{A" ()" +[A(u)—A(0)JA"(u)}1, (3.18

Sn=—A" 0+ tR..=—A" 0+ t —t(q2+m2)
SAU) ={[A(U)~A(0)JA (W2 15+ %{[A(u)—A(O)]Z 7= A )Uq A )Uq ¢

n n ! 4 1
XAT(W}IT+A(07)%A" () (1,=1D). (319 =AY | o= (@29
. . . I g (g°+m
Curiously, even though two diagrams contain contributions
proportional tol;,~In 2, these contributions cancel in the fi- with the already known integrdl, Eq. (3.1).
nal result for the corrections to the disorder. We now turn to the two-loop corrections. There are seven

contributions, drawn on Fig. 10. Their contribution #ois
B. Corrections to the friction #

1
We now calculate the divergent corrections#p which on=— §><4>< 2[la+b+c+d+e+f+g]. (3.26

will require a counterterm proportional tau. Let us illus-

trate their calculation at leading order. We start from the firstThe combinatorial factor is 1/8 from the interaction, 4 from

order expansion of the interacti@ S, which can be writ-  the time ordering of the vertices, and an additional factor of

ten as 2 for the symmetry of diagrama, b, e, f, andg. Details of
the calculation of diagrama to g are given in Appendix D.

A PN Grouping diagrams, which partially cancel, we find
fm’ Uy tA (Uyg— Uy ) ilUygr (3.20 bing diag P y
X
. . a+g=—A"(0")322, (3.27
Contracting oneu,,, leads to

f , il]XtAl(uXt_uxtr)RrZO’t_tr. (32])
t>t",x

The response function contains a short-time divergence
which we deal with in an operator product expansion. Ex-
pandingA’(u,;— uy) to the necessary order yields

Lt, Uy [ A" (0F) + (Ugg— Uy ) A"(0F) + -+ - TR gy pr -
X
(3.22

The first term of this expansion, proportional 43(0"), is
strongly UV divergent and nonuniversal and gives the criti-
cal force to lowest order in disorder. Since we tudne be
exactly at the depinning threshold we do not need to consider F|G. 10. Two-loop dynamical diagrams correcting the friction.
it. The second contribution, proportional A (0™), corrects  They all have multiplicity 8 except andd which have multiplicity
the friction: due to the short-range singularity in the responsé.
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1 The B function is by definition the derivative of at fixed
b+c+d=—ZA"(0")A(0)IF, (328 A, Itreads
—MipA|s. =e[m Ag+25D (M €Ay) +352(m~ A
ez_Am(0+)Ar(o+)|7’, (329 m |A0 E[ 0 ( 0) ( 0)
+.-. (3.37
f=—2A"(0")A"(0")I,—2A"(0")21,. (3.30 ) ) ) )
o S Using the inversion formuld3.35, the B8 function can be
This involves the nontrivial diagrar, written in terms of the renormalized disordé&r
f 1 —MipA|5,= e[ A+8D(A) +262(A) = 54DA) + - - -],
I =
0.4z (0 +m?) (a3 +m?) (g3 +q3+2m?) (339

In order to proceed, let us calculate the repeated one-loop

1 1-21In2 counterterms™(A). We start from the one-loop counterterm
=| —+— | (el )*+finite (3.3) (3.1, which has the bilinear form
26 46
. . 1
calculated in Appendix E. sD(f,g)=— {21 (g’ (W) +[f(u)=1(0)]g"(u)
C. Renormalization program to two loops and calculation +[g(u)— g(O)]f”(u)}Tl (3.39

of counter-terms
with the dimensionless integré} :=14|,-1; we will use the

. _ same convention fof:=1 | ,_1. Thus %% A) reads
Let us now discuss the strategy to renormalize the present A=l alm=1 (4)

theory where the interaction is not a single coupling con- 51 A(u)]=26M[A, 60 (A)]={[A(u)—A(0)]?A"(u)

stant, but a whole function, the disorder correlaig¢u). We 5

denote byA, the bare disorder—this is the object in which +[A"(u)?—A"(0)2][A(u)—A(0)]}"T2.
perturbation theory is carried out—i.e., one consider the bare (3.40
action (2.2) with A—A,. We denote here by the renor- '

malized dimensionless disorder i.e. the corresponding terrhlote that this counterterm is nonambiguous tor:0. Fi-

in the effective actiod’[u,U] is méA. nally, as discussed at the end of the previous section at any

We define the dimensionless bilinear one-loop and trilin-Point we can rescale the fields by m¢. This a2m~0unts to
ear two-loop symmetric functionfsee Egs.(3.18 and write the B function for the functionA (u)=m~2¢A(um’)

1. Renormalization of disorder

(3.19] such that which will be implicit in the following (in addition we will
drop the tilde superscript
SY(A,A)=meS5A, (3.32 The two-loop B function (3.38 then becomes with the

help of Eq.(3.40

SP(A,A,A)=m?¢5°A (3.33
—MdpA(u)=(e—2¢)A(u)+ LuA’(u)

thus extended to nonequal argument usftig,y) =3[ f(x

+y,x+y)—f(x,x)—f(y,y)] and a similar expression for _} _ P

the trilinear function. Whenever possible we will use the 2{[A(u) A (ely)
shorthand notation 6(A)=6M(A,A) and &2(A) L
=5@)(A,A,A). The expression ok obtained perturbatively +{[A(W—A(0)]A (1)} e(2Tp—T7)

in powers ofA, at two-loop order reads ~
+A'(07)%A"(u)e(21 o= 19). (3.4)

—€ —€ —€ 4

A=m=Ao+ 8D(M™Ag) +5(m A0)+O(A0)'3 3 One of our main results is now apparent: the?lferms
(3:34 cancel in the corrections to disorder. If it had not been the

It contains terms of order &/and 1k£2. This is sufficient to  case it would lead to a term of orderelin the 8 function

calculate the RG functions at this ordéin principle, one and thus to nonrenormalizability. Thus tifefunction is fi-
has to keep the finite part of the one-loop terms, but we willnite to two loops a hallmark of a renormalizable theory. Note
work in a scheme, where these terms are exactly 0, by nothat this happened in a rather nontrivial way since it required
malizing all diagrams by the one-loop diagrannverting a consistent evaluation of all anomalous nonanalytic dia-

this formula yields grams. Furthermore the precise type of cancellation is un-
usual: usually the two-loop bubble diagrams of type B are
Ap=mTA—5M(A) =5 (A)+ 54D (A) +- -], simply the square of the one-loop ones. Here the easily
(339  missed and nontrivial bubble diagraiy was crucial in
where S&9(A) is the one-loop repeated counterterm achieving the above cancellation. ,
In order to simplify notations and further calculations, we
SIUAY=25[A, 6M(A,A)]. (3.36  absorb a factor ofl; in the definition of the renormalized
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disorder(or equivalently in the normalization of momentum and thus(remind thatl ;~m™ ¢ andIA~I,7~m*25)
or space integraJsWith this, theB function takes the simple

form d
mo_InZ~1=Ag(07) (el 1) —AG(0")%e(1§+41,)
—mipA(u)=(e—2)A(u)+ JuA’(u)
1 +AG0T)AHO0T)e(1T+414+21,).
— _ yavi
S{IA(W—AO)]F (3.4
1 We now have to expresi, in terms of the renormalized
+ E{[A(U)—A(O)]A'(U)Z}" disorderA using Eq.(3.35. For the second-order terms, this
relation is simplyA,=m*A. The nontrivial term isA”(0%).
1 i Using Eq.(3.18), derived twice at 0, we get[with the fac-
+5A(07)"A"(w). (342 tor of (el,) absorbed into the renormalized disorfer
Note several interesting features of this two-lg@gunc- AB(0T)=(el) *{A"(0T)+T,[4A"(0T)A(0")

tion. First it contains a nontrivial so called “anomalous
term” (the last ong which is absent in an analytic theory.
Second, it can be shown to exhibit irreversibility, precisely
due to this term. Although, surprisingly, it can be formally be
integrated twice oveu the resulting flow equation for the
double primitive ofA(u) does not, however, have the re- m-—InZ 1=A"(0%)+e 3_ 4l
quired property for the flow of a potential function, i.e., a m e (el))?
second cumulant of the random potential in the static. This

will be shown in details in Sec. IV where we find that the 3 Ala 21,
fixed points of the above equation are manifestly nonpoten- te 2 (el )2 _(el )2
tial. In Ref. 33 we have obtained the corresponding beta ! !
function for R(u) in the statics. The corresponding force (3.49
force correlatorA ,,{u) = —R"(u) obeys the same equation
as Eq.(3.42 but with the opposite sign for the anomalous
term! This shows that statics and depinning are indeed tw
different theories at two loops.

+3A"(07)2])). (3.48

Putting everything together, the result is

)A//(0+)2

)A”/(0+)A/(O+).

