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Sintering of two-dimensional nanoclusters in metal100) homoepitaxial systems:
Deviations from predictions of Mullins continuum theory
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We present a comparison of the predictions of atomistic and continuum models for the sintering of pairs of
near-square two-dimensional nanoclusters adsorbed ofi @@ surface in fcc metal homoepitaxial systems.
Mass transport underlying these processes is dominated by periphery diffaSipaf adatoms along the edge
of the clusters. A Mullins-type continuum model for cluster evolution incorporates anisotropy in the step edge
stiffness(reflecting the energetics and adsorption site lattice structure in the atomistic)memlcan also
account for anisotropy in the step edge mobilitgflecting details of the kineti¢sin such continuum treat-
ments, the characteristic time,, for relaxation of clusters with linear size of ordErsatisfieSTeq~L4.
Deviations may generally be expected for small sizes low temperature3. However, for the relaxation of
dumbbell-shaped clustefsormed by corner-to-corner coalescence of square clysi@@mistic simulations
for PD with no kink rounding barries=0) reveal thatreq~ L always applies. In contrast, atomistic simula-
tions with a large kink rounding barri€6>0) reveal distinct scaling Witheq~L3, for low T or smallL, thus
providing an effective way to test fof>0. For the relaxation ofaceted rectangular clusterdormed by
side-to-side coalescence of square clugtatemistic simulations for PD witd=0 reveal thatreq~ L2, for low
T or smallL. This is consistent with a recent proposal by Combe and Larralde. Fordar@er,q has an even
weaker dependence dn We elucidate scaling behavior and the effective activation barrier for relaxation in
terms of the individual atomistic PD processes and their barriers.
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I. INTRODUCTION tal uncertainty is substantjalObservations of analogous PD-

Metal(100) homoepitaxial systems allow the possibility to dominated sintering phenomena are also available for Cu/
explore two-dimensional (2D) analogs of sintering Cu(100) at 300 K? Indeed, the experimental observations for
processed? traditionally studied in 3D systenisBy depo- ~ Sintering of 2D adatom islands in these two systems prima-
sition of up to 0.3—-0.4 monolayerdiL’s) of atoms on a rily motivates the detailed theoretical modeling and analysis
perfect terrace, one can create distributions of isolated 20 this paper. _
adatom islands or clusters, each of which has a near-square HOWever, it is appropriate to note that several aspects of
equilibrated shape. Nearby pairs of islands can collide oPUr analysis will have more general applicability than just to
coalesce either by growth during deposition, or alternatively2datom island sintering in me(aD0 homoepitaxial sys-

by post-deposition diffusion. Thereafter, one can monitor th ems. Qne can examine the analogou_s Processes fo_r adva-
cancy islands, which can be created either by sputtering, or

post-deposition restructuring of such pairs to form a singleby deposition of just below 1 ML of atoms. Limited analysis

Iarger. near-square islardle., sintering, B? sed N Previous = ¢ e sintering of such near square advacancy islands at 300
experimental studies of these systemé;° we believe that K is in fact available for Ag/AgL00) (Ref. 1 and for

the mass trar_wsport underlying sintering IS dominated by IoeI'\Ii/Ni(lOO)9 (although strain effects seem significant in the
riphery diffusion (PD) of adatoms along island edgésut ey system Also, similar phenomena have been observed
see Ref. & Then, a 2D version of a Mullins-type continuum ¢, mefa(111) homoepitaxial systems, where equilibrium is-
theory for shape evolution via PIRef. 7) makes specific |3 shapes are near-hexagonal rather than near-square. For
predictions for the time evolution, and its scaling with linear yoth Ag/Ag11D)* and Cu/C¢111), it is believed that again
feature sizel (which is always given below in units of the pp dominates. For the sintering of advacancy island pairs in
lattice constant For example, the characteristic timg,for  the Ag/Ag(111) system at 300 K, deviations from the predic-
restructuring or equilibration via PD should satisfy, tions of continuum theory for PD have been suggestad
~L", with scaling exponenn=4 (in two dimensions®  though again uncertainty in experimental data precludes a
How well are these predictions satisfied for nanoscale 2Riefinitive analysis*°
metal homoepitaxial islands under typical experimental con- Comparison of behavior of atomistic models for interface
ditions? evolution with appropriate continuum theories is a well-
Extensive experimental data and atomistic simulatiorestablished area in statistical physics. There are extensive
analyses are available for the size scaling of these 2D sintestudies of evolution of surfaces in three dimensions by sur-
ing and restructuring processes for the Ag(A@0 system at  face diffusion(or other processgsmost of which focus on
300 K! The data suggest some deviation from the scalinglattening (or smootheningof grooves on surfaces. In gen-
predictions of continuum theory for PD, with perhapg, eral, continuum theories which incorporate appropriate
~L3, i.e., with scaling exponemt=3 (although experimen- system-dependent parametésarface or step edge stiffness
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and mobility should recover the behavior of the atomistic h, = vePE o I
model for temperatures above the roughening transition o
three dimensions and for sufficiently large characteristic

length scales. Continuum modeling below the roughening E,=E+3
transition is still a challenging problem. There are also stud-

ies of the corresponding problem in two dimensions using

1+1D solid-on-solid SO models, which show good agree- FIG. 1. Schematics of the atomistic PD model showing the four

ment with Mullins” continuum theory for capillary waves in 4iomic hopping processéfor the shaded atomedge diffusion at

the regime of small slopesBy incorporating anisotropy in rateh, and activation barrieE,, corner rounding with barrieE, ,
stiffness and mobility one can extend the predictive capabilixink escape with barrieE, , and core breakup with barrié. .

ties of the continuum theory even to the regime of steep

slopes. Notable is a study of Krugj al.1.3 which shares much o ier for PD, we find deviations from continuum scaling
of the same methodology as the continuum modeling that W, faceted clusters, consistent with previous work, but no
will use later. _ o such deviations for dumbbell-shaped clusters. An additional
Relaxation of 2D clusters introduces two complications tokey component of this paper is analysis of the effect on re-
a continuum description relative to the above flattening probyoy4ion of introducing a large kink rounding barrier for PD.

lem. First the complicated geometry prevents linearizing thgye fing distinct scaling behavior from the case of no barrier
dynamical equation around the long-time asymptotic solugy poth the above geometries. Furthermore, we argue that a

tion. The resulting nonlinearity can create singularit@se- o ricylar effective way to assess the existence and magni-
cifically, breaking up or pinch off of clustereven though  ge of a kink rounding barrier is by analysis of the relax-

the dynamical equation is everywhere continud@acond, aiion of dumbbell-shaped clusters. In Sec. IV, we elucidate

incorporation of anisotropy in stiffness is essential to achieveypcaned scaling behavior, as well as the effective activation

the correct equilibrium shape. Perhaps due to these difficuly,riers controlling the overall relaxation processes, in terms
ties, previous atomistic simulations for the 2D sintering pro-o the individual atomistic PD processes and their barriers.
cesses of interest héfe'*have not been compared quan- Concluding remarks are provided in Sec. V.

titatively with the associated continuum models
incorporating appropriate anisotropies.

