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Role of surface waves on the relation between crack speed and the work of fracture
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We show that the delivery of fracture work to the tip of an advancing planar crack is strongly reduced by
surface phonon emission, leading to forbidden ranges of crack speed. The emission can be interpreted through
dispersion of the group velocity, and Rayleigh and Love branches contribute as well as other high frequency
branches of the surface wave dispersion relations. We also show that the energy release rate which enters the
Griffith criterion for the crack advance can be described as the product of the continuum solution with a
function that only depends on the lattice geometry and describes the lattice influence on the phonon emission.
Simulations are performed using a new finite element model for simulating elasticity and fractures. The model,
built to allow fast and very large three-dimensional simulations, is applied to the simplified case of two-
dimensional samples.
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[. INTRODUCTION ties near the surface, pertinent to seismology but not usually
considered in fracture mechanics. However, due to the dis-

It is well known that fracture propagation is strongly gov- crete nature of matter at the atomic level dispersive media
erned by properties of the surface created. The classical Gritzan also support Love and other wave branches so that they
fith criterion requires that for a crack to propagate all thecan enter fracture problems. It is natural to include the whole
elastic energy supplied to the crack tip must at least matcbomplexity of the surface dispersion relations in the descrip-
the work of surface creation. Crack speed is more complition of the material to understand its role, and how and if this
cated: one needs to understand the energetics of mechanisaowmplexity can change the theoretical description of fracture
in competition with surface work, and in this paper we focusdynamics.
on phonon emission. The form of dispersion relations is the fingerprint of the

Phonon emission from the crack tip involves both bulkdiscrete spatial organization of matter, beyond the continuum
and surface waves. In the continuum limit these waves aréimit. In any kind of simulation it is necessary to deal with
dispersionless and emission is only expected when the craakscretization in space. In molecular dynamic simulaffotfs
speed matches any of the speegdsv,, andvy of longitu-  this corresponds to an atomistic description; in mesoscopic
dinal, transverse, and Rayleigburfacé waves. The Ray- models as latticeliké—1*or finite element models ' dis-
leigh speed being the lowest, it is often regarded as the ultieretization has to be imposed in space in order to solve dif-
mate theoretical limit for the speed of crack propagationferential equations of the dynamics. This has an unavoidable
Real materials, however, have properties that do not matcéffect on the dispersion relations that necessarily reflect the
the continuum theory. One famous example of this is thaunderlying lattice.
existence of forbidden crack speeds, which was first ex- In this paper we present a model developed to simulate an
plained by M. Marderet al>~° taking into account the dis- elastic continuum material using finite tetrahedral elements.
crete nature of matter. Their qualitative explanation of theSpace is discretized on an fcc grid, and this is reflected in the
velocity gapwhere no crack can propagate in a periodic lat-dispersion relations of the simulated material. This feature
tice at speeds lower than roughly 1/3 of the transverse wavesould be considered a drawback, but can be exploited to
speed, was related to lattice oscillations breaking bonds benodel the influence of similar dispersions in real fcc struc-
fore the expected time compatible with the crack speed. Thiture materials. The simplicity of the model allows us an ex-
explanation involves the use of a “most stretched bond”tensive understanding of both simulations and theory. The
breakage rule. Here we propose a more cautious but genenalodel, built to allow fast and very large three-dimensional
view using an approach based on the phonon band structustmulations, is used here in the simplified case of two-
and the energy release rate. The phonon band structure cdimensional samples, and phonon emission from the crack
lead to resonant emissions which influence the fraction osurface of planar cracks advancing at fixed speeds is ana-
energy radiated from the crack tip. The existence of forbidlyzed. An analysis of the influence of this emission on the
den crack speeds then follows. crack dynamics is the aim of this work.

When dealing with dispersion relations the reference is Central to our approach is that we fix the crack properties
usually to bulk waves or, in the case of surface waves, to théspeed and shapand measure some of the mechanical prop-
Rayleigh branch responsible for the Rayleigh speed. Gecerties (stress, energy release ratdhis can be done with
physicists and researchers in earthquakes are also familiguccess in two dimensions and gives insight into the behav-
with another kind of surface waves known as Love waves, ior of some of these quantities. In particular, we show that
polarized in the direction normal to that of propagation andthe energy release rate is strongly influenced by the surface
parallel to the crack plane. Love waves only exist in thephonon emission at the crack tip through resonant emission
continuum limit when there is a gradation of elastic proper-at particular crack speeds, leading to the existence of narrow
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bands of permitted crack speed. We also show that the en-
ergy release rate which enters the Griffith criterion can be
expressed as the continuum solution, multiplied by a micro-
scopic function that only depends on the lattice geometry and
that describes the lattice influence on the phonon emission.

The paper is organized as follows. In Sec. Il a full de-
scription of the model is provided, including the description
of the bulk dispersion relations. In Sec. lll, a preliminary
analysis of simulations of planar cracks at constant speed is
given, and in Sec. IV we relate the phonon emission to the
dispersion relations of surface waves and we show the phe-
nomenon of resonances. In Sec. V we analyze how the en-
ergy release rate is influenced by the phonon emission and
we derive the existence of bands of permitted crack speeds.
Finally, conclusions and comparison with other works are
given in Sec. VI.

