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Crossover behavior of theJ1-J2 model in a staggered magnetic field
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The ground states of theS5
1
2 Heisenberg chain with the nearest-neighbor and the next-nearest-neighbor

antiferromagnetic couplings are numerically investigated in a staggered magnetic field. While the staggered
magnetic field may induce the Ne´el-type excitation gap, and it is characterized by the Gaussian fixed point in
the spin-fluid region, the crossover to the behavior controlled by the Ising fixed point is expected to be
observed for the spontaneously dimerized state at finite field. Treating a low-lying excitation gap by the
phenomenological renormalization-group method, we numerically determine the massless flow connecting the
Gaussian and Ising fixed points. Further, to check the criticalities, we perform the finite-size-scaling analysis of
the excitation gap.
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Theoretically and experimentally, there have been int
sive investigations on critical phenomena observed in lo
dimensional quantum spin systems. In particular, recent
vestigations on this subject have focused not only on crit
fixed points and their neighboring regions, but also on
global behaviors of the renormalization-group~RG! flows
connecting them. For one-dimensional~1D! quantum sys-
tems~also for 2D classical systems!, besides the exact solu
tions available for some cases, the conformal field the
~CFT! provides the most efficient way to characterize t
fixed points, where the values of the central chargec specify
their universality classes. Further, with respect to the
flows observed in the continuum and unitary mode
Zamolodchikov’sc-theorem serves for the explanations
their general properties.1 Since in investigations of the quan
tum spin chains and interacting electron systems, thec51
CFT has close relevance to their criticality,2 it is very impor-
tant to understand its instability and a crossover to behav
controlled by other critical fixed points.

In this paper, we shall study the ground states of theS
5 1

2 Heisenberg chain with the nearest-neighbor and
next-nearest-neighbor antiferromagnetic couplings~the so-
calledJ1-J2 model! in a staggered magnetic field; the Ham
tonian to be considered is given byH5H11H2 with

H15(
j 51

L

~2J1Sj•Sj 1112J2Sj•Sj 12!, ~1!

H25(
j 51

L

2hs~21! jSj
z , ~2!

whereSj
n is thenth component of the spin operator on thej th

site Sj and couplingsJ1 , J2.0 ~we takeJ1 as the energy
unit in the following!. We assume the periodic boundary co
dition SL115S1 and an even number ofL.

In the zero-field case (hs50), there are two special point
where the exact ground states have been known: atJ250
where the Bethe ansatz solution is available, the system
the spin-fluid phase described by the Gaussian fixed p
(c51 CFT!; at J250.5 ~the Majumdar-Ghosh point!, the
direct products of spin singlet pairs formed either on bon
0163-1829/2002/66~17!/172411~4!/$20.00 66 1724
-
-
-
l

e

y

,

rs

e

-

in
nt

s

^2k,2k11& or ^2k11,2k12& become twofold degenerate
ground states~i.e., spontaneously dimerized states!,3–5 and a
finite excitation gap exists there.6 According to Haldane,7

and Kuboki and Fukuyama,8 the gap formation caused by th
frustration can be well described by the quantum si
Gordon model obtained via the bosonization procedure;9 the
effective Hamiltonian of Eq.~1! is given as

H15E dx
v

2p FK~]xu!21
1

K
~]xf!2G

1E dx
2gf

~2pa!2
cosA8f, ~3!

where the bosonic operatoru is the dual field off satisfying
the commutation relation]y@f(x),u(y)#5 ipd(x2y). K
andv are the Gaussian coupling and the spin-wave veloc
and gf stands for the spin Umklapp scattering ba
amplitude.10 Although the property of this effective con
tinuum model has been well understood and actually thegf
term may become relevant,11 for the determination of the
fluid-dimer transition pointJ2* , numerical treatments of Eq
~1! were required. By carefully investigating the effect of th
marginalgf term on the critical fixed point through lower
energy excitation levels observed in finite-size systems, O
moto and Nomura precisely determinedJ2* .0.2411.12

While it is known that the excitation gap also exists in t
case ofJ2.0.5,13 we, in the following discussion, restric
ourselves to the region 0<J2<0.5 for simplicity.

In the case of nonzero field@this is approximately realized
in the quasi-1D antiferromagnets with the alternating gy
magnetic tensors, e.g., Cu-benzoate14 and Yb4As3 ~Ref. 15!
and the field may be also generated as the intrinsic one o
nated from the Ne´el ordered sublattice16# since the bosonized
form of Eq. ~2! is given as

H25E dx2
hs

pa
cosA2f, ~4!

and the scaling dimension of this perturbation term isx2
5 1

2 (1/n522x253/2) on the fixed point,17 the second-
order phase transition occurs for systems in the spin-fl
©2002 The American Physical Society11-1
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region J2<J2* with the divergence of correlation lengthj

}hs
22/3 ~aside from the logarithmic correction due to thegf

term!. On the other hand, forJ2.J2* , due to the relevantgf

term, the crossover of the transition driven by the stagge
magnetic field occurs. Since the dimer gap may survive
weak field, the critical poinths* (J2) takes nonzero value
depending onJ2, and further the universality class
changed. Recently, Fabrizioet al.,18 on the basis of the
double-frequency sine-Gordon~DSG! theory given by
Delfino and Mussardo,19 argued that the system onhs* (J2) is
renormalized to the Ising fixed point withc5 1

2 in accord
with the ‘‘downhill’’ condition of thec-theorem, so the criti-
cality in the vicinity of this line is related to the divergen
correlation length of the formj}@hs2hs* (J2)#21 ~explained
below! described by thew4 theory.