In general, one expects a breakdown of continuum de- Il. ATOMISTIC PD MODEL AND ITS CONTINUUM
scription for sufficiently small island sizes, and likely also FORMULATION
for sufficiently low temperatured) where islands are highly
faceted. Indeed, recent theoretical studies revealed and ana-
lyzed such behavior, but only for a special case of perfectly Similar to previous studies® we develop a simplified
facetedclusters with simple nonequilibriurnonvexshapes, but realistic lattice-gas model for 2D nanocluster evolution
and for a special prescription of PD dynamigithoutany  via PD in metall00) homoepitaxial systems. In this model,
corner or kink rounding barriefsee below*!® For these we consider clusters of adatoms connected by nearest-
convex faceted geometries at loly the key step in shape neighbor(NN) bonds on a square lattice of adsorption sites,
relaxation is nucleation of a new edge, and analysis of thigor which periphery atoms can hop according to certain rules
process indicates thagq~L2, i.e., a scaling exponent of  described in detail below. To inhibit the alternative
=2. We also mention here an earlier somewhat similadetachment-reattachment pathway for mass transasijus-
analysis of cluster shape relaxation in Ref. 16. As an asiddjfied below), we exclude hops which lead to periphery at-
we note that similar issues and concepts have also arisen @#ims detaching and becoming isolated, i.e., having no NN
consideration of the related problem of the PD-mediated suratom in the cluster. Due to this constraint, we must allow
face diffusion for large 2D clusters; see Appendix A. periphery atoms to makboth NN and second NN2NN)

A central goal of this paper is to provide a more compre-hops in order for such dynamics to incorporate unrestricted
hensive characterization of the various regimes or ways if°D. More specifically, 2NN hops are necessary to allow
which the continuum treatment can fail to describe behaviorounding of kinks and cornervhich in reality occurs as a
of atomistic models for cluster evolution via PD. Conversely,“difficult” NN hop to a site with one 2NN but no NN cluster
we are also interested in elucidating regimes where the cora&toms, followed quickly by an “easy” NN hop back to a site
tinuum model is unexpectedly effective, e.g., despite smalwith a NN cluster atorh Specific hopping rates reflect
feature size. Success or failure should depend on both enetetailed-balance constraints consistent with assumed NN
getic and kinetic parameters of the atomistic model, as welpairwise attractive interactions of strength
as on feature morphology or shape. Thus we compare in In Fig. 1, we identify the most important elementary hop-
detail predictions of the atomistic and continuum models deping processes in our model. Key processes involving NN
veloped in Sec. Il for different parameter choices and shapelsops are:(i) rapid “edge diffusion” along straight close-
of the relaxing clusters. We analyze the relaxation ofpacked[110] step edges with “low” barrierE,; (ii) “kink
dumbbell-shaped clustel§ormed by corner-to-corner coa- escape” along straightl10] step edges with barrief, = E,
lescence of square clustgia Sec. Il A, and the relaxation + ¢. Key processes involving 2NN hops ar@i) “corner
of faceted rectangular clustef®rmed by side-to-side coa- rounding” with barrierE, =E.+ &; (iv) “core breakup” with
lescence in Sec. Ill B. In the absence of a kink rounding barrier E;.=E¢+ 6+ ¢. In (iii), § represents an additional

A. Atomistic PD model
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barrier for corner or kink rounding relative to edge diffusion; we note that disconnected cluster configurations, as well as
S is sometimes referred to as the “kink Ehrlich-Schwoebeladvacancies, can be created indirectly in our model, but these
barrier.”t” A consistent choice of rates for NN hopping events are rare and have negligible effect. See Appendix B
(h"N) and 2NN hopping §?"N) has the form for further details and discussion.
NN _

h™=vexp—[Eet(ni—1)$]/(kgT)}, @) B. Continuum formulation
and The continuum formulation of the shape evolution of 2D

INN_ B o clusters via PD has been developed in recent wttkn the

h™ 7 =vexp~[Eet o+(ni—1) 41/ (keT)}, @) continuum model, the morphology of a 2D cluster is de-

wheren; is the initial number of NN cluster atoms before scribed by a closed plane curve, represented parametrically
hopping, and the final number of NN cluster atoms satisfiegisr(s)= (X(s),y(s)). Its evolution is determined by its nor-
n=1. In Egs.(1) and (2), v is an attempt frequency for mal velocity, which can be determined using local mass con-
hopping which, for simplicity, is assumed to have a commorservation. For PD, it is given by
value for both NN and 2NN hops. These formulas also pro-
vide rates for other less significant processes such as extrac- vn(s,1)=QV.Ipp(s,t), ©)

tion of an atom from a straightl10] step edge via a 2NN where Jpp is the atomic flux along the perimeter, aid

hop with barrierE.+ 6+2¢. If h; (with i=e,k,r,c, etc) w2y 112 : - .
denote the rates for these various hopping processes, th?n(XSerS) 9/9s is the derivative with respect to the arc

detailed balance imposes the constraints thah.=h./h, I:errégr]ghliilggrg]rtehse gﬁggnte:ht:(r),rarﬁgrl]sétrr:gsarea of the unit cell.
=exd — dl(kgT)]=p(<1, typically). Below, it is convenient P Y.
to introduce the corresponding characteristic times, Tep
=1/;. Jpp=— ﬁVTMa (4)