Il. SIMULATION MODEL

The model is an application of the finite element method FIG. 1. Unit cell for the fcc lattice used in our simulations. This
with the aim of simulating linear elasticity and fractures. In contains eight tetrahedra, each connecting four lattice sites. Dis-

continuum linear elasticifythe Lagrangian has the form placement and momentum are defined on the sites, while strain and
stress are defined on the tetrahedra.
L f(puz Ly ”)dv 2.1)
= ——=Vu.o , .
2 2 (Vu)=a>, ryu, (2.4
v

where the stress tensor is giverfby ) - ) o
with the conditiona X r,ry, =1, wherer, is the vector join-

F=ATrH(Vu)l+ u[Vu+(Vu)T]. (2.20  ing the center of théth tetrahedron with neighboring vertex
sitev, andu, is the displacement field on site Finally, the

The unsymmetrized strain tens®Bu from which the stress equation of motion takes then the form
tensor, Lagrangian and hence equations of motion follow is
central to our finite element scheme below. The key driving
features of the model are that the elastic response is as local
as possible so that nonlinearity and particularly rupture can -
be incorporated, whilst accidental soft modes are avoidedhereoy is the stress tensor of the tetrahedron.
and all mode frequencies are strictly upper bounded for sta-
bility of time stepping. B. Dispersion relations for bulk waves

muv:fv:_aQ/E rtv'((;tl (25)
t

The dispersion relations of our model are relatively
A. Definition of the elastodynamic model straightforward to calculate. These confirm that in the long
To evaluate the unsymmetrized strain tensor, space is digyavelength limit the continuum case is retneve_d, and par-
cretized using an fcc lattice and lattice points are connectelicularly that the use of tetrahedral elements avoids the pres-
using tetrahedral elements. Each element connects fof"C€ Of soft modes at the border of the Brillouin zone, a
points (see Fig. 1, which is the minimum for a full local Problem arising when using simple cubic schemes.
gradient calculation in three dimensions. On each lattice 'Ntroducing a spatial Fourier transform in E@.4), the
point, the displacement fieldis defined, and the Lagrangian 9radient operator can be written as
in its discretized form is given by
, FT[V]=a, r,e* . (2.6)
mu T
L=§U: 2”—2 %Q'(VU)t:a, (2.3

There are two kinds of tetrahed(see Fig. 1 which can
) ) ) ) be readily seen to be mirror images of each other, and their
where thev index spans over all lattice points and tiedex  corresponding gradient operators are related, in the Fourier
spans all the tetrahedral elemenfy. is the volume of the transform, byV,= — V% . In terms of these Eq2.5) can be
system per tetrahedron, 1/8 of the volume of the fcc convenaypressed as

tional unit cell shown in Fig. 1.

The stress tensor is eva_luated at the center_of each tetra- mi=Q'[V,- &+ V- 5,1, 2.7)
hedron through Eq(2.2), given the unsymmetrized strain
tensor at the center of theth tetrahedron is where

165432-2



ROLE OF SURFACE WAVES ON THE RELATION . .. PHYSICAL REVIEW B6, 165432 (2002

(0] [0]
5 - 5 g
4 g 4 PR
i N~
3 3 s ~
4 / . . .

2 2 P FIG. 2. Acoustic dispersion
1 1 curves for the tetrahedron model

] along different directions in recip-
T 0.5 1 1.5 2 2.5 3X K T 0.5 1 1.5 2 K2.5 3X' Fox rocal space: there are no soft

modes at the border of the Bril-
louin zone. These plots are shown
for Poisson’s ratiov=1/3 and us-
ing units wherea=1 for the side

of the tetrahedral cell and,= \2

S for the speed of transverse acous-
4 . tic waves.
3
: e
1
Il o0.25 0.5 0.75 1 1.25 1.5,

(;*l:)\wl_ U+ u[Viu+uv] (2.9 C. Discretizing time

Time can be discretized by introducing a finite time step
The integration scheme used in our simulations is the leap-
frog schemé? in which displacements, and momenta,

anda, is obtained by changing the index from 1 to 2 in Eq. h
(2.9. j

ingE%l;latlon(ZJ) is therefore given, after Fourier transform- are evaluated alternately at subsequent steps
/ L(t—=h
MU= O {u[ V- V5 + V* - V]u 0, (0=u,(t- 20+ 20 2L
+(N+w)[VV*+V*V]-ul, (2.9

p,(t+h)=p,(t—h)+2hf,(1).

whereV=V,=—V3 . This equation can be solved exactly

for eigenvaluegsee Appendix A giving the results shown

graphically in Fig. 2. The dispersion curves are well be-

hayed, anq reflect the unde'rlying fc_c §truqture: even if we are sir?(wh) = hzwg(k), (2.10

trying to simulate the continuum limit, dispersion relations

are the image of the spatial structure of the underlying latwherewq(k) is the value of the frequency of modein the

tice. This cannot be avoided in our model just as in realkcontinuous time If— 0) limit. From this equation it follows

materials. that we requirehwy(k)<1 for modek to be stable in the
The dispersion relations found vindicate the use of tetradiscrete time step simulations, and the global stability limit is

hedral elements. Using a simpler cubic lattice and cubic fi- 1

nite elements leads to unphysical soft modes, where the fre- h<[maxwo(k)] ™"

guency goes to zero whenever two of the three components :

of the k vector approach the border of the Brillouin zone. g interesting to apply this to the simplified case of one

The use of tetrahedra removes '_[his problem si_nce_there IS Mimension. In this case the continuous time dispersion rela-
way to deform a tetrahedron giving a null contribution to theions have the simple form

strain tensor, whilst alternative strategies involving less local

spatial derivatives make fracture properties harder to imple- 5 ,

ment and control. wy(k) = wmaxsmz(
The value of the maximum frequency is set by the longi-

tudinal branch at the Brillouin Zone boundary. We will see inwith @y,,=(2/2) V(A +2u)/p. Comparing Egs(2.10 and

Sec. II D that such a value remains an upper bound eve(®.1]), it is easy to observe that the stability limit for the time

when considering the finiteness of the sample or the presenstep ish= 1/w.. Moreover, if we use exactly this value for

of fractures. This value provides the minimum period of sitethe time step, we obtain the linear dispersion relation

motion. Due to the significant role of surface waves in this=ck with c=aw/2. Thus using the maximum allowed

paper, a study on their dispersion relations will be describedime step, the relation between the frequency and the wave

later in Sec. IV. vector is the same as in continuum elasticity. This notable

Fourier transforming these equations and comparing with
the limit h— 0 leads to the dispersion relation

ka
> (2.11
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property is valid only in one dimension and is lost in two and
three dimensions where the dispersion is more rich. Never-
theless, this property shows that having discretized space, it A
not necessarily an optimal approximation to the continuum y
to use a very s_mall time step as in standard molecular dy- _____ | A
namics simulations. X

In three dimensions 4 IS given by the maximum fre-
guency over the entire first Brillouin zone. Using the maxi-
mum allowed time step dispersion relations are closer but not l l l
equivalent to the continuum limit.