Again there is a nontrivial cancellation of theelterms, an-
ther manifestation of the renormalizability of the theory.
nserting the values of the integrdlg andl ,,, the dynamical

exponeniz becomes

2. Renormalization of friction and dynamical exponent z

3
In Sec. Ill B, we have calculated the effectig@normal- z=2—-A"(0")+A"(0%)2%+ A”’(O*)A’(OU{E—IH 2}.
ized) friction coefficientng as a function of the bare ong, (3.50
and the bare disordeXx,: '

7= MoZ[ M “Ay] L. (3.43 D. Finiteness and scaling form of correlations

. - o and response functions
This identifies the renormalization groupfactor as

To complete the two-loop renormalizability program one
z—l[m—er]zl_Ag(o+)|1+[Ag(o+)]2[|§+ 21,4] must check that all correlation and response functions are
rendered finite by the above counterterms. In a more conven-
tional theory that would be more or less automatic. Here,
: however, there are additional subtleties. The disorder coun-
terterm is a full function and is purely static. This counter-
(3.44 term, and its associated FRG equat{8%2 cannot be read
The dynamical exponertis then given by at u=0 because of the nonanalytic acti@his point is fur-
ther explained in Appendix K Indeed, this equation and the
cancellation of divergent parts was established only tfor

1
+AF(07)A0(0%)| 515 +21a+1,

z=2+mgInZ(m “Ao). (349 %0. It remains to be checked that irreducible vertex func-
_ . tions which areu=0 quantities are also rendered finite by
Equation(3.44) yields the above statici# 0 counterterms.

We first examine the two point correlation function. We

Sl amia+ w42l 2 will first show that it ispurely static Then, in Appendix K
INZ"7==A0(07)11+4(07) 2|1+2|A we show that it is finite and perform its calculation in the
. renormalized theory. One has
+AFONAHOT) | S5+ 214+ 3.4
0(01)8a(07)| 313t 2Iatl,| (349 (Ugol-q-0)=RqoR-q-uliaa(de), (3.5
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where R, is the (exac) response function. We will thus We thus find that although each graph is time dependent,
only computel';;;;(qt) (in time variable. The one-loop this time dependence cancels in the sum. Thus we find a
counterterm fory is absent in thig)(A?) calculation of the  static result
proper vertex but it enters the calculation{af,,u__,,) (it

dresses the external legg,, into R,,,). In fact since we find s
thatI';;;;(qt) is static(independent of) we will need only Ligia(qw) = 8(w)| A(0)—A"(07) Jk 2kt q)?
the exact response at zero frequency, which is the bare one (k+q (3.54
because of STS. ’

To one loop, the proper vertdX;;;(qw) is the sum of the  The static one-loop counterterm should thus be sufficient to
graphs(a), (b), (c), and(d) of Fig. 9 evaluated at finite fre- cancel the divergence of E(B.54). This is further analyzed
qguency and momentum, so we writg;;;(qw)=a+b+c in Appendix J where the full correlation function is com-
+d. The suma+b vyields after two Wick contractions and puted.
short distance expansion a term proportional to We have thus found the commutatioh;;;(u=0,q)

=T.ia(u=07,q). Note that if all correlation functions are
A purely static, i.e., strictly time independent, it implies the
J'k’t_'ut'“t’A (U= U ) AUy, —uy) commutation of the limits. Then it also implies the finiteness
' since these static divergences have been removed. We have
X (Rt —t,~ Rit—t,) (Ri -1, Rkt ), (352 not pushed the analysis further but we found a simple argu-
ment which indicates that all correlations are indeed static.
where we have kept all times explicitly to resolve any ambi-We found that the time dependence in diagrams cancels by
guity. ExpressingA in a series as in Eq2.9), the lowest subsets, noting that graphs can be grouped in subdets.,
order term is purely statisince one can integrate freely over pairs ac, bd, ef in Fig. 6) which vanish by shifting the
t1,t,), and proportional taA”(0")A(0)f k™4, but vanishes endpoint of an internal line within a splitted vertex.
from the cancellation between grapasindb. As explained Finally, let us note that our result that correlations at the
in detail in Appendix K there can b& priori another contri- quasistatic depinning are puredyatic for v=0" is at vari-
bution coming from A’(0%)?8(u)u in the expansion of ance with previous works “°Thus the only functions where
A”A. It produces a termd(v(t—t’))v|t;—t,| which van-  the dynamical exponent comes in are response function.
ishes when multiplied with the above response function com-
bination (since it vanishes dt=t"). E. Long range elasticity

Thus the only contribution comes frootd. There the . . . .
A’ yields sign functions and there are no ambiguities. One As was discussed in the Introduction there are physmal
finds (we setm=0 for simplicity of notation systems where the elastic energy does not scale with the

square of the wave vectay as Eqpgic~ 2 but as Egjastic
~q“. In this situation, the upper critical dimension dg
d= —2A’(O+)2f [sgnt—7,)+sgn—t—17,)] =2a and we define

71,72>0

e:=2a—d. (3.59
xfe*kZTZe*(k*Q)zfl . . - .
K The most interesting casa,priori relevant to model wetting
or crack-front propagation i&=1, thusd,=2.

In order to proceed, we have again to specify a cutoff
procedure. For calculational convenience, we choose the
elastic energy to be

:_ZA/(O+)ZJ 1 e—kz\t\/n’
k k2(k+q)?

2 2\ al2
b=AﬂTVf sgr(r,+t/7)sgn( 7,— t/ ) Eelastic™ (9°+ M) *=, (3.56
e This changes the response function to

—Krym—(k+q)%r @
Xﬁe e Rq=0(t)e™ @ m"™ (357
1 Since contributions proportional t9, see Eq(A26), cancel,
:A'(o+)ZJ — T (2 KMlIm_q), the only integrals which appear in tigfunction are
k k?(k+q)?
. . 1 _T'(el2) 2
where we have accounted for the extra combinatoric factor |(1a):f I ————— “  (3.58
of 2 for graphd and used a (g2+m?)® I'(a) Jq
J. e 9 sgr(r—1) ! [6(t)(2e 1= 1)+ 6(—1)] 1@ .f !

T—1)=— - -0 = :

70 o2 b Javas (o +m?) (gd+m?) [ (gy + p) 2+ m?] 2
(3.53 (3.59
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The important combination is againl @ —(1{)2. One
finds (see Appendix F

22180 —(1{")2]  radt 1+t*2—(1+1)*2

X(a),

(el{)2 ot (112
M 2
e =~ +0(e). (3.60
() a
r(§

Since this term is finite, thg function is finite; this is of

course necessary for the theory to be renormalizable. For the

cases of interest=1 anda=2, we find

X =1, (3.61)

1

PHYSICAL REVIEW B 66, 174201 (2002

XM=41n2. (3.62

Since there is only one nontrivial diagram at second order, all
two-loop terms in the3 function get multiplied byX(®:

—MdpA(u)=(e—2¢)A(u)+ JuA’(u)

1
~ AW -A0)"

X (@)
2
X (@)

5 (3.63

The diagrams involved in the dynamics also change. In ad-
dition to 1{Y and 1§ given above we need

+

{[A(W)—A(0)JA" (u)?}”

+——A"(0%)?A"(u).

In2— =
1n

(el {M)2+finite

|<1>::f
K q

10z (5 +m) YA g5+ mP)[(g5+m?) 2+ (

calculated in Appendix G.
Starting from Eq(3.49, the dynamical exponeumtis then
in straightforward generalization of E¢3.50 given by

Z:a_A//(O+)+X(a)A//(0+)2+Y(a)A///(O+)A/(O+)

(3.65
with X(®) given above and
2|(01)_(|(01))2
Y@=x(0L 22 (3.60
€(13")
a
Y®=6In2— > (3.67
(2) 3
Y =§—In 2. (3.68

The casex=2 reproduces Eq(3.50. Since bothXx*) and

(3.69

= —+
C+rmd)7 |\ 28

Before we do so, let us mention an important property,
valid under all conditions: 1A (u) is solution of Eq.(3.63),
then

A(u):=x?A(ul k) 4.1

is also a solution. We can use this property toXi¢0) in the
case of nonperiodic disordéFor periodic disorder the solu-
tion is unique, since the period is fixed.

A. Nonperiodic systems

We now start our analysis with non-periodic systems, ei-
ther with random field disorder or any correlator decreasing
faster than RF. Let us first recall that at the level of liaee
model the static RF obeyR(u)~ —o|u| at large|u| and
thus[{duA(u)=R’(0") —=R’(«)=— o (o is the amplitude
of the random fieldd while RB or any correlator decaying
faster than RF satisfiegA=0.

Let us first integrate the disorder flow equati(®63

Y are finite, we have checked that also in the case ofrom u=0" to u=+9%. We obtain
long-range elasticity the theory is renormalizable at second

order.