For restructuring of nonfaceted features, the effective ac- B
tivation barrier in our PD modelE,(PD), often corre- \herey is the chemical potential of step edge atoms which
sponds to the barrier for the “slow” core breakup process,measures the energy cost for adding atoms to the step, and

i.e., EoPD)=E,=E.+6+¢ (but see below® This ;s a coefficient measuring the mobility of step edge
Eac(PD) should be compared with the effective barrier for ztoms.

detachment and reattachment of periphery adatoms mediated | the continuum modelgpp and  depend only on the

by terrace diffusior{TDA) of E,(TDA) =E4+2¢, or with  |ocal configuration. Specifically, one can write
that for terrace diffusion of vacanci€§DV) through the

S _ 18 ~

interior of the cluster_ of_Eact(TD_V)—EU+2¢. Here, w=QB(0)k(s), (5)
E4(E,) denotes the activation barrier for terrace diffusion of

isolated adatomésolated advacancigs where 6= 6(s) is the local azimuthal angle of the step edge,

For metal100 homoepitaxial systems, semiempirical and « is the local curvaturef is the stiffness of the step

studies of energetics suggest thist¢.*° Also, a combina- edge, which is related to step edge enegfy) through B

tion of semiempirical,ab initio, and experimental data =B(6)+B"(6). Similarly, we assumep is a function of
shows thatEe is weII_beIow both E{’,zf,‘?ld E,. FOr A9l the |ocal azimuthal angle, i.arpp=opg 6(s)]. The detailed
Ag(lOO),_one haleEd—O.40—0.45 eV, By /Eq~0.95,  forms of B(6) and opp(#) depend on the microscopic ener-
and E.=0.25eV:"" For Cu/Cy100, one has E4  geiic and dynamical properties of the step edge. In our for-

_ 2,23 _ 23 N :
=0.48-0.52 .eyz' I Fu—%%ﬂr_?hEVprEﬁ/EdNS-?- F"’I‘t'os malism, Jpp has the dimensions @ftoms/s, V, of A=1, Q
are semiempirical estimaté$Thus as aubstantial en-  xo Ty R of eV, andg (or B) of eVIA.

ergetic advantagever both TDA and TDV, explaining its One important simplification is to assume bati, and 8

dominance in these systems. . . . ;

We close with a few additional comments on our model.t0 beSV(l:‘?nstant, which leads to theotroplc continuum
First, the above choice of rates implies that the barrier fof"d€l’ " Here we focus on the anisotropies of these two
diffusion along perfect opefiL00] step edge&; equals the quantities.

: . By assuming only NN interactions in the microscopic
*

core breakup ba_rneEc. In general,E; co_uId b_e_ different model of Sec. Il A, the corresponding Ising model step edge

from (and most likely lower thanE.. Semiempirical EAM

, ; " free energyB(6) can be solved analytically for the square
calculations for the Ag/AQLOO) system yieldEg =0.73 €V,  |attice a®

whereasE,=0.28 eV and¢$=0.28 eV, soE.=0.84 eV

Likely, behavior with these parameters is similar to that for B(6)=kgT[|cos6|sinh™(a|cosb)|)
our choice withEg =E;. Second, our model does not incor- _ T
porate exchange diffusion processes. However, it is quite +|sing[sinh*(a|sing])], (6)

plausible that the easiest pathway for corner rounding is Vi?}vhere
exchange, at least at single atom high kinks. In this case,

estimates foré obtained from comparing our model with 5 1—p2 12
experiment might be interpreted as corresponding to ex- a=— 7)
change rather than conventional corner roundfhginally, b| 1+ (sirf26+ b2cog26)1?
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and

L 2 Sin ¢/(2ksT)]
 cosH[ #/(2ksT)]

(®)

Solutions are also available for triangular and honeycomb
lattices?®

The mobility coefficientopp depends on the dynamics of
the underlying microscopic model. We relegate the details of
this analysis to Appendix C and summarize here only its
basic properties.

As with B(6), opp exhibits fourfold symmetry associated
with the underlying square lattidevith lattice constana). If
6=0, we have thatcf. Ref. 13

opp( ) ~avexg —(Eet ¢)/(KgT)] ©)

is approximately isotropic. Fa#>0, opp exhibits its maxima

at the four close-packed directions and decreases rapidly as
deviates from these directions. Around the op&@0] step
edge directions it is relatively flat. It has the following form:

oo mA)~f(S)avexq — (Egt+ 6+ ¢)/(kgT)], (10)

wheref(0) is a prefactor which increases from 1 to about 3
when & increases from 0 t@p, and remains approximately
constant as increases further.

To solve the continuum model numerically, we use the
so-called Lagrangian approgéftoupled with the “method FIG. 2. Snapshots of the sintering process of two clusters joined
of lines.”?® First we discretize the continuous curve and co-by their corners. The solid line is the result of continuum model
vert the partial differential equatiofi?DE) (3)—(5) to a set of  with constantopp and the symbols are result@verage of 100 MC
ordinary differential equationODE’s). Then, we integrate runs of the atomistic model with.=20. Other parameters are
numerically the ODE’s using Gear’s backward differentia- $=0.235 eV,§=0, andT=300 K. Configurations of a single MC
tion formulas(BDF) method since the resulting ODE’s are run are overlayed.
stiff equations. For simplicity and to minimize discretization
errors, we choose the grid points to be evenly spaced so thigving diagonally adjacent corner atoms, the clusters actu-
the arc lengths between consecutive points are the samelly tend to separate or pinch off rather than sinter for suffi-
Subsequent evolution, however, will destroy this spatial uni€iently large linear sizes. This is avoided in our atomistic
formity. We thus periodically adjust the grid points by spline simulations by shifting the two outer corner atoms to the
fitting so that they are always near evenly spaced. Typicallypeck and thus thickening the initial nettke total number of
we use 128 grid points on each curve and readjust the grigtoms remaining atl2%). In the continuum analysis, we sim-
points 100 times during the relaxation process. In generaRly preclude pinch off. One could certainly avoid pinch off
readjustment of grid points can introduce unwanted distorby starting with more complex initial conditiorge.g., touch-
tion to the solution of the PDE. We test empirically the nu-ing clusters with equilibrated shapes mimicking experiment
merical accuracies of the solutions by checking that theyput we believe that the basic behavior of neck growth would
display weak sensitivity to both the number of grid pointsbe unchanged.
and the frequency of grid point readjustment.

