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Sintering of two-dimensional nanoclusters in metal„100… homoepitaxial systems:
Deviations from predictions of Mullins continuum theory
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We present a comparison of the predictions of atomistic and continuum models for the sintering of pairs of
near-square two-dimensional nanoclusters adsorbed on the~100! surface in fcc metal homoepitaxial systems.
Mass transport underlying these processes is dominated by periphery diffusion~PD! of adatoms along the edge
of the clusters. A Mullins-type continuum model for cluster evolution incorporates anisotropy in the step edge
stiffness~reflecting the energetics and adsorption site lattice structure in the atomistic model!, and can also
account for anisotropy in the step edge mobility~reflecting details of the kinetics!. In such continuum treat-
ments, the characteristic timeteq for relaxation of clusters with linear size of orderL satisfiesteq;L4.
Deviations may generally be expected for small sizesL or low temperaturesT. However, for the relaxation of
dumbbell-shaped clusters~formed by corner-to-corner coalescence of square clusters!, atomistic simulations
for PD with no kink rounding barrier~d50! reveal thatteq;L4 always applies. In contrast, atomistic simula-
tions with a large kink rounding barrier~d.0! reveal distinct scaling withteq;L3, for low T or smallL, thus
providing an effective way to test ford.0. For the relaxation offaceted rectangular clusters~formed by
side-to-side coalescence of square clusters!, atomistic simulations for PD withd50 reveal thatteq;L2, for low
T or smallL. This is consistent with a recent proposal by Combe and Larralde. For larged.0, teq has an even
weaker dependence onL. We elucidate scaling behavior and the effective activation barrier for relaxation in
terms of the individual atomistic PD processes and their barriers.

DOI: 10.1103/PhysRevB.66.165407 PACS number~s!: 68.35.Fx, 68.35.Bs, 68.35.Md
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I. INTRODUCTION

Metal~100! homoepitaxial systems allow the possibility
explore two-dimensional ~2D! analogs of sintering
processes,1,2 traditionally studied in 3D systems.3 By depo-
sition of up to 0.3–0.4 monolayers~ML’s ! of atoms on a
perfect terrace, one can create distributions of isolated
adatom islands or clusters, each of which has a near-sq
equilibrated shape. Nearby pairs of islands can collide
coalesce either by growth during deposition, or alternativ
by post-deposition diffusion. Thereafter, one can monitor
post-deposition restructuring of such pairs to form a sin
larger near-square island~i.e., sintering!. Based on previous
experimental studies of these systems,1,2,4,5 we believe that
the mass transport underlying sintering is dominated by
riphery diffusion ~PD! of adatoms along island edges~but
see Ref. 6!. Then, a 2D version of a Mullins-type continuu
theory for shape evolution via PD~Ref. 7! makes specific
predictions for the time evolution, and its scaling with line
feature sizeL ~which is always given below in units of th
lattice constant!. For example, the characteristic timeteq for
restructuring or equilibration via PD should satisfyteq

;Ln, with scaling exponentn54 ~in two dimensions!.8

How well are these predictions satisfied for nanoscale
metal homoepitaxial islands under typical experimental c
ditions?

Extensive experimental data and atomistic simulat
analyses are available for the size scaling of these 2D sin
ing and restructuring processes for the Ag/Ag~100! system at
300 K.1 The data suggest some deviation from the sca
predictions of continuum theory for PD, with perhapsteq
;L3, i.e., with scaling exponentn53 ~although experimen-
0163-1829/2002/66~16!/165407~12!/$20.00 66 1654
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tal uncertainty is substantial!. Observations of analogous PD
dominated sintering phenomena are also available for
Cu~100! at 300 K.2 Indeed, the experimental observations f
sintering of 2D adatom islands in these two systems prim
rily motivates the detailed theoretical modeling and analy
in this paper.