IV. ANALYSIS OF FIXED POINTS AND PHYSICAL
RESULTS

—mamfo(u)du=(e—3§)fwA(u)du—X(“)A’(O*F.
0 0
(4.2)

The only assumption that we have made here is tidgtu)

The FRG equation derived above describes several diffegoes to zero ati=+ o, which is the case both for RB and

ent physical situations: periodic systefssch as charge den-
sity waveg where the disorder correlator is periodic and non-
periodic systemgsuch as a domain wall in a maghadVithin

the latter, SRrandom bongland LR (random field disorder
musta priori be distinguished. In our analysis of the FRG
equations, we have to study these situations separately.

RF.

Let us first recall the one-loop analysis, where in the FRG
equation there is no distinction between statics and depin-
ning. The last term in Eq4.2) is then absent. Thus one finds
either fixed points withf A= o>0 with {=¢/3, the RF uni-
versality class, or others withA =0 for {<€/3 which cor-
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responds to disorder with shorter range correlations than RF. 1

This includes the RB fixed point with exponentially decaying

correlator and{grg=0.20&. It also includes a continuous 0.8

family of intermediate power law fixed poirfts>®with decay

at largeu asA(u)=—-R"(U)~(a—2)(a—1)u”* with a* 0.6

>a>1. These havé(a)=€/(2+ «) (from solving the lin-

ear part of the FRG equatipand {(a*) = {gg. 0.4
The last term in Eq(4.2) shows that things work differ-

ently to two loops at depinning. The conditigA =0 is no 0.2

longer possible at the fixed point. Starting from RB one de-

velops a positive value fof A, i.e., a random field compo- 1 2 3 4
nent. The natural conclusion is then that all correlations

shorter range than RF flow to the RF universality ci4ss.
Furthermore the fixed point conditidB.63 equals 0 implies
a unique well defined value fof identical for all ranges

FIG. 11. The fixed-point functiory,(u) at one-loop order for
nonperiodic disorder.

shorter than RKincluding RB. This value takes the form [uy,(u)]’ = 5{[Y1(U)—Y1(0)]2}"’ (4.9
X(a)A/ 0+ 3
l= g_ # =3 +{,2+0(€d), (4.3  which can be first integrated to
[ ,

0 uy(u)=[ys(u)—1]y(u), (4.10
where 7,>0 can be obtained from the knowledge of the using Eq.(4.6) in the last line. A second integration with the
one-loop fixed pointh ~O(e) only. boundary conditions implied by E@4.6) yields

Before we computel, and obtain the depinning fixed 1
point to two loop, let us note that in the static c%?stee_ last ya(U)—Iny;(u)=1+ = u?. (4.1
term in Eq.(3.63 has the opposite sign and, integrating over 2

u one finds that there is thus no term proportionaht@0™*)
in EqQ. (4.2). Thus for the RF disorder9 A<+~ one can
again conclude that

This function is plotted in Fig. 11. The derivatives yf(u)
at u=0 will be needed below. Deriving Eq4.10 succes-
sively with respect tai, we find

gggzg 4.4 y1(0)=1, yj(0")=-1,

2 1
to (at least second order. In fact, as discussed in Ref. 33 this y1(0")= 3 y7(0%)=— 5 (4.12
is expected to be exact to all orders due to the potentiality

requirement of the static FRG equation, which also impliesye have also determined the fixed-point function at second
that fA=0 holds to all orders at the static RB fixed point. ordery,(u), which is given in Appendix H.

The corresponding value fqﬁf is given to ordere? in Ref. In order to extract’ from Eq. (4.2), we need
33.
We now want to find the fixed-point function of Eq. N
(3.63. Using the reparametrization-invariante1), we set V2y= fo y1(u)du, (4.13

(with the factors 1/3 and 1/18 chosen for later convenignce ) )
which was computed in Ref. 28. The method is to convert

€ €2 5 Eqg. (4.13 into an integral ovey:=y;:
A(u)=3yi(u)+ 7gy2(U)+O(e), (4.5
fw 1 du 1y
du=—f —d =—f =d
yi(0)=1, 4.6 o’ oJay T o Y
y2(0)=0, 4.7 __ [t y-1

== dy—, (4.14
wherey,(u) is the one-loop fixed point function for the RF 0 TV2y-Iny-1
case. It was obtained in Ref. 22 and further studied in Refwhere in the last equality4.11) has been used. Integrating
28. Let us recall its properties. To lowest order énthe by parts, this yields
one-loopg function (3.63 reads

1
¢ 6 1 7=f dy\Jy—Iny—1~0.5482228893 - . (4.19
§A(u)+§uA'(u)—5{[A(u)—A(0)]Z}"=o. (4.8 0
Combining the definition ofA(u) in Eg. (4.5 with Egs.
Inserting Eq.(4.5) the functiony,(u) must satisfy (4.12 and (4.15, we find
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X(a)
{r= 272y (4.16
and thus for
e X@¢2
[=3+ 2N§7+0(e3). (4.17

This result violates the conjecture of Ref. 21, thate/3 to
all orders ine. To compare Eq(4.17) with simulations, we

have to specify to the cases of interest: First, for short-range

elasticity, i.e.,a=2, we find

€ € €
§=§(1+ g—m)=§(1+0.143313). (4.18

Our results are in excellent agreement with the numerical

simulations, see Table I.
For long-range elasticity, i.eq=1, Eq.(4.17) reads

e( 41n2

€
=5\ 1+ me) =3(1+0.3973%).  (4.19

PHYSICAL REVIEW B 66, 174201 (2002

v=

Vot e offe B L€ 00583162
2_§—§+1—2+6 Z+7—2—§+1—2+ . .
4.23

We now turn to long range elasticity# 2. The general for-
mula for z reads

ca-ler el 2X(a)+Y(a) 4.2
Z=a-gete| gty (429
Specifying toa=1 yields
{, w+20In2 2
—1_= 2l22 T TENTIA 42 2
z=1 96+E 3 108 1 5¢€ 0.113299%¢~.
(4.2
Again B8 and v are obtained from scaling as€ 1)
= o2 2 7+20In2
B=1—;71 gete (E‘E‘T
2
=1- 5¢ 0.187373%2, (4.26
€ 1 €
v=1+§+52 §+§2)=1+§+0.2435&2. (4.27

This is in reasonable agreement with simulations, as shown

in Table II.

We now turn to the calculation of the dynamical exponent
appear to be any unstable direction. We thus conclude, as in

z As can be seen from the general result of E365), we
needA’(0%), A"(0%), andA”(0"), at leading order, which
can be inferred from Eqg4.5 and (4.12. We further need
A"(0) at second order. Expanding E§.63 to ordere®, and
Taylor expanding to second order in we can solve for
y5(0), which yields

A(0) = €, 0 € 0 _26 €2 [ 10X(@
( )—§Y1( )+Eyz( )—§+§ 7 b

(4.20

Specializing to the SR casex€ 2) yields with the help of
Eq. (3.50

z=2-A"(0%)+A"(0%)%+ A’”(O*)A’(O*)(;—ln 2)

2€

{, In2 5)

—2-0.222222—0.04320822. (4.20)

Numerical values are given in Table II.
Note that to two loops at the RF fixed point there does not

Ref. 21 that
(4.28

Finally, for depinning there should also be a family of fixed
points corresponding to correlations of tfece which are
long range withA(u)~u~* anda=a*=1. The linear part
of the FRG equation implies thal(«)=€/(2+ «) and a
crossover from the RF fixed point occurs whéa*)
=[re=€l3+ {,€2+0(€%). We have not studied these LR
fixed points in details.

VEs= V.