1. Results without corner rounding barrier &=0):

ll. RESULTS FOR RELAXATION DYNAMICS DURING conventional scaling

SINTERING First we present the continuum model predictions. It is
easy to see that for the continuum model, the sintering pro-
cess obeys a size scaling relationshig(if) is the solution

For simplicity, we consider an initial configuration where of the continuum equation with the initial valu€0)=T,,
two equal sized near-square clusters are touching corner then\T(t/\%) is the solution with the initial valuaF,. One
corner. We monitor the subsequent evolution, focusing orimmediate consequence is that the equilibration tiggde-
growth of the neck between them during the sintering orfined, e.g., as the time for the neck to grow to some constant
restructuring proceséwhich leads to a single larger near- timesL) scales exactly ak*. In our numerical analysis, we
square island There are experimental examples of this sce-use only an isotropic mobility coefficient, i.erpp(8) = oy is
nario for the Ag/Ag100 and Cu/C@100 systems:?In ato-  a constant. Figure 2 shows six shapshots of the reshaping
mistic simulations with perfectly squatex L initial clusters  process.

A. Dumbbell-shaped clusters(corner-to-corner coalescence
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FIG. 3. Growth of the neckwidth measured along the diagonal, FIG. 4. Growth of the neck-width measure along the diagonal,

for ¢=0.235 eV and no extra corner rounding barrier at 300 K'for $=0.235 eV and extra corner rounding barrig=0.16 eV at
Symbols are the average of 100 MC runs. The curves show resultsyg k Results for. = 10—20 are averages of 100 MC runs, and

of the continuum model usin@) Ising step energysolid) and (b) results forL =28 and 40 are averages of 10 MC runs.
isotropic step energgdashed

We also perform kinetic Monte CarliKMC) simulations We also show for comparison the result of tisetropic
of the atomistic model to study the same sintering processontinuum model in Fig. 3. The main difference is that here
Details of the algorithm are given in Appendix B. First we the growth rate of the neck width is strongly decreasing with
observe that there are large fluctuations for small clustergime, while the results of the KMC model and the continuum
The sintering process can be quite different for different MCy,odel with Ising step energy show a near constant growth

runs. Fluctuatior)s become relatively smaller as the C|U5te(fexcept for the very beginning and the end of the sintering
size increases, in other words, the process becomes moﬁ‘?ocesse)s

deterministic. To compare results of the atomistic model with

the continuum model, we average over configurations of dif- _ _ _

ferent MC runs. Defining the average cluster boundaries as 2 Results with large corner rounding barrierg>0):
the points where the interpolated average site occupancies Breakdown of scaling

equal 1/2, we overplot the simulation results as symbols in  Behavior is somewhat different when an large additional
Fig. 2. To compare the time scale in the continuum modekoner rounding barries is present. Figure 4 plots neck

with that in the KMC simulations, we use the formula g qyth from KMC simulations of the atomistic model with

pof 0) = co=ahee” ?e1) (see Sec. Il B and Appendix)C  4_( 935 eV ands=0.16 eV at 300 K, again with time

In Fig. 22W€‘ define t=tooBaksTL*) !, where B,  renormalized by *. Initially, the data collapse is quite good,

=(2m) '[§"B(#)d6. The agreement between the con-reproducing the conventional* scaling. However, after the

tinuum prediction and KMC simulations Is_quite striking. neck width grows to about 08 this scaling starts to break

The slight discrepancy in shapes apparenttfer0.064 ef-  down.

fectively disappears fot. =50. Also shown in Fig. 2 are To measure the later stage growth rate, we fit the data in

configurations of a single MC simulation. Fig. 4 for neck widths between 1.2and 1.% to a straight
Perhaps a more striking result is how well the continuumjjne asa+ R_t. We then fit the growth ratB, to L"~1. (This

model agrees with simulation results of even smadlleFig- type of analysis has also been employed in RefREsults

ure 3 shows the growth of the neckwidth foranging from  are shown in Fig. 5, along with results fér=0. Using data
10 to 40, corresponding to about 3—12 nm on metal surfaces,

from KMC simulations of the atomistic model with=0.235
eV and 6=0 at 300 K. Thex axis is the sintering time res- 107
caled as in Fig. 2, and theaxis is the neckwidth divided by g
L. Results are averaged over 100 KMC runs. Also plotted as
a solid line is the result of the continuum model using the [
Ising B(6) for NN interactions¢=0.235 eV and a constant . I ° ]
opp-. Both the scaling and quantitative behavior of the KMC ~07E e 3
model agree quite well with the continuum model. However, ; §=0.16 eV, n=3.10(6) ]
we stress that for smaller clusters, results of each individual gl
simulation (or experiment for that matteican be quite dif-
ferent from the continuum model. The agreement is only of x
apparent after averaging over many samples. Another obser- 10° ' x
vation from our simulations is that tHe* scaling persist to 10
very low temperaturegnot shown, which is the regime

when typically one needs to seriously question the validity of FIG. 5. MC results for the neck-width growth rég , in unit of
the continuum model. 2 1. Key parameters ar¢=0.235 eV andl =300 K.

8=0, n=3.77(3)

L
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FIG. 6. Snapshots of the sintering process of two square clusters
joined at one side. The solid line shows the continuum prediction. 1.0L L .
Symbols are the average of 100 MC runs of the atomistic model 0.00 0.02 _ 0.04 0.06
with ¢=0.235 eV and5=0 at 300 K, withL =20. Configurations of ¢

a single MC run are also overlayed. FIG. 7. Time dependence of the aspect ratio of rectangular is-

lands of sizeL X 2L for ¢=0.235 eV and5=0 at 300 K. The solid
for L=7 to L=20 we obtainn=3.77(3) for the previous |ine is the prediction of the continuum model whetgandr, are
case with6=0, andn=3.10(6) for6=0.16 eV. Note that the the sizes of the cluster in theandy directions, and the symbols are
continuum model predicts=4. KMC simulation results where, andr, are the gyration radii along
the x andy directions.

