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Crossover behavior of theJ;-J, model in a staggered magnetic field
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The ground states of thﬁz% Heisenberg chain with the nearest-neighbor and the next-nearest-neighbor
antiferromagnetic couplings are numerically investigated in a staggered magnetic field. While the staggered
magnetic field may induce the Metype excitation gap, and it is characterized by the Gaussian fixed point in
the spin-fluid region, the crossover to the behavior controlled by the Ising fixed point is expected to be
observed for the spontaneously dimerized state at finite field. Treating a low-lying excitation gap by the
phenomenological renormalization-group method, we numerically determine the massless flow connecting the
Gaussian and Ising fixed points. Further, to check the criticalities, we perform the finite-size-scaling analysis of
the excitation gap.
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Theoretically and experimentally, there have been inten{2k,2k+ 1) or (2k+ 1,2+ 2) become twofold degenerated
sive investigations on critical phenomena observed in lowground statesi.e., spontaneously dimerized sta{&s and a
dimensional quantum spin systems. In particular, recent infinite excitation gap exists thefeAccording to Haldané,
vestigations on this subject have focused not only on criticaiind Kuboki and Fukuyanfithe gap formation caused by the
fixed points and their neighboring regions, but also on therustration can be well described by the quantum sine-
global behaviors of the renormalization-grodRG) flows  Gordon model obtained via the bosonization procedute
connecting them. For one-dimensiondD) quantum sys- effective Hamiltonian of Eq(1) is given as
tems(also for 2D classical systemsesides the exact solu-

tions available for some cases, the conformal field theory _ v , 1 )
(CFT) provides the most efficient way to characterize the Ha= dxﬁ K(9x0) +K(‘?X¢)
fixed points, where the values of the central chargpecify 5
their universality classes. Further, with respect to the RG f 9¢
. : ; + —
flows observed in the continuum and unitary models, dx(zwa)ZCOS\/gd)' &)

Zamolodchikov’'sc-theorem serves for the explanations of
their general properti€sSince in investigations of the quan- Where the bosonic operatéris the dual field of¢ satisfying
tum spin chains and interacting electron systems,cthd  the commutation relatiord,[ ¢(x),0(y)|=imd(x—y). K
CFT has close relevance to their criticafitit,is very impor-  andv are the Gaussian coupling and the spin-wave velocity,
tant to understand its instability and a crossover to behaviorand g, stands for the spin Umklapp scattering bare
controlled by other critical fixed points. amplitude!® Although the property of this effective con-
In this paper, we shall study the ground states of $he tinuum model has been well understood and actuallygthe
=1 Heisenberg chain with the nearest-neighbor and thé&erm may become relevaht,for the determination of the
next-nearest-neighbor antiferromagnetic coupliritiee so-  fluid-dimer transition pointl; , numerical treatments of Eq.
calledJ;-J, mode) in a staggered magnetic field; the Hamil- (1) were required. By carefully investigating the effect of the
tonian to be considered is given by=H,+H, with marginalg, term on the critical fixed point through lower-
energy excitation levels observed in finite-size systems, Oka-

L moto and Nomura precisely determinedf =0.24111?
HFZ (2J15-§+1123,5-§42), (1) while it is known that the excitation gap also exists in the
)= case 0fJ,>0.5" we, in the following discussion, restrict
L ourselves to the region0J,=<0.5 for simplicity.
H,= Z —hy—1)iS, @) _ In the case of nonzero fie[dhis is a_pproximately r(_aalized
=1 in the quasi-1D antiferromagnets with the alternating gyro-

magnetic tensors, e.g., Cu-benzddmnd YhAs; (Ref. 15
whereS/’ is thevth component of the spin operator on fite  and the field may be also generated as the intrinsic one origi-
site §; and couplingsl;, J,>0 (we takeJ; as the energy nated from the Nel ordered sublattic€] since the bosonized
unit in the following. We assume the periodic boundary con-form of Eq. (2) is given as
dition S, . =S, and an even number &f.

