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Discovering planar disorder in close-packed structures from x-ray diffraction:
Beyond the fault model
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We solve a long-standing problem—determining structural information for disordered materials from their
diffraction spectra—for the special case of planar disorder in close-packed structures~CPS’s!. Our solution
offers the most complete possible statistical description of the disorder and, from it, we find the minimum
effective memory length for stacking sequences in CPS’s. We contrast this description with the so-called
‘‘fault’’ model by comparing the structures inferred using both approaches on two previously published zinc
sulphide diffraction spectra.
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Stacking faults1,2—deviations from crystallinity that resul
when an entire plane of atoms breaks a stacking rule—
common in a broad class of materials known as polytype2,3

Found in metals such as Li, micas, simple inorganic co
pounds like ZnS and CdI2, and more complicated materia
such as the oxides Ba5Nb4O15 and Ba2FeSbO6, polytypism
is defined as the building up of solids from identicalmodular
layers ~ML’s ! ~Ref. 4! that differ only in their stacking ori-
entation. The Bragg peaks in x-ray diffractograms have lo
been used to infer the crystal structure of ordered sol
While there has been some success in treating weakly d
dered crystals, the general problem of extracting struct
information about a disordered crystal from its diffractio
spectrum has been an unsolved problem for nearly 70 ye

In this paper, we solve the general problem of inferri
crystal structure from diffraction spectra for close-pack
structures~CPS’s! containing any kind or amount of one
dimensional stacking disorder. Our solution offers t
unique, minimal description of the stacking. Our solution
direct because we make no assumptions about either
crystal structure or the kind of disorder. It further represe
the most complete possible solution to this problem. We
lustrate our method on two previously published diffracti
spectra for ZnS and compare our results to the best prev
analysis of these spectra.

There has been considerable interest in determining c
tal structure from diffraction spectra for quite some tim
~Refs. 2 and 5–12, for example!. Previous attempts fo
CPS’s have proceeded as follows. Different kinds of stack
faults based on physically plausible mechanisms were po
lated, such asgrowth faults, deformation faults, and layer
displacement faults.2 By examining the intensity, placemen
and broadening of the Bragg peaks it was possible to e
mate the kind and amount of disorder present. This appro
is necessarily confined to those instances where there is w
faulting of a particular type~or at most a few types! in a
single parent crystal. This approach isindirect, since one
must assumea priori both a crystal structure and a faultin
mechanism. These efforts met with good success for we
faulted specimens as such Co.5 However, for polytypes such
as ZnS and SiC, this approach has not been altogether s
factory.
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We refer to this class of approach as thefault model~FM!,
which we define as any model that assumes a parent cr
permeated with one or more kinds of stacking faults. Nea
all previous attempts~Refs. 2,8–10,12, and 13, for exampl!
to infer crystal structure from diffuse scattering for diso
dered crystals have been applications of the FM. There
several drawbacks to the this approach. Among them are~a!
the need to assume a single parent crystalline structure
which stacking defects are introduced, precluding the
scription of disorder interspersed between distinct crys
structures,~b! the limitation to the case of weak faulting, an
~c! the restriction of the quantitative analysis to the effects
faulting on the Bragg peaks only, ignoring the information
the diffuse scattering. Other techniques have attempte
include both the Bragg peaks and diffuse scattering, suc
the reverse Monte Carlo procedure~see Ref. 23, for ex-
ample!. This generates structures that give good agreem
with experiment but are physically implausible. Therefo
one makes assumptions concerning the disorder so
the procedure is nota priori. To our knowledge, reverse
Monte Carlo techniques have not yet been applied to pla
disorder.

We present a solution that overcomes all of these diffic
ties. We break our method into three parts.

~i! We note that a polytype is simply described by
stacking sequence—the one-dimensional list of successiv
orientations found as one moves along the stacking direct
We refer to the effective stochastic process induced by sc
ning the list as thestacking process. For CPS’s, a stacking
sequence is most compactly described by the Ha¨gg notation.2

One replaces the set$A,B,C% of allowed orientations with a
binary alphabetA5$0,1%: a ML is labeled ‘‘1,’’ if it is cycli-
cally related to the preceding ML, or 0, if it is not.