B. Faceted rectangular clusters(side-to-side coalescenge

Motivated by the predictions and analysis of Refs. 14 andnodel usings=0. Fitting the KMC simulations data fd
15 for relaxation of convex faceted clusters, we also consider © t0 20 to a power lawte~L" givesn=2.7 (for §=0) and
the case of an initial rectangular configuration. Experimen'=2.2 (for 6=0.16 eV at 300 K. We can also see that for
tally, such configurations are naturally created by side-to-sidé =100, results of the atomistic model wi#=0 are closer
collision of clusters. Although typically clusters have differ- to the continuum prediction. We expect that in both cases the
ent sizes, a near-rectangular configuration is quickly formegcaling exponent will cross over to=4 asL increases.
from the initial configuration of touching unequal sized
squares. Then the metastable rectangular configuration
slowly relaxes to the near-equilibrium square shhpe. IV. DISCUSSION

Results in Sec. lll reveal that the sintering of two nano-
clusters can be characterized by a variety of size scaling
gxponentsn, which for sufficiently small clusters deviate

om the continuum predictiom=4. We emphasize that
A is deviation occurs even though mass transport is pure-
’&/ through periphery diffusion. As noted in Sec. I, such de-

energetics aqd temperature are the same as in Sec. |l viations have already been observed in both experiment
However, unlike the previous case, relaxation predicted b)émd simulations. Furthermore, we will see that analytic

the continuum model is much too fast. Also shown are cony, . 04529 nich have been developed to describe behavior
figurations of a single MC simulation.

Starting from a perfect rectangle of sike< 2L, we mea-

1. Results without corner rounding barrier §&0)
Figure 6 shows two snapshots of the sintering proces
with 6=0 for two clusters of size 2020 joined at one side.
Symbols are the average of cluster boundaries of 100 M
runs and solid line is the continuum model prediction. Th

sure the aspect ratio by calculating the radii of gyratign, 10!2¢ . .
andry, as in Ref. 14. Figure 7 plots results of different i P
system sizes using=0.235 eV ands=0 at 300 K, with the 10l * JE
prediction of the continuum model plotted as the solid line. g * o ]
In contrast to the results in Sec. lll A and consistent with 10100

results in Refs. 14 and 15, there is a large discrepancy be- £ g
tween the KMC results and the continuum model prediction 1§
for systems withL<100. Indeed, analysis of the decay of :
the aspect ratio is best described by an effective exponent
n=2.7, rather tham=4 (see below.

1071 L .
2. Results with large corner rounding barrier&>0) 10 100

As in Sec. Il A, the presence of an extra corner rounding
barrier 6 shifts the size scaling exponent to an even lower FiG. 8. Relaxation timery, (in unit of 7,) measured as the first
number. Figure 8 shows thie dependence of the average time that the aspect ration reaches 1.5 for different systems sizes.
relaxation timer,y measured as the first time that the aspecDiamonds are results fap=0.235 eV ands=0, and asterisks are
ratio of the cluster reaches 1.5. Also shown for comparisonesults for¢=0.235 eV and=0.16 eV at 300 K. The dotted line is
are results of simulations and the prediction of the continuunthe prediction of the continuum model with=0.
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dumbbell configuration equals that of the initial configura-
tion. This is most easily seen by noting tlat both cases

the total number of broken bonds equals twice the sum of the
distances measuring the span of the cluster along the two
major axes. Since there is no change in energy, and since
there are clearly many such dumbbell configurati¢rmm-

i pared with just one initial configuratipnwe naturally de-
-~ scribe evolution as entropy driven. Although the outer steps
Inner Steps are faceted, they do not play an important role in the dynam-

ics. Thus the relaxation process in this regime can be very
Dumbbell Configuration accurately described by the continuum model. For both the
| . | case withé=0 and 5>0, the size scaling exponent is=4
(cf. Fig. 3 and Fig. 4 The relaxation rate is governed by the

FIG. 9. lllustration of the early stage of dumbbell relaxation. pp mobility coefficientopp, with activation energyEq+ ¢
Note the coincidence of the outer layers of the dumbbell configu-,_ S ' ©

ration with the initial configuration.

B. Later stage of dumbbell evolution:

for relaxation of convex faceted clusters for the case), ) )
Energy-driven relaxation

apply to describe behavior for relaxation of rectangular clus-
ters observed in Sec. Ill B 1. A key conclusion in Refs. 14 For the later stage of relaxation of corner-to-corner coa-
and 15 is that crossover behaviéor §=0) is determined by lescence, the atoms on the outer steps are removed and at-
the relative magnitude of the linear cluster sizand a char- tached to the inner steps. When one layer of atoms on the
acteristic lengthL .= exd3¢/(ksT)] (=94 lattice constants, OUter steps are completely removed, the cluster can lower its

for our parametejs which measures the typical separation energy. This is similar_ to the situation in R_ef. 15 with one
between kinks on an extendgtL0] step edge. distinction. Here, the inner steps can readily accept atoms
Beyond these previous studies, our results reveal thdfom Oﬁ.ter steps wllthoqt first nuclealrodnt())fahnew Iayerl.
there are two crucial additional factors controlling the relax- At this stage, relaxation is controlled by t e<remova rate
ation dynamics of 2D nanoclusters and, specifically, the siz@' Outer layers of typical sizé in the case oL<L.. The
scaling exponent: (a) the geometry of the cluster; ari) ~ yPical time 7'Iayeafor removing afz?r_nplete layer df atoms
the kink rounding barriep. Indeed, then~3 behavior for a  Salisfiesrige~L 7o, whereho= 17, * is the exchange rate of
large & found in Sec. Ill A 2 seems to match well previous 8toms between two adjacent layers. This result is essentially

studie$ of dumbbell relaxation in the Ag/AG00) system at just Einstein’s relation for a system undergoing a random
300 K. Below, we elucidate the dependencenofn these Walk between configurations with different numbers of trans-

factors in terms of the individual atomistic PD processesferred atoms. A more detailed derivation follows from adapt-

The effective Arrhenius barrier for relaxation is also characnd the master equation formalism of Combe and Larraide.

terized in terms of the barriers for these individual processedn order to relax back to the equilibrium shapgL) layers
ForL>L,, the step edge is rough due to thermally acti-have to be 3removed, so the relaxation timg scales aseq

vated kinks, and the system is well described by the con="L Tiaye~L"70. _

tinuum model. The size scaling is given Iy=4 for all It thus remains only to develop an appropriate expres-

cases, so we provide no detailed discussion of this regiméion for the characteristic time,, for atom exchange be-