In the zero-field casehg=0), there are two special points hg
where the exact ground states have been knowid,at0 Ha= J dx— %cos\/fdn (4)
where the Bethe ansatz solution is available, the system is in
the spin-fluid phase described by the Gaussian fixed poirand the scaling dimension of this perturbation termxjs
(c=1 CFT); at J,=0.5 (the Majumdar-Ghosh poipntthe =% (1/v=2—x,=3/2) on the fixed point/ the second-
direct products of spin singlet pairs formed either on bondorder phase transition occurs for systems in the spin-fluid
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region J,<J5 with the divergence of correlation length ~andx.=1, respectively. According to this correspondence,
ochs‘2’3 (aside from the logarithmic correction due to thg we can obtain a relevant excitation in nonzero field by taking

term). On the other hand, fat,>J3 , due to the relevard, the limit h\,0 and assigning it to one of well-characterized

term, the crossover of the transition driven by the staggereafates' Frlom fliﬁs(.f‘lzhand (?) th? stagg'er;.;d ma%netm fgald
magnetic field occurs. Since the dimer gap may survive in zPhayS arole of the “thermal” scaling variable dif (J;), an

weak field, the critical poinh} (J,) takes nonzero values thus the critical exponent 11f:2—xe:_1 as alre:a\dy mef",,
. : . . tioned (see Ref. 18 On one hand, since the “magnetic
depending onJ,, and further the universality class is

changed. Recently, Fabriziet al,'® on the basis of the excitation u stemming from the dimer excitation provides

double-frequency sine-GordoDSG) theory given by lower energy(i.e., the most divergent fluctuatipnwe will

Delfino and Mussard® argued that the system af (J) is thus focus attention on _|t for the dete_rm|nat|onh§f_(32).
1 Now, we shall explain the numerical calculation proce-

renormalized to the Ising fixed point witb=5 in accord . . . o
i W i~ 5 .. dure. Since the system is massive unless it is located on the
with the “downhill” condition of the c-theorem, so the criti- " . . L
cality in the vicinity of this line is related to the divergent critical line, th_e phenomenological re_normallzatlon—group
(PRG method is expected to work efficiently for our affh:

correlation length of the forngec[hg—h¥ (J,)]~* (explained Wi icall Ive the PR ion for th f
below) described by theo* theory. anedr|1u+m2enca y solve the PRG equation for the systemnis o

From the viewpoint that the Gaussian fixed point is per-
turbed by two relevant operators @f, andhg, we can quali-
tatively estimateh? (J,) around the point according to the

crossover argumeﬁ?.lﬂowg—:-ver, to_ evaluate its: precise value ith respect tch, for a given value ofl,. Since the equation
especially near the Ising fixed point, a numerical treatment of 5, pe satisfied by the gap having the size dependence of
H should be required. Here, it should be noted that the criti—AE(J2 he,L)1/L, the obtained value can be regarded as
cality on the Nel-phase boundaries in th8=1 bond- 4o L-dependent transition point, sdy (J,,L+1). Then,

alternatingXXZ chain also belongs to the Ising universality gy;a0ating them to the thermodynamic limit, we estimate
and they were precisely determined by the numerical «

7 . _hs (J,). Alternatively, as explained in Refs. 22 and 23—to
T e ) Do o alculatons Y STV wiich we reer he mrested readers for & detalc
9 ray . o . explanation—aths=0, the dimer excitation is in the sub-
systems. Let us first focus our attention to the excitations in > 7 .
pace of total spifs;=0, wave numbek= 7, space inver-

:)hoeintszgg-ﬂwd region described by the Gaussian flxeozmn P—+1, and spin reversal—+1 for L=0 (mod 4

