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Antiferromagnetic Heisenberg model on an anisotropic triangular lattice in the presence
of a magnetic field
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We use Schwinger boson mean field theory to study the antiferromagnetic spin-1/2 Heisenberg model on an
anisotropic triangular lattice in the presence of a uniform external magnetic field. We calculate the field
dependence of the spin incommensurability in the ordered spin spiral phase, and compare the results to the
recent experiments in @8uCl, by Coldeaet al. [Phys. Rev. Lett86, 1335(2001)].
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The ground states of two-dimension@D) Heisenberg the field dependence of the incommensuration in the spiral
models continue to be of great interé$tin this paper, we phase, and compare the results with the experimental obser-
study the antiferromagnetiGAF) Heisenberg model on an vation in CsCuCl,, with good qualitative agreements.
anisotropic triangular lattice in the presence of an external Interms of Schwinger bosorss; anda;,, the spin opera-
magnetic field along the axis: tors are expressed as
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In the above equation, the summation runs over all the latticeith a local constraint at every site given by a/ia;;
sitesi and their neighboring sited { 6). We consider AF +ai*2ai2=l. As a standard method, we introduce a Lagrang-
nearest neighbor spin-spin couplings, represented Bpd  ian multiplier field\; to describe the constraint. The Hamil-
J" as shown in Fig. 1, with bothandJ’=0. In the absence tonian of the system then becomes

of the field, this model is equivalent to a class of models

recently considered by a number of authdr$The model He 1 S UAl A - E(a* a,—aba)

includes several well known limiting cases. A&0, it is C 8 &, Ty RAISIL S22
equivalent to a 2D square lattice model, whose ground state

is a two-sublattice N&l phase. Atl’ =0, it becomes a set of
decoupled spin chains. At =J , it is reduced to the isotro-
pic triangular-lattice model, where the ground state is a
three-sublattice antiferromagnet. Experimentally, this modewhere h=uB; wu,v=12, j=i+46, and A; ,,=a,3;,
may be relevant to the insulating phase of the layered-a;,d;, is the spin singlet operator of bondj|. We note
molecular crystals, k-(BEDT-TTF),X (Ref. 7 and that operatory;; ,, is antisymmetric with respect to either
6-(BEDT-TTF), RbZn(SCN).2 Our interest in this model the position {j) or the indices ). On a bipartite lattice, a

is largely motivated by recent experiments on,QsCl,. spin rotation by on one of the sublattices transforms the
That system is a quasi-2[3=1/2 frustrated Heisenberg Spin-singlet bond operators into a symmetric operator with
antiferromagnet. Coldeaet al'® used neutron scattering to respect to the bond indicesj§. A mean field theory based
study the ground state and dynamics of the system in high

magnetic fields. Among the observations, these authors

found that the incommensurate wave vector changes as the

magnetic field increases, and the spiral spin density wave J' J'

evolves into a fully saturated state.

In this paper we apply the Schwinger boson mean field
theory (MFT) to study the effect of a magnetic field in the
frustrated Heisenberg models. This method enables us to
study incommensurate magnetic ordering in quantum spin
systems. The magnetic ordering is identified as the Bose con-
densation of the Schwinger bosons, and the incommensura-
tion of the ordering is determined by the wave vector of the
condensed Schwinger bosons. In the absence of a magnetic
field, the MFT predicts three possible ground state: a two-
sublattice Neel phase, a spiral spin state, and a spin liquid
phase, similar to the results obtained in the high temperature FIG. 1. The anisotropic triangle lattice: the bond along kthe
series expansionsin the presence of a field, we calculate axis isJ and the bonds along the anda, axes arel’.
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on that transformation was developed by Auerbach and-0. At T=0, if min[w(k)]#0 andb,=0, the ground state
Arovas'! The method was extended to study the frustrateqg 4 spin liquid, whose gap depends on the minimal value of
lattices by many author€. (For an overview of Schwinger e spectran(k). If min[w(k)]=0 and b, is finite, the
boson theory, see Ref. 2 and references ther¥ike. intro-  gchwinger bosons are condensed to the lowest energy state,
duce two types of mean fields ,,(0)=(1/2){Aji15,,)  and the system possesses a magnetic long-range order. The

and\ = (\;), where(- - -) represents the thermodynamic av- ordering wave vectof) is determined byw(k*)=0. From
erage. The mean field Hamiltonian may be solved using theye spin-spin correlations,

conventional bosonic Bogliubov transformation as well as

the Green fungtion’s mgthoq. _ o _ Xao@)=— lim (T S{(7)S%(0))(a=Xx,y,2),

The mean field Hamiltonian in EE3) is diagonalized as 70"

1 we have
HMF:kE ®,(K) aluaku—’— §)+501 4 1
M=

h the single b tea, (k) = w(k) £h/2 with nB[w(k)HE
where the single boson spectia, (k) = w(k) + wi _ _ _
()= W= Ty and 70 =S JohpAsine.3). (u DT =XAD= 50 2 |
=*). a, is a boson annihilation operator related to the
original Schwinger bosons.&y/Ny=25 ,,J5|A,,(3)]? n [w(k+q)]+1
+1/4]/2—2\. The free energy is given by3= 1/kgT, with 5 2 K (K 1
T the temperatupe RN — [\ =y v(k+a)]- 75
F—lle k+12 k) +& ©