However, it is appropriate to note that several aspects
our analysis will have more general applicability than just
adatom island sintering in metal~100! homoepitaxial sys-
tems. One can examine the analogous processes for a
cancy islands, which can be created either by sputtering
by deposition of just below 1 ML of atoms. Limited analys
of the sintering of such near square advacancy islands at
K is in fact available for Ag/Ag~100! ~Ref. 1! and for
Ni/Ni ~100!9 ~although strain effects seem significant in t
latter system!. Also, similar phenomena have been observ
for metal~111! homoepitaxial systems, where equilibrium i
land shapes are near-hexagonal rather than near-square
both Ag/Ag~111!10 and Cu/Cu~111!,11 it is believed that again
PD dominates. For the sintering of advacancy island pair
the Ag/Ag~111! system at 300 K, deviations from the predi
tions of continuum theory for PD have been suggested~al-
though again uncertainty in experimental data preclude
definitive analysis!.10

Comparison of behavior of atomistic models for interfa
evolution with appropriate continuum theories is a we
established area in statistical physics. There are exten
studies of evolution of surfaces in three dimensions by s
face diffusion~or other processes!, most of which focus on
flattening~or smoothening! of grooves on surfaces. In gen
eral, continuum theories which incorporate appropri
system-dependent parameters~surface or step edge stiffnes
©2002 The American Physical Society07-1



tic

c
in
ud
in
-

n

il
e

w

to
ob
th
lu

ev
cu
ro
n-
ls

de
o

a
ct

th

ila
id
n

su

re

io
ly
o
a
n
e

e
de
p
o
-

-
g

g
no
nal
re-
.

ier
at a
gni-
x-
ate
tion
ms
rs.

on
l,
est-
es,
les
e

t-
NN
ow

ted
ow

e
t
NN

p-
NN
-

l

our

DA-JIANG LIU AND J. W. EVANS PHYSICAL REVIEW B 66, 165407 ~2002!
and mobility! should recover the behavior of the atomis
model for temperatures above the roughening transition~in
three dimensions!, and for sufficiently large characteristi
length scales. Continuum modeling below the roughen
transition is still a challenging problem. There are also st
ies of the corresponding problem in two dimensions us
111D solid-on-solid~SOS! models, which show good agree
ment with Mullins’ continuum theory for capillary waves i
the regime of small slopes12 By incorporating anisotropy in
stiffness and mobility one can extend the predictive capab
ties of the continuum theory even to the regime of ste
slopes. Notable is a study of Kruget al.13 which shares much
of the same methodology as the continuum modeling that
will use later.

Relaxation of 2D clusters introduces two complications
a continuum description relative to the above flattening pr
lem. First the complicated geometry prevents linearizing
dynamical equation around the long-time asymptotic so
tion. The resulting nonlinearity can create singularities~spe-
cifically, breaking up or pinch off of clusters! even though
the dynamical equation is everywhere continuous.5 Second,
incorporation of anisotropy in stiffness is essential to achi
the correct equilibrium shape. Perhaps due to these diffi
ties, previous atomistic simulations for the 2D sintering p
cesses of interest here10,11,14have not been compared qua
titatively with the associated continuum mode
incorporating appropriate anisotropies.

In general, one expects a breakdown of continuum
scription for sufficiently small island sizes, and likely als
for sufficiently low temperatures~T! where islands are highly
faceted. Indeed, recent theoretical studies revealed and
lyzed such behavior, but only for a special case of perfe
facetedclusters with simple nonequilibriumconvexshapes,
and for a special prescription of PD dynamicswithout any
corner or kink rounding barrier~see below!.14,15 For these
convex faceted geometries at lowT, the key step in shape
relaxation is nucleation of a new edge, and analysis of
process indicates thatteq;L2, i.e., a scaling exponent ofn
52. We also mention here an earlier somewhat sim
analysis of cluster shape relaxation in Ref. 16. As an as
we note that similar issues and concepts have also arise
consideration of the related problem of the PD-mediated
face diffusion for large 2D clusters; see Appendix A.

