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Antiferromagnetic Heisenberg model on an anisotropic triangular lattice in the presence
of a magnetic field

Shun-Qing Shen1 and F. C. Zhang2
1Department of Physics, the University of Hong Kong, Pokfulam, Hong Kong, China

2Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221
~Received 12 October 2001; revised manuscript received 14 August 2002; published 21 November 2002!

We use Schwinger boson mean field theory to study the antiferromagnetic spin-1/2 Heisenberg model on an
anisotropic triangular lattice in the presence of a uniform external magnetic field. We calculate the field
dependence of the spin incommensurability in the ordered spin spiral phase, and compare the results to the
recent experiments in Cs2CuCl4 by Coldeaet al. @Phys. Rev. Lett.86, 1335~2001!#.
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The ground states of two-dimensional~2D! Heisenberg
models continue to be of great interest.1,2 In this paper, we
study the antiferromagnetic~AF! Heisenberg model on a
anisotropic triangular lattice in the presence of an exter
magnetic field along thez axis:

HS5
1

2 (
i ,d

JdSi•Si 1d2mB(
i

Si
z . ~1!

In the above equation, the summation runs over all the lat
sites i and their neighboring sites (i 1d). We consider AF
nearest neighbor spin-spin couplings, represented byJ and
J8 as shown in Fig. 1, with bothJ andJ8>0. In the absence
of the field, this model is equivalent to a class of mod
recently considered by a number of authors.3–6 The model
includes several well known limiting cases. AtJ50, it is
equivalent to a 2D square lattice model, whose ground s
is a two-sublattice Ne´el phase. AtJ850, it becomes a set o
decoupled spin chains. AtJ85J , it is reduced to the isotro
pic triangular-lattice model, where the ground state is
three-sublattice antiferromagnet. Experimentally, this mo
may be relevant to the insulating phase of the laye
molecular crystals, k-(BEDT-TTF)2X ~Ref. 7! and
u-(BEDT-TTF)2 RbZn(SCN)4.8 Our interest in this mode
is largely motivated by recent experiments on Cs2CuCl4.
That system is a quasi-2DS51/2 frustrated Heisenber
antiferromagnet.9 Coldeaet al.10 used neutron scattering t
study the ground state and dynamics of the system in h
magnetic fields. Among the observations, these auth
found that the incommensurate wave vector changes as
magnetic field increases, and the spiral spin density w
evolves into a fully saturated state.

In this paper we apply the Schwinger boson mean fi
theory ~MFT! to study the effect of a magnetic field in th
frustrated Heisenberg models. This method enables u
study incommensurate magnetic ordering in quantum s
systems. The magnetic ordering is identified as the Bose
densation of the Schwinger bosons, and the incommens
tion of the ordering is determined by the wave vector of
condensed Schwinger bosons. In the absence of a mag
field, the MFT predicts three possible ground state: a tw
sublattice Neel phase, a spiral spin state, and a spin liq
phase, similar to the results obtained in the high tempera
series expansions.3 In the presence of a field, we calcula
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the field dependence of the incommensuration in the sp
phase, and compare the results with the experimental ob
vation in Cs2CuCl4, with good qualitative agreements.

In terms of Schwinger bosonsai1 andai2, the spin opera-
tors are expressed as

Si
15ai1

† ai2 ;Si
25ai2

† ai1 ;Si
z5

1

2
~ai1

† ai12ai2
† ai2!, ~2!

with a local constraint at every sitei given by ai1
† ai1

1ai2
† ai251. As a standard method, we introduce a Lagra

ian multiplier fieldl i to describe the constraint. The Hami
tonian of the system then becomes

H52
1

8 (
i ,d,m,n

JdAi j ,mn
† Ai j ,mn2

h

2
~ai1

† ai12ai2
† ai2!

