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Discovering planar disorder in close-packed structures from x-ray diffraction:
Beyond the fault model

D. P. Varn}? G. S. Canright® and J. P. Crutchfield
1santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501
2Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996
3Telenor Research and Development, 1331 Fornebu, Norway
(Received 18 March 2002; published 27 November 2002

We solve a long-standing problem—determining structural information for disordered materials from their
diffraction spectra—for the special case of planar disorder in close-packed stru@@®8%. Our solution
offers the most complete possible statistical description of the disorder and, from it, we find the minimum
effective memory length for stacking sequences in CPS’s. We contrast this description with the so-called
“fault” model by comparing the structures inferred using both approaches on two previously published zinc
sulphide diffraction spectra.
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Stacking fault>—deviations from crystallinity that result We refer to this class of approach as thelt model(FM),
when an entire plane of atoms breaks a stacking rule—ar@hich we define as any model that assumes a parent crystal
common in a broad class of materials known as polytypes. permeated with one or more kinds of stacking faults. Nearly
Found in metals such as Li, micas, simple inorganic comall previous attemptéRefs. 2,8—10,12, and 13, for example
pounds like ZnS and Cgl and more complicated materials to infer crystal structure from diffuse scattering for disor-
such as the oxides Bdb,O,5 and BaFeSbQ, polytypism  dered crystals have been applications of the FM. There are
is defined as the bUIldIng Up of Solidslfrom i.dentimdular. several drawbacks to the this approach_ Among themare
layers (ML's) (Ref. 4 that differ only in their stacking ori- the need to assume a single parent crystalline structure into

While there has been some success in treatmg_weakly diso tructures(b) the limitation to the case of weak faulting, and
dered crystals, the general problem of extracting structur

information about a disordered crystal from its diffraction ©) the restriction of the quantitativ_e anglysis 0 the eﬁe.CtS.Of
spectrum has been an unsolved problem for nearly 70 year%?umng on the Bragg peaks only, ignoring the information in

In this paper, we solve the general problem of inferring! e diffuse scattering. Other technlques have a_ttempted to
crystal structure from diffraction spectra for close-packednclude both the Bragg peaks and diffuse scattering, such as
structures(CPS'$ containing any kind or amount of one- € reverse Monte Carlo procedufsee Ref. 23, for ex-
dimensional stacking disorder. Our solution offers the@MPI6. This generates structures that give good agreement
unique, minimal description of the stacking. Our solution isWith experiment but are physically implausible. Therefore,
direct because we make no assumptions about either th@ne makes assumptions concerning the disorder so that
crystal structure or the kind of disorder. It further representghe procedure is no& priori. To our knowledge, reverse
the most complete possible solution to this problem. We il-Monte Carlo techniques have not yet been applied to planar
lustrate our method on two previously published diffractiondisorder.
spectra for ZnS and compare our results to the best previous We present a solution that overcomes all of these difficul-
analysis of these spectra. ties. We break our method into three parts.

There has been considerable interest in determining crys- (i) We note that a polytype is simply described by its
tal structure from diffraction spectra for quite some timestacking sequeneethe one-dimensional list of successive
(Refs. 2 and 5-12, for examplePrevious attempts for orientations found as one moves along the stacking direction.
CPS’s have proceeded as follows. Different kinds of stacking/Ve refer to the effective stochastic process induced by scan-
faults based on physically plausible mechanisms were postuting the list as thestacking processFor CPS’s, a stacking
lated, such agrowth faults deformation faultsandlayer  sequence is most compactly described by thgdeotatior?
displacement fault By examining the intensity, placement, One replaces the séf,B,C} of allowed orientations with a
and broadening of the Bragg peaks it was possible to estbinary alphabeid={0,1}: a ML is labeled “1,” if it is cycli-
mate the kind and amount of disorder present. This approacatally related to the preceding ML, or 0, if it is not.
is necessarily confined to those instances where there is weak We use the diffraction spectrum to find average correla-
faulting of a particular typdor at most a few typgsin a  tions between ML's as a function of the numbenf sepa-
single parent crystal. This approach igirect, since one rating layers. We make the usual assumption about ML
must assuma priori both a crystal structure and a faulting stacking in CPS’¢,namely that the MLs themselves are un-
mechanism. These efforts met with good success for weaklglefected, that each ML has the same scattering power, and
faulted specimens as such €blowever, for polytypes such that the spacing between ML's is independent of the local
as ZnS and SiC, this approach has not been altogether satstacking arrangement; then correlation functiof@F's)
factory. Q¢(n) andQ,(n) (Ref. 14 can be found by Fourier analysis
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of the diffraction spectrumQ.(n) andQ,(n) are defined as 18 T T T T T T T T T

the probability that any two ML's at separationare cycli- w 16 A Experiment .
cally or anticyclically related, respectively. B oLl — ;xff‘;j'[‘;;el
(ii) We infer the spatial patterns of ML's that reproduce = e
these CF’s by reconstructing asmachinel®*" which de- % .
scribes the minimal effective states of the stacking process o or

