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Role of surface waves on the relation between crack speed and the work of fracture

Andrea Parisi and Robin C. Ball
Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom

~Received 17 May 2002; revised manuscript received 19 August 2002; published 30 October 2002!

We show that the delivery of fracture work to the tip of an advancing planar crack is strongly reduced by
surface phonon emission, leading to forbidden ranges of crack speed. The emission can be interpreted through
dispersion of the group velocity, and Rayleigh and Love branches contribute as well as other high frequency
branches of the surface wave dispersion relations. We also show that the energy release rate which enters the
Griffith criterion for the crack advance can be described as the product of the continuum solution with a
function that only depends on the lattice geometry and describes the lattice influence on the phonon emission.
Simulations are performed using a new finite element model for simulating elasticity and fractures. The model,
built to allow fast and very large three-dimensional simulations, is applied to the simplified case of two-
dimensional samples.

DOI: 10.1103/PhysRevB.66.165432 PACS number~s!: 62.20.Mk, 62.30.1d, 02.70.Dh
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I. INTRODUCTION

It is well known that fracture propagation is strongly go
erned by properties of the surface created. The classical G
fith criterion requires that for a crack to propagate all t
elastic energy supplied to the crack tip must at least ma
the work of surface creation. Crack speed is more com
cated: one needs to understand the energetics of mechan
in competition with surface work, and in this paper we foc
on phonon emission.

Phonon emission from the crack tip involves both bu
and surface waves. In the continuum limit these waves
dispersionless and emission is only expected when the c
speed matches any of the speedsv l , v t , andvR of longitu-
dinal, transverse, and Rayleigh~surface! waves. The Ray-
leigh speed being the lowest, it is often regarded as the
mate theoretical limit for the speed of crack propagati
Real materials, however, have properties that do not m
the continuum theory. One famous example of this is
existence of forbidden crack speeds, which was first
plained by M. Marderet al.3–5 taking into account the dis
crete nature of matter. Their qualitative explanation of
velocity gapwhere no crack can propagate in a periodic l
tice at speeds lower than roughly 1/3 of the transverse wa
speed, was related to lattice oscillations breaking bonds
fore the expected time compatible with the crack speed. T
explanation involves the use of a ‘‘most stretched bon
breakage rule. Here we propose a more cautious but gen
view using an approach based on the phonon band struc
and the energy release rate. The phonon band structure
lead to resonant emissions which influence the fraction
energy radiated from the crack tip. The existence of forb
den crack speeds then follows.

When dealing with dispersion relations the reference
usually to bulk waves or, in the case of surface waves, to
Rayleigh branch responsible for the Rayleigh speed. G
physicists and researchers in earthquakes are also fam
with another kind of surface waves known as Love waves6,7

polarized in the direction normal to that of propagation a
parallel to the crack plane. Love waves only exist in t
continuum limit when there is a gradation of elastic prop
0163-1829/2002/66~16!/165432~12!/$20.00 66 1654
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ties near the surface, pertinent to seismology but not usu
considered in fracture mechanics. However, due to the
crete nature of matter at the atomic level dispersive me
can also support Love and other wave branches so that
can enter fracture problems. It is natural to include the wh
complexity of the surface dispersion relations in the desc
tion of the material to understand its role, and how and if t
complexity can change the theoretical description of fract
dynamics.

The form of dispersion relations is the fingerprint of th
discrete spatial organization of matter, beyond the continu
limit. In any kind of simulation it is necessary to deal wit
discretization in space. In molecular dynamic simulations8–10

this corresponds to an atomistic description; in mesosco
models as latticelike11–14 or finite element models,15–17 dis-
cretization has to be imposed in space in order to solve
ferential equations of the dynamics. This has an unavoida
effect on the dispersion relations that necessarily reflect
underlying lattice.

In this paper we present a model developed to simulate
elastic continuum material using finite tetrahedral eleme
Space is discretized on an fcc grid, and this is reflected in
dispersion relations of the simulated material. This feat
could be considered a drawback, but can be exploited
model the influence of similar dispersions in real fcc stru
ture materials. The simplicity of the model allows us an e
tensive understanding of both simulations and theory. T
model, built to allow fast and very large three-dimension
simulations, is used here in the simplified case of tw
dimensional samples, and phonon emission from the cr
surface of planar cracks advancing at fixed speeds is
lyzed. An analysis of the influence of this emission on t
crack dynamics is the aim of this work.

Central to our approach is that we fix the crack propert
~speed and shape! and measure some of the mechanical pro
erties ~stress, energy release rate!. This can be done with
success in two dimensions and gives insight into the beh
ior of some of these quantities. In particular, we show t
the energy release rate is strongly influenced by the sur
phonon emission at the crack tip through resonant emis
at particular crack speeds, leading to the existence of nar
©2002 The American Physical Society32-1
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bands of permitted crack speed. We also show that the
ergy release rate which enters the Griffith criterion can
expressed as the continuum solution, multiplied by a mic
scopic function that only depends on the lattice geometry
that describes the lattice influence on the phonon emissi

The paper is organized as follows. In Sec. II a full d
scription of the model is provided, including the descripti
of the bulk dispersion relations. In Sec. III, a prelimina
analysis of simulations of planar cracks at constant spee
given, and in Sec. IV we relate the phonon emission to
dispersion relations of surface waves and we show the p
nomenon of resonances. In Sec. V we analyze how the
ergy release rate is influenced by the phonon emission
we derive the existence of bands of permitted crack spe
Finally, conclusions and comparison with other works a
given in Sec. VI.