1(
i

l i~ai1
† ai11ai2

† ai221!1
1

8 (
i ,d

Jd , ~3!

where h5mB; m,n51,2, j 5 i 1d, and Ai j ,mn5aimaj n
2ainaj m is the spin singlet operator of bond (i j ). We note
that operatorAi j ,mn is antisymmetric with respect to eithe
the position (i j ) or the indices (mn). On a bipartite lattice, a
spin rotation byp on one of the sublattices transforms th
spin-singlet bond operators into a symmetric operator w
respect to the bond indices (i j ). A mean field theory based

FIG. 1. The anisotropic triangle lattice: the bond along theb
axis isJ and the bonds along thea1 anda2 axes areJ8.
©2002 The American Physical Society07-1
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on that transformation was developed by Auerbach
Arovas.11 The method was extended to study the frustra
lattices by many authors.12 ~For an overview of Schwinge
boson theory, see Ref. 2 and references therein.! We intro-
duce two types of mean fields,Dmn(d)[(1/2i )^Aj j 1d,mn&
andl5^l j&, where^•••& represents the thermodynamic a
erage. The mean field Hamiltonian may be solved using
conventional bosonic Bogliubov transformation as well
the Green function’s method.

The mean field Hamiltonian in Eq.~3! is diagonalized as

HMF5 (
k,m56

vm~k!S akm
† akm1

1

2D1E0 , ~4!

where the single boson spectravm(k)5v(k)6h/2 with
v(k)5Al22ug(k)u2 and g(k)5(dJdD12(d)sin(k•d). (m
56). akm is a boson annihilation operator related to t
original Schwinger bosons.E0 /NL5(d,mnJd@ uDmn(d)u2
11/4#/222l. The free energy is given by (b51/kBT, with
T the temperature!

F5
1

b (
k,m56

ln[12exp[2bvm~k!] 1
1

2 (
k,m56

vm~k!1E0 .

~5!

The mean field Hamiltonian is solved together with the se
consistent equations for the two types of mean fields, wh
are given by

1

NL
(

k,m56

l

v~k!
@nB~vm~k!!11/2#52, ~6a!

1

NL
(

k,m56

g~k!

v~k!
sin~k•d!@nB~vm~k!!11/2#52D~d!.

~6b!

In the MFT, the magnetic ordering may be identified as
Schwinger boson condensation.13 Below we examine the
possible Schwinger boson condensation at the wave ve
k56k* , corresponding to the lowest energy ofṽm(6k* )
→0. We introduce a non-negative quantity,

b05
2l

NLv2~k* !
$nB@v2~1k* !#1nB@v2~2k* !#%, ~7!

such that the pointsk56k* in the integrals in Eqs.~6a! and
~6b! are taken into account separately:

(
m56

E dk8

~2p!2

l

v~k!
@nB~vm~k!!11/2#522b0 , ~8a!

(
m56

E dk8

~2p!2

g~k!

v~k!
sin~k•d!@nB~vm~k!!11/2#

5
2JdD~d!

Jd
2b0g~k* !sin~k!

•d!/l. ~8b!

The general features of the mean field solutions in 2D
tices are qualitatively given as below. At any finiteT, b0
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50. At T50, if min@v(k)#Þ0 andb050, the ground state
is a spin liquid, whose gap depends on the minimal value
the spectrav(k). If min@v(k)#50 and b0 is finite, the
Schwinger bosons are condensed to the lowest energy s
and the system possesses a magnetic long-range order
ordering wave vectorQ is determined byv(k* )50. From
the spin-spin correlations,

xaa~q!52 lim
t→02

^TtSq
a~t!S2q

a ~0!&~a5x,y,z!,

we have

xxx~q!5xyy~q!5xzz~q!5
1

4NL
(

k

S nB@v~k!#1
1

2

v~k!
D

3S nB@v~k1q!#1
1

2

v~k1q!
D @l22g~k!g~k1q!#2

1

16

~9!

for h50, which indicates the mean field theory does n
break SU~2! symmetry. In the thermodynamic limit (NL→
1`), the correlation functions are convergent except forQ
52k* ,

xaa~Q!