A central goal of this paper is to provide a more comp
hensive characterization of the various regimes or ways
which the continuum treatment can fail to describe behav
of atomistic models for cluster evolution via PD. Converse
we are also interested in elucidating regimes where the c
tinuum model is unexpectedly effective, e.g., despite sm
feature size. Success or failure should depend on both e
getic and kinetic parameters of the atomistic model, as w
as on feature morphology or shape. Thus we compar
detail predictions of the atomistic and continuum models
veloped in Sec. II for different parameter choices and sha
of the relaxing clusters. We analyze the relaxation
dumbbell-shaped clusters~formed by corner-to-corner coa
lescence of square clusters! in Sec. III A, and the relaxation
of faceted rectangular clusters~formed by side-to-side coa
lescence! in Sec. III B. In the absence of a kink roundin
16540
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barrier for PD, we find deviations from continuum scalin
for faceted clusters, consistent with previous work, but
such deviations for dumbbell-shaped clusters. An additio
key component of this paper is analysis of the effect on
laxation of introducing a large kink rounding barrier for PD
We find distinct scaling behavior from the case of no barr
for both the above geometries. Furthermore, we argue th
particular effective way to assess the existence and ma
tude of a kink rounding barrier is by analysis of the rela
ation of dumbbell-shaped clusters. In Sec. IV, we elucid
observed scaling behavior, as well as the effective activa
barriers controlling the overall relaxation processes, in ter
of the individual atomistic PD processes and their barrie
Concluding remarks are provided in Sec. V.

II. ATOMISTIC PD MODEL AND ITS CONTINUUM
FORMULATION

A. Atomistic PD model

Similar to previous studies,1,16 we develop a simplified
but realistic lattice-gas model for 2D nanocluster evoluti
via PD in metal~100! homoepitaxial systems. In this mode
we consider clusters of adatoms connected by near
neighbor~NN! bonds on a square lattice of adsorption sit
for which periphery atoms can hop according to certain ru
described in detail below. To inhibit the alternativ
detachment-reattachment pathway for mass transport~as jus-
tified below!, we exclude hops which lead to periphery a
oms detaching and becoming isolated, i.e., having no
atom in the cluster. Due to this constraint, we must all
periphery atoms to makeboth NN and second NN~2NN!
hops in order for such dynamics to incorporate unrestric
PD. More specifically, 2NN hops are necessary to all
rounding of kinks and corners~which in reality occurs as a
‘‘difficult’’ NN hop to a site with one 2NN but no NN cluster
atoms, followed quickly by an ‘‘easy’’ NN hop back to a sit
with a NN cluster atom!. Specific hopping rates reflec
detailed-balance constraints consistent with assumed
pairwise attractive interactions of strengthf.

In Fig. 1, we identify the most important elementary ho
ping processes in our model. Key processes involving
hops are:~i! rapid ‘‘edge diffusion’’ along straight close
packed@110# step edges with ‘‘low’’ barrierEe ; ~ii ! ‘‘kink
escape’’ along straight@110# step edges with barrierEk5Ee
1f. Key processes involving 2NN hops are:~iii ! ‘‘corner
rounding’’ with barrierEr5Ee1d; ~iv! ‘‘core breakup’’ with
barrier Ec5Ee1d1f. In ~iii !, d represents an additiona

FIG. 1. Schematics of the atomistic PD model showing the f
atomic hopping processes~for the shaded atom!: edge diffusion at
ratehe and activation barrierEe , corner rounding with barrierEr ,
kink escape with barrierEk , and core breakup with barrierEc .
7-2
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SINTERING OF TWO-DIMENSIONAL NANOCLUSTERS . . . PHYSICAL REVIEW B 66, 165407 ~2002!
barrier for corner or kink rounding relative to edge diffusio
d is sometimes referred to as the ‘‘kink Ehrlich-Schwoeb
barrier.’’17 A consistent choice of rates for NN hoppin
(hNN) and 2NN hopping (h2NN) has the form

hNN5n exp$2@Ee1~ni21!f#/~kBT!%, ~1!