II. SIMULATION MODEL

The model is an application of the finite element meth
with the aim of simulating linear elasticity and fractures.
continuum linear elasticity1 the Lagrangian has the form

L5E S ru̇2

2
2

1

2
¹u:sJ D dV, ~2.1!

where the stress tensor is given by2

sJ5lTr~¹u!11m@¹u1~¹u!T#. ~2.2!

The unsymmetrized strain tensor¹u from which the stress
tensor, Lagrangian and hence equations of motion follow
central to our finite element scheme below. The key driv
features of the model are that the elastic response is as
as possible so that nonlinearity and particularly rupture
be incorporated, whilst accidental soft modes are avoi
and all mode frequencies are strictly upper bounded for
bility of time stepping.

A. Definition of the elastodynamic model

To evaluate the unsymmetrized strain tensor, space is
cretized using an fcc lattice and lattice points are connec
using tetrahedral elements. Each element connects
points ~see Fig. 1!, which is the minimum for a full local
gradient calculation in three dimensions. On each lat
point, the displacement fieldu is defined, and the Lagrangia
in its discretized form is given by

L5(
v

mu̇v
2

2
2(

t

1

2
V8~¹u! t :sJ t , ~2.3!

where thev index spans over all lattice points and thet index
spans all the tetrahedral elements.V8 is the volume of the
system per tetrahedron, 1/8 of the volume of the fcc conv
tional unit cell shown in Fig. 1.

The stress tensor is evaluated at the center of each t
hedron through Eq.~2.2!, given the unsymmetrized strai
tensor at the center of thet th tetrahedron is
16543
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~¹u! t5a(
v

r tvuv ~2.4!

with the conditiona(vr tvr tv51, wherer tv is the vector join-
ing the center of thetth tetrahedron with neighboring verte
sitev, anduv is the displacement field on sitev. Finally, the
equation of motion takes then the form

müv5fv52aV8(
t

r tv•sJ t , ~2.5!

wheresJ t is the stress tensor of the tetrahedron.

B. Dispersion relations for bulk waves

The dispersion relations of our model are relative
straightforward to calculate. These confirm that in the lo
wavelength limit the continuum case is retrieved, and p
ticularly that the use of tetrahedral elements avoids the p
ence of soft modes at the border of the Brillouin zone
problem arising when using simple cubic schemes.

Introducing a spatial Fourier transform in Eq.~2.4!, the
gradient operator can be written as

FT@¹#5a(
rv

r veik•rv. ~2.6!

There are two kinds of tetrahedra~see Fig. 1! which can
be readily seen to be mirror images of each other, and t
corresponding gradient operators are related, in the Fou
transform, by¹152¹2* . In terms of these Eq.~2.5! can be
expressed as

mü5V8@¹2•sJ11¹1•sJ2#, ~2.7!

where

FIG. 1. Unit cell for the fcc lattice used in our simulations. Th
contains eight tetrahedra, each connecting four lattice sites.
placement and momentum are defined on the sites, while strain
stress are defined on the tetrahedra.
2-2
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FIG. 2. Acoustic dispersion
curves for the tetrahedron mode
along different directions in recip-
rocal space: there are no so
modes at the border of the Bril
louin zone. These plots are show
for Poisson’s ration51/3 and us-
ing units wherea51 for the side
of the tetrahedral cell andv t5A2
for the speed of transverse acou
tic waves.
q

-

ly

e
a
ns
la
ea

tra
fi
fr

en
e
s
he
ca
ple

gi
in
ve
en
ite
hi
be

ep
ap-

ith

t is

ne
ela-

e
r

d
ave
ble
sJ15lIJ¹1•u1m@¹1u1u¹1# ~2.8!

andsJ2 is obtained by changing the index from 1 to 2 in E
~2.8!.

Equation~2.7! is therefore given, after Fourier transform
ing, by

mv2uk5V8$m@¹•¹* 1¹* •¹#uk

1~l1m!@¹¹* 1¹* ¹#•uk%, ~2.9!

where¹5¹152¹2* . This equation can be solved exact
for eigenvalues~see Appendix A!, giving the results shown
graphically in Fig. 2. The dispersion curves are well b
haved, and reflect the underlying fcc structure: even if we
trying to simulate the continuum limit, dispersion relatio
are the image of the spatial structure of the underlying
tice. This cannot be avoided in our model just as in r
materials.

The dispersion relations found vindicate the use of te
hedral elements. Using a simpler cubic lattice and cubic
nite elements leads to unphysical soft modes, where the
quency goes to zero whenever two of the three compon
of the k vector approach the border of the Brillouin zon
The use of tetrahedra removes this problem since there i
way to deform a tetrahedron giving a null contribution to t
strain tensor, whilst alternative strategies involving less lo
spatial derivatives make fracture properties harder to im
ment and control.

The value of the maximum frequency is set by the lon
tudinal branch at the Brillouin Zone boundary. We will see
Sec. II D that such a value remains an upper bound e
when considering the finiteness of the sample or the pres
of fractures. This value provides the minimum period of s
motion. Due to the significant role of surface waves in t
paper, a study on their dispersion relations will be descri
later in Sec. IV.
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C. Discretizing time

Time can be discretized by introducing a finite time st
h. The integration scheme used in our simulations is the le
frog scheme,19 in which displacementsuv and momentapv
are evaluated alternately at subsequent steps

H uv~ t !5uv~ t22h!12h
pv~ t2h!

m
,

pv~ t1h!5pv~ t2h!12hfv~ t !.

Fourier transforming these equations and comparing w
the limit h→0 leads to the dispersion relation

sin2~vh!5h2v0
2~k!, ~2.10!

wherev0(k) is the value of the frequency of modek in the
continuous time (h→0) limit. From this equation it follows
that we requirehv0(k),1 for modek to be stable in the
discrete time step simulations, and the global stability limi

h,@max
k

v0~k!#21.