NL
5

b0
2

8
, ~10!

which indicates that there exist long-range correlations w
Q52k* , from whichb0Þ0.

On the triangular-lattice~see Fig. 1!, each site has six
neighbors:6a1 ,6a2 ,6(a11a2). It is convenient to write
the wave vectork5(k1 , k2), with k1 andk2 the components
of the vector along the directions ofa1 anda2, respectively.
The lattice constanta is set to 1. The component of th
vector along theb axis isk11k2. In the case the solution fo
k* has the formk* 5(k0* ,k0* ). Thus the vectork* is along
the b axis.

We now consider the mean field solutions atT50. Let us
first discuss the solutions in the absence of the field.
J8/J51 ~the isotropic triangular lattice!, k0* 5p/3, and
v(k* )50, b0 is finite, indicating a magnetic long-range o
der with the ordering wave vectorQ5(2p/3,2p/3). At J
50 ~the square lattice!, k0* 5p/2 and v(k* )50, and b0

.0 implying a Neel ordering atQ5(p,p). The MFT in
these two limiting cases is consistent with the known resu
At J850 ~decoupled one-dimensional chains!, the MFT
gives k0* 5p/4, (2k0* 5p/2 along the chains!, v(k* ).0,
and b050, suggesting a spin gap state. The 1D mode
exactly soluable, and the ground state is a gapless
liquid,14 although the static sin-spin correlation becom
strongest atQb5p.15 The discrepancy between the MFT an
the exact solutions is primarily due to the neglect of t
topological term in the MFT. For the general values ofJ8/J,
the MFT predicts three phases ath50: ~1! a spin liquid
phase atJ8/J,0.136; ~2! a spin spiral state at 0.136,J8/J
,1.70, with an ordering wave vector between (p/2,p/2)
7-2
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BRIEF REPORTS PHYSICAL REVIEW B66, 172407 ~2002!
and (p,p); and ~3! an antiferromagnet with an orderin
wave vectorQ5(p,p) at J8/J.1.70. We note that the
phase diagram of the model was studied previously by us
a series expansion technique, linear spin density wave
SP(N) mean field theory etc.3,5,6,12 In the method of series
expansion, they found a Ne´el state persisting down toJ8/J
.1.43, and predicted a spiral phase at small ratio ofJ8/J.
These are consistent with our MFT. These authors also fo
a dimer phase between the Ne´el and spiral states. The dime
phase breaks translational invariance and is not include
the present MFT.

We now consider the solutions athÞ0. In this case, the
SU~2! rotational symmetry is broken, andv2(k),v1(k).
The Bose condensation criterion is given byv2(k* )
5v(k* )2h/250. We use the MFT to study the field depe
dent incommensurability in the spin spiral phase. The res
are shown in Fig. 2, where the vectork* are plotted as a
function ofJ8/J at several values ofh. The main feature is as
follows. ~1! J8/J51 is a stable fixed point, around which th
external magnetic field does not change the ordering w
vector.~2! At 0.136,J8/J,1, the ordering wave vector in
creases slightly as the field increases.~3! At J8/J.1, the
ordering wave vector decreases as the field increases.~4! At
J8/J,0.136, the spin liquid may evolve into a spiral sta
and becomes fully saturated as the field further increase

In the presence of a magnetic field, the spinz component
^Sz&Þ0, and the ground state breaks the SU~2! invariance.
At T50, the expectation value ofSz is given by

^Si
z&5

1

2
h* b0~k* ,h* !, ~11!

whereh* 5h/(2l) is the dimensionless field. AthÞ0, ^Si
z&

is finite, which indicates a polarized component along
field orientationz axis. The static transverse susceptibiliti
at Q52k* are given by

FIG. 2. The ratio vs the wave vectork0* at different fields are
plotted. Inset: the wave vector nearJ8/J50.33 at ten different fields
are plotted. From left to right,h* 50.0,0.1, . . . ,1.0.
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xaa~Q!