and

h2NN5n exp$2@Ee1d1~ni21!f#/~kBT!%, ~2!

whereni is the initial number of NN cluster atoms befo
hopping, and the final number of NN cluster atoms satis
nf>1. In Eqs. ~1! and ~2!, n is an attempt frequency fo
hopping which, for simplicity, is assumed to have a comm
value for both NN and 2NN hops. These formulas also p
vide rates for other less significant processes such as ex
tion of an atom from a straight@110# step edge via a 2NN
hop with barrierEe1d12f. If hi ~with i 5e,k,r ,c, etc.!
denote the rates for these various hopping processes,
detailed balance imposes the constraints thathk /he5hc /hr
5exp@2f/(kBT)#[r(!1, typically!. Below, it is convenient
to introduce the corresponding characteristic times,t i
51/hi .

For restructuring of nonfaceted features, the effective
tivation barrier in our PD model,Eact(PD), often corre-
sponds to the barrier for the ‘‘slow’’ core breakup proce
i.e., Eact(PD)5Ec5Ee1d1f ~but see below!.1,18 This
Eact(PD) should be compared with the effective barrier
detachment and reattachment of periphery adatoms med
by terrace diffusion~TDA! of Eact(TDA) 5Ed12f, or with
that for terrace diffusion of vacancies~TDV! through the
interior of the cluster of Eact(TDV) 5Ev12f.18 Here,
Ed(Ev) denotes the activation barrier for terrace diffusion
isolated adatoms~isolated advacancies!.

For metal~100! homoepitaxial systems, semiempiric
studies of energetics suggest thatd<f.19 Also, a combina-
tion of semiempirical,ab initio, and experimental data
shows thatEe is well below both Ed and Ev . For Ag/
Ag~100!, one has Ed50.40–0.45 eV,20,21 Ev /Ed'0.95,
and Ee50.25 eV.21 For Cu/Cu~100!, one has Ed
50.48–0.52 eV,22,23 Ev50.42 eV,23 Ee /Ed'0.5. Ratios
are semiempirical estimates.19 Thus PD has asubstantial en-
ergetic advantageover both TDA and TDV, explaining its
dominance in these systems.

We close with a few additional comments on our mod
First, the above choice of rates implies that the barrier
diffusion along perfect open@100# step edgesEe* equals the
core breakup barrierEc . In general,Ee* could be different
from ~and most likely lower than! Ec . Semiempirical EAM
calculations for the Ag/Ag~100! system yieldEe* 50.73 eV,
whereasEe50.28 eV andf50.28 eV, soEc50.84 eV.24

Likely, behavior with these parameters is similar to that
our choice withEe* 5Ec . Second, our model does not inco
porate exchange diffusion processes. However, it is q
plausible that the easiest pathway for corner rounding is
exchange, at least at single atom high kinks. In this ca
estimates ford obtained from comparing our model wit
experiment might be interpreted as corresponding to
change rather than conventional corner rounding.18 Finally,
16540
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we note that disconnected cluster configurations, as we
advacancies, can be created indirectly in our model, but th
events are rare and have negligible effect. See Append
for further details and discussion.

B. Continuum formulation

The continuum formulation of the shape evolution of 2
clusters via PD has been developed in recent works.14,5 In the
continuum model, the morphology of a 2D cluster is d
scribed by a closed plane curve, represented parametric
asr (s)5„x(s),y(s)…. Its evolution is determined by its nor
mal velocity, which can be determined using local mass c
servation. For PD, it is given by

vn~s,t !5V¹tJPD~s,t !, ~3!

where JPD is the atomic flux along the perimeter, and¹t

5(xs
21ys

2)21/2]/]s is the derivative with respect to the ar
length along the perimeter, andV is the area of the unit cell
From linear response theory, one has

JPD52
sPD

kBT
¹tm, ~4!

wherem is the chemical potential of step edge atoms wh
measures the energy cost for adding atoms to the step,
sPD is a coefficient measuring the mobility of step ed
atoms.