B. Periodic systems

For periodicA(u) as, e.g., CDW depinnint;?! there is
another fixed point of Eq(3.63. It is sufficient to study the

case where the period is set to unity, all other cases are easily

obtained using the reparametrization invariance of (Bdl).
This means, that no rescaling is possible in that direction,
and thus the rescaling factor is

{=0. (4.29

The agreement with the numerical simulations given in Table

| is again good. Finally, the exponengsand v are obtained
from scaling relations. For=2 (SR) they read

zZ— €
B=—=1——+¢°

Iy 9 6 24 108

L1 _InZ)

€
=1——+0.0401232,

9 (4.22

The fixed-point function is then periodic, and can in the in-
terval [0,1] be expanded in a Taylor series i(1—u).
Evenmore, the ansatz

A(u)=(aje+aye’+---)+(bjet+bye?+---)u(l—u)

(4.30

allows us to satisfy the fixed-point equatié®.63 to order
€2, with coefficients
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e eX@ e  2x(@ (the calculation ofA; is presented in Appendix J as an ex-

A*(U)= =+ ————| =+ —5—|u(l-u). ample of an explicit calculation of a correlation function in
36 108 6 9 ) LS

(4.31) the renormalized theojyand of the contribution of the gen-

) . ) o _ erated “random force” of the Larkin type
In the physically interesting situation of charge density

waves, the elasticity is short range, i.e=2 andX(®¥=1 Bre(X)~c|x|* 9, (4.40

which yields which completely decouples from the other one. This is very

e € &2 similar to what was found in other driven systems where a
A*(u)= TRET T 3) u(l—u). (4.32 random force is generaté®’’ In particular this implies that
the true roughness exponent at depinning isfw0 but

This fixed point is manifestly nonpotential, i.e., it describes a
force-force correlation function, where the forces cannot be _4-d

. : g : Loe=—5— (4.41
derived from a potential. In a potential environment, the in- 2
tegral of the force over one period must vanish, and so must

the force-force correlation function. In contrast we find here Another consequence is that the the two exponeraad
veg are different. We find

2

jl e2X(@ a2 € 1 1

dudA*(u)=— - ——. (4.33 . _+

0 108 108 V=22 (4.42
Thus to two loop the fixed point correctly accounts for the

irreversibility in the driven system, which becomes manifest - 1 _ 2 (4.43
beyond the Larkin length. This was not apparent to one loop. FS72- {gep d '

An important feature of the periodic case is that the fixed . . :
point is unstable The direction of instability is simply add- and given the generality of the above argument this should

ing a constant ta (u) and its eigenvalue is trivial equal o hold to all orders. Note then that the CCFFS bdtiridr ves

to two loops and presumably to all orders. The full stabilit is saturated. This is very different to the case of interfaces
oop P . ytoa - y(saturation of the bound there would lead to the incorrect
analysis is performed in Appendix | but it can be seen al'resultgz el3)

ready from The dynamical exponerttis
1 1
—mr?mJ A(U)du=ef A(u)ydu—2X@A’(0")3 e 2X(@ 4.2 e &2
0 0 Z=a——— —2————. (4.44
(4.3 3 9 3 9

obtained by integration of the two-loop FRG equation on theCuriously, it does not depend on the diagréamor equiva-
interval[0*,17]. One sees thatA flows away if it does not  lently Y(®).

coincide with its fixed point valué4.33). In CDW depinning, the best observable quantityds
Thus the asymptotic flow as the dimensional parameteFrom the scaling relatidd'®=#* g=(z—¢)/(2—¢), and {
m—0 takes the simple form =0, we find3=2/2 and thus for CDW &=2)
Ap(U)=A*(u)+cm™ ¢, (4.35 e €
1 B=1-5- 15 (4.45
C=m8f0 (A, (U) =A% (u))du, (4.36  This expansion is, however, ill behaved, at least at large

therefore seems advisable, to use one of the Pade-variants.
i.e., it takes the fixed point form shifted by a growing con- The only one which respects common sense dowd-=td
stant. In the static§;duA = f$duA, =0 from potentiality =~ and even beyond, is the Pat2), reading
[the last term in Eq(4.34 is absent and thusc=0. At
depinningc is nonzero at two-loop ordercé — f3A* >0) B 1 (4.4

using that the bare disorder has zero intggeald this has 1+ (€e/6)+(€212)
several consequences. First one obtains the static deforma- = . . )
tions as the sum Again simulations are in reasonable good agreement with
our theoretical predictions, as can be seen in Table Ill. Fur-
(Uyg— Ug)2=B(X) + Bre(X) (4.37  ther simulations would be welcome.

of a universal logarithmic growth term V. CONCLUSION

Bri(X)=Agln|x| (4.38 To conclude we have constructed a consistent field theory

(a) of isotropic depinning at zero temperature to two-loop order.

A :i6+ 2X'—-3 2 (439  While the one-loop flow-equations for statics and driven dy-
718 108 ' namics are identical, our two-loop equations distinguish
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TABLE Ill. Depinning exponents for CDW. First column: Ex- ACKNOWLEDGMENTS

ponents obtained by setting=1 in the one-loop result. Second . £
column: Exponents obtained by settiag 1 in the two-loop result. Itis a pleasure to thank E. Bouchaud, J. FeWeKrauth,

Third column: Conservative estimates based on thre€ Rate ~S- Leémerle, E. Rolley, and A. Rosso for stimulating discus-
mates, scaling relations and common sense. Fourth column: Sim$/Ons.
lations from Ref. 9.

APPENDIX A: CORRECTIONS TO DISORDER:
exponent dimension one-loop two-loop estimate simulation DIAGRAMS OF TYPE A

In the following, we give explicit expressions for the dia-
d=3 0.83 0.78 0.780.03 0.8 0.03 grams contributing to the renormalization of disorder. To
0.84+0.05  simplify notations, we have introducegk:=q;—(, and set

B d=2 0.67 0.44 0.520.08 0.63-0.06 the masanto zero. The mass-dependence can easily be re-
0.68+0.07  constructed by replacingi2 by qi2+ m2. We start with the
d=1 0.5 0. 0.2:0.2 diagrams of class A, given in Fig. 7. For illustration, we
show the complete calculation of the first nonvanishing dia-
gramay:

these physically different situations, yielding different uni- \ .
versal predictions for both cases. This is an encouraging 2\ :_j f o3 ddls b g)
I 41,92 J t1,12,13,14>0

progress. The nonanalytic field theory that we have devel- '@./._4_.
oped here will be discussed in companion stutfig¥or the
static theory to two and three loops.
A lot remains to be done and understood. If universality is XA (= ug) A (o=t
to hold at depinning then a renormalizable theory should
exist to any number of loops. We have not attempted a proof
to all orders here, and the mechanism in which the dif XA, =ty ) (A1)
vergences cancel is nontrivial. We have, however, checke

the applicability of formal constructions such as the SUbtraC'pressed the spatial arguments, since the result is taken at

tion %p.erator:R OT samp:e (IjlqgrarzlshThlsh cc;luld further be constant background field. We also do not write explicitly the
tegtg In & three-loop caicu ation. Alt ough s orttime singUs,;, response fields. The given configuration is for o
larities [ 5(vt) termg did not appear their role to any order large, and we can set:=u_,—u,, for all 7' == somet,

remains to be clarified. Next, effects of temperature have not -’ . n "

been included here. One expects that although=ad the . =0 somet; since thet; are smallidue to the exponen-
) e - . tially suppressing factoyscompared to the difference af
statics and the depinning should be two distinct field theo y Supp 9 4 b

i S - — o. Finally, sinceA is continuousA(u,_;. —U._; _ ) can
ries, this distinction becomes blurred at finite temperatureb 7 y ) A(u, 3 Ul t4)
How this will work out is not yet elucidated. Some efforts in 0€ replaced by\(0). Integrating over all times leads to

that direction are reported in Ref. 78. Similarly it would be
quite interesting to understand how to descrilef_ , i.e., a,=—2A(0)A' (U)A"(u) .
the approach to the threshold from below. From the consid- q1.02 qfq%qg‘
erations here this appears to be quite non-trivial.
Extension of the present method to systems Wth1 is
also far from trivial. The monotonous increaseupfdoes not
apply to all components, which leads to complications. The az= —2A(0)A”(u)2f
largeN limit of the static FRG was solved exactly recerfly
and it would be interesting to extend it to the dynamics.
Finally the threshold dynamics of other systems, such as ran-
dom field spin models, which can be described by the FRG, a,taz= —&ﬁ
is of interest.
From the point of view of simulations our results together
with recent more powerful algorithms offer hope that more

F—‘or the fieldu, we have given the time-arguments, but sup-

(A2)

Similarly, we find

1
2,24

a1.92 10203

(A3)

A(O)A'(u)zf L 1 (A4)

2.2 4
a1.92 410203

precise comparisons could be made, not only for exponents by =2A"(u)?A"(u) 414 2.2 47 (AS)
but also for other universal quantities which offer stronger vz 419295

tests such as scaling functions, amplitudes or finite size ef-

fects. The exponenteg should be measured independently. b,=2A(U)A’ (U)A"(u) (A6)
We encourage further precise numerical studies on both 01,02 qfq%q‘s"
manifolds and CDW with a comparison to theory in mind.