The following simplified analyses apply to situations wheretween layers in order to obtain an explicit expression for
L=<L,. the relaxation time. This is done in Appendix D where we

show that 7o~ (L,+L) 7 (neglecting constants of order
unity). Here (r,) " 1=h, is the rate for kink escape, arng
A. Initial stages of dumbbell evolution: =exfdd(ksT)] is a length scale associated with the extra
Entropy-driven relaxation corner rounding barrier. In our simulations with
For the initial relaxation of clusters formed by corner-to- =0.16 eV at 300 K, one hds,~490.L, is the 1D analog of
corner coalescence, atoms flow primarily from the outer corthe so-called Ehrlich-Schwoebel lengthif the distance be-
ners towards the inner region, thus developing a neck. At thigveen the kinks is larger than, , then the exchange is lim-
stage, it is not common to completely remove outer edges dfed by diffusion of edge atoms. If the distance is smaller

atoms(see Fig. 2 foﬁ:0.027). The latter feature implies thanL,, then it is limited by the rate for corner rounding.

that this process does not involve a change of enéagyan ' "us we have foL <L that

energy decrease only occurs upon moving the last atom from 4

an outer edge to the neck regjofl L*n, for L>L,,
More explicitly, consider dumbbell configurations of the Teq L37, for L<L,.

cluster which retain portions of the four faceted outer edges

of the initial configuration(see Fig. 9. Then, provided the Thefirst caserecovers conventional scalingeq~L4. How-

four portions of kinked step edges between the faceted reever, there are some subtleties. The rate is proportional to

gions each have kinks of only one sign, the energy of théh,= v exd —(Es+ ¢)/(kgT)]. This result follows since here

11
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L=L, thus the outer steps are completely faceted. The rate The first term in 7, reflects the “difficult” nucleation
limiting step is the diffusion of a single atorfonce it is  step: after the first atom is ejected from the short edge onto
detached from a kink positigralong a faceted step edge, so the long edge with low raté., it is much more likely that
the rate should scale like, times the density of such atoms. the system will return to its initial configuration rather than
In contrast, the continuum model which predicts that the rateject a second atom, and nucleate a new layer on the long
is proportional toh,= v exd —(Ec+ ¢+ 9)/(kgT)] applies for  side. In factK<1 corresponds to an “equilibrium constant”
L>L.. Thesecond casereq~L3, corresponds to an uncon- with the following interpretation. Suppose that the system
ventional scaling law? has evolved from the initial perfect rectangular stiate the
stateSwhere the first particle has been ejected from the short
edge. Letp_ denote the conditional probability that given
C. Evolution of rectangular clusters: the system is ir§, it returns tol. Let p,. denote the condi-
Nucleation-limited relaxation tional probability that given the system B a second par-

Here, we exploit the ideas developed by Combe andicle is ejected from the short edge and leads to nucleation of
Larraldé?® for relaxation of convex faceted clusters for a ge-a Neéw layer on the long side. Then, one past-p, =1, and
neric PD model with no corner rounding barrier on a hex-K=p./p-. The secondterm in 7, reflects the feature
agonal lattice. These ideas can be directly applied to analyZ&at after the new layer is nucleated, the system essentially
the relaxation of rectangular clustdseated by side-to-side follows a random walk through configurations with different
coalescence in metalo0) homoepitaxial systenjsfor the numbers of atoms transferred between the short and long
cased=0. Furthermore, we also extend this approach to trea@dges. It is analogous to the Einstein-type relation in Sec.
5>0. Specifically, we consider the relaxation of a near-IV B, and ho= 175" is now the exchange rate of atoms be-
rectangular clustefdimensionsL X AL, with A>1) to its  tween two sides. The analysis in Appendix D shows that
near-square equilibrium shape at IdwAgain we consider ~(L,+L) 7, has exactly the same form as in Sec. IV B.
the case ol <L only, so that the edges of the rectangular ~ Since relaxation back to equilibrium requires transfer of
cluster are faceted. The key process is nucleation and growf(L) layers, the relaxation time, has the form
of a new terrace on a perfect long edge due to transfer of
atoms from the §hort_ edde Successive completion of such Teq”'-TlayerNLzTc/KJf L37, (12)
new terraces will shift the cluster towards a square shape.

However, there is no energetic advantage to nucleation of

new terrace on the long ed@eersus the short edger to the . : .
subsequent mass transf@nd it is quite likely that nucle- The presence of a kink rounding barrier affects both the

ation occurs on the short edge potentially shifting the shap8Ucleation proces&nd specifically the values of, andK),
away from equilibriun). The resolution is this apparent di- 25 Well as the subsequent mass trangdsris evident from
lemma is that for nucleation on the long edge, subsequer}t‘e expl|c.|t form forTO): To obtain explicit forms fotre, it
transfer of sufficiently many atoms can completely removedUSt remains to determine those fdr For 6=0, the analysis
one layer of the short edge. Transfer of the last atom in thiQf Ref- 15 shows thak ~exy — 4/(kgT)]. For larges, it is

process leads to an energy decrease, so the reverse procesS¢@r that if the second atom is ejected from the short edge
very unlikely?® In contrast, the latter is not possible for when the first ejected atom is still on the long edge, then they

nucleation on the short terrace. will almost certainly meet and nucleate a new laygince

Detailed (but approximate analysis of the process of the alternative is to return around the corner, which is diffi-

complete removal of a layer from the short edge of the clusSull)- Consequentiy is given by the ratio of the rate to eject

ters can be achieved following Ref. 15. One treats evolutiori® Sécond atorh, to the rate for the first ejected particle to

of the system through configurations with various numberd€turn to the short edge; /L (noting that the probability for

of transferred atoms as a Markov chain, regarding the finalliS &tom to be on the corner site-isl/L). Thus, finally, one

configuration as an absorbing or trapping state. Then, onBaS thatK~exg—g/(kgT)]L, for large &, exceeding the

develops and solves an appropriate set of coupled equatiofg!ue for6=0."" , _

for the trapping times starting from various configurations. FOr L=<Lc, it is easy to check that the first term in Eq.