Assume we know the probabilityp(w) of stacking se- é 8

guencesw. At each ML in a stacking sequence define the Z 6

“past” o as those ML's already seen and the “futuré”as L 4

those yet to be seenv=ww. The effective states of the =L

stacking process then are defined asgbtsof pastso that N LN

lead to statistically equivalent futures: 01 02 03 04 05 06 07 08 09 1

1

o~ @ if and only if p(&| @) = p(@|@)). @ FIG. 1. Comparison of the experimental diffraction spectrum

These equivalence classes of pasts are the stacking process/sL34 along the 10.row (triangles for a disordered hep ZnS

causal statesAlong with their transitions, they comprise the SINdle crystal(Ref. 2, p. 134 with spectra estimated from the FM

process’s emachine—a_statistical desc’ription of the en. With 5% deformation faultingdashed ling andr=3 e-machine

semble of spatial patterns that produces the stacking distrf:solid line). The vertical scale in the inset is the logarithmic inten-
. g ity.

bution p(w). It has been shown that themachine is the S

minimal-size(as measured by the number of stateptimal . .
( y atep Qot sufficient agreement, we incremanand repeat the re-

redictor of a process, and up to state relabeling, it is th . : o
Enique such a%escriptidﬁ‘” P g construction and comparison. The resultings called the
X stacking process'miemory lengthsince it is the amount of

To find the causal states we must first estimate the prohﬁistory (in ML's) one must use to optimally predict the pro
ili f kin n ver ver th X ; )
ability p(w) of stacking sequences averaged over the cess. We note that the reconstruction algorithm has but a

sample. Note that, from conservation of probabilipfu) ) o .
— p(0u) + p(1u) = p(u0)+ p(ul), for allue A", where A" single _free_ parameter, namely. O_nce arr is selected_, the
is the set of all sequences of lengthAdditionally, the prob- e—mac\wne}_ '3 %omp!efcely der:ermm_e(: by f[lhe exlp_enmﬁntal
abilities for sequences of the same length are normalize(gi;agrimeen'tgl éatteamlnlmumt at satisfactorily explains the
dzweA”lp(w) = 1. Together these consraints provl|de||2- ZnS can be thought to have a CPS with a basis composed
ependent relations among probabilities for tHé 2pos- . : :
) i of two atoms, zinc and sulphur, with the sulphurs displaced
sible stacking sequences of lengti 1. :
The other 2 constraints come from relating CF’s to se- one quarter of a body d|agor_léds refer_red o the conven-
quence probabilities via tional unit gelb along the s_tacklng dlre_ctlo%We take an ML
to be this zinc-sulphur pair arranged in a hexagonaf vee
correct the experimentally obtained diffraction spectrum for
Q. (n= > plw), (2)  the atomic scattering factors, the structure factor, dispersion
weAl factors, and the polarization factt.

We now give the results fo&-machine reconstruction for
where A}, is that subset of length-sequences with a cyclic two experimental diffraction spectra, SK134 and SK135
(a=c) or an anticyclic @=a) rotation between MLs at from Ref. 2. Letl be a continuous variable that indexes the
separationn. We take as many of these latter relations asmagnitude of the perpendicular component of the diffracted
necessary to form a complete set of equations. At a fixed wave k=2xl/c, wherec is the spacing between adjacent
the set of equations describes the stacking sequence as g@nk’s. We select a unit interval ithon which to analyze each
erated by amth-order Markov process. At=3 one encoun- spectrum. Since many diffraction spectra suffer from experi-
ters the first nonlinearities due to the necessity of using CF’'snental erro? we show elsewhet@ that there are relations
atn=>5 to obtain a complete set of equations. We rewrite thehat the CF’'s must obey for any CPS and that we can use
probability of sequences of length=5 in terms of the con- these to select a relatively error-fréénterval. The spectra
ditional probabilities of those at=4, and it is this mapping from experiment and-machine reconstruction are normal-
that is nonlinear. We solve numerically for the stacking se-ized.
guence probabilitiep(w) and then find the set of causal  The triangles in Fig. 1 show the experimental diffraction
states using the equivalence relation, Et). The causal- spectrum SK134 along the 10row for an hexagonally
state transitions are estimated from the conditional distribuelose-packedhcp ZnS crystal annealed at 300 °C for 1 h.
tions of the next ML orientation given pasts associated (For the sake of clarity, here we only show a few selected
with each causal state. points from the experimental diffraction spectrum. Experi-

(iii ) We begin with the =1 reconstructed-machine and mentalists report the spectrum in incrementsAdf= 0.005.
use it to generate a sample stacking sequéhese we used For our analysis, we used this finer mgsBebastian and
length 400 000), and from this we estimate thmachine’s  Krishna attribute the observed disorder to a 5% probability
predicted CF's and diffraction spectrum. We then comparef deformation faulting at each ML(This is the FM-
the latter to the experimental diffraction spectrum. If there ispredicted spectrum given as a dashed line in Fig\e find
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FIG. 2. The recurrent causal statgs—H} of the reconstructed ) . ) )
e-machine estimated from the experimental diffraction spectrum_ FIG. 3. Comparison of the experimental diffraction spectrum
SK134 of Fig. 1 withr = 3. Asymptotic state probabilities are given SK135 along the 10.row (triangles for a disordered ccp ZnS

in parentheses; edge labgp indicates a transition on symbsl single crysta[2, p. 139 with the diffraction spectra calculated from
with probability p. the the FM with 12% twinned faultingdashed ling and r=3

e-machine(solid line).