We use the diffraction spectrum to find average corre
tions between ML’s as a function of the numbern of sepa-
rating layers. We make the usual assumption about
stacking in CPS’s,2 namely that the ML’s themselves are u
defected, that each ML has the same scattering power,
that the spacing between ML’s is independent of the lo
stacking arrangement; then correlation functions~CF’s!
Qc(n) andQa(n) ~Ref. 14! can be found by Fourier analysi
©2002 The American Physical Society10-1
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of the diffraction spectrum.1 Qc(n) andQa(n) are defined as
the probability that any two ML’s at separationn are cycli-
cally or anticyclically related, respectively.

~ii ! We infer the spatial patterns of ML’s that reprodu
these CF’s by reconstructing ane-machine,15–17 which de-
scribes the minimal effective states of the stacking proc
Assume we know the probabilityp(v) of stacking se-
quencesv. At each ML in a stacking sequence define t
‘‘past’’ vQ as those ML’s already seen and the ‘‘future’’vW as
those yet to be seen:v5vQ vW . The effective states of the
stacking process then are defined as thesetsof pastsvQ that
lead to statistically equivalent futures:

vQ i;vQ j if and only if p~vW uvQ i !5p~vW uvQ j !. ~1!

These equivalence classes of pasts are the stacking proc
causal states. Along with their transitions, they comprise th
process’se-machine—a statistical description of the en
semble of spatial patterns that produces the stacking di
bution p(v). It has been shown that thee-machine is the
minimal-size~as measured by the number of states!, optimal
predictor of a process, and up to state relabeling, it is
unique such a description.15–17

To find the causal states we must first estimate the p
ability p(v) of stacking sequencesv averaged over the
sample. Note that, from conservation of probability,p(u)
5p(0u)1p(1u)5p(u0)1p(u1), for all uPAr , whereA r

is the set of all sequences of lengthr. Additionally, the prob-
abilities for sequences of the same length are normaliz
(vPA r 11p(v)51. Together these constraints provide 2r in-
dependent relations among probabilities for the 2r 11 pos-
sible stacking sequences of lengthr 11.

The other 2r constraints come from relating CF’s to s
quence probabilities via

Qa~n!5 (
vPA a

n
p~v!, ~2!

whereA a
n is that subset of length-n sequences with a cyclic

(a5c) or an anticyclic (a5a) rotation between ML’s at
separationn. We take as many of these latter relations
necessary to form a complete set of equations. At a fixer,
the set of equations describes the stacking sequence as
erated by anr th-order Markov process. Atr 53 one encoun-
ters the first nonlinearities due to the necessity of using C
at n55 to obtain a complete set of equations. We rewrite
probability of sequences of lengthn55 in terms of the con-
ditional probabilities of those atn54, and it is this mapping
that is nonlinear. We solve numerically for the stacking
quence probabilitiesp(v) and then find the set of caus
states using the equivalence relation, Eq.~1!. The causal-
state transitions are estimated from the conditional distri
tions of the next ML orientation given pastsvQ associated
with each causal state.

~iii ! We begin with ther 51 reconstructede-machine and
use it to generate a sample stacking sequence~here we used
length 400 000), and from this we estimate thee-machine’s
predicted CF’s and diffraction spectrum. We then comp
the latter to the experimental diffraction spectrum. If there
17411
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not sufficient agreement, we incrementr and repeat the re
construction and comparison. The resultingr is called the
stacking process’smemory length, since it is the amount of
history ~in ML’s ! one must use to optimally predict the pro
cess. We note that the reconstruction algorithm has bu
single ‘‘free’’ parameter, namelyr. Once anr is selected, the
e-machine is completely determined by the experimen
data. We find the minimumr that satisfactorily explains the
experimental data.