B (L —expl= o, (k)] 2 =+ @u(K)+&. for h=0, which indicates the mean field theory does not

(5) break SU2) symmetry. In the thermodynamic limitN(, —

The mean field Hamiltonian is solved together with the self—jL =), the correlation functions are convergent exceptcor

— *
consistent equations for the two types of mean fields, which_2k '
are given by b2
Xaa(Q):_O, (10)
: D a0, () +UZ=2, (68 o8
— ——[ng(w =2,
Nj k== oK) e which indicates that there exist long-range correlations with

Q=2k*, from whichby#0.
1 (k) On the triangular-latticesee Fig. 1, each site has six
N_A k== (k) sin(k- 8)[ng(w, (k) +1/21=24(5). neighbors:+a;,*a,,*(a;+ay). It is convenient to write
(6b)  the wave vectok=(ky, k;), with k; andk; the components

. . . . of the vector along the directions aff anda,, respectively.
In the. MFT, the magnetic ordgrmg may be |dent|f!ed as the]'he lattice constang is set to 1. The component of the
Schwinger boson condensatibhBelow we examine the oo along thd axis isk; +k,. In the case the solution for

possible Schwinger poson condensation at thf wave VeCtQhk s the formi* = (KX ,k*). Thus the vectok* is along
k==k*, corresponding to the lowest energy of,(=k*) the b axis.
—0. We introduce a non-negative quantity, We now consider the mean field solutionsTat 0. Let us
first discuss the solutions in the absence of the field. At
e . L . .
gl o_(+k*)]+nglo_(—Kk*)]}, @) J /J*—l_ (the '|so.tr'0p|c. tr'lan.gular lattioe !<o /3, and
w(k*)=0, by is finite, indicating a magnetic long-range or-

der with the ordering wave vect@®@=(27/3,27/3). At J
such that the points= +k* in the integrals in Eqg6a and ~ _ \glhe square Iel1ttigc)ewkgv= 7\;/2 gl:‘d Eu(z*):% )and bo

(6b) are taken into account separately: >0 implying a Neel ordering aQ=(m,7). The MFT in
these two limiting cases is consistent with the known results.

2\

bo="——""~
NA(I),(k )

> f ﬁL[nB(w (k) +1/2]=2—Dby, (88 At J’=0 (decoupled one-dimensional chainshe MFT
p== ) (2m)? o(k) g gives ki = m/4, (2k§=m/2 along the chains w(k*)>0,
and by=0, suggesting a spin gap state. The 1D model is
dk”  y(k) . exactly soluable, and the ground state is a gapless spin
2., 5 zmsﬂkﬁ)[ns(wﬂ(k)Hl/Z] liquid,'* although the static sin-spin correlation becomes
e (2m) strongest a@Q,= 7.*° The discrepancy between the MFT and
2J5A(9) _ the exact solutions is primarily due to the neglect of the
= —— —boy(k*)sin(k*- 5)/\. (8b)  topological term in the MFT. For the general valueslofJ,

Js the MFT predicts three phases lat=0: (1) a spin liquid

The general features of the mean field solutions in 2D latphase atl’/J<0.136;(2) a spin spiral state at 0.136)'/J
tices are qualitatively given as below. At any finite b, <1.70, with an ordering wave vector between/2,7/2)
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i FIG. 3. The critical field in unit) vs the ratioJ’/J.
Wave Vector k/n
FIG. 2. The ratio vs the wave vectéf at different fields are Yaa(Q)  bA(k*,h*) .
plotted. Inset: the wave vector neHr'J=0.33 at ten different fields N, = ) [1—(h*)7] (12)

are plotted. From left to righth*=0.0,0.1 . . .,1.0.

for a=x andy. y,.(Q)/N, decreases as the field increases,
and (m,m); and (3) an antiferromagnet with an ordering and approaches zerolat =1. by(k*,h*) can be calculated
wave vectorQ=(m,7) at J'/J>1.70. We note that the within the MFT. A special case iby(k*,h*=1)=1 corre-
phase diagram of the model was studied previously by usingponding to{S7) = 1/2, or the spin full polarization. We have
a series expansion technique, linear spin density wave anghiculated the critical fielgh B, (defined as the lowest field
SP(N) mean field theory ett>®*?In the method of series tg induce the full spin polarizatioras a function ofJ’/J.
expansion, they found a Mestate persisting down t'/J  The results are plotted in Fig. 3. As we can sp@ in-
>1.43, and predicted a spiral phase at small ratid'dd.  creases ag’ increases for the fixed. As J’ increases, the

These are consistent with our MFT. These authors also foungpin couplings are strengthened, and it requires a higher field
a dimer phase between the élend spiral states. The dimer tg polarize the spin.