It is interesting to apply this to the simplified case of o
dimension. In this case the continuous time dispersion r
tions have the simple form

v0
2~k!5vmax

2 sin2S ka

2 D ~2.11!

with vmax5(2/a)A(l12m)/r. Comparing Eqs.~2.10! and
~2.11!, it is easy to observe that the stability limit for the tim
step ish51/vmax. Moreover, if we use exactly this value fo
the time step, we obtain the linear dispersion relationv
5ck with c5avmax/2. Thus using the maximum allowe
time step, the relation between the frequency and the w
vector is the same as in continuum elasticity. This nota
2-3
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ANDREA PARISI AND ROBIN C. BALL PHYSICAL REVIEW B 66, 165432 ~2002!
property is valid only in one dimension and is lost in two a
three dimensions where the dispersion is more rich. Ne
theless, this property shows that having discretized spac
not necessarily an optimal approximation to the continu
to use a very small time step as in standard molecular
namics simulations.

In three dimensionsvmax is given by the maximum fre-
quency over the entire first Brillouin zone. Using the ma
mum allowed time step dispersion relations are closer but
equivalent to the continuum limit.

The leap-frog scheme used here to discretize time is r
tively robust with respect to energy conservation due to
time reversibility and symplectic properties.20 There is an
exactly conservedh-dependent HamiltonianHh very close to
the naive one,20 with, for example,

Hh[
1

2
~K11K2!1U1O~h2!, ~2.12!

where K1 and K2 are the kinetic energies advanced a
retarded by6h relative to the time step where the potent
energyU is evaluated.

In these simulations the value chosen for the time step
beenh50.1 hmax. Using such time step, dispersion relatio
are close to the continnum time dispersion relations. So
trial simulations with h50.01hmax have been performed
showing no substantial difference with the results here
ported.

D. Nonlinear elasticity and breakage

The model up to now has been described as a mode
linear elasticity. However, since the link between the str
and the strain tensor is given exclusively through Eq.~2.2!,
we can easily generalize the equation to include any kind
elastic response as well as anisotropies. For instance,

sJ5fI@¹u1~¹u!T#, ~2.13!

where each tensor componentf i j represents any kind of non
linear function. In this paper we study only the simpler sc
nario of linear elasticity augmented by breakage of tetrahe
corresponding to the advance of the crack. We brake tetr
dra by abruptly setting its elastic constantsl andm to zero
and it is the resulting recoil of the neighboring sites whi
excites phonon emission.

Breaking tetrahedra does not compromise the maxim
allowed time step, because we can readily show that
maximum vibrational frequency cannot increase. To see
consider Eq.~2.5! rewritten in the form

rüv52
]U
]uv

.

From Eq.~2.3!, we clearly have(vuv•]U/]uv52U, where
U is the total potential energy. Now consider a normal mo
obeying

rv2uv5
]U
]uv
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from which it follows that

rv25
2U

(
v

uuvu2
.

Breaking a tetrahedron removes strictly non-negative te
from the numerator of the right-hand side, and this can o
lower the maximum ofv.

III. SIMULATIONS OF PLANAR CRACKS
AT CONSTANT SPEED

An advancing crack is simulated through the breaking
tetrahedra. To decide when to break we need a breakage
One possibility is to break tetrahedra as soon as they o
come some fracture criterion, for example, a critical value
principal stress or elastic energy. In this work we inste
follow a complementary approach, advancing a strai
crack at constant speed and measuring the fracture cri
achieved such as work of fracture. This provides new insi
into the relationship between energy release rate and c
speed, including any intervals of forbidden velocities. F
computational convenience we focussed on crack spe
commensurate with our time step, that is,

vn5
1

2hn

for n51,2,3, . . . . Any desired crack speed can be obtain
from this sequence by modest adjustment of the time steh.

A. Stress field of advancing cracks

The model presented above is fully three dimension
However for a strictly planar type-I crack, commensura
with our lattice, it is readily shown that the resulting dynam
cal solution is strictly planar with the displacement all in th
plane. We have exploited this and shrunk our system to
fcc cell deep in the third dimension, with periodic bounda
conditions.

In our simulations the Lame` coefficients are set so that th
Poisson ratio isn51/3. The boundary conditions correspon
to imposing fixed normal counter displacement at the top
bottom boundaries, i.e.,ux50, uy56a, at y56L/2, and

FIG. 3. Setup for simulations. A fixed displacement is appli
on the top and bottom boundaries, and the crack advances at
stant speed up to the middle of the sample.
2-4
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FIG. 4. ~a! Absolute value of
the trace of the stress field for
crack advancing at half of the
transverse wave speed, with Poi
son ration51/3. This is the cen-
tral 2003200 region from a
sample of 4003400 tetrahedra.
Intensity spans from white~zero!
to black ~highest values!. ~b!
Trace of the stress field measure
along the fracture plane, throug
the crack tip whose singularity is
clearly visible, and onwards ahea
of the crack tip.
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sxx5sxy50 on the right and left faces~see Fig. 3!. The
initial condition is the static elastic solution, found by rela
ing the lattice to its configuration of minimum energy b
adding dissipation as discussed in Appendix B. Becaus
the linearity of the equations, the magnitude of the impo
boundary displacement does not influence the results: for
following results the starting displacement is 1% of t
sample height. The advancing fracture is simulated unt
reaches the middle of the sample, then a snapshot of
stress field is taken.