Agreement between numerics and theory would allow to rule

out or to accept elastic models for the description of more b3=A(u)A”(u)2f 7 (A7)

complex experimental situations. 91,92 010203
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1 % 1 + B+ €l2
b4:A”(u)A’(u)2f — (A8) lef daf dp— P . (atptap)
d1.92 10503 0 0 (at+B+af)” (a+B+1)°
=In2+0(e), (A15)
1
b =2A”(u)A’(U)2f (A9) 2
5 d1.do q%ngg Jz—f daj (a+B+ap)
(a+,8+a,8)2 (a+B+1)¢
1
b :A(U)A”(u)zf (A10)
¢ a1.92 020503 (1+ @)% 6/2B1+e/2 —In2+0(e), (A16)
The contribution of théb;’s can be summed as . . 1 5
] . J3= fo dafl OB g ¢ L),
>, bi=a% A(u)A(u)? j 2241 (A1) (A17)
=1 a1.92 410503

This gives the final result for the hat diagram

o Bl

2.2 4°
a1.92 10203

Diagramc; is
2
“2e z+ 1 +0(6)>

c;=2A"'(07)%A"(u)

All these diagrams contain the hat diagram known from the :(g —> (el{™)?. (A18)

statics andp* theory. It can be calculated as follows: o )
We now turn to the nontrivial diagram,. At finite velocity

; 1 v, the diagram is
- Ll,qz(q%+m2)(q§+m2)2[(q1+qz)2+m2] :

:j Be— i tm) = Blastm) = (a1 42+ ]
B,y>0

XA (01,4 13— 13))e 1011205 (157 10)a53

2 (A19)
= e*qz lgefmz(oﬁﬁﬁy) . L .
q @>0,550,y>0 In the limit of vanishing velocityv—0, we can replace
A’ (v(t,+t3—t,)) by A’(07)sgnt,+t;—t,) a.s.o.Let us
<D aty Y an stress that this replacement is correct both before and after
et y By reaching the Larkin length. Its result is
e :Ar(oJr)ZA/r(u)
2
2
- f€q> j By ><f f e 9(a o) (15,1 A20
( q a>0,8>0,y>0 a1.02J ts.,t4>0 ( 3 4’ql!q2)! ( )
2 _
Xe "Nt (0t B+ ap)” (t3,t4,01,02) = Jt () 6(E)sgrts +ty—tg)
1.2
2 (A13) X Sgrty+ts—t,)e @it (A21)
=U - ) T(4—dym 2J
! Using e‘(q§‘1+q§t2)=[1/(q§q§)]ﬁtlat2e‘(qi‘ﬁqgtz) and inte-

where we split the divergent integrdlin pieces, which are gratingl by parts int; andt, yields
either finite or where the divergence can be calculated ana-

lytically: 1
y y |(t3’t4,q1,q2):ﬂ[zg(ts_u)e—(ﬁ(ts—u)
® e B (a+B+ap)? 0102
J=| da| d Bt aB)? A1)
(a ﬁ CYB) (a :8 ) +20(t4_t3)e*Q§(147t3)_1)]_

174201-22



TWO-LOOP FUNCTIONAL RENORMALIZATION GROLUP . .. PHYSICAL REVIEW B 66, 174201 (2002

The integral over the two remaining timésandt, in Eq.  with qz=0;—0,. In presence of a mass this reads
(A20) gives

f I(t3,t4,01,00) e;=A’(07)%A"(u)
t3.t4>0
« f !
1 1 1 1
== 2( et ——4) (A23) 0.9z (47+m?)(g3+m?)(g3+m?)
0795\ 0g3(g7+d3) qs3(05+dz) s
1 1 1
and thus + — _
qi+a5+2m?  g3+agi+2m?  gi+m?

el:A/(0+)2A//(u) (A25)

1 1

+
92+95 g3+q3 93

(A24)

We now calculate the new integral. It is relatively simple,
since it has only a single pole inet/

X J !
a1.92 029503

1
Il::f
a1.9; (qF+m?)(g3+m?)(q3+m?) (g2 +q3+2m?)

- f j e~ a(as +m)— (a1 +ag) >+ m?) — y(a5+m?) — 8(a} + a5 +2m?)
d;.93J «>0,8>0,>0,6>0

2
f e—q2 f e—mz(a+B+y+25)
q @>0,8>0,y>0,6>0

( —d/2
2\ 2 2
=<feq f e m ‘9(“+B+7+2)é\°’7d(1+ 'y+a+2,8+aﬂ+ay+ﬂ'y)7d/2
q a>0,8>0,9>0,6>0

<a+ﬁ+5 B
Del 5 sty

2
=F(4—d)(Je‘q2) J (14 y+a+2B8+aB+ay+By) Ym2(a+B+y+2)]94
q a>0,8>0,y>0

21
=Ueq2 —m*kf (14 y+a+2B+aB+ay+ By) 2+finite
q € a>0,8>0,y>0

_ 2\ - In2 _
=21In2 je %) —m~2¢+finite= —— (el ;)2 +finite. (A26)
q € 2e
|
This gives the final result foe; 1
2OV R BT D
’ " q1.9
e;=A'(07)2A"(U)(21,—1,). (A27) 1z MIH2Esi 2 TS (A29)
The last nonvanishing diagram fs: The integral has already been calculated in @®6), yield-
ing the result
f2:2Ar(O+)2AN(u) e*qg(t3+t4)*(qft1+q§tz) f2= _2A1(0+)2A//(u)|| ) (A30)
d1.92
Xsgnty—tz—ty). (A28) Note that the nontrivial integrals ie; and f, are in fact

identical and cancel:

Integrating first overt, and then over the remaining times
gives e+ f,=—A(0")2A"(U)l,. (A31)
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APPENDIX B: CORRECTIONS TO DISORDER: p1+9:=0, (C3
DIAGRAMS OF TYPE B

In this appendix, we calculate diagrams of type(tBe P4t ds=0. (C4
bubble chains No contribution remains.
The diagrams which are odd functions ware

. . APPENDIX D: CORRECTIONS TO #: 2-LOOP
hi=hy=i;=j1=ko=ks=1,=13=14,=0. (Bl DIAGRAMS
The diagrams that are second derivative of static ones have

all their response fields on their unsaturated vertices. These In th.'s appendix, we give all dlagrar_ns CF’T“”b““”g to the
correction of» at second order. For simplicity of notation,

are ) .
we again drop the explicit mass dependence. We group to-
gi=A"(u)?A12, (82)  gether those diagrams which partially cancel. We demon-
strate explicitly how to calculate the first diagranfrom the
g,=2A"(U)A"(U)A(u)I?, (B3)  Very beginning.
gs=A"(u)?A"(u)lZ, (B4)
1 YN 2
9s=5A(WA" ()13, (85)
L
2 1 2A 1 2 =
01T 92+093+ds=dy 5 A(U)“A"(u) |11, (B6) - R41’1R42’2R41’3
42 41929 11512:13

ha=—A(0)A” (u)A(u)l?, (B7) XA (upmo= s —gy—1 J[=A"(u_y )] (DY)

_ wrN2y2 We have drawn three response functions. We have chosen to
h AOAT (W, (B8) start counting time at O for vertex, such that verte)s is at
o m / 2 time —t,;, vertexy at time —t;—t,, and vertexd at time
hs=he=—A(0)A"(WA"(WIT, (B9) —t;—t,—t3. This gives the times for the arguments &f
_ 2 " 2 The upperA in diagrama has one time derivative, the lower
hathsths+he=d [ —AQ)AWAY WL, B0 opoy two, resulting im’ and —A”, respectively(the mi-
1 nus sign is a consequence of the both response functions
i,=],==A(0)2A" (u)l?, (B11)  entering at different “ends” ofA). We have suppressed the
4 space-arguments in the fieldssince all diagrams correcting
n are calculated at a spatially constant background field. In-

N nmAN At 2
ki=—11= = AW)"AT(0T) A0, (B12) serting the response functi0ﬁ§t=®(t)e‘qzt, we arrive at
The surprise is that;, which is not the second derivative of
a static diagrangsince it has bothu on saturated verticgss a=— f f 87Q§(t1+t3)*q§t2
non trivial: 1,02 Jt1,t2,t3>0
iBZ_A/(OJr)ZAH(u)li. (813) XA,(UO_u—tl—tz—t?,)A"(u—tl_u—tl—tz)' (DZ)
This diagram is necessary to ensure renormalizability. The crucial point is now that this diagram corrects the criti-
cal force andyn. The correction to the critical force is ob-
APPENDIX C: CORRECTIONS TO DISORDER: tained by setting the arguments of th& to 0" (unique here
DIAGRAMS OF TYPE C due to the time argumentsThis contribution is non-

universal and we shall not calculate it in the following. The
In this appendix, we show that diagrams of type(S8e  universalcorrection toz is obtained by Taylor expanding the
Fig. 12 do not contribute to the renormalization of disorder. argument of, e.gA’(Ug—U_; _(. _¢.) as
This is fortunate, since they involve a strongly diverging v
diagram (the tadpol¢ which would render perturbation

Uo—U_¢, . ~(v+Ug)(ty+tr+t D3
theory nonuniversal. 0 R (v+Uo)(ta + a2+ L) (b3
The diagrams which are odd functions ware and thus
My = Mg=My=Ms=N1=N3=MNy=N5=P,=P3=0,=03=0. A'(Uo_U—tl—tz—tg)“A/'(0+)Uo(t1+t2+t3)- (D4)
The following diagrams cancel: which naturally leads to the generation of a correction to
friction. For our diagram, this ig¢sloppily droppingu, and
m,+n,=0, (C2 the response field for simplicity of notatipn
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FIG. 12. Two-loop diagrams of class C.