In the continuum model,sPD and m depend only on the
local configuration. Specifically, one can write

m5Vb̃~u!k~s!, ~5!

whereu5u(s) is the local azimuthal angle of the step edg
and k is the local curvature.b̃ is the stiffness of the step
edge, which is related to step edge energyb~u! through b̃
5b(u)1b9(u). Similarly, we assumesPD is a function of
the local azimuthal angle, i.e.,sPD5sPD@u(s)#. The detailed
forms of b~u! andsPD(u) depend on the microscopic ene
getic and dynamical properties of the step edge. In our
malism,JPD has the dimensions of~atoms!/s, ¹t of Å21, V

of Å2, vn andsPD of Å/s, m of eV, andb ~or b̃) of eV/Å.
One important simplification is to assume bothsPD andb

to be constant, which leads to theisotropic continuum
model.5,14 Here we focus on the anisotropies of these t
quantities.

By assuming only NN interactions in the microscop
model of Sec. II A, the corresponding Ising model step ed
free energyb~u! can be solved analytically for the squa
lattice as25

b~u!5kBT@ ucosuusinh21~aucosuu!

1usinuusinh21~ausinuu!#, ~6!

where

a5
2

b F 12b2

11~sin22u1b2cos22u!1/2G 1/2

, ~7!
7-3
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and

b5
2 sinh@f/~2kBT!#

cosh2@f/~2kBT!#
. ~8!

Solutions are also available for triangular and honeyco
lattices.26

The mobility coefficientsPD depends on the dynamics o
the underlying microscopic model. We relegate the details
this analysis to Appendix C and summarize here only
basic properties.

As with b~u!, sPD exhibits fourfold symmetry associate
with the underlying square lattice~with lattice constanta). If
d50, we have that~cf. Ref. 13!

sPD~u!'an exp@2~Ee1f!/~kBT!# ~9!

is approximately isotropic. Ford.0, sPD exhibits its maxima
at the four close-packed directions and decreases rapidlyu
deviates from these directions. Around the open@100# step
edge directions it is relatively flat. It has the following form

sPD~p/4!' f ~d!an exp@2~Ee1d1f!/~kBT!#, ~10!

where f (d) is a prefactor which increases from 1 to abou
when d increases from 0 tof, and remains approximatel
constant asd increases further.

To solve the continuum model numerically, we use t
so-called Lagrangian approach27 coupled with the ‘‘method
of lines.’’28 First we discretize the continuous curve and c
vert the partial differential equation~PDE! ~3!–~5! to a set of
ordinary differential equations~ODE’s!. Then, we integrate
numerically the ODE’s using Gear’s backward different
tion formulas~BDF! method since the resulting ODE’s a
stiff equations. For simplicity and to minimize discretizatio
errors, we choose the grid points to be evenly spaced so
the arc lengths between consecutive points are the sa
Subsequent evolution, however, will destroy this spatial u
formity. We thus periodically adjust the grid points by splin
fitting so that they are always near evenly spaced. Typic
we use 128 grid points on each curve and readjust the
points 100 times during the relaxation process. In gene
readjustment of grid points can introduce unwanted dis
tion to the solution of the PDE. We test empirically the n
merical accuracies of the solutions by checking that th
display weak sensitivity to both the number of grid poin
and the frequency of grid point readjustment.

III. RESULTS FOR RELAXATION DYNAMICS DURING
SINTERING

A. Dumbbell-shaped clusters„corner-to-corner coalescence…

For simplicity, we consider an initial configuration whe
two equal sized near-square clusters are touching corne
corner. We monitor the subsequent evolution, focusing
growth of the neck between them during the sintering
restructuring process~which leads to a single larger nea
square island!. There are experimental examples of this s
nario for the Ag/Ag~100! and Cu/Cu~100! systems.1,2 In ato-
mistic simulations with perfectly squareL3L initial clusters
16540
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having diagonally adjacent corner atoms, the clusters a
ally tend to separate or pinch off rather than sinter for su
ciently large linear sizes. This is avoided in our atomis
simulations by shifting the two outer corner atoms to t
neck and thus thickening the initial neck~the total number of
atoms remaining at 2L2). In the continuum analysis, we sim
ply preclude pinch off. One could certainly avoid pinch o
by starting with more complex initial conditions~e.g., touch-
ing clusters with equilibrated shapes mimicking experimen!,
but we believe that the basic behavior of neck growth wo
be unchanged.