In Fig. 4~a! the trace of the stress field for a typical sim
lation is shown: strong emission of surface waves is visi
on the crack surface, as also shown in Fig. 4.~b!. In particu-
lar, from this last figure it can be seen that the amplitude
these oscillations is smaller but of the same order of ma
tude as the stress level at the crack tip.

B. Description of the basic phenomenon

When a crack is advancing new surface is being crea
and waves are emitted both into the bulk and along the cr
surface. In a system of reference comoving with the cr
tip, the frequencyv8 of emitted waves has to match th
temporal frequencies with which lattice structure presents
self to the crack tip, leading to the selection rule

v85v2k•v5g•v,

whereg is any reciprocal lattice vector. This is equivalent
a simple matching of phase velocity

v5k•v, ~3.1!

where the wave vectork is viewed in the extended zon
scheme as sketched in Fig. 5.

From a graphical point of view, a crack advancing a
given speed can be represented as a straight line in
(kx ,v) plane, its slope given by the crack speed. The cr
emits waves at the frequencies and wavelengths corresp
ing to the intercepts of this line with the dispersion relatio
~see Fig. 5! in the extended zone scheme.

For some crack speeds condition~3.1! may be fulfilled not
just for onek point, but over a neighborhood ofk. This can
readily be shown to reduce to
16543
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This matching of phase velocity and group veloc
~sketched as well in Fig. 5! is the condition of resonant emis
sion. We can expect for these crack speeds a sharp incr
in the intensity of the phonon emission. To take this disc
sion further we need to describe the dispersion relations
surface waves for our model, as detailed in the followi
section.

IV. DISPERSION RELATIONS FOR SURFACE WAVES

The description of the modes in which a lattice with
underlying fcc symmetry can vibrate is more complex th
the one given by continuum elasticity. Frequency as a fu
tion of wave vector is no longer linear, and becomes perio
in the extended zone scheme. Moreover, new branche
surface wave appear besides the continuum Rayleigh bra
This richer band structure is crucial in understanding featu
on resonant phonon emission.

A. Theoretical surface dispersion relations

Due to the simplicity of the model it is not difficult to
evaluate the dispersion relations of its surface waves. Th

FIG. 5. Schematic description of the basic matching pheno
ena. A crack advancing at some speedv matches wave phase ve
locity at points A, B, C, and D, so that corresponding phonons
be emitted from the crack tip. The figure shows the special cas
which there is aresonantmatch at D: the crack speed also match
the wave’s group velocity which should lead to strong emission
2-5
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FIG. 6. ~a! Points represent theoretical dispersion relations for surface waves in the first Brillouin zone, for our model with a
surface normal andn51/3, with units as in Fig. 2. Lines show the dispersion relations for bulk modes. All surface modes have Iky)
.0 to be damped fory→` andkz50 corresponding to the two-dimensional constraint in our simulations. The Rayleigh and Love bra
are labeled asRI andL. The other high-frequency branches are not interpretable in the continuum limit.~b! Dispersion relations measure
by excitation of a free surface, compared with the theoretical branches. More than one frequency can be excited for a givenkx . The size of
circles reflects the intensity of the signals. Only three of the five branches are excited: the Love branch is not visible due to its pol
however it is not clear the reason of the lack of evidence of theRIV branch.
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are solutions ofv2uk1¹•sJ50 with boundary condition
sJ•n50, wheren is a unit vector normal to the surface
Solutions are linear combination of bulk modes characteri
by the same frequencyv and surface wave vector compo
nents, and different complexk•n that give decay towards th
interior of the sample.

Calculations of the surface modes are reported in App
dix C. Results are shown in Fig. 6~a!.

The figure shows quite a rich diagram which includes
Love branch and some high-frequency branches. It is c
that all the branches could take part in the process of pho
emission.

B. Direct measurement of surface waves

The dispersion relations can be directly measured by
citing the top free surface of a simulated elastic sample. S
of the top face are displaced according to one specified w
vectorkx . The surface is let free to oscillate and the freque
cies of the corresponding excited modes are measu
Changing thekx vector atkz50, the entire first Brillouin
zone can be spanned and a direct measurement of the di
sion of surface waves can be obtained. Results are show
Fig. 6~b!.

It is evident that all the surface excitation is associa
with the theoretical branches. No emission correspondin
the Love branch is visible due to its polarization perpendi
lar to our two-dimensional plane. We have not identified
reason why no emission is observed corresponding to theRIV
branch.

Our measurements do show continuation of the theor
cal branches beyond their end points. We have verified fr
calculations of Appendix C that these continuations cor
spond to frequencies with a small imaginary part.

C. Emission from advancing cracks

Let us consider a snapshot at timet of the crack surface
Depending on the crack speed, some of the vibratio
modes will be excited. Through a Fourier transform of t
surface profile the excitedk vector can be obtained. Assum
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ing that Eq.~3.1! applies we can compare observed values
kx at crack speedv with kx versusv/kx from the theoretical
dispersion relations. The one delicate point is thatkx is inde-
terminate up to multiples of a reciprocal lattice vectorg.
Figure 7 shows the agreement between measured emis
and the theoretical curves, with assignment of multiples og
to the measuredkx as the only element of fitting.

D. Resonances

Resonances appear as soon as Eq.~3.2! is fulfilled: this
matching of phase velocity and group velocity can lead
resonant emission as sketched in Fig. 5. Plotting the ph
velocity v/kx versuskx , the resonant condition is equivalen
to a plateau inv/kx . Predicted resonances can therefore
easily read from our computed dispersion relations as sh
in Fig. 8. Due to the periodic band structure there is an in
nite number of possible resonances corresponding to the
finite number of Brillouin zones. However, we observe~not
surprisingly! that signal corresponding to resonances
higher Brillouin zones is weak, so our discussion in this p
per focuses on the first two Brillouin zones only.