PAYTAN

B A
N

/‘.—<—.

_ g2 2 1

= — e ql(tl+t3) otz a+ :_f A" O+ 2 =—A" 0+ 2|2 D7
fqliqZ‘let21t3>0 g 41,4 ( ) qiqg ( ) 1- ( )
X[A"(0T)2(t;+t,+1t5)+A(0T)A”(0F)t _ _ _
[A"07) (tta+ 1) +AT(0T)AT(0 )] Note that both diagrama and g contain a tadpolelike sub-
2 1 divergence, which is canceled by a counterterm for the criti-
= —J A"(0%)? cal force. However, their sum does not involve such a term

d1,02 and thus there is no need to specify it.

Graphsb, ¢, andd:

2 2
I f f e—ql(t1+t3)—q2t2
gy.02J t1,t5,t3>0

Q1Q2 Qiqg

(0+)Am(0+ (D5)

44
M2

where in the last line we have explicitly performed the time

integrations. XA"(Up=U_ JA(U_t,=U_y )
Diagramg is
_ J' J’ e—OIi(tl*'ts)—qgtz
_J' f e ql(tl+t3) a5ts 41,027 t1,t2,t3
1,02/ t1. 02,150 X[A™(0*)A(0)tz+A"(0%) A" (0%)]ty +t,— ty]]
XA (Ug=U_y —t JA"(U_y —U_y ) (D8)
_ f f e_qi(tl+t3)_qgt2 while
d1.02 tl,tz,t3>0
1
X[Arr(0+)2(tl+t3)+Ar(0+)Am(0+)t2] c=d= _J f e—qi(tl+t3)—q§t2
1,027 t1,t,t3>0
2 nn " !
=f A"(07)2——+A"(0")A"(0" )—. X[A™(0T)A(0)t,+A"(0T)A(07)[t;—tg]].
d1,42 d.9> qqu (DQ)
(D6)

Note the factor 1/2 for the symmetry in the lower vertex.
Thus Together they are
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b+c+d=A"(0%)A’(0") f et -Gt e=—A"(0")A’(0) ——— . (D16
tq,to,t 2.4, .2 2y "
01,927 1y,t2.13 a1.92 Q705(05+ q3)
X([ty—ta[ = [ty +to—ta]). (D100 This contains the new integrégiven regularizey
Changing variables ta=t, —t; ands=3(t,;+t3), the inte-
gral [, 1,0 becomes/ 5ds[?%,du. The integral oveu can | :=J' 1 .
be performed, but for fixed the second term in EqD10) a1.9; (7+m?)(g3+m?)2(g5+q3+2m?)
depends on the value bf. Distinguishing the both cases, we (D17)
obtain It is related tol,, see, Eq(A26) andl,, see Eq(A18):
b+c+d=A"(0")A'(0%) J e~ 201 L+ 1=l (D18)
, >0
drdze It is calculated in Appendix E. The last diagram to be calcu-
* 2s lated isf:
X J dtze‘q§t24sz—f dtze‘q§t2(t§+ 4s?)
0 0
fo f f e dtu—adt-adty
41,027 t1,t,t3

“ 2
—f dt,e” %'24st,
2s

XA"(Ug= Uy —,) A" (U_y —ty—,—U-t)
=—A"(0")A"(0") 2 4 12 2\ =_ e~ 05t~ a3t~ a3ts
a9 10(d1+ d) 41,92/ 11,t2,13
o S (913_ X[A"(0T)A'(07)(to+1y) +A"(07)2(ty+1t3)]
This integral can be simplified through symmetrization. R . o
Using =—2A"(0%)A"(0")IA—2A"(0")2I 4. (D19)
f 1 1 __f 1 APPENDIX E: THE INTEGRAL |
+ — __Il’ K
0| 4i05(a5+ ) qia3(ai+ay)] Jaa qigs i i
LAzl M1M2iHL T M2 1H2AH1 T H2 12 M 2(D12) We have to calculate the integria) defined as
we obtain 1
= 20 2\ (2 22 2 2 o - (ED
1 ) o, a1,z (g1+mM7)(qz+m9)=(az+as+2m°)
+c+d=—-A" A’ 7. D1
btc+d=-7A"01)AY(ON (P13 This is done as follows:

The next diagram ig: 2 2 2. 2
| e J J pe” a(ql+m2)—ﬁ(q2+m2)— Y(Q2+q3+2m2)
a.d2J @.8,y>0

2
je—qz) j Be—mz(a+[3+27)
q a,B,y>0
aty ¥ —d/2
De

y Bt2y
X (t+ty)sgrita—t,) +A"(07)3(t3—ty)]. (D14

j eqz)zf B ys—de—mzy(mﬁu)
By symmetrizing in (2-3), the term proportional to; and 4 @pB,y>0
the term proportional totg—t,) vanish. The remaining term X(1+2a+ B+ aB) 2
can be written as

1 2 2 2
e=— _J f e dit1—dzta—dst3
2 41,92/ 13,t2,t3

XA"(0F)A'(0F)|to—ts]. (D15)

Making the same change of variablesu@nds as for Eq. J::fxda,fmdﬁ
(D11), the integration oveu, s, andt; can be performed in 0 0 (142«
this order, distinguishing the cases<0 and u>0. Both

cases give the same result for a total of =J;+J,+J3, (E3)

2 2 2
e= f J e—qltl—qztz—q3t3A/l(u0_u )
—h
41,927 13.,t2,t3

XA (U_,—U_y)

— J f e_qitl_qth_qgt3[A"’(0+)A’(O+) X
41,027 t1,t2,t3

2
feqz) T(4—d) m 2] (E2)
q

with

B (1+2a+p+ap)”?
+B+aB)?®  (a+B+2)¢
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o €l2 ods s*2 [e=d °°du ua?
1 ,8 (l+2a+,8+a/5’) |(a)_
J]_::f daf ds > - AT )y s t F(a)
0 0 (1+2a+B+apB) (a+pB+2) 0 r( 0 F(—)
2

2

=21In3-3In2+0(e), (E4) Xf o s(a5+m) ~t(q5+m?) — ul(ag + 6p) 2+ m?]
qd1.92
J* B J* ds Sa/Z fgo Ocdu ua/2
e =
Jz_f f q 0 S [ ot I'(a)Jo i
2 2

s+tu u \]79”2
(1+a)2—e/2/31+e/2 X | de

(1+2a+B+ap)?
(1+2a+,8+aﬂ)2 (a+B+2)¢

=In2—2In3+0(e), (E5)

ef(s+t+u)m2‘ (F3)
u t+u

Making the replacement—su and t—tu and integrating

o w 1 2 over u, we obtain
ngzfo da’fl dﬂ(1+a)2 1+5/2_E+1+O(6).

75/2B )
N 21l . T(e
(E6) |§Q=Ueq oz
d F(a)F(E)
Thus
a/2 1ta 1
xJ ——(st+s+t)A(1+s+t)" €
1 st>0 (St+s+t)*

I :=f
" Jaa (9F+m?) (g3 +m?)X(g5+ g5+ 2m?) ,\2 I'(e)
q

F(a)l“(—)
L L TR E ’
“\o2t T2l (€l )" +finite. (E7) (F4)
a/2 1ta 1
J —J dtJ (F5)
! (st+s+t)”‘
APPENDIX F: INTEGRALS IN LONG RANGE " "
ELASTICITY CALCULATION Jzzj dtf ds gl2-1pa—1
In the long-range case, there are two integrals which con-
tribute to the renormalization of the disorder. At one-loop X[(st+s+t) *—(1+s) “t™“], (F6)
order this is
‘]3:j dtf ds S1/2—1(1+S)6/2—at—1—s/2
1 1 ds ' °
a (g°+m ) a q 2=
PRElES F
rl< T e 77
—e_\2 (J —q2) (F1) ez
=m e .
I'a) q