1. Results without corner rounding barrier (dÄ0):
conventional scaling

First we present the continuum model predictions. It
easy to see that for the continuum model, the sintering p
cess obeys a size scaling relationship: ifr̃ (t) is the solution
of the continuum equation with the initial valuer (0)5 r̃0,
thenl r̃ (t/l4) is the solution with the initial valuel r̃0. One
immediate consequence is that the equilibration timeteq ~de-
fined, e.g., as the time for the neck to grow to some cons
timesL) scales exactly asL4. In our numerical analysis, we
use only an isotropic mobility coefficient, i.e.,sPD(u)5s0 is
a constant. Figure 2 shows six snapshots of the resha
process.

FIG. 2. Snapshots of the sintering process of two clusters joi
by their corners. The solid line is the result of continuum mod
with constantsPD and the symbols are results~average of 100 MC
runs! of the atomistic model withL520. Other parameters ar
f50.235 eV,d50, andT5300 K. Configurations of a single MC
run are overlayed.
7-4



s
e
er
C

st
m
it
di

c

de
la

n-
g.

um

ce

-

a
he
t
C
er
u

nl
s

o

re
ith
m

wth
ing

nal
k
h

,

k

a in

a
K

su

al,

nd
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We also perform kinetic Monte Carlo~KMC! simulations
of the atomistic model to study the same sintering proce
Details of the algorithm are given in Appendix B. First w
observe that there are large fluctuations for small clust
The sintering process can be quite different for different M
runs. Fluctuations become relatively smaller as the clu
size increases, in other words, the process becomes
deterministic. To compare results of the atomistic model w
the continuum model, we average over configurations of
ferent MC runs. Defining the average cluster boundaries
the points where the interpolated average site occupan
equal 1/2, we overplot the simulation results as symbols
Fig. 2. To compare the time scale in the continuum mo
with that in the KMC simulations, we use the formu
sPD(u)5s05ahee

2f/(kBT) ~see Sec. II B and Appendix C!.
In Fig. 2 we define t̃ 5ts0bav(kBTL4)21, where bav
5(2p)21*0

2pb(u)du. The agreement between the co
tinuum prediction and KMC simulations is quite strikin
The slight discrepancy in shapes apparent fort̃ 50.064 ef-
fectively disappears forL*50. Also shown in Fig. 2 are
configurations of a single MC simulation.

Perhaps a more striking result is how well the continu
model agrees with simulation results of even smallerL. Fig-
ure 3 shows the growth of the neckwidth forL ranging from
10 to 40, corresponding to about 3–12 nm on metal surfa
from KMC simulations of the atomistic model withf50.235
eV andd50 at 300 K. Thex axis is the sintering time res
caled as in Fig. 2, and they axis is the neckwidth divided by
L. Results are averaged over 100 KMC runs. Also plotted
a solid line is the result of the continuum model using t
Ising b~u! for NN interactionsf50.235 eV and a constan
sPD. Both the scaling and quantitative behavior of the KM
model agree quite well with the continuum model. Howev
we stress that for smaller clusters, results of each individ
simulation~or experiment for that matter! can be quite dif-
ferent from the continuum model. The agreement is o
apparent after averaging over many samples. Another ob
vation from our simulations is that theL4 scaling persist to
very low temperatures~not shown!, which is the regime
when typically one needs to seriously question the validity
the continuum model.

FIG. 3. Growth of the neckwidth measured along the diagon
for f50.235 eV and no extra corner rounding barrier at 300
Symbols are