FIG. 7. In this plot crack speeds correspond to horizontal lin
Black dots correspond to the emission measured from the c
surface. For simplicity only emission from the first and second B
louin zone~folded back into the first zone! has been reported. Al
dots lay on the theoretical dispersion relations or on their extens
in the second Brillouin zone.
2-6
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The presence of resonances can be verified by analy
the total intensity of emitted waves as a function of cra
speed. Figure 9 shows the total wave intensity integra
over just the crack surface, whilst the discussion of the
radiated wave power will be given in Sec. V.

Corresponding to the speeds where resonances are
pected there is an effective peak in the wave intensity. Th
peaks are slightly shifted towards lower speeds, which ca
interpreted in terms of the concavity of dispersion relatio
at the resonance. When the crack advances at a speed sl
below the resonance, more modes can be excited, givin
maximum in intensity slightly shifted. The abrupt drop
intensity at higher crack speeds~approaching the Rayleigh

FIG. 8. The theoretical phase velocityv/kx versuskx , with
horizontal lines showing where resonant phonon emission ca
expected. The lines show resonances due to the first and the se
Brillouin zone only. Dashed lines correspond to resonances du
bulk dispersion relations.

FIG. 9. The total wave intensity integrated over the fractu
surface, as a function of crack speed. Peaks in the emission c
spond to the resonances shown in Fig. 8, as indicated by ver
lines. A systematic shift towards the lower crack speeds is vis
and is related to the convexity of the dispersion relations~see text!.
These results were obtained from simulations of samples of
3800 tetrahedra.
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speed! appears to result from the fact that the penetrat
length of such waves is of order their wavelength, and this
turn becomes of the order of the sample size as the Rayl
speed is approached. At high speeds, the total intensit
surface waves cannot be retrieved by analysing just the c
profile.

V. ENERGY RELEASE RATE

The presence of resonances suggests that an effect o
crack dynamics has to be expected. We will now show h
the most commonly and relevant measured quantity of cr
dynamics, namely, the energy release rate, is affected by
phenomenon.

In the simulations here reported, a planar crack is left
advance at constant speed from a short starting notch
early times the crack is almost equivalent to a crack adva
ing in an unbounded medium, since the sample bounda
are distant from the crack tip. When the crack becomes la
compared to the linear dimensions of the sample the cr
starts to ‘‘feel’’ the presence of the boundaries and the cor
description is that of a crack advancing in a strip. In t
continuum and steady limit the short crack regime is char
terized by a linear increase of the energy release rateG with
time, whilst in the long crack regime theG function is time
independent. Both regimes are sensitive to the crack spe

A. Energy release rate in a discrete sample

The discrete nature of matter is reflected in the dep
dence of the energy release rateG on crack speed. We ca
describe the macroscopic energy release rate per unit
tance of crack advanceGM as the sum of two contributions

GM~v,t !5Gbr~v,t !1Gph~v,t !. ~5.1!

GM(v,t) is the solution of the continuum limit which gov
erns the macroscopic delivery of energy towards the cr
tip, for which we have theoretical expressions availab
Gbr(v,t) andGph(v,t) are, respectively, the breakage ener
release rate and the phonon energy release rate. Our str
below is to directly measure the breakage energy release
from the potential energy lost when tetrahedra are broke

The macroscopic energy release rateGM(v,t) is largely
determined by the macroscopic conditions and the length
the crack. In the long crack limit in the case of a strip
height 2l and fixed displacementd at each boundary, the
macroscopic energy release rate corresponds to the am
of elastic energy stored far ahead of the crack tip.2,18 From
Eq. ~2.2! the stress field ahead of the crack tip has

syy5~l12m!e, ~5.2!

wheree5d/ l is the imposed strain. Hence the time indepe
dent macroscopic energy release rate is

GM
` 5~l12m!e2l ~5.3!

independent of the crack speedv.
The translation of the Griffith criterion in the discrete ca

is that the crack will advance as soon as the energy store
the tetrahedron to breakGbr is greater than a threshold valu
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connected with the toughness of the material. The beha
of Gbr with the crack speed is therefore crucial for und
standing the crack dynamics.

The breakage energy release rate clearly depends on
external macroscopic conditions as well as the discrete
of the model. However, it can be expressed as

Gbr~v,t !5E~v !GM~v,t !, ~5.4!

where we have introduced theefficiency E(v). In the long
crack limit for the fixed grip setup used in our simulatio
this givesGbr(v,t)5E(v)GM

` , where the efficiency is the
sole source of velocity dependence. The effect of local d
creteness thus separates from the effect of macroscopic
ternal conditions: all the dependence on the crack spee
hidden in the efficiency functionE(v) which is local to the
crack tip region and independent of the macroscopic reg
as will be shown below. The meaning of the efficiencyE(v)
is as follows: whenE(v) is close to zero, the energy deliv
ered to the crack tip is mostly spent in phonon emission
that the mechanism is not sufficient for the crack to advan
WhenE(v) is close to 1, all the energy delivered is used
break tetrahedra, and the crack can advance promptly.
will see that the dependence onv is crucial in the determi-
nation of bands of permitted crack speeds, not describe
the continuum elastic theory. The correct derivation of th
bands will be given below.