J, andJ, are now both integrated over Changing inJ, the

o integration ovet to that over 1t, we obtain
At two-loop order, this is

r o
2 jl 1+t92— (1+1)2"

|£{’>.:f ! Jitdz= w( 1+a t(1+t)*2
4.2 (q7+m?)“A(a5+m?)[(dy+dp)*+m?]*" M=

(F2) (F8)
This is evaluated as follows: (J;+ )| 4=2=0, (F9)
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(J1+35)o-1=2mIn2. (F10 ol omel L
: . . . =] —+—|(el )2+ 0(€%, (F12
Putting everything together, the final result is 2¢2 €
1 al2__ al2 1
NI ) B R Sl ) IP=| =5+ 4| ()2 +0(0). (F13
A 22 4el Jo t(1+1)aR 2¢7 A€
o APPENDIX G: CALCULATION OF THE INTEGRAL Ij;
I''(a) I (E) (2 0 The calculations for the corrections to friction are the
+ T@ Ja) (el7*)*+0(e), same as with short-range elasticity, except that the integrals
F(E) I1, Ia, andl, change. The first two have already been cal-
culated in Appendix F. We now attack the masterpidz(fé,.
(F11) For simplicity, we restrict ourselves to=1:
|
I(nl)::f 2 U2 2 2 12 N2, (2. 212 (G
a.az (95 +m?)Y2(g5+m?)[(g5+m?) Y+ (g5+m?) 2
Using
- . ” —3/2,— /455 —SX
e :ﬁ . ds s 3% l4se (G2
o
we have
1 —t5(Ja+ b) 1 — 3124~ 1/4s; — 1/4s, 5 — S1t2a—Spt2h
\/54-\/5: t >oe ’ T an t >0(SlsZ) e 1 A ©9
3 3:51,52
With the help of Eq(G3), we can writel ) as
w_t 1 ~172 — 32—ty + M)~ (to+ 5;t5) (05 + M?) — spt5(a5 + m?) o — 1/ds, — /s
5 “4m (1 t; (s18y) T 1 2t el 23T Mg WL e
| Ja1,92711,tp,t53,81,5,>0
i5
1 1 (f qz)zf tl—llz(slsz)—3/2e—m2[t1+12+(sl+s2)t§]e—1/451—1/452
- e
4 F(E) q ty,t3,t3,51,5,>0 [t1t2+3152t§+ (51+32)t1t§+32t2t§]1_6/2
2
1 1 (J qZ)ZJ e tl—l/z(slsz)—3/2e—m2t§(tl+t2+sl+sz) o~ Lids; ~ U4s,
R e~ t
477 F(l) q t1't2"[3!51152>0 [t1t2+ SlSZ+ (Sl+52)t1+ Szt2]176/2
2
1 1 (f qz)ZF(e) 5 f tIl/Z(Slsz)—3/2e71/45171/452
=——1 ] e ——m “¢
Am F(}) q ty.t2,51,5>0 [tyto+ 1S+ (Sy+Sy)ty + Syt ] @Aty +t,+ 5, +5,)¢
2
1 1 2\2T(€)
- —q N 26
. 1)“:’ ) 2 MY (G4
2
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In the third line we have made the replacemn%tgtl and
t2—>t§t2. In the fourth line we have integrated ovigr The J1+J2=%
integral J is again decomposed in converging pagghich

f slfllzsélszti1/2{(1+t1)—1+b
p=0" t1,51,50>0

can be evaluated at=0) and parts that can be integrated _(1+t1)*151*b52jb[1+t1(1+ s;)]Pte~s2(tFsp/4,
analytically: (612
J=J,+J,+J3+0(e), (G5  The integration oves, can now be done analytically:
r > b
left >Ot1—1/2(slsz)—3/2e—1/4s1—1/4s2 . N f 1o 2 1+s,|P-%2
,S1,S: =
191192 1 2 Jb b0 t.5 1 1 (l+tl)1,b 4
1 1
XJ’t Sty SiS+ (S1+ S TSoty  ta(SpF i) r §—2b [1+t(1+5s))]°
2 2 1 1 1+Sl 2b—3/2
(©6) (1+ty)s] 4
12 312~ 1/4s, — 1/4 (G139
= - - — A48~ U4sy
J2 Jtl‘sl,52>ot1 (S15) e In order to proceed, we split these integrals as follows:
1 J1+J,=K;+Kyr+Ksg, G149
XJ ' (G?) 1 2 1 2 3 ( )
o<t2<1t1t2+3152+(51+ 52)t1+ Sztz 3
K J f ~1 71/2r E_b (1+Sl b
_ —-1/2 — 312~ 1/4s — 1/4s 1= 20 1 u Z
Js Jt1,51,52>0t1 (818,) e T by _olts (1+t)tPl 4
ool
Xf tzflfe/2(82+tl)fl+e/2. (G8) Z% 8747 °T E_b , (Gl@
try>1 b=0
Integrating inJ; overt,, t;, s, ands, (in this ordej we F(§—2b)
find « :_i f o1 12 1+Sl)2b—3/2
2 db b=0t1.51 o (1+t1)SE 4
J 2‘616Wr(1_6) (G9)
: e |2 ) —— 2 ga¥247br(1-2b), (G16
abl, _,
In order to calculate); and J,, it is convenient to do the
integration overt, in both integrals first. Taking the sum, 3 b
some terms cancel: J Il 5 |[1+t(1+sy)]
K3: _ J SIl/ZtIl/Z
db b0 t1.51 (1+ty)
‘]1+‘]2:f tl71/2(8132)73/2671/43171/432 14s,| 32
t1,81,5,>0 4 ! (G17)
In(sy,+ty)—IN[S1S,+11(S1+Sy) ]
X Sy . (G10  To evaluateK 5 one first has to take the derivative
The logarithms have to be written as derivatives K= —81“(§) J’ IN[1+t1(1+sy)] .
2] Jiy s syt (L) (1+5) %
J 12 312~ 1/dsy ~ 1/4s (©18
Jit+Jo=—~ ty 7SSy Ve ML TR . . .
17Y27 b bth1,51,52>0 17 (5182 Integrating first ovet, and thens,; gives
~1+b
X{(sp+ty) " 1* e S’ZJ 2 atanli1/\/1+s;) +In(s,)
_ 3= T 4T
—(Sp+ty) M siSp+t(51+5)1° (G1) 51 Vs (1+5,)%2
: _ =872 In2—m). G19
Making the change of variableg —1/s;, s,—1/s,, t A ™ (19
—14/s,, ands;—s;S, (in this ordej, we obtain Putting everything together gives finally
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that if one demands that(u)>0, thus that forces be never

o
In2—— anticorrelated, this is only satisfied if
W= —+ (el D)2 +finite. (G20
K 262 € ! e<e.~1.6. (H3)
APPENDIX H: FIXED-POINT FUNCTION APPENDIX I: STABILITY OF THE FIXED POINTS

AT SECOND ORDER We now consider the stability of the periodic fixed point

In this appendix, we show how to obtain the fixed-pointgiven in Eq.(4.32. DefineK[f] as
function for A(u) at second order. We restrict the discussion
to @=2. We use the notations of E.5. First, one needs
the one-loop functiory;(u) both by solving Eq(4.11) nu-
merically and as a Taylor series about 0. The latter is ob-
tained by deriving the one-loog function at the origin and The eigenfunctions and eigenvalues are
fitting the coefficients as

1
K[f]:=lim —{BA* (u)+«f(u)—BA* (W)} (1)

k—0

K[ f]=\f. (12)
ya(W=1-u+ U_z_ U_3_U_4_ u® n u® n 13’ We find the following solutiongwith x=u(1—u) and nor-
! 3 36 270 4320 17010 5443200 malized tof(0)=1]:
. us . 571u° - 281ut° Ny=e, f =1,
204120 2351462400 1515591000
7
_ lesgrett  522m* )\2=—e—§ez, f,=1—(6+4e€)X,
2172751257600 354648294000
524681913 5459,14 N3=—4e—5€?, fz=1—(15+20€e)x+ (45+ 85¢)x?,
10168475885568006 7447614174000 - 25c 14062
, 534703530 " N=—3 "9
1830325659402240000 (H1)
The B3 function at second order yields a linear differential f4=1—(28+ T)X
equation fory,(u). It is numerically singular at smalil.
Therefore one has to expand it in a Taylor series about 0. 616 2354&)| , (4004 18540%| .,
Using the above information and the knowledgelgf one gt %7 /X9 T8 |

finds

3 ) 5 As= — 14e—35¢7,
yo(u)=—1.14012u+ 0.9677981*— 0.2024951

—0.019291*+ 0.002592341° 4 0.0015302:° f5=1—(45+225¢)x

7_ 6,8 11047%
+0.000286428'—6.2553310°u +(585+45005)x2—(2925+ 2 )Xs
—0.0000206648°—6.48801 10° u'?