phase breaks translational invariance and is not included in very recently, Coldeat al.'° reported an neutron scatter-
the present MFT. ing experiments on the antiferromagnetCaCl, in the high
We now consider the solutions ht<0. In this case, the magnetic field. That system is a quasi-2D spin-1/2 quantum
SU(2) rotational symmetry is broken, and_(k)<w. (k).  system in a triangular lattice, as shown in Fig. 1. The spin-
The Bose condensation criterion is given hy_(k*)  spin couplings are anisotropic with/J~0.33. In the ab-
= w(k*)—h/2=0. We use the MFT to study the field depen- sence of an external magnetic field, the spins are incommen-
dent incommensurability in the spin spiral phase. The resultsyrately ordered and are aligned within the plane of the
are shown in Fig. 2, where the vectkf are plotted as a triangular lattice. The latter may indicate a weak deviation
function ofJ'/J at several values df. The main feature is as from the Heisenberg model. Coldea al. studied the low
follows. (1) J'/J=1 is a stable fixed point, around which the temperature states of the system in the presence of in-plane
external magnetic field does not change the ordering waves well as perpendicular magnetic fields. In the presence of
vector.(2) At 0.136<J'/J<1, the ordering wave vector in- perpendicular fields, the states are found to be magnetically
creases slightly as the field increasé®. At J'/J>1, the ordered with a varying incommensuration below a critical
ordering wave vector decreases as the field incre@éedt  field, above which the system becomes a fully spin polarized
J’'/3<0.136, the spin liquid may evolve into a spiral state,ferromagnet. In the presence of an in-plane field, they have
and becomes fully saturated as the field further increases. observed additional spin liquid phase between the incom-
In the presence of a magnetic field, the spicomponent  mensurate states and the ferromagnetic phase. There have
(S)#0, and the ground state breaks the(3Unvariance. been theoretical efforts to understand their experimental
At T=0, the expectation value &, is given by resultst® In the present paper, we have only considered the
Heisenberg model in a uniform magnetic field. The predicted
1 spin structure breaks the &) symmetry, and shows the
(S = Eh* bo(k*,h*), (11 spin polarization along the field direction. Such a spin struc-
ture is compatible with the experiments in a perpendicular
field, but incompatible with the in-plane field. Therefore, our
whereh* =h/(2\) is the dimensionless field. At+#0, (S) MFT may be of relevance to the perpendicular field case in
is finite, which indicates a polarized component along thetheir experiments.
field orientationz axis. The static transverse susceptibilities To compare with the experiments, we define a quantity to
at Q=2k* are given by describe the incommensuration, which is proportional to the
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TABLE |. The incommensuration to the Westate along thé

axis is listed.h* =0 means the absence the magnetic field, and 0'042_. J7J=0.33
h* =1 means the state is saturated fully. SE means the series ex-
pansion method, and the data are estimated from the work of Ref. 3,
which was also predicted by Manuel and CeccéRef. 5. =
=
©
h* Exp. (Ref. 10 J'/J=0.404 J'/J=0.33 SE(Ref. 3 ‘g
[
0.0 (eo) 0.03 0.047 0.035 0.028 g
£
1.0 (eo) 0.053 0.053 0.0422 - 3
wave vector deviation from the eestate,e=1/2—2k§ /. 0'0340_0 T o5 10 15 20 25 30 35 40
In Table I, we list the experiment&land theoretical values The External Field h/J
of e at fieldh* =0 and at the critical fieléh* =1 for the two ) ) _ ,
values ofJ’/J. Also listed are the values of at h* =0 _OF;)(;. 4. The incommensuratioa vs the external field af’/J

calculated from the series expansion methdtie agreement
between the present MFT and the series expansion* at
=0 is very good. In Fig. 4, we plot the incommensuration©f the incommensurability of the spin spiral phase. The the-
relative to the Nel state as a function of the external field for oretical results are compared well with the recent neutron
J'/J=0.33. Our mean field results are in qualitative agree-Scattering experiments.

ment with the experiments: as the field increazealso in- . . . . .
creases in the parameter space of interest. Quantitatively, the, We would like to acknowledge stlmL_JIatlng @scussmn;
theory predicts a weaker variation in the incommensuratior){‘"'[h D. A. Tennant and R. Coldea on their experiments. This

than in the experiments. This discrepancy could be partly du/0rk was supported by a grant from the Research Grants

to the neglect of the deviation of the physical system fromCouncil of Hong KongProject HKU7109/02Pand a CRCG

the Heisenberg model in the theory. grant of the University of Hong Kong, by the U.S. DOE
In summary, we have used a Schwinger boson mean fielfrant No. FG03-01ER45687, and by the Chinese Academy

theory to study the antiferromagnetic Heisenberg model o®f Sciences. The authors also acknowledge ICTP at Trieste,

an anisotropic triangular lattice in the presence of an externdfaly for its support and hospitality, where part of the work

magnetic field. We calculate the magnetic field dependencweas initiated.
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