While this approach yields explicit results including correc-(12) either dominates or comparable to the second term.

tions to size scaling, it should be emphasized that these finduS We can summarize our findings by the relations

details are not so germane to behavior in real systems due to

the assumptions in the modelirtg.g., ignoring roughening TeqNLzeXn:d’/(kBT)]Tk (13

of the corners of the rectangular cluster, and assuming a per-

fectly absorbing f_inal staje Thus we_prefer here tp avoid \\han 5=0. and

the complex details of the mathematical analysis, instead fo-

cusing on the basic physics which drives the dominant size

scaling. Teq~ L X ¢/ (kgT) ] 7¢ (14)
The central result from a mathematical analysis of the

above type is that the time for removal of the complete layewhen §>0 andL <L, .

has the formr,ayer~ch/K+L270, for L<L. (neglecting To summarize, in Table I, we list the equilibration time of

constants of order unijy clusters for different size regimes and geometries.

ﬁ)r L=<L.. This is our key result for the relaxation time.
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TABLE I. Characteristic relaxation time for entropy-drive), analogous to the adatom caséthough the dominant adatom
energy driven(B), and nucleation-limitedC) relaxation discussed mass flow will be from the neck region outwardlso, scal-
in Sec. IV. Herer, and 7 stand for the characteristic time for jng should be influenced by the presence of a kink rounding
comner breakup and kink escape, respectively, arce™#*e".  pharrier (as with adatom clustersFor the relaxation of rect-
Note that the second column applies fox @< ¢/2. Footnotes in-  angular advacancy clusters, details of the kinetics will no
dicgte which of our MC simulation results illustrate the various qoupt be quite different from the nucleation-mediated ada-
regimes. tom cluster case. However, energy minimization associated
with complete removal of advacancy layers from the short

L<lr.Le Le<l<Lc Le<L edge of the cluster does presumably drive the process.
A (entropy L4723 L4r, d L7,
B (energy L37 " L7 " L*7e ACKNOWLEDGMENTS
C (nucleation Lrp t© L27gp t¢ L7 .
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‘See Fig. 8. lowa State University under Contract No. W-7405-Eng-82.
dsee Fig. 3.

V. SUMMARY AND CONCLUSION APPENDIX A: CLUSTER DIFFUSION VIA PD

We have provided a detailed comparison of the predic- FOr the surface diffusion of large 2D clusters via PD,
tions of continuum and atomistic models for the sintering ofcontinuum theory(as well as simple atomistic arguments
pairs of 2D nanoclusters in meta00) homoepitaxial sys- predict scaling ofd|ﬁ95|0n coefficierid V;ILI‘th linear sizel of
tems. For relaxation of dumbbell-shaped clusters formed bfhe formD~L"¢, with exponenta=3."" However, large-
corner-to-corner Coa|escence’ the atomistic madeioutan scale atomistic simulations of cluster diffusion via PD reveal
extra corner rounding barrier agrees both qualitatively andhat « deviates significantly below 3. Furthermore, of par-
quantitatively with the prediction of the continuum model, ticular relevance to this work is the interesting proposal that
even for small sizes or low temperatures. However, an extr& IS generally related to the exponanfor restructuring via
corner rounding barrier produces a smaller size scaling ex@=n—1.7" _ o _
ponent for the later stage of the sintering process. This result Simulations by Millset al. of cluster diffusion at highet
can be utilized to determine from experimental data the basifor @ generic model for metdl00) homoepitaxy withg)=0.3
kinetic properties of step edges, specifically, the existencgV recovereda=3 at 800 K, and an activation barrier of
and magnitude of any kink rounding barrier. Such an analyEdift~Ec=Ee+ 6+ ¢.% However, for lowerT, « deviated
sis indicates the existence of a substantial kink rounding baelow 3 (down to 1.2 at 300 K wher& <L), and Egj
rier for the Ag/Ag100) system® For relaxation of rectangu- increased to~E.+2¢. These authors proposed that diffu-
lar clusters formed by side-to-side coalescence of near squaféon is_limited by nucleation of a new edge at a rate of
islands, there is a large discrepancy between continuum arftt(Neg®, Where neq~exg—¢/(ksT)], implying that E g
atomistic predictions for small sizes or low temperatures=E¢+ 2. This is just the picture of Jenset al** and of
The discrepancy is more extreme in the presence of a corn&@ec. IV C for relaxation of convex faceted clusters at [bw
rounding barrier. All the above types of behavior can be ex{with 5=0). Indeed, Jensemt al. noted that usinga=n
plained in terms of the underlying atomistic PD processes. A~ 1, their theory also explained the size scaling in Ref. 36.

particularly relevant recent paper by Pierre-Létidevel- Experiments also reveal low values @#2 for homoepi-
oped a modified continuum theory which can account for thdaxial metaf100 and mete111) systems at 300 K5 where
unconventional scaling in the case of faceted clusters.  cluster diffusion is known to be controlled by PEF It is

We have noted in the introduction that several aspects dplausible that this just represents crossover behavior towards
our analysis extend beyond relaxation of adatom clusters iRucleation-mediated behavior. Indeed, simulations of our
metal100 homoepitaxial systems. Clearly in the Mullins re- model with $=0.235 eV ands=0 at 300 K yielda~1.8 (cf.
gime whereL>L . andL,, the exact continuum theory will n=2.7). One could match the slightly higher experimental
apply for advacancy cluster relaxatiéwith the same aniso- values by further decreasing below 0.235 eV(and by in-
tropic step edge stiffness and mobility as for adatom cluscreasings well above the value in Ref. 36As in Sec. Il B,
ters. In fact, we have already used such a formulation tothe main effect ofs in this temperature range is to decrease
successfully describe a novel pinch-off phenomena observetie overall step edge atom mobility, and thus the cluster dif-
for wormlike advacancy nanoclusters in the Cu/ff) and  fusion rate. The effect o6 on the size scaling exponent
Ag/Ag(100) systems. However, for smallerL, significant Seems secondary to that of nucleation-limited relaxation
differences in behavior from the corresponding adatom cluswhich can shifte from 3 to 1.
ter case can emerge due to an expected large asymmetry
between gctivgtion barriers of single advaqancy and single  AppENDIX B: MODEL AND SIMULATION DETAILS
adatom diffusion at step edges. The details of mass flow
under PD can be quite different. For vacancy dumbbell re- For the most part we follow the so-called Bortzrefold
structuring, we do expect an initial entropy driven relaxation,algorithn?’ in our kinetic Monte CarldKMC) simulations
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of the atomistic model with a broad range of hopping rétes 104[ ]

described in Sec. Il A. Surface atoms are categorized into ¥
five classes, i.e., with lateral bond numbarfrom 0 to 4. C ]