The leap-frog scheme used here to discretize time is rela- . . , . . .
tively robust with respect to energy conservation due to its FIG. 3. Setup for S'mUIat'on.s' A fixed displacement is applied
. g . : . on the top and bottom boundaries, and the crack advances at con-
time reversibility and symplectic properti&sThere is an .

. - stant speed up to the middle of the sample.

exactly conservetl-dependent HamiltoniaH,, very close to
the naive oné® with, for example,

from which it follows that

1
Hp== (K, +K_)+U+0(h?), (2.12 ) 2U
2 pw=—"—.
inetic energi > Jul?
where K, and K_ are the kinetic energies advanced and <~ F
retarded by+ h relative to the time step where the potential
energyU is evaluated. Breaking a tetrahedron removes strictly non-negative terms

In these simulations the value chosen for the time step halsom the numerator of the right-hand side, and this can only
beenh=0.1h,,,,. Using such time step, dispersion relation lower the maximum ofv.
are close to the continnum time dispersion relations. Some

trial simulations withh=0.01 hmax have been performed I1l. SIMULATIONS OF PLANAR CRACKS
showing no substantial difference with the results here re- AT CONSTANT SPEED
ported.

An advancing crack is simulated through the breaking of
D. Nonlinear elasticity and breakage tetrahedra. To decide when to break we need a breakage rule.

) One possibility is to break tetrahedra as soon as they over-
The model up to now has been described as a model fqfome some fracture criterion, for example, a critical value of

linear elasticity. However, since the link between the stres$yincipal stress or elastic energy. In this work we instead
and the strain tensor is given exclusively through B2, follow a complementary approach, advancing a straight
we can easily generalize the equation to include any kind Ofrack at constant speed and measuring the fracture criteria

elastic response as well as anisotropies. For instance,  achieved such as work of fracture. This provides new insight
L o T into the relationship between energy release rate and crack
o=f[Vu+(Vu)'], (213 speed, including any intervals of forbidden velocities. For

computational convenience we focussed on crack speeds

where each tensor compondmtrepresents any kind of non- g . .
_commensurate with our time step, that is,

linear function. In this paper we study only the simpler sce
nario of linear elasticity augmented by breakage of tetrahedra 1
corresponding to the advance of the crack. We brake tetrahe- R p—
dra by abruptly setting its elastic constant@nd u to zero 2hn

and it is the resulting recoil of the neighboring sites Wh'Chfor n=1.23.... Anydesired crack speed can be obtained

excites phonon emission. . ) i
Breaking tetrahedra does not compromise the maximur;lrom this sequence by modest adjustment of the time Istep

allowed time step, because we can readily show that the _ _
maximum vibrational frequency cannot increase. To see this A. Stress field of advancing cracks

consider Eq(2.5) rewritten in the form The model presented above is fully three dimensional.
However for a strictly planar type-l crack, commensurate
pl, = — au with our lattice, it is readily shown that the resulting dynami-
v au, cal solution is strictly planar with the displacement all in that

plane. We have exploited this and shrunk our system to one

From Eq.(2.3), we clearly haveX, u, - dldl du, =2U, Where .. ol deep in the third dimension, with periodic boundary
U is the total potential energy. Now consider a normal mode.q - qitions.

obeying In our simulations the Lameoefficients are set so that the
au Poisson ratio iss=1/3. The boundary conditions correspond
pwll,=— to imposing fixed normal counter displacement at the top and
du, bottom boundaries, i.ey,=0, u,==*a, aty==*L/2, and
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FIG. 4. (a) Absolute value of
the trace of the stress field for a
crack advancing at half of the
transverse wave speed, with Pois-
son ratiov=1/3. This is the cen-
tral 200200 region from a
sample of 40& 400 tetrahedra.
| Intensity spans from whitézero
0.0000 ] to black (highest values (b)
Trace of the stress field measured
along the fracture plane, through
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-0.0010 s : the crack tip whose singularity is
0.0 100.0 200.0 300.0 400.0 ..
k, clearly visible, and onwards ahead
of the crack tip.
oyx=0yxy=0 on the right and left facetsee Fig. 3 The dw
initial condition is the static elastic solution, found by relax- Vo= = V- (3.2

ing the lattice to its configuration of minimum energy by
adding dissipation as discussed in Appendix B. Because ofhis matching of phase velocity and group velocity
the linearity of the equations, the magnitude of the imposedsketched as well in Fig.)5s the condition of resonant emis-
boundary displacement does not influence the results: for theion. We can expect for these crack speeds a sharp increase
following results the starting displacement is 1% of thein the intensity of the phonon emission. To take this discus-
sample height. The advancing fracture is simulated until itsion further we need to describe the dispersion relations of
reaches the middle of the sample, then a snapshot of theurface waves for our model, as detailed in the following
stress field is taken. section.