NL
5

b0
2~k* ,h* !

8
@12~h* !2# ~12!

for a5x andy. xaa(Q)/NL decreases as the field increase
and approaches zero ath* 51. b0(k* ,h* ) can be calculated
within the MFT. A special case isb0(k* ,h* 51)51 corre-
sponding tô Si

z&51/2, or the spin full polarization. We hav
calculated the critical fieldmBc ~defined as the lowest field
to induce the full spin polarization! as a function ofJ8/J.
The results are plotted in Fig. 3. As we can see,mBc in-
creases asJ8 increases for the fixedJ. As J8 increases, the
spin couplings are strengthened, and it requires a higher
to polarize the spin.

Very recently, Coldeaet al.10 reported an neutron scatte
ing experiments on the antiferromagnet Cs2CuCl4 in the high
magnetic field. That system is a quasi-2D spin-1/2 quant
system in a triangular lattice, as shown in Fig. 1. The sp
spin couplings are anisotropic withJ8/J'0.33. In the ab-
sence of an external magnetic field, the spins are incomm
surately ordered and are aligned within the plane of
triangular lattice. The latter may indicate a weak deviati
from the Heisenberg model. Coldeaet al. studied the low
temperature states of the system in the presence of in-p
as well as perpendicular magnetic fields. In the presenc
perpendicular fields, the states are found to be magnetic
ordered with a varying incommensuration below a critic
field, above which the system becomes a fully spin polariz
ferromagnet. In the presence of an in-plane field, they h
observed additional spin liquid phase between the inco
mensurate states and the ferromagnetic phase. There
been theoretical efforts to understand their experime
results.16 In the present paper, we have only considered
Heisenberg model in a uniform magnetic field. The predic
spin structure breaks the SU~2! symmetry, and shows the
spin polarization along the field direction. Such a spin str
ture is compatible with the experiments in a perpendicu
field, but incompatible with the in-plane field. Therefore, o
MFT may be of relevance to the perpendicular field case
their experiments.

To compare with the experiments, we define a quantity
describe the incommensuration, which is proportional to

FIG. 3. The critical field in unitJ vs the ratioJ8/J.
7-3
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BRIEF REPORTS PHYSICAL REVIEW B66, 172407 ~2002!
wave vector deviation from the Ne´el state,e51/222k0* /p.
In Table I, we list the experimental10 and theoretical values
of e at fieldh* 50 and at the critical fieldh* 51 for the two
values of J8/J. Also listed are the values ofe at h* 50
calculated from the series expansion method.3 The agreemen
between the present MFT and the series expansion ah*
50 is very good. In Fig. 4, we plot the incommensurati
relative to the Ne´el state as a function of the external field f
J8/J50.33. Our mean field results are in qualitative agr
ment with the experiments: as the field increases,e also in-
creases in the parameter space of interest. Quantitatively
theory predicts a weaker variation in the incommensura
than in the experiments. This discrepancy could be partly
to the neglect of the deviation of the physical system fr
the Heisenberg model in the theory.

In summary, we have used a Schwinger boson mean
theory to study the antiferromagnetic Heisenberg model
an anisotropic triangular lattice in the presence of an exte
magnetic field. We calculate the magnetic field depende

TABLE I. The incommensuration to the Ne´el state along theb
axis is listed.h* 50 means the absence the magnetic field, a
h* 51 means the state is saturated fully. SE means the series
pansion method, and the data are estimated from the work of Re
which was also predicted by Manuel and Ceccatto~Ref. 5!.

h* Exp. ~Ref. 10! J8/J50.404 J8/J50.33 SE~Ref. 3!

0.0 (e0) 0.03 0.047 0.035 0.028

1.0 (ec) 0.053 0.053 0.0422 –
m

v.

J

on

.
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of the incommensurability of the spin spiral phase. The t
oretical results are compared well with the recent neut
scattering experiments.
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