that the smallest- e-machine that gives adequate agreement _ ) _ ] )
(solid line) with experiment is estimated at=3; it is shown  that of Sebastian and Krishaihile we both find qualita-

in Fig. 2. tively that deformation faulting is important, we also detect
It is possible to give an approximate equivalent of thisCCP Structures, as well as growth faLlllts'and layer displace-
e-machine in terms of the FM, but we stress that this decomMent faults. Overalle-machine analysis finds a much more
position isnot unique We associate each closed, non-self-disordered crystal. This is borne out when comparing the FM
intersecting loo called asimple cycleor SC (Ref. 20] in and e-machine diffraction speqtra. F|gu.re 1 shows that, while
the emachine with either a crystal structure or a fault. In thisPoth agree reasonably well with experiment at the broadened
way, e-machines directly describe familiar structures in poly-Peaks al =0.5 and 1, thee-machine is in better agreement
types. For instance, the closed loop between causal states®®ng the shoulders of the Bragg peaks, as well as at the rise
and H in Fig. 2 implies a stacking sequence. 0101a ..., in broadband intensity dt=0.67 (inset in Fig. 3.
which is simply the Higg notation for the hcp structure. One  Figure 3 plots the experimental diffraction spectrum along
concludes, then, that there is no qualitative difference bethe 10l row (triangles for a hcp ZnS crystal annealed at
tween what one calls faults and crystal structure. The distinc500 °C for 1 h. Sebastian and Krisfnind this to be a
tion is, in fact, quantitative and one of convenience—crystadisordered, twinned-ccp crystal with a twin-fault probability
structures have relatively high probabilities, as opposed t@f 12%, calculated from the observed half-widths of the
the rarer faults. For the most generat3 e-machine, it is Peaks. The diffraction spectrum for such a faulting mecha-
known that there are 19 such SE'sSince eight independent Nism is shown in Fig. 3dashed ling Only the peak at=

CF’s are sufficient to specify an=3 e-machine, the prob- —0.33was used to find the faulting mechanism, and one sees
lem of decomposing the-machine into SC'’s is underdeter- that the FM reproduces it well. However, the second peak at

mined. This conclusion holds for al=2. Therefore, with- |=—0.67 is poorly represented, as is the diffuse scattering

out a fortuitous vanishing of causal states or transitions, th@etween the two peaks. This demonstrates the pitfalls in sim-
FM, unlike the e-machine, is not unique. ply fitting an FM to a single Bragg peak, ignoring the infor-

For the sake of comparison with the previous best FMMation contained in other peaks and in the diffuse scattering.
analysis, we decompose tlemachine in Fig. 2 into SC's We also note that the small rise in diffracted intensityl at
with the assumption that faults corresponding SC's of length
7 or greater are not present. We defineftngdt densityas the
sum of the weights of the arcs forming the fatiliwe can
then assign a fault-density distribution for SK18&kcond
column as follows and compare it to that of Ref.(third
column:

& e
hcp 64%  83% ° %
ccp 8% 0%
deformation fault 16% 17%
growth fault 6% 0%
layer displacement fault 6% 0%

where ccp stands for cubic close packed. Thus, the FIG. 4. Recurrent states of the reconstructadachine for the
e-machine description of the crystal differs significantly from experimental diffraction data SK135 of Fig. 3 using 3.
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~—0.16 is likewise missed by the FM. Tkeemachine spec- model. Moreover(f) we quantified the memory length for
trum (solid line) also misses this rise, but otherwise is in disordered 1D systems; for the ZnS samples considered, it
excellent agreement with the experiment. Figure 4 showsvas 3 ML's. Thus, we find that the memory lengthdisor-

the reconstructece-machine obtained at=3. The large deredstructures for ZnSas for long-periodordered struc-
probabilities for causal states A and F and their large selftureg clearly extends beyond the calculated rafig®L) of
loop transition probabilities, associated with stacking seinterlayer interactiod> Additionally, (g) we show
quences. . . 1111 ... and . .OOOQ - jindicate that thisis  g|sewher® that given the coupling constants between
a twinned-ccp crystal. The missing +HC causal-state \j’s 22 e can determine the average stacking-fault energy
transiton—and  thus  the resuling absence of theq, 4 disordered crystal. It is expected that other physical
... 0101 ... stacking—implies that the original hcp Struc- 33 meters will be amenable to calculation directly from the
ture has been eliminated during the annealing. e-machine. And finally,(h) considering the ubiquity of ex-

In conclusion, we hav Ived the problem of discoverin : . , .
conclusion, we have solved the problem of discove gp])erlmentally accessible power spectra in physics, our tech-

and describing planar disorder and structure in CPS's fro nigue has implications far beyond its present application in
their diffraction spectra. We have demonstrated that the 4 P y P PP

FM—the reigning paradigm for understanding and describpdytyp'sm'
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