B. Measuring the energy release rate

The breakage energy release rateGbr(v,t) in our simula-
tions corresponds, for a given crack moving at speedv, to
the value of the elastic energy that disappears from the
tem with each broken tetrahedron at timet. Figure 10 shows
measurements from a set of simulations involving sample
of height 120 tetrahedra and up to 3500 tetrahedra long
increasing crack speeds. We observeGbr(v,t) to grow lin-

FIG. 10. The measured energy delivered into bond breaking
unit length of crack, as a function of time for different crack spee
From these data we measured the early time slopesGbr8 (v,0) corre-
sponding to the short crack regime and~from the slope of the time
integrated plots inset! the long crack plateau valuesGbr(v). The
~nontrivial! sequence of the curves is more readily appreciated f
Fig. 11.
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early with time initially: corresponding measured slop
Gbr8 (v,0) are discussed below. The long crack regime exh
its fluctuations due to waves reflected from the sam
boundaries, but the average magnitudeGbr(v) of the break-
age energy release rate can be clearly retrieved.

TheGbr(v) in the long crack limit is shown as a functio
of crack speed in Fig. 11. Vertical lines indicate the speed
which resonances are expected to be seen according to
5. The two lines labeled asa8 and b8 correspond to reso
nances due to the dispersion relations ofbulk waves. Corre-
sponding to each line there is a clear decrease of the en
release rate, meaning that more energy is emitted as ra
tion.

The crucial feature of Fig. 11 is that it reveals how t
energy available for breaking bonds responds to the spee
the crack, for a given macroscopic energy release rate.
same figure can be read in reverse: given some thres
value forGbr(v) corresponding to a given fracture toughne
of the material, the possible crack speeds are obtained f
the graph.

It can be further argued on grounds of stability that on
the speed ranges whereGbr(v) decreases withv are allowed
as steady crack speeds. In the counter case whereGbr(v)
increases withv, a prospective overshoot inv leads to ex-
cessive bond breakage energy and hence acceleration, a
undershoot to insufficient breakage energy and the cr
must slow further. Thus stable steady crack propagatio
confined to narrow intervals associated with resonances
the high speed regime.

It is worth pointing out that most of the features shown
Fig. 11 are due to high frequency branches either in the
or second Brillouin zone. The first resonance due to the R
leigh branch ~apart from the resonance at the Raylei
speed! is the marginally visiblee resonance. This shows how
important it is to include the full complexity of the ban
structure within the analysis.

The data in Fig. 11 are at constant macroscopic ene
release rateGM

` , so due to Eq.~5.4! they also show the
behavior of the efficiencyE(v) with the crack speed. How

er
.

m

FIG. 11. Dependence of breakage energy release rate on c
speed in the long crack regime. Crack propagation with a ste
speed should only be stable where this function is decreasing.
tical lines show the theoretical position of resonant surface w
emission: the two dashed lines correspond to resonant bulk w
emission. The figure equivalently shows the behavior of the e
ciencyE(v) with the crack speed, as for long cracks and fixed g
conditions the two are strictly proportional.
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TABLE I. The efficiency of energy delivery into bond breaking, compared between the different dyn
cal regimes of short and long cracks, as a function of crack speed. The second and third columns s
efficiency computed from early time slopes of the energy into bond breakage compared to that macr
cally delivered, for two different sample heights. Results forv50 were obtained from a set of simulations
static fracture with different notch lengths. Results for low and high crack speeds are influenced by pr
in the measurements in the short crack limit: this effect is reduced increasing the size of the sample as
in the third column. The final column shows the ratio of these short crack regime efficiencies to
computed from the long crack regime shown in the fourth column: these results clearly confirm th
efficiency is insensitive to dynamical regime, consistent with our assertion that it is a property local
crack tip.

2l 5120 2l 5800 2l 5120
v/v t

E(v,0)5
Gbr8 (v,0)

GM8 (v,0)
E(v,0)5

Gbr8 (v,0)

GM8 (v,0) E(v)5
Gbr

` (v)

GM
` (v)

E(v,0)/E(v)

0.0 0.25760.006 0.259160.0008
0.1 0.1960.04 0.2260.04 0.240860.0004 0.960.2
0.2 0.5260.03 0.5260.01 0.52860.003 0.9860.02
0.3 0.4060.02 0.39060.006 0.37960.001 1.0360.02
0.4 0.4460.02 0.43260.004 0.431560.0002 1.0060.01
0.5 0.4860.02 0.46260.004 0.463660.0001 0.99760.009
0.6 0.5960.02 0.57660.006 0.576760.0004 1.0060.01
0.7 0.5560.04 0.51460.006 0.520160.0001 0.9960.01
0.8 0.260.1 0.3360.02 0.320260.0001 1.0360.06
0.9 - 0.07960.007 0.089060.0005 0.8960.08
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ever, if the efficiencyE(v) is governed only by local phe
nomena, then its behavior with the crack speed should
independent of the crack propagating in steady state or t
sient regime, provided the crack speedv is fixed. From the
knowledge ofE(v) then we could find out the dependence
Gbr(v,t) on the crack speed for any macroscopic set
provided we know the macroscopic continuum solution.

To verify the independence ofE(v) on the dynamic re-
gime, we also analyzed the short crack limit. In this case,
crack can be seen as advancing in an unbounded mediu
the sample boundaries are distant from the crack tip. Fo
planar type-I crack propagating at steady speedv in an un-
bounded continuum medium the macroscopic transfer of
ergy to the crack tip~per unit distance advanced! is given by

GM
0 ~v,t !5

v2a l

2ct
2mD

KI
2~v,t !. ~5.5!

Herea t,l5A12v2/v t,l
2 andD54a ta l2(11a t

2)2. The con-
stantsv l and v t represent the longitudinal and transver
sound speeds, andKI(v,t) is the stress intensity factor a
time t for the given crack speed.