From the viewpoint that the Gaussian fixed point is p
turbed by two relevant operators ofgf andhs, we can quali-
tatively estimatehs* (J2) around the point according to th
crossover argument.20 However, to evaluate its precise valu
especially near the Ising fixed point, a numerical treatmen
H should be required. Here, it should be noted that the c
cality on the Ne´el-phase boundaries in theS51 bond-
alternatingXXZ chain also belongs to the Ising universali
and they were precisely determined by the numer
method.21 Thus, we shall perform our calculations by analy
ing the lower-energy excitations observed in the finite-s
systems. Let us first focus our attention to the excitations
the spin-fluid region described by the Gaussian fix
point,22,23

O15A2sinA2f, ~5!

O25A2cosA2f, ~6!

O35exp~6 iA2u!. ~7!

O1 andO2 denote dimer and Ne´el excitations, respectively
while O3 is the doublet excitation changing an amount of t
total spin. According to the finite-size-scaling~FSS! argu-
ment based on CFT, corresponding energy levelsDEi for
these operators~taking the ground-state energy as zero! are
expressed by the use of their scaling dimensionsxi as DEi
.2pvxi /L.24 For the case ofhs50, we can calculateDEi
according to the level-spectroscopy method,23 where discrete
symmetries of the lattice Hamiltonian~see below! are uti-
lized to specify excitation levels. On the other hand, for
case ofhsÞ0, the usable symmetry becomes lower, a
more importantly, the universality class is changed to
Ising one on the linehs* (J2), so that we should employ othe
criterion to characterize the levels. Here, we will use
so-called UV-IR ~ultraviolet-infrared! operator cor-
respondence,18,25 i.e., along the critical RG flow the opera
tors on the Gaussian fixed point~UV! are transmuted to
those on the Ising fixed point~IR! as

O1→m, O2→I 1e, ~8!

wherem is the disorder field (Z2 odd! and e is the energy
density operator (Z2 even! with scaling dimensionsxm5 1

8
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and xe51, respectively. According to this correspondenc
we can obtain a relevant excitation in nonzero field by tak
the limit hs↘0 and assigning it to one of well-characterize
states. From Eqs.~4! and ~8!, the staggered magnetic fiel
plays a role of the ‘‘thermal’’ scaling variable onhs* (J2), and
thus the critical exponent 1/n522xe51 as already men-
tioned ~see Ref. 18!. On one hand, since the ‘‘magnetic
excitation m stemming from the dimer excitation provide
lower energy~i.e., the most divergent fluctuation!, we will
thus focus attention on it for the determination ofhs* (J2).

Now, we shall explain the numerical calculation proc
dure. Since the system is massive unless it is located on
critical line, the phenomenological renormalization-gro
~PRG! method is expected to work efficiently for our aim:26

We numerically solve the PRG equation for the systems oL
andL12,

~L12!DE~J2 ,hs,L12!5LDE~J2 ,hs,L ! ~9!

with respect tohs for a given value ofJ2. Since the equation
can be satisfied by the gap having the size dependenc
DE(J2 ,hs,L)}1/L, the obtained value can be regarded
the L-dependent transition point, sayhs* (J2 ,L11). Then,
extrapolating them to the thermodynamic limit, we estima
hs* (J2). Alternatively, as explained in Refs. 22 and 23—
which we refer the interested readers for a detai
explanation—aths50, the dimer excitation is in the sub
space of total spinST

z50, wave numberk5p, space inver-
sion P511, and spin reversalT511 for L[0 ~mod 4!
@ST

z50, k50, P521, and T521 for L[2 ~mod 4!#.
Thus, we can calculateDE(J2 ,hs,L)5Em(J2 ,hs,L)
2Eg(J2 ,hs,L) from Em(J2 ,hs,L) connecting to the dimer
excitation andEg(J2 ,hs,L), i.e., the ground-state energy.

In Fig. 1, we demonstrateL and hs dependences o
LDE(J2 ,hs,L) at several values ofJ2. Systems up toL
528 sites are treated, where the Lanczos algorithm is use
obtain eigenvalues of the Hamiltonian in specified su
spaces. We can see that theL dependence of the crossin
point is almost absent for large value ofJ2 ~nearJ250.5),
while it is visible for the small value case.