Atoms from each class are chosen with probability propor- 1073 3 3
tional to e"™#/(xeT) Once chosen, it can perform either a i ]
NN or a second NN2NN) hopping, with probability propor- & 10°6]
tional to 1 ande™ ¥eT) respectively. The move is accepted ]
provided the site that an atom hop to is vacant. This algo- i
rithm is not completely “reject-free,” but rather a comprise 10”7 —\m—(\-
between efficiency and the programming complexity. We E ]
note that in contrast to similar previous studié&**we do 108] ]
allow atoms with three or more neighbors to hop. This 0 10 20 30 40
avoids violating detailed balance, and also avoids the artifact Angle (Degree)

that a close-packed step edge is completely frozen. For the o )
temperature range and relaxation processes considered, be.'G- 10- Angular dependence of the atom mobility for periphery

havior of our models is very close to the model where atomgg”ioq_ :__‘:g;stgg(io ggt?gmMg:éehégﬂ% i}T“llf;'Og/i ;Vr']? L
with three NN bonds are immobile. B ’ T e S '

. . . . The mobility is measured in unit dfi.a, whereh, is the edge
Finally, we note that disconnected cluster configurations,... . .

- o . diffusion rate. The same attempt frequency is used for both NN and
can be generated “indirectly” in our model, e.g., if an atom

. . second NN hopping.
has just one NN which hops away. However, these energy- PPINg

increasing events are extremely rare, so their effect can be

ignored. One can further limit these situations by demanding*PPENDIX D: CORNER ROUNDING PROBABILITIES
that atoms must have at least one 2NN after hopping. Such AND TIME SCALES

algorithms, which impose some sort of connectivity condi-
tion by checking only the state of the hopping at@nd not
that of all atoms its neighborhopdire very efficient, but
suffer from a weak violation of detailed balance.

|

We analyze a process involving atom detachment from a
kink site, diffusion alonglL; sites on a[110] step edge,
rounding of a corner, diffusion along, sites on §110] step
edge, and attachment to another kink; see Figa)1Thus
we label the linear array of sites traversed joy1l to L4
APPENDIX C: PD MOBILITY AND ITS MEASUREMENT +L,, bounded by traps gt=0 andL;+L,+1. Hopping

FROM KMC SIMULATIONS occurs randomly between adjacent sites at hate except
_ . 13 ) _ between siteg; andL,+1 atrateh,, and there is no escape
. Followmg Spohﬁ ar_1d Kruget a!. we define the mok.nll- from traps. Below we sep=h, /(h.+h,), g=h./(ho+h,)
ity for periphery diffusion as the linear-response coefficient— 1 — p, and L, =h./h,=exg d/(ksT)]. Let P; denote the

when an external driving force acts on the step edge atoms igyohability that an atom starting on sitds trapped at site
the direction parallel to the step edge, i.e.,

opp= lim Jpp(F)/F, (Cy i

F—0

whereF=|F| is the magnitude of the external driving force, -~y Ly,
and Jpp(F) is the magnitude of the net flux. The external T !
driving force produces biases in the hopping rates. In our
algorithm we assign different probabilities for choosing vari-
ous hopping direction¥ e.g.,

ﬁ hy(down)
p(Xx—x+a,y—y)~(1+f,al2), : N
(C2 b) L T

p(x—x+a,y—y+a)~(1+f,a/2+fal2),

to linear order inF. We then measure the net fluk= (J, [ ho(up)
+J,)Y2 directly from Monte Carlo(MC) simulation using ' A
this bias. Figure 10 shows thedependence of the mobility C) ' L -I.

(in unit of ah,) for various § values. We can see that for

6=0, opp is almost isotropiqwithin 6%), with opp given FIG. 11. Transfer of atoméshaded squargsround corners to
approximately byah.e™#(ksT) As & increases, anisotropy traps at kink sitesdenoted by T. Distances are in units of the
increases and the overall mobility decreases. lattice constant.
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Li+Ly+1, soPy=0 andPL1+L2+1=1. Then, one has that

Pi=1U2APj_1+Pj.1), (D1)
where I<j<L; andL;+1<j<L;+L,, and
PL=adPL —1+PPL +1,
(D2)

PL+1=PPL taP_ 2,

where Eq.(D2) accounts for the reduced hop rate to round
corners. From the first relation, the solution is piecewise

linear inj, i.e., Pj=Aj for j<L;, andPj=1-B(L;+L,
+1—j) for j=L,+1. The latter relations determirke=B
=hr/[he+hr(|_1+ Lz)], SO thatP1=l/(Lr+Ll+ L2)

PHYSICAL REVIEW B 66, 165407 (2002

successfully round the corpemwhere here we sdt;+L,
=L. Thus one obtainsro=hy'~(L,+L)7,. For atom
transfer between layers discussed in Sec. IV B, one has char-
acteristic rates dfig(down)~h,P(L,;=L,L,=0) for down-
ward transport[Fig. 11(b)], and hy(up)~h.P;(L;=0,,
=L) for upward transporfFig. 11(c)], which in both cases
recoversro=hg '~ (L, +L) 7.

Finally, we note that one can develop and solve a coupled
set of equations for the trapping timgsfor a particle start-

ing from various siteg (cf. Ref. 15. Here, we assume that if

the particle returns to the initial kink site, then it can escape
from that site again at rath,, and thus finally reach the
destination trap site. The results of this analysis recover those

For atom transfer between faceted edges, discussed fPOV€ USing an approach based on corner rounding probabili-
Sec. IV C, the characteristic ratelig~h,P; (the product of €S, and also produce gmall correction terfeg., an addi-
the microscopic kink detachment rate, and the probability tdional term scaling like. 7, for 6=0).
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