A functional form forKI(v,t) is available for the Broberg
problem2,21,22of a crack expanding from zero initial length i
a uniform tension field and infinite medium. In particular
can be written in the form

KI~v,t !5S~v !s`Apvt,

where s` is the traction applied on the crack faces. T
energy release rate increases linearly with time. As Fig.
16543
e
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shows, we obtain the same behavior forGbr(v,t) in our
simulations. In the case of symmetric growthS(v) has the
form:

S~v !52
I ~b/q!R~q!

b2qAq22a2
,

whereR(q)5(b222q2)214q2Aa22q2Ab22q2 and

I 21~b/q!5
q

b2E0

` R~ ih!

~q21h2!3/2Aa21h2
dh

with a5v l
21 , b5v t

21 , q5v21. We thus have a closed form
for the early time slopeGM8 (v,0).

Due to these results, to prove thatE(v) is independent of
the dynamic conditions we just have to check that

E~v,0!5
Gbr8 ~v,0!

GM8 ~v,0!
~5.6!

matchesE(v) already measured from the long crack lim
Simulations of symmetric crack growth can be perform
simply by fixing the longitudinal displacement at the left a
right boundaries: though this would correspond to havin
periodic system of symmetric growing cracks, the interact
between cracks is weak due to the strip geometry.Gbr8 (v,0)
then corresponds to the measured slopes of the early reg
and GM8 (v,0) is the time derivative of the macroscopic e
ergy release rate~5.5!.

Results of the comparison are reported in Table I. Beca
the productvt corresponds to the crack length, the casev
2-9
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50 was reconstructed by analysing several simulations
static cracks with different crack lengths and retrieving
resulting overall slope. For low and high crack speeds, pr
lems arise when measuring the short crack regime: for
crack speeds data is noisy and there are few points to a
age; for high crack speeds the long crack limit is achiev
soon after the crack starts moving, so that the short cr
regime is properly defined only when the sample heigh
very large with respect to the size of a tetrahedron. Thi
still not the case even when dealing with our 120 tetrahe
wide sample. Better results for the short crack regime w
obtained from simulations of 8003800 tetrahedra as th
third column of the table shows.

These results show that the efficiencyE(v) is indepen-
dent of the particular dynamic regime. The absolute val
are also of interest. Thev50 limit shows that when the
tetrahedra at the tip of a static crack are broken, about 7
of the strain energy released comes from relaxation in o
tetrahedra which is radiated in waves. The maximum e
ciency~about 60%) occurs atv.0.6 v t . This happens to be
just below the Yoffe speed;0.63v t.2/3vR , but as our
measurements exclude the possibility of crack branching
presume this to be a coincidence.

VI. CONCLUSIONS

We have presented a finite element model for linear e
tic fracture mechanics, which has proved surprisingly a
revealingly rich in its behavior even in the two-dimension
case. The model was designed to enable fast numerical s
lations of large systems particularly with three dimensions
mind, but the main strengths which we have exploited in t
paper are direct control of the local physics which it offe
combined with bulk and surface dispersion relations am
nable to simple theoretical computation. Our results sugg
that inclusion of known phonon dispersion can be crucia
understanding the speed of fracture propagation.

Our results relate to ideally brittle materials, in that w
have included no significant mechanism of local dissipat
and most particularly no plastic deformation mechanis
Linear damping is readily included, and indeed could be
ploited to mitigate the effects of waves reflected back fr
the sample edges. Spontaneous crack roughness and br
ing will be addressed in a following paper.

The crucial mechanism which our results incorporate
yond continuum fracture mechanics is the radiation
phonons from the crack tip. This we show leads to a sign
cant speed dependence in the fraction of macroscopic s
energy available as work to create new surface. For a s
crack in our model, this efficiency is only 25%, thus mod
fying the most naive Griffith criterion for crack propagatio
by a factor of 4. The general rise in bond breaking efficien
with speed towards a global maximum for typical fast cra
speeds rules out steady crack propagation at most lo
speeds, and remains to be understood more quantitative

We have been able to interpret fine structure in the b
breaking efficiency associated with resonant conditions
surface wave emission. This leads to islands of stable c
velocity, which can only arise at lower speeds due to disp
16543
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sion and hence due to the discrete properties of matter.
A related explanation of the presence of sets of forbidd

crack speeds has already been given by Marderet al.3–5 by
using a mechanistic description of bond breakage in term
most stretched ones. According to this approach cracks
not advance at speeds below some threshold, since du
lattice oscillations bonds would break before the expec
time compatible with the crack speed. A velocity gap th
appears. The two approaches seem to be very close ind
since simulations from Marderet al. are based on periodic
lattices which should show characteristic dispersion re
tions. The oscillations between neighboring sites wh
stretch the bonds beyond the critical length correspond
wave vectors at the border of the Brillouin zone and idea
should be connected to the presence of resonances tow
the zone boundary. Our description, however, appears to
more general as it expresses the same phenomenon in t
of the energy release rate and phonon band structure.
existence of velocity gaps is shown on the basis of energ
arguments. This has the advantage of not being built up
the particular rule for breaking bonds, but relates the ex
tence of velocity gaps and constant speed advance to a m
general description of the properties of the material. Furth
more, velocity gaps can be read directly from the depende
of the strain energy release rate on the crack speed, a
tionship which we might eventually hope to deduce or c
culate for real materials.
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APPENDIX A: DISPERSION RELATIONS
FOR BULK WAVES

We need to find the eigenvalues for Eq.~2.9!. By inspec-
tion uk5¹`¹* is an eigenvector with eigenvalue

Ak[
m V8

m
@¹•¹* 1¹* •¹#. ~A1!

The remaining two eigenvectors are given by a linear co
bination of¹ and¹* . We then obtain

v2~b¹1c¹* !5Ak~b¹1c¹* !1
~l1m!V8

m

3@¹¹* 1¹* ¹#•~b¹1c¹* !. ~A2!