In Fig. 4(a) the trace of the stress field for a typical simu-
lation is shown: Strong emission of surface waves is visible IV. DISPERSION RELATIONS EOR SURFACE WAVES
on the crack surface, as also shown in Figby.In particu-
lar, from this last figure it can be seen that the amplitude of The description of the modes in which a lattice with an
these oscillations is smaller but of the same order of magniunderlying fcc symmetry can vibrate is more complex than
tude as the stress level at the crack tip. the one given by continuum elasticity. Frequency as a func-
tion of wave vector is no longer linear, and becomes periodic
in the extended zone scheme. Moreover, new branches of
surface wave appear besides the continuum Rayleigh branch.

When a crack is advancing new surface is being createdrhis richer band structure is crucial in understanding features
and waves are emitted both into the bulk and along the crackn resonant phonon emission.
surface. In a system of reference comoving with the crack
tip, the frequencyw’ of emitted waves has to match the
temporal frequencies with which lattice structure presents it-

self to the crack tip, leading to the selection rule Due to the simplicity of the model it is not difficult to
evaluate the dispersion relations of its surface waves. These

B. Description of the basic phenomenon

A. Theoretical surface dispersion relations

o' =w—k-v=g-v,

whereg is any reciprocal lattice vector. This is equivalent to
a simple matching of phase velocity

w=Kk-v, (3.1

where the wave vectok is viewed in the extended zone
scheme as sketched in Fig. 5.

From a graphical point of view, a crack advancing at a
given speed can be represented as a straight line in the
(ky,w) plane, its slope given by the crack speed. The crack
emits waves at the frequencies and wavelengths correspond- g 5. schematic description of the basic matching phenom-
ing to the intercepts of this line with the dispersion relationsena, A crack advancing at some speedhatches wave phase ve-
(see Fig. 3 in the extended zone scheme. locity at points A, B, C, and D, so that corresponding phonons can

For some crack speeds conditi1) may be fulfilled not  pe emitted from the crack tip. The figure shows the special case in
just for onek point, but over a neighborhood &f This can  which there is aesonantmatch at D: the crack speed also matches
readily be shown to reduce to the wave’s group velocity which should lead to strong emission.

kx

5 10 15
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FIG. 6. (a) Points represent theoretical dispersion relations for surface waves in the first Brillouin zone, for our model with a (0,1)
surface normal and'=1/3, with units as in Fig. 2. Lines show the dispersion relations for bulk modes. All surface modes hayp Im(
>0 to be damped foy— < andk,=0 corresponding to the two-dimensional constraint in our simulations. The Rayleigh and Love branches
are labeled a&, andL. The other high-frequency branches are not interpretable in the continuum(bjmiRispersion relations measured
by excitation of a free surface, compared with the theoretical branches. More than one frequency can be excited féy, a Tinesize of
circles reflects the intensity of the signals. Only three of the five branches are excited: the Love branch is not visible due to its polarization,
however it is not clear the reason of the lack of evidence ofRfjebranch.

are solutions ofw?u,+V-o=0 with boundary condition ing that Eq.(3.1) applies we can compare observed values of
&-n=0, wheren is a unit vector normal to the surface. Ky at crack speed with k, versusw/k, from the theoretical
Solutions are linear combination of bulk modes characterizedispersion relations. The one delicate point is tais inde-
by the same frequency and surface wave vector compo- terminate up to multiples of a reciprocal lattice vectpr
nents, and different compléx n that give decay towards the Figure 7 shows the agreement between measured emission
interior of the sample. and the theoretical curves, with assignment of multipleg of
Calculations of the surface modes are reported in Appento the measured, as the only element of fitting.
dix C. Results are shown in Fig(a#.
The figure shows quite a rich diagram which includes the
Love branch and some high-frequency branches. It is clear

that all the branches could take part in the process of phonon Resonances appear as soon as (Be) is fulfilled: this
emission. matching of phase velocity and group velocity can lead to

resonant emission as sketched in Fig. 5. Plotting the phase
velocity w/k, versusk, , the resonant condition is equivalent
to a plateau inw/k, . Predicted resonances can therefore be
The dispersion relations can be directly measured by eXeasily read from our computed dispersion relations as shown
citing the top free surface of a simulated elastic sample. Sitef, Fig. 8. Due to the periodic band structure there is an infi-
of the top face are displaced according to one specified wavgite number of possible resonances corresponding to the in-
vectork, . The surface is let free to oscillate and the frequeninite number of Brillouin zones. However, we obsefvet
cies of the corresponding excited modes are measuredurprisingly that signal corresponding to resonances in
Changing thek, vector atk,=0, the entire first Brillouin  higher Brillouin zones is weak, so our discussion in this pa-
zone can be spanned and a direct measurement of the dispger focuses on the first two Brillouin zones only.
sion of surface waves can be obtained. Results are shown in
Fig. 6(b). O/ky
It is evident that all the surface excitation is associated
with the theoretical branches. No emission corresponding to 2
the Love branch is visible due to its polarization perpendicu-
lar to our two-dimensional plane. We have not identified the

D. Resonances

B. Direct measurement of surface waves

reason why no emission is observed corresponding t&ghe 1.
branch.

Our measurements do show continuation of the theoreti-
cal branches beyond their end points. We have verified from 0.

calculations of Appendix C that these continuations corre-
spond to frequencies with a small imaginary part.

FIG. 7. In this plot crack speeds correspond to horizontal lines.
Black dots correspond to the emission measured from the crack

Let us consider a snapshot at timef the crack surface. surface. For simplicity only emission from the first and second Bril-
Depending on the crack speed, some of the vibrationabuin zone(folded back into the first zonehas been reported. All
modes will be excited. Through a Fourier transform of thedots lay on the theoretical dispersion relations or on their extensions
surface profile the excitekl vector can be obtained. Assum- in the second Brillouin zone.