[S+=0, k=0, P=—1, andT=-1 for L=2 (mod 4].
0, =2sin2¢, (59 Thus, we can calculateAE(J;,hs,L)=E,(Jz,hs,L)
—E4(J2,hg,L) from E,(J5,hs,L) connecting to the dimer
O,= \/Ecos/§¢, (6) ex0|tat|9n andgy(J,,hg,L), i.e., the ground-state energy.
In Fig. 1, we demonstraté. and hg dependences of
_ i LAE(J,,hg,L) at several values of,. Systems up td-
Os=exp(=l V26). @ =28 sites are treated, where the Lanczos algorithm is used to
0, and O, denote dimer and N# excitations, respectively, obtain eigenvalues of the Hamiltonian in specified sub-
while O5 is the doublet excitation changing an amount of thespaces. We can see that thedependence of the crossing
total spin. According to the finite-size-scalifgS9 argu-  point is almost absent for large value &f (nearJ,=0.5),
ment based on CFT, corresponding energy levels for  while it is visible for the small value case.
these operatorétaking the ground-state energy as 2eace After evaluatingh? (J,,L+1), we extrapolate them to
expressed by the use of their scaling dimensignas AE; L—co; here we assume the following formula:
=2mvx;/L.?* For the case oh¢=0, we can calculatdE;
according to the level-spectroscopy metfiddihere discrete h¥(J,,L)=h¥(J,)+aL %(1+bL™®) (0>0), (10
symmetries of the lattice Hamiltoniafsee below are uti-
lized to specify excitation levels. On the other hand, for thewhere theb term stands for a correction to the leading one,
case ofhs#0, the usable symmetry becomes lower, andand four parameterk*(J,), a, b, and w are determined
more importantly, the universality class is changed to theyccording to the least-square-fitting condition. We used the
Ising one on the liné (J,), so that we should employ other data of L=18-28, and extrapolated them ft (J,) as
criterion to characterize the levels. Here, we will use theshown in the inset of Fig. 2, where from bottom to top a
so-called UV-IR (ultraviolet-infrared  operator — cor-  series of data with fitting curves are given in the increasing
respondencé’**i.e., along the critical RG flow the opera- order ofJ,. Consequently, we obtain the critical lihé (J,)
tors on the Gaussian fixed poifV) are transmuted t0 55 shown in the figure. The RG eigenvalue of the scaling
those on the Ising fixed poirtR) as variableg,, is “almost zero” (i.e., marginal, while that of
the staggered magnetic field is 3/2 on the poids,fy)
O1=p, Op—lte, ® =(J%,0). The phase boundary is thus expected to behave as
where u is the disorder field Z, odd) and € is the energy  h*(J,)=(J,—J%)1%°+, which agrees with a weak, depen-

density operator 4, even with scaling dimensioan=% dence of the line near the point.

(L+2)AE(J,,hg,L+2)=LAE(J5,hg,L) 9)
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FIG. 1. TheL and hg depen-
dences ofLAE(J,,hg,L). From
left to right, the next-nearest-
neighbor couplingl,=0.32, 0.40,
0.46, and 0.5. Data for systems of
L =18 (crossep 20 (triangles, 22
(squares 24 (diamond$, 26
(circles, and 28(double circles
are plotted with the fitting curves.
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At this stage, we shall check the criticalities by the use ofthe staggered magnetic field in the present frustrated quan-
the FSS analysis in the vicinity of the boundary lifése.,  tum spin chain system and also the accuracy of the phase
we assume the following one-parameter scaling form of thdoundary line in Fig. 2. This good FSS behaviors may rely

excitation gaps in the finite system bf on the conditions that the marginal operator that brings about
the multiplicative logarithmic correction to the pure power-
AE(Jp,hg,L) =L~ ¥ (L(hs—h3 ()", (1)  law singularity of ¢ is absent on the fluid-dimer transition
point?® and that the crossover region fd5>0.4 may be

wherev=2/3 for J,<J% andv=1 for J,>J% . Further, the

large enough to be detected. On the other hand, the FSS

asymptotic behaviors of the scaling function are expected agatre becomes obscure in the weak and intermediate values