After evaluatinghs* (J2 ,L11), we extrapolate them to
L→`; here we assume the following formula:

hs* ~J2 ,L !5hs* ~J2!1aL22~11bL2v! ~v.0!, ~10!

where theb term stands for a correction to the leading on
and four parametershs* (J2), a, b, and v are determined
according to the least-square-fitting condition. We used
data of L518–28, and extrapolated them tohs* (J2) as
shown in the inset of Fig. 2, where from bottom to top
series of data with fitting curves are given in the increas
order ofJ2. Consequently, we obtain the critical linehs* (J2)
as shown in the figure. The RG eigenvalue of the scal
variablegf is ‘‘almost zero’’ ~i.e., marginal!, while that of
the staggered magnetic field is 3/2 on the point (J2 ,hs)
5(J2* ,0). The phase boundary is thus expected to behav
hs* (J2)}(J22J2* )1.5/01, which agrees with a weakJ2 depen-
dence of the line near the point.
1-2
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FIG. 1. TheL and hs depen-
dences ofLDE(J2 ,hs,L). From
left to right, the next-nearest
neighbor couplingJ250.32, 0.40,
0.46, and 0.5. Data for systems o
L518 ~crosses!, 20 ~triangles!, 22
~squares!, 24 ~diamonds!, 26
~circles!, and 28 ~double circles!
are plotted with the fitting curves
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At this stage, we shall check the criticalities by the use
the FSS analysis in the vicinity of the boundary lines,27 i.e.,
we assume the following one-parameter scaling form of
excitation gaps in the finite system ofL:

DE~J2 ,hs,L !5L21C~L„hs2hs* ~J2!…n!, ~11!

wheren52/3 for J2<J2* andn51 for J2.J2* . Further, the
asymptotic behaviors of the scaling function are expected
C(x)}x for large x and C(x).const forx→0. Using the
obtained transition points, we plot Eq.~11! for the Gaussian
(J25J2* ) and the Ising transitions (J250.46 and 0.5) in Fig.
3. The results show that the data of different system sizes
collapsed on the single curve in both cases, and
asymptotic behaviors ofC agree with the expected one
~dotted lines! despite of the smallL. From these plots, we
can check the crossover behavior of the transitions driven

FIG. 2. The boundary line of the Ne´el and ‘‘dimer’’ phases~for
an explanation of ‘‘dimer’’ phase, see Ref. 18!. Inset shows some o
extrapolations of theL-dependent critical fields to the thermod
namic limit, where fitting curves are given. The double circle sho
the fluid-dimer transition point (J2 ,hs)5(J2* ,0) at which the criti-
cality of the boundary changes from the Gaussian to the Ising t
The spin-fluid~SF! state exists on thex axis of J2<J2* .
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the staggered magnetic field in the present frustrated qu
tum spin chain system and also the accuracy of the ph
boundary line in Fig. 2. This good FSS behaviors may re
on the conditions that the marginal operator that brings ab
the multiplicative logarithmic correction to the pure powe
law singularity of j is absent on the fluid-dimer transitio
point,28 and that the crossover region forJ2.0.4 may be
large enough to be detected. On the other hand, the
nature becomes obscure in the weak and intermediate va
of J2 since our system sizes are too small to reach the reg

Finally, we evaluate the values of the central char
through theL dependence of the ground-state energy:29

s

e.

FIG. 3. The FSS plots of the excitation gap for systems ofL
520–28 in log-log scale. We have usedn52/3 for the Gaussian
transition @~a! J25J2* ], and n51 for the Ising transition@~b! J2

50.46, ~c! J250.5]. The slope of the dotted line is 1 showing th
expected asymptotic behavior of the scaling functions.
1-3
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Eg~J2 ,hs* ~J2!,L !.e0L2
pvc

6L
~12!

(e0 is the energy density in the thermodynamic limit!. For
this calculation, we should estimatev in advance; here we
use the FSS relationDEm.2pvxm(5 1

8 )/L and the least-
square-fitting procedure for the data. The obtained res
agree well with the Ising one for the considerably large v
ues of J2, i.e., (v,c).(1.439,0.494) atJ250.46 and
(1.248,0.491) atJ250.50. For comparison, we also estima
them atJ25J2* and obtain (v,c).(2.365,0.995)@here the
relationDE1.2pvx1(5 1

2 )/L has been used to estimatev].
Consequently, we can again confirm the universalities
critical systems on the phase boundary line. On the o
hand, we could not extract the reliable data using the ab
procedure in the small and intermediate regions ofJ2; this
may be due to the finite-size effects on the line so that m
detailed analysis might be required in this region.

To summarize, we have numerically investigated
ground-state phase diagram of the one-dimensionalJ1-J2
model in the staggered magnetic field. The crossover be
ior of the second-order phase transitions driven by the s
gered magnetic field occurs between the Gaussian and
Ising fixed points. According to the operator corresponde
between these fixed points and using the level-spectrosc
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