C. Emission from advancing cracks
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O/ (kyxvi) speed appears to result from the fact that the penetration
length of such waves is of order their wavelength, and this in
turn becomes of the order of the sample size as the Rayleigh
speed is approached. At high speeds, the total intensity of
surface waves cannot be retrieved by analysing just the crack

0 profile.
V. ENERGY RELEASE RATE
0. The presence of resonances suggests that an effect on the
crack dynamics has to be expected. We will now show how
the most commonly and relevant measured quantity of crack
0. dynamics, namely, the energy release rate, is affected by this
phenomenon.
In the simulations here reported, a planar crack is left to
0 advance at constant speed from a short starting notch. At

early times the crack is almost equivalent to a crack advanc-
ing in an unbounded medium, since the sample boundaries
are distant from the crack tip. When the crack becomes large
compared to the linear dimensions of the sample the crack
L2 3 4 5 6 starts to “feel” the presence of the boundaries and the correct
FIG. 8. The theoretical phase velocity/k, versusk,, with ~ description is that of a crack advancing in a strip. In the
horizontal lines showing where resonant phonon emission can beontinuum and steady limit the short crack regime is charac-
expected. The lines show resonances due to the first and the secoi@fized by a linear increase of the energy releaseGatgth
Brillouin zone only. Dashed lines correspond to resonances due time, whilst in the long crack regime th® function is time
bulk dispersion relations. independent. Both regimes are sensitive to the crack speed.

The presence of resonances can be verified by analysing A. Energy release rate in a discrete sample
the total intensity of emitted waves as a function of crack The discrete nature of matter is reflected in the depen-
speed. Figure 9 shows the total wave intensity integrate@ence of the energy release r&@eon crack speed. We can
over ]USt the crack Surface, whilst the discussion of the fu”describe the macroscopic energy release rate per unit dis-

radiated wave power will be given in Sec. V. tance of crack advand8,, as the sum of two contributions:
Corresponding to the speeds where resonances are ex-
pected there is an effective peak in the wave intensity. These Gm(v,1)=Gplv,t) + Gpr(v,t). (5.0

peaks are slightly shifted towards lower speeds, which can b&
interpreted in terms of the concavity of dispersion relations
at the resonance. When the crack advances at a speed inght?II
below the resonance, more modes can be excited, giving
maximum in intensity slightly shifted. The abrupt drop of
intensity at higher crack speedapproaching the Rayleigh

m(v,t) is the solution of the continuum limit which gov-
rns the macroscopic delivery of energy towards the crack

, for which we have theoretical expressions available.
bor(v,1) andGp(v,t) are, respectively, the breakage energy
release rate and the phonon energy release rate. Our strategy
below is to directly measure the breakage energy release rate
from the potential energy lost when tetrahedra are broken.
L) The macroscopic energy release r&g(v,t) is largely
determined by the macroscopic conditions and the length of
the crack. In the long crack limit in the case of a strip of
height 2 and fixed displacemend at each boundary, the
macroscopic energy release rate corresponds to the amount
of elastic energy stored far ahead of the crack{ipFrom

Eq. (2.2 the stress field ahead of the crack tip has

oy =(\+2u)e, (5.2
v/ Vv

0.2 0.4 0.6 0.8 wheree= d/l is the imposed strain. Hence the time indepen-

_ o dent macroscopic energy release rate is
FIG. 9. The total wave intensity integrated over the fracture

surface, as a function of crack speed. Peaks in the emission corre- G?\CII = (7\+2,u)62| (5.3
spond to the resonances shown in Fig. 8, as indicated by vertical
lines. A systematic shift towards the lower crack speeds is visibldndependent of the crack speed

and is related to the convexity of the dispersion relaties text The translation of the Griffith criterion in the discrete case
These results were obtained from simulations of samples of 806 that the crack will advance as soon as the energy stored in
% 800 tetrahedra. the tetrahedron to bredR,, is greater than a threshold value
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FIG. 11. Dependence of breakage energy release rate on crack

0.00%_'0 : 50'0_0 ! 10(')0_0 —1500.0 speed in the long crack regime. Crack propagation with a steady

speed should only be stable where this function is decreasing. Ver-

tical lines show the theoretical position of resonant surface wave
FIG. 10. The measured energy delivered into bond breaking peemission: the two dashed lines correspond to resonant bulk wave

unit length of crack, as a function of time for different crack speeds.emission. The figure equivalently shows the behavior of the effi-

From these data we measured the early time sl@jg®,0) corre-  ciencyE(v) with the crack speed, as for long cracks and fixed grip

sponding to the short crack regime affiom the slope of the time  conditions the two are strictly proportional.

integrated plots insgtthe long crack plateau values,(v). The

(nontrivial) sequence of the curves is more readily appreciated frongarly with time initially: corresponding measured slopes

Fig. 11. G,,(v,0) are discussed below. The long crack regime exhib-

its fluctuations due to waves reflected from the sample

connected with the toughness of the material. The behavidsoundaries, but the average magnit@@g(v) of the break-

of G, with the crack speed is therefore crucial for under-age energy release rate can be clearly retrieved.

standing the crack dynamics. The Gy, (v) in the long crack limit is shown as a function
The breakage energy release rate clearly depends on tloé crack speed in Fig. 11. Vertical lines indicate the speeds at

external macroscopic conditions as well as the discretenessghich resonances are expected to be seen according to Fig.