ZnS can be thought to have a CPS with a basis compo
of two atoms, zinc and sulphur, with the sulphurs displac
one quarter of a body diagonal~as referred to the conven
tional unit cell! along the stacking direction.2 We take an ML
to be this zinc-sulphur pair arranged in a hexagonal net.4 We
correct the experimentally obtained diffraction spectrum
the atomic scattering factors, the structure factor, dispers
factors, and the polarization factor.18

We now give the results fore-machine reconstruction fo
two experimental diffraction spectra, SK134 and SK1
from Ref. 2. Letl be a continuous variable that indexes t
magnitude of the perpendicular component of the diffrac
wave k52p l /c, where c is the spacing between adjace
ML’s. We select a unit interval inl on which to analyze each
spectrum. Since many diffraction spectra suffer from expe
mental error,2 we show elsewhere19 that there are relations
that the CF’s must obey for any CPS and that we can
these to select a relatively error-freel interval. The spectra
from experiment ande-machine reconstruction are norma
ized.

The triangles in Fig. 1 show the experimental diffractio
spectrum SK134 along the 10.l row for an hexagonally
close-packed~hcp! ZnS crystal annealed at 300 °C for 1
~For the sake of clarity, here we only show a few selec
points from the experimental diffraction spectrum. Expe
mentalists report the spectrum in increments ofD l 50.005.
For our analysis, we used this finer mesh.! Sebastian and
Krishna2 attribute the observed disorder to a 5% probabil
of deformation faulting at each ML.~This is the FM-
predicted spectrum given as a dashed line in Fig. 1.! We find

FIG. 1. Comparison of the experimental diffraction spectru
SK134 along the 10.l row ~triangles! for a disordered hcp ZnS
single crystal~Ref. 2, p. 134! with spectra estimated from the FM
with 5% deformation faulting~dashed line! and r 53 e-machine
~solid line!. The vertical scale in the inset is the logarithmic inte
sity.
0-2



en

is
m
lf

is
ly
es

e
be
in
ta

t

r-

th

M

gt

th
m

ct
ce-
re
FM
ile
ned
t
rise

ng
t

ty
he
ha-

ees
k at
ing
im-
r-
ing.
t

um
n

m
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that the smallest-r e-machine that gives adequate agreem
~solid line! with experiment is estimated atr 53; it is shown
in Fig. 2.

It is possible to give an approximate equivalent of th
e-machine in terms of the FM, but we stress that this deco
position isnot unique. We associate each closed, non-se
intersecting loop@called asimple cycleor SC ~Ref. 20!# in
thee-machine with either a crystal structure or a fault. In th
way,e-machines directly describe familiar structures in po
types. For instance, the closed loop between causal stat
and H in Fig. 2 implies a stacking sequence. . . 010101 . . . ,
which is simply the Ha¨gg notation for the hcp structure. On
concludes, then, that there is no qualitative difference
tween what one calls faults and crystal structure. The dist
tion is, in fact, quantitative and one of convenience—crys
structures have relatively high probabilities, as opposed
the rarer faults. For the most generalr 53 e-machine, it is
known that there are 19 such SC’s.21 Since eight independen
CF’s are sufficient to specify anr 53 e-machine, the prob-
lem of decomposing thee-machine into SC’s is underdete
mined. This conclusion holds for allr>2. Therefore, with-
out a fortuitous vanishing of causal states or transitions,
FM, unlike the e-machine, is not unique.

For the sake of comparison with the previous best F
analysis, we decompose thee-machine in Fig. 2 into SC’s
with the assumption that faults corresponding SC’s of len
7 or greater are not present. We define thefault densityas the
sum of the weights of the arcs forming the fault.19 We can
then assign a fault-density distribution for SK134~second
column! as follows and compare it to that of Ref. 2~third
column!:

hcp 64% 83%
ccp 8% 0%
deformation fault 16% 17%
growth fault 6% 0%
layer displacement fault 6% 0%

where ccp stands for cubic close packed. Thus,
e-machine description of the crystal differs significantly fro