—_— S 9945 42475%
—7.8566910 "u**+1.8840410"u + - + 8 x4,
+1.24668 10 u®+3.13093 108 u*+- - - .
— _ 2
(H2) Ng=—21le—66¢°,
The differential equation foy,(u) is then solved numeri- fe=1—(66+517¢)x
cally, starting atu~0.5. By integrating from that point both 2
towards 0 and towards infinity, one verifies that Taylor ex- +(1320+ 16148&)x
pansion and numerically obtained curve coincide in their re- 3672944
spective domain of validity. This is shown on Fig. 13. One —(11220+ 169928)x3+ | 42636+ —5 x*
also verifies that the numerically obtained function con-
verges to 0 for large u, thus the exponéptobtained above 298452 2805558&) .
is correct. |\t =5 X7, (13)

It is a good question to ask for how largehe fixed-point
function A (u) = (e/3)y,(u) + (€?/18)y,(u) might be a good This shows that apart from the constant mdtiee shiff
approximation for the true disorder correlator. Let us notediscussed in the text, the fixed point is stable.
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1 2 4 Ao(0)=mTA(0)+A"(0")*m1(0)]. (J6)
0.1 This gives
o s (02 +m?)*(uqu_g)=m{A(0)—~A’(07)*mI(q)~1(0)]}
= A* 0)(1 !
=M " —= —€—=
-0.3 T ( € )
-0.4
xmf[l(q)—l(on), 37
-0.5

where we have reestablished the factoA(u)

FIG. 13. The fixed-point function of the RG floy(u) at sec- =(1/eTl)A*(u) and used the fixed point condition

ond order ine. Upper curve: Numerical integration. Lower curve:

Taylor-expansion about 0. A* '(0*)2= €A*(0) This substitution acts as a counter-term
which exactly subtract the divergence as it should. The result
APPENDIX J: CALCULATION OF CORRELATION is finite. Using that
FUNCTIONS
_ 2_ _ 2_ 2
In this appendix we show how to compute a correlation |(Q)=J J oS s(praf2)-t(p-gi2)"=(s+tm
pJts,

function in the renormalized theory. As an example we study

the periodic case, i.e., we compute the amplitédein Eq. ) ) )
(4.39. To do that we assume that we are exactly at the fixed = J e P f t>0(5+t)7d/267q st(s+t)=(s+Hm
point. P S

The correlation function is time-independent, as was 5 d
shown in Sec. Il D, and takes the scaling form If e P mEF(Z— 5)

p
(UgUi_g) :iA*(O)m—dF a J1 S
e g A\m) xf 1+ 1+t + ——| . (9
1 t>0 1+t m2

where we have restored the factor previously absorbéex in
The scaling function is universal and satisfig9)=1 since
our calculation was performed at zero external momenta in

d _ 1 o
presence of a mass aidz)~B/z" at largez. In d=4 one Fy(2)= 1_f dt
hasF ,(z) = 1/(1+ z%)2. We want to obtain the scaling func- (1+2%)? 0 (1+1)?
tion to the next order; in particular to compudg we need , | e

tz
1+ 5 -1
(1+t)

One obtains the scaling function in the form=(|q|/m)

B=1+be+0(€?). The universal amplitude reads

PO BA*(0)
d= o _d T 1 1
(2m)"ely - _l1+ ff dsln[1+22(s—32)]}+0(62)
2x(@) (1+2%) 2Jo
= o 3
(1+be)(2+€) 36+ 108 +0(€%), J2 P
which yields T2 |2 TN
1 2X@+3+6b |
Ad=1g€T 108 ¢~ J3 X[IN2—In(2+ 22— 2\4+22)]| { +O(€?)
Computingb requires computing diagrams with external mo-
mentum which we do now. Let us use straight perturbation = € 5
theory withA,, as in Sec. Il C 1. One has — 4 1+ 5[=2+2Inz]; +O(€%). J9
(07 +m?)%(Uqu_q)=A0(0)—Ag(07)%I(q), (I  We want to match at large
1(q) f ! (J5 Fa(2) 1(l+b ) 1[1+ (Inz+b)+0(e?)]
= . z)=— €)2¢f=— e(lnz €)].
p (PP+m?)[(p+a)>+m?] T 7
(J10

Let us reexpress this by the renormalized dimensionless dis-
order given in Eqs(3.35 and(3.18 atu=0: The above result yields
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APPENDIX K: ANOMALOUS AND NONODD GRAPHS

In this appendix we write all anomalous two-loop graphs
contributing to the correction of a nonanalytic disorder. In a
first step we make no assumption and give their general ex-
pressions: Already at that stage some cancellations are appar-

ent. In a second step we consider the limit:0" at T=0.

PHYSICAL REVIEW B66, 174201 (2002

The only anomalous non-vanishing graphs of class B are

Fr=F= thletzRyfxt3Ry7xt4r (K13)

Ky =CA"(U)(A"(U% U DAY~y ),
(K14)

We check all cancellations given in the text and show that no Iy = _CA"(UNA"(UX—tZ_ Uitl)A(U!tl—tf u!tl—t3)>'

additional singularities occur. The multiplicity factors are in-

(K15)

cluded in the given expressions. Of course since we want

only corrections to disorder we will give only the expres-

Fi= thletzRyt3Ryt41 (K16)

sions when the separations of the times between the two
external response fields are much larger than the separations i3=—A"(u){A'(ug— uX_tl_tz)A’(uO— Uy—t3—t4)>-

within each connected component. If this were not the case,

(K17)

as is needed, e.g., in the calculation of a two-point correla-

tion function to orderA®, the above expressions should be
reexamined separately. Equivalently, the expressions given

here are correct only fau>>0 and may become incorrect at
u=0.

Graphs which are odd need not be considess main
text). Each remaining graph, e.@; is written in the short-
hand notation form

graph cizf f FeCi.
X,y J ;>0

The only anomalous nonvanishing graphs of class A are

(K1)

Fc= Rythytsz—yt3th4r (K2)
C1= 2<A'(US— u)its—tz—t4)A,(U)it3_ u)ita—tz—tl»A”(u)'
(K3)
Cr= 2<A(Ux—t4_ U)itz—ta)A”(U%_ Uxt2_11)>A"(u),
(K4)

Ca=2A" (ug—u¥  JA' (U —uY )A(u),

(K5)

C5: - 2A(u§t1,t2,t3_ Ux,tl,u)A"(Uo— u{t27tl)A”(u)'
(K6)
Fe= Ff:Rx—ythx—ytsztsRyt4a (K7)

er=A"(u)(A" (Ul —ut DA (U U ),

(K8)

fo=2A"(u)(A" (U —u% ( JAT(U —uy)).
(K9)

For the graphsl one easily sees that the following relations
are exacfwith no other assumption tham 0):

Fc=Fg= Rythytsz—yt3th41 (K10)

dy+d,=0, (K12)

All graphs of class C exactly vanish. For instance,

m,=A(0)A"(Up—U_¢ )A"(u), (K18)

ny=—A(0)A"(ug—u_ )A’(u). (K19)

We now evaluate these graphs in the quasi-static depinning
limit, substitutingA (u) by its power series as a function of

u, as explained in the main text. We need in addition to Eq.
(2.9

A'(U)=A"(0")sgr{u)+A"(0")u+ -,

A"(u)=2A"(0")8(u)+A"(0F)+---. (K20)

In A”(u) evaluated at zero we have written thgfunction
which may in principle be needed. If this were the case that
would pose two unpleasant problems: Firstly a different
viewpoint were to argue that”(u) should simply be con-
tinued to zero which does not pose any problem since it is
pair. Second it would open the possibility to problematic
singular termg 8(v) or 1] asv—0". Fortunately, in all
our 2-loop calculations this never happens: th&§enctions,

if put by hand, cancel. This confirms that, at least to this
order, no pathology arises.

Let us start with the sune,+cs. Using Egs.(2.9) and
(K20) one sees that the term proportional A§0)A”(0*)
cancels. Let us test th&function. Then one needs to go one
order further in the expansion of the term since averages
of the type &§(u;)u, have dimension one, similar to
(sgn(u4)sgn(u,)), and can thus yield a nonzero result at
zero temperaturénigher order terms yielding dimensions as
positive powers of the field are not needed as they vanish at
zeroT). This yields

u)itz—t3|

Cot+Cs=4A"(07)2A"(u){(Ju*

—t4_
- |uxft17t27t3_ Uitft‘ll ) S(uy— u)itzftl»’
(K21)

which strictly vanish upon the replacemeni—utx,—w(t
—t'). This is fortunate since this term would have led to a
1/v singularity. Note that all diagrams (&Xg) in the two-
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loop correction ton could a priori suffer from the same

PHYSICAL REVIEW B 66, 174201 (2002

at depinning. Note that these cancellations do not happen any

problem since\” functions must be expanded. However onelonger, if the field is not a monotonic function, a question
notes that their arguments are always strictly positive in thavhich will be discussed in Ref. 34.

depinning limit, which avoids, as it did here, the problem.

Similarly one has
C4=2A"(07)?A"(U)(sgriug—u* ()
xsgriuly o —uly ). (K22)

Performing the replacemeu’(‘—uf,ﬂv(t—t’), since thet;
>0 and becausE is symmetric int;«<t, one finds that

C2+ C5:C4:O (K23)

A similar calculation shows that at depinning one has also

There, in the singular part, thé function implies thatt;
=t, yielding the cancellation via a slightly different mecha-
nism than above. Finally we are left with the only nonzero
anomalous nontrivial graplts, e;, f,, andi; to compute,
which is done in the text.
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