t

of the model. However, it can be expressed as 5. The two lines labeled ag’ and B8’ correspond to reso-
nances due to the dispersion relationsdafk waves Corre-
Gp(v,t)=E(v)Gu(v,1), (54 sponding to each line there is a clear decrease of the energy

where we have introduced tresficiency Ev). In the long release rate, meaning that more energy is emitted as radia-
crack limit for the fixed grip setup used in our simulations 1ON- _ _ _ ,
this givesGy(v,t)=E(v)G3, where the efficiency is the The crucial feature of Fig. 11 is that it reveals how the

sole source of velocity dependence. The effect of local disENeray availaple for breaking bonds responds to the speed of

creteness thus separates from the effect of macroscopic egb-e cra_ck, for a given macroscopic energy release rate. This
me figure can be read in reverse: given some threshold

ternal conditions: all the dependence on the crack speed R . :
hidden in the efficiency functio&(v) which is local to the value foerf(_v) correspondlng to a given fracture togghness
crack tip region and independent of the macroscopic regim f the material, the possible crack speeds are obtained from

. . . the graph.
as will be shown below. The meaning of the efficieritfp) -
is as follows: wherE(v) is close to zero, the energy deliv- It can be further argued on grounds of stability that only

ered to the crack tip is mostly spent in phonon emission séhe speed ranges wheB,(v) decreases with are allowed

that the mechanism is not sufficient for the crack to advance®> steady C.rti?k speeds. I,? the courr:tert palse ;\Gtg"(e’)
WhenE(v) is close to 1, all the energy delivered is used to!Ncreases withv, a prospective overshoot i ieads to ex-
break tetrahedra, and the crack can advance promptly. WeESSIVE bond br_eakage_ energy and hence acceleration, and an
will see that the dependence onis crucial in the determi- undershoot to insufficient breakage energy and the crack

nation of bands of permitted crack speeds, not described iWus.t slow further. Thus stable ste_ady crqck propagation s
the continuum elastic theory. The correct derivation of thes onfined to narrow intervals associated with resonances and

; ; he high speed regime.

bands will be given below. It is worth pointing out that most of the features shown in
Fig. 11 are due to high frequency branches either in the first
or second Brillouin zone. The first resonance due to the Ray-

The breakage energy release r&ig(v,t) in our simula- leigh branch (apart from the resonance at the Rayleigh
tions corresponds, for a given crack moving at speedo  speedis the marginally visibles resonance. This shows how
the value of the elastic energy that disappears from the sysmportant it is to include the full complexity of the band
tem with each broken tetrahedron at timéigure 10 shows structure within the analysis.
measurements from a set of simulations involving samples of The data in Fig. 11 are at constant macroscopic energy
of height 120 tetrahedra and up to 3500 tetrahedra long forelease rateG,,, so due to Eq.(5.4) they also show the
increasing crack speeds. We obsef¥g(v,t) to grow lin-  behavior of the efficienc¥(v) with the crack speed. How-

B. Measuring the energy release rate
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TABLE I. The efficiency of energy delivery into bond breaking, compared between the different dynami-
cal regimes of short and long cracks, as a function of crack speed. The second and third columns show the
efficiency computed from early time slopes of the energy into bond breakage compared to that macroscopi-
cally delivered, for two different sample heights. Resultsiffer0 were obtained from a set of simulations of
static fracture with different notch lengths. Results for low and high crack speeds are influenced by problems
in the measurements in the short crack limit: this effect is reduced increasing the size of the sample as shown
in the third column. The final column shows the ratio of these short crack regime efficiencies to those
computed from the long crack regime shown in the fourth column: these results clearly confirm that the
efficiency is insensitive to dynamical regime, consistent with our assertion that it is a property local to the

crack tip.

21=120 2=800 2=120
vlv, E(0,0)= Gér(v,O) E(0.0)= Gér(v,O) E(U):G;(U) E(v,0)/E(v)

Gy (v,0) Gy (v,0) G (v)

0.0 0.2570.006 0.259%0.0008
0.1 0.19£0.04 0.22£0.04 0.2408:0.0004 0.90.2
0.2 0.52-0.03 0.52£0.01 0.528-0.003 0.98-0.02
0.3 0.40-0.02 0.396-0.006 0.37%0.001 1.03:0.02
0.4 0.44:0.02 0.432:0.004 0.43150.0002 1.06¢0.01
0.5 0.48:£0.02 0.462-0.004 0.4636:0.0001 0.99%0.009
0.6 0.59£0.02 0.576:0.006 0.576%0.0004 1.06:0.01
0.7 0.55-0.04 0.514-0.006 0.520%*0.0001 0.990.01
0.8 0.2:0.1 0.33:0.02 0.3202-0.0001 1.030.06
0.9 - 0.079:0.007 0.0896:0.0005 0.8%0.08

ever, if the efficiencyE(v) is governed only by local phe- shows, we obtain the same behavior B(v,t) in our
nomena, then its behavior with the crack speed should bgimulations. In the case of symmetric growlitfv) has the
independent of the crack propagating in steady state or trafigrm:

sient regime, provided the crack speeds fixed. From the

knowledge ofE(v) then we could find out the dependence of | (b/q)R(q)
Gy(v,t) on the crack speed for any macroscopic set up, 2(v =_W’

provided we know the macroscopic continuum solution.

To verify the independence & (v) on the dynamic re- — (h2_ 2022 2 72 [R2— 2
gime, we also analyzed the short crack limit. In this case, thgvhereR(q) (b7 297 +4g7va~a"yb"~q" and
crack can be seen as advancing in an unbounded medium as q [~ R(i )
the sample boundaries are distant from the crack tip. For a — d
planar type-l crack propagating at steady speed an un- b>Jo (g*+n?)¥*Va’+ »?
bounded continuum medium the macroscopic transfer of en-

H _ -1 _ -1 _ .. -1
ergy to the crack tigper unit distance advancgis given by witha=v, *, b=v, 7, q=v - We thus have a closed form
for the early time slop&y,(v,0).