We can now multiply Eq.~A2! by ¹ to the left and by¹* to
the right, so as to obtain the following coupled equations

~e21!@bh1c#5b@2bh1c~11uhu2!#,

~e21!@b1ch* #5b@b~11uhu2!12ch* #

with e[v2/Ak , b[(l1m) V8 ¹•¹* /(mAk), and h[(¹
•¹)/(¹•¹* ). Solving for eigenvalues leads to

e511b~16uhu! with uhuÞ71
2-10
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and substituting back into the equation we obtain

v25Ak1
~l1m! V8

m
@~¹•¹* !6u¹•¹u# ~A3!

which together with Eq.~A1! completes the dispersion rela
tions. Having obtained these eigenvalues, it is not difficul
find that the corresponding eigenvectors have the form

u5¹6
¹•¹

u¹•¹u
¹* . ~A4!

APPENDIX B: ADDING DISSIPATION

There are at least two pratical reasons to add dissipa
in the dynamics. First, the starting point of any simulati
should be a sample in equilibrium: this can be easily
tained by relaxing the lattice to a configuration of minimu
energy. The second reason is the possibility to damp
waves that would otherwise propagate and reflect back f
the sample borders.

The physical way to introduce dissipation in the model
linear elasticity is the introduction of a viscosity term in E
~2.7!. However, this gives wide dispersion in the dampi
rates of different modes making it inefficient at relaxing s
lutions or reducing boundary reflections.

There is a less physical way to obtain dissipation that
the advantage of being less wave vector dependent and
pler to implement. Starting from Eq.~2.9! a dissipative term
is added so that

mü12mgu̇1G~k!u50, ~B1!

where

G~k!u5V8$2m@¹•¹* 1¹* •¹#u2~l1m!

3@¹¹* 1¹* ¹#•u%.

This approach is clearly unphysical, but useful to reach
configuration of minimal energy or to damp out unwant
reflected waves.

Solutions of the formu(t)5e2qtuk can be found by sub
stitution in Eq. ~B1!, giving q222gq1G(k)/m50, and
leading to

Re$q%5ReH g6Ag22FG~k!

m G J

55
g

G~k!

m
> g2

5 2g2
1

2g FG~k!

m G fast

modes

1

2g FG~k!

m G slow

modes.

G~k!

m
! g2

In Fig. 12 the damping rate Re$q% is plotted as a function o
uku. Curves depend on the value of the dissipative param
g: in particular, the valuek* (g) separates two regimes. Fo
k.k* all the modes are damped with a damping const
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q5g, whereas fork,k* fast and slow modes are dampe
with different magnitudes. The optimal value forg is then
set by maximising the damping rate of the slowest mo
leading us to setk* [kmin5p/L, whereL is the size of the
lattice in fcc unit cells. The choice is also interesting in th
it sets all modes to have the same damping rate

g5ct

p

L
. ~B2!

The time needed to reduce the potential energy of a facte
towards its minimum is then given by

Dt52
h

2pct
lne. ~B3!

During the dynamics, reflected waves travel a distance
at leastL fcc unit cells in a time interval ofDt5L/ct , hence
when reflected waves reach the crack tip, using the opti
value for g their intensity is reduced at least by a fact
e2gDt5e2p;500 for transverse waves, ande2p(ct /cl );25 for
longitudinal waves, using values as in Fig. 2. Note, howev
that for the results presented in this paper we turned
damping off after initial equilibration.

APPENDIX C: DISPERSION RELATIONS
FOR SURFACE WAVES

Consider a solid occupying the portion of space defin
by y,0 with the surfacey50 as its only boundary. In the
continuum case, surface modes are solutions ofv2uk1¹
•sJ50 constrained by the boundary conditionsJ•n
50, wheren is the normal to the surface. They consist
linear combinations of bulk waves with different complexky
~that accounts for their damping towards the interior of t
sample! obeying the bulk waves dispersion relations a
commonv, kx , andkz .

We can apply the same principles to our discrete mo
considering that the layer of sites corresponding to they
50 plane has no force acting on it from above. It follow
therefore that

¹1
1
•sJ21¹2

1
•sJ150, ~C1!

FIG. 12. Damping rate for different values ofg. Note that for
k.k* all modes are damped at the same rateq5g.
2-11
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where

¹1
15 (

$vur v,y.0%
r vexpiq•rv,

¹1
25 (

$vur v,y,0%
r vexpiq•rv,

¹15¹1
11¹1

2 .

Hence,

¹1~k![¹1
1~k!52¹2

2~2k!.

Using Eq.~2.8!, the boundary condition~C1! becomes

B~k!u5l~¹2
1
•¹11¹1

1
•¹2!u1l~¹1¹2

11¹2¹1
1!•u

1m~¹2
1¹11¹1

1¹2!•u50.
ys

ys

hy

hy

16543
We can solve this equation by expressingu as a linear
combination of bulk eigenvectorsu5ae11be21ce3 with
commonv, kx , andkz . For simplicity we can reduce to th
case23 kz50.

Bulk dispersion relations forkz50 have therefore the
form v5 f a(kx ,ky). These can be inverted such thatky

5 f a
21(v,kx). Hence, surface modes are solutions of the f

lowing equation:

detS @B~k!e1#ky→ f
1
21(v,kx)

@B~k!e2#ky→ f
2
21(v,kx)

@B~k!e3#ky→ f
3
21(v,kx)

D 50

provided Im$ f 1
21(v,kx), f 2

21(v,kx), f 3
21(v,kx)%.0.
,
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