FIG. 2. The recurrent causal states$A–H% of the reconstructed
e-machine estimated from the experimental diffraction spectr
SK134 of Fig. 1 withr 53. Asymptotic state probabilities are give
in parentheses; edge labelsup indicates a transition on symbols
with probability p.
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that of Sebastian and Krishna.2 While we both find qualita-
tively that deformation faulting is important, we also dete
ccp structures, as well as growth faults and layer displa
ment faults. Overall,e-machine analysis finds a much mo
disordered crystal. This is borne out when comparing the
ande-machine diffraction spectra. Figure 1 shows that, wh
both agree reasonably well with experiment at the broade
peaks atl 50.5 and 1, thee-machine is in better agreemen
along the shoulders of the Bragg peaks, as well as at the
in broadband intensity atl'0.67 ~inset in Fig. 1!.

Figure 3 plots the experimental diffraction spectrum alo
the 10.l row ~triangles! for a hcp ZnS crystal annealed a
500 °C for 1 h. Sebastian and Krishna2 find this to be a
disordered, twinned-ccp crystal with a twin-fault probabili
of 12%, calculated from the observed half-widths of t
peaks. The diffraction spectrum for such a faulting mec
nism is shown in Fig. 3~dashed line!. Only the peak atl 5
20.33 was used to find the faulting mechanism, and one s
that the FM reproduces it well. However, the second pea
l 520.67 is poorly represented, as is the diffuse scatter
between the two peaks. This demonstrates the pitfalls in s
ply fitting an FM to a single Bragg peak, ignoring the info
mation contained in other peaks and in the diffuse scatter
We also note that the small rise in diffracted intensity al

FIG. 3. Comparison of the experimental diffraction spectru
SK135 along the 10.l row ~triangles! for a disordered ccp ZnS
single crystal@2, p. 135# with the diffraction spectra calculated from
the the FM with 12% twinned faulting~dashed line! and r 53
e-machine~solid line!.

FIG. 4. Recurrent states of the reconstructede-machine for the
experimental diffraction data SK135 of Fig. 3 usingr 53.
0-3
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'20.16 is likewise missed by the FM. Thee-machine spec-
trum ~solid line! also misses this rise, but otherwise is
excellent agreement with the experiment. Figure 4 sho
the reconstructede-machine obtained atr 53. The large
probabilities for causal states A and F and their large s
loop transition probabilities, associated with stacking
quences. . . 1111 . . . and . . .0000 . . . ,indicate that this is
a twinned-ccp crystal. The missing H→C causal-state
transition—and thus the resulting absence of
. . . 0101 . . . stacking—implies that the original hcp stru
ture has been eliminated during the annealing.

In conclusion, we have solved the problem of discover
and describing planar disorder and structure in CPS’s fr
their diffraction spectra. We have demonstrated that
FM—the reigning paradigm for understanding and desc
ing planar disorder in crystals—is necessarily inadequ
both in conception and practice. A simple examination of
effects of faulting on the Bragg peaks is insufficient to pro
erly detect the disorder present. In contrast,~a! e-machines
provide the most general description possible of structur
one dimension~1D!. ~b! No assumptions about the crystal
fault structure need be made.~c! Any amount or kind of
planar disorder can be treated.~d! More than one crysta
structure may be present, as we found in the first exam
~e! All the information in the diffraction spectrum—bot
Bragg like and diffuse scattering—is used to generate
d

i-
,

nd

r.,

r.
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model. Moreover,~f! we quantified the memory length fo
disordered 1D systems; for the ZnS samples considere
was 3 ML’s. Thus, we find that the memory length indisor-
deredstructures for ZnS~as for long-periodorderedstruc-
tures! clearly extends beyond the calculated range~1 ML! of
interlayer interaction.22 Additionally, ~g! we show
elsewhere19 that given the coupling constants betwe
ML’s,22 we can determine the average stacking-fault ene
for a disordered crystal. It is expected that other physi
parameters will be amenable to calculation directly from
e-machine. And finally,~h! considering the ubiquity of ex-
perimentally accessible power spectra in physics, our te
nique has implications far beyond its present application
polytypism.
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