Due to these results, to prove thatv) is independent of

| ~*(b/q)=

2
A . .. .
G&(v,t): - K|2(v,t). (5.5 the dynamic conditions we just have to check that
2c;uD
. G (v,0)
Hereay, = \1—v2/vZ, andD = 4a,a,— (1+ a?)2. The con- E(v,0)= GL(v,0) (5.6

stantsv, and v, represent the longitudinal and transverse
sound speeds, anld,(v,t) is the stress intensity factor at matcheskE(v) already measured from the long crack limit.
time t for the given crack speed. Simulations of symmetric crack growth can be performed
A functional form forK,(v,t) is available for the Broberg simply by fixing the longitudinal displacement at the left and
problen??%?2of a crack expanding from zero initial length in right boundaries: though this would correspond to having a
a uniform tension field and infinite medium. In particular it periodic system of symmetric growing cracks, the interaction
can be written in the form between cracks is weak due to the strip geomedy(v,0)
then corresponds to the measured slopes of the early regime,
K (v,1)=3(v) o Jmot, and Gy, (v,0) is the time derivative of the macroscopic en-
ergy release ratés.5).
where o, is the traction applied on the crack faces. The Results of the comparison are reported in Table |. Because
energy release rate increases linearly with time. As Fig. 1@he productvt corresponds to the crack length, the case
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=0 was reconstructed by analysing several simulations ao$ion and hence due to the discrete properties of matter.
static cracks with different crack lengths and retrieving the A related explanation of the presence of sets of forbidden
resulting overall slope. For low and high crack speeds, proberack speeds has already been given by Maede >~ by
lems arise when measuring the short crack regime: for lowsing a mechanistic description of bond breakage in terms of
crack speeds data is noisy and there are few points to avemost stretched ones. According to this approach cracks can-
age; for high crack speeds the long crack limit is achievedot advance at speeds below some threshold, since due to
soon after the crack starts moving, so that the short craclattice oscillations bonds would break before the expected
regime is properly defined only when the sample height igime compatible with the crack speed. A velocity gap then
very large with respect to the size of a tetrahedron. This isppears. The two approaches seem to be very close indeed,
still not the case even when dealing with our 120 tetrahedraince simulations from Mardest al. are based on periodic
wide sample. Better results for the short crack regime werdattices which should show characteristic dispersion rela-
obtained from simulations of 800800 tetrahedra as the tions. The oscillations between neighboring sites which
third column of the table shows. stretch the bonds beyond the critical length correspond to
These results show that the efficienEyv) is indepen- wave vectors at the border of the Brillouin zone and ideally
dent of the particular dynamic regime. The absolute valueshould be connected to the presence of resonances towards
are also of interest. The=0 limit shows that when the the zone boundary. Our description, however, appears to be
tetrahedra at the tip of a static crack are broken, about 75%nore general as it expresses the same phenomenon in terms
of the strain energy released comes from relaxation in othedf the energy release rate and phonon band structure. The
tetrahedra which is radiated in waves. The maximum effi€xistence of velocity gaps is shown on the basis of energetic
ciency(about 60%) occurs at=0.6 v,. This happens to be arguments. This has the advantage of not being built up on
just below the Yoffe speed-0.63v,=2/3vg, but as our the particular rule for breaking bonds, but relates the exis-
measurements exclude the possibility of crack branching wéence of velocity gaps and constant speed advance to a more
presume this to be a coincidence. general description of the properties of the material. Further-
more, velocity gaps can be read directly from the dependence
of the strain energy release rate on the crack speed, a rela-
V1. CONCLUSIONS tionship which we might eventually hope to deduce or cal-

We have presented a finite element model for linear elasculate for real materials.
tic fracture mechanics, which has proved surprisingly and
revealingly rich in its behavior even in the two-dimensional ACKNOWLEDGMENTS
case. The model was designed to enable fast numerical simu- AP. would like to thank A. Petri for its observations and
lations of large systems particularly with three dimensions in[he l.JséfuI discussions. We a{knowledge support of EU Con-
mind, but the main strengths which we have exploited in this[ract No ERBFMRXC'i'980183
paper are direct control of the local physics which it offers, ' '
combined with bulk and surface dispersion relations ame-
nable to simple theoretical computation. Our results suggest
that inclusion of known phonon dispersion can be crucial to
understanding the speed of fracture propagation. We need to find the eigenvalues for Eg.9). By inspec-
Our results relate to |deally brittle materials, in that we tion U= V/AV* is an eigen\/ector with eigenva|ue
have included no significant mechanism of local dissipation
and most particularly no plastic deformation mechanism. Y
Linear damping is readily included, and indeed could be ex- A= m
ploited to mitigate the effects of waves reflected back from o . ) ]
the sample edges. Spontaneous crack roughness and branfR€ rémaining two eigenvectors are given by a linear com-

APPENDIX A: DISPERSION RELATIONS
FOR BULK WAVES

!