W(x)ox for large x and W (x)=const forx—0. Using the ot 3, since our system sizes are too small to reach the region.
obtained transition points, we plot E@L1) for the Gaussian Finally, we evaluate the values of the central charge

(J2=7J3) and the Ising transitionslg=0.46 and 0.5) in Fig.  through theL dependence of the ground-state enéigy:
3. The results show that the data of different system sizes are

collapsed on the single curve in both cases, and thh 3

asymptotic behaviors ofF agree with the expected ones {7 _
(dotted line$ despite of the smalL. From these plots, we (a) Gaussian (v=2/3) .
can check the crossover behavior of the transitions driven b& (b), (c) Ising (v=1) &
g fp e ,
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FIG. 2. The boundary line of the T¥eand “dimer” phasegfor ln[L(hs—h*s)V]

an explanation of “dimer” phase, see Ref.)1$set shows some of
extrapolations of thé_-dependent critical fields to the thermody- FIG. 3. The FSS plots of the excitation gap for systemg of
namic limit, where fitting curves are given. The double circle shows=20-28 in log-log scale. We have usee- 2/3 for the Gaussian
the fluid-dimer transition pointJ,,hg=(J3,0) at which the criti-  transition[(a) J,=J3], and v=1 for the Ising transitior{(b) J,
cality of the boundary changes from the Gaussian to the Ising type=0.46, (c) J,=0.5]. The slope of the dotted line is 1 showing the
The spin-fluid(SP state exists on the axis of J,<J3 . expected asymptotic behavior of the scaling functions.
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TUC technique, we have analyzed tHdg-odd excitation gap by
oL (120 the use of the phenomenological renormalization-group
method, and determined the boundary lirig€J,) represent-

| . : i ing the massless flow connecting the fixed points. To check
this calculation, we should estimatein advance; here we he two criticalities, we have performed the finite-size-

- — 1 ) . ; ave .
use the FSS relatiodE,=2mvx,(=35)/L and the least- gq4jing analysis of the excitation gap for typical parameter

square-flttlng. procedqre for the data. Th_e obtained resu"\?alues, and we have also evaluated the values of the central
agree well with the Ising one for the considerably large vaI—Charge

ues of Jp, ie., Ez;,c):(l.439,0.494}) atJ,=0.46 and The present investigation has based upon the recent de-
(1.248,0.491)*3.112—0.50._For comparison, we also eSt'matevelopment of the (% 1)-dimensional double-frequency
them atJ,=J; and obt?m ¢,c)=(2.365,0.995)(here the  gine_ Gordon theory, where its very interesting applications in
relationAE,=2mvx,(=3)/L has been used to estimate  ige areas of researches including condensed matter physics
Consequently, we can again confirm the universalities of,ave peen pointed otf:® However, as in the present case,
critical systems on the phase boundary line. On the othefmerical treatments of finite-size systems may be required
hand, we could not extract the reliable data using the abovgy, guantitative discussions on the lattice Hamiltonian mod-
procedure in the small and intermediate regionslgfthis  e|s. We think that our numerical approach can also serve for
may be due to the finite-size effects on the line so that morgne jnvestigations of more complicated systems such as the
detailed analysis might be required in this region. correlated electron®3 we will report on the application

To summarize, we have numerically investigated theegyits of this approach in the future publications.
ground-state phase diagram of the one-dimensidpal,

model in the staggered magnetic field. The crossover behav- The author is grateful to M. Sumitomo and Y. Okabe for
ior of the second-order phase transitions driven by the stadielpful discussions. Main computations were performed us-
gered magnetic field occurs between the Gaussian and tlieg the facilities of Tokyo Metropolitan University, Yukawa
Ising fixed points. According to the operator correspondencénstitute for Theoretical Physics, and the Supercomputer
between these fixed points and using the level-spectroscogyenter, Institute for Solid State Physics, University of Tokyo.

Eq(J2,h2 (3,),L)=eol—

(e is the energy density in the thermodynamic limiEor
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