[V-V*+V*.V]. (A1)

ing will be addressed in a following paper. bination of V-andV*. We then obtain
The crucial mechanism which our results incorporate be- ,
. Lo - AN+ u)Q
yond continuum fracture mechanics is the radiation of w(bV +cV*)=A bV +CcV*) + ————
phonons from the crack tip. This we show leads to a signifi-
cant speed dependence in the fraction of macroscopic strain X[VV*+V*V].(bV+cV*). (A2)

energy available as work to create new surface. For a static
crack in our model, this efficiency is only 25%, thus modi- We can now multiply Eq(A2) by V to the left and byv* to
fying the most naive Griffith criterion for crack propagation the right, so as to obtain the following coupled equations:
by a factor of 4. The general rise in bond breaking efficiency
with speed towards a global maximum for typical fast crack
speeds rules out steady crack propagation at most lower
speeds, and remains to be understood more quantitatively. (e=D[b+cn*1=Blb(1+|7*)+2cn*]

We have been able to interpret fine structure in the bongyith e=w?lAc, B=(\+u) Q' V-V*/(mA), and =(V
breaking efficiency associated with resonant conditions fory)/(v.v*). Solving for eigenvalues leads to
surface wave emission. This leads to islands of stable crack
velocity, which can only arise at lower speeds due to disper- e=1+pB(1=%|y|) with |n#F1

(e=1)[bn+cl=pl2by+c(1+]7*)],

165432-10



ROLE OF SURFACE WAVES ON THE RELATION . .. PHYSICAL REVIEW B6, 165432 (2002

and substituting back into the equation we obtain 2y

w2=Ak+%[(V-V*)i|V~V|] (A3)

which together with Eq(A1) completes the dispersion rela-
tions. Having obtained these eigenvalues, it is not difficult to vt
find that the corresponding eigenvectors have the form

V.-V

quilV-Vl

v*. (A4)

APPENDIX B: ADDING DISSIPATION * &

=

There are at least two pratical reasons to add dissipation _ )
in the dynamics. First, the starting point of any simulationk ';LG'le' Igamplngdrate f%r dlffsrent values gf Note that for
should be a sample in equilibrium: this can be easily ob- >« all modes are damped at the same Kgtey.
tained by relaxing the lattice to a configuration of minimum _ *
energy. The second reason is the possibility to damp ou Y .whereas fork;k fast and Sl.OW modes are damped
waves that would otherwise propagate and reflect back fron. ith d'ﬁeref?t m_agmtudes. Th.e optimal value feris then
set by maximising the damping rate of the slowest mode,
the sample borders. leading us to sek* =k,,=7/L, wherelL is the size of the
The physical way to introduce dissipation in the model forIattice(?n fcc unit ceﬂs m'Ilghe ch,oice is also interesting in that
linear elasticity is the introduction of a viscosity term in Eq. . ' . 9
(2.7. However, this gives wide dispersion in the dampingIt sets all modes to have the same damping rate
rates of different modes making it inefficient at relaxing so- -
lutions or reducing boundary reflections. y= C‘f' (B2)
There is a less physical way to obtain dissipation that has
the advantage of being less wave vector dependent and sirfihe time needed to reduce the potential energy of a factor
pler to implement. Starting from E@2.9) a dissipative term  towards its minimum is then given by
is added so that

At=

mu+2myu+G(k)u=0, (B1) Ine. (B3)

- 27TCt
where During the dynamics, reflected waves travel a distance of
—0'f— UV LVR .V TU— (N at least. fcc unit cells in a time interval oAt=L/c,, hence
ClU=Q{=p[V- V4V V]u= (At p) when reflected waves reach the crack tip, using the optimal
X[VV*+V*V]-u}. value for y their intensity is reduced at least by a factor

. . . e?7Al=¢?7~500 for transverse waves, aa#"(“t/%)~ 25 for
This approach is clearly unphysical, but useful to reach thg, i dinal waves, using values as in Fig. 2. Note, however,

configuration of minimal energy or to damp out unwantedinat' for the results presented in this paper we turned all

reflected waves. ; . . :
damping off after initial equilibration.
Solutions of the fornmu(t) =e~%'u, can be found by sub- ping q

. B . . . 2_ —
stitution in Eq. (B1), giving q°—2yq+G(k)/m=0, and APPENDIX C: DISPERSION RELATIONS

leading to FOR SURFACE WAVES
Rc{q}zRe{ v /72_[%}] Conside_:r a solid occupi/ing th_e portion of space defined
m by y<<0 with the surfacey=0 as its only boundary. In the
, continuum case, surface modes are solutionsy&fi+V
y %2 . .0=0 constrained by the boundary conditioa-n
m =0, wheren is the normal to the surface. They consist of
1 [G(k)] fast linear combinations of bulk waves with different comp
= - —[—} (that accounts for their damping towards the interior of the
2yl m | modes G(k) <2 samplé obeying the bulk waves dispersion relations and
1 |G(k) slow m 4 commonw, Kk, andk,.
Zy{ m } modes. We can apply the same principles to our discrete model

. considering that the layer of sites corresponding to yhe
In Fig. 12 the damping rate Rg} is plotted as a function of =0 plane has no force acting on it from above. It follows
|k|. Curves depend on the value of the dissipative parameteherefore that

v: in particular, the valué™* (y) separates two regimes. For e L.

k>k* all the modes are damped with a damping constant Vi 02+V;-01=0, (CyY
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where
Vi= >  r.exgd",
{Ulru,y>0}
V= r,exgd o,
1 {U|rv,y<0} v Ij
vt u-
Vi=Vi+V;.
Hence,

VE(K)=VY{ (k)==V;(—k).
Using Eq.(2.8), the boundary conditioiC1) becomes
B(K)U=A(V, -Vi+ V] -V)u+A(V,V, +V,V;)-u
+u(VyVi+VV,)-u=0.

PHYSICAL REVIEW B 66, 165432 (2002

We can solve this equation by expressimgs a linear
combination of bulk eigenvectora=ae; +be,+ce; with
commonw, Kk, andk,. For simplicity we can reduce to the
casé® k,=0.

Bulk dispersion relations fok,=0 have therefore the
form w=f,(ks,k,). These can be inverted such thigf
= f;l(w,kx). Hence, surface modes are solutions of the fol-
lowing equation:

[B(k)el]ky_,ql(w,kx)
de [B(k)eZ]kyﬂfzfl(w,kX) =0
[B(k)eB:lkyﬂf;l(w,kx)

provided In{f; *(w,ky),f5 (@,ky), 3 (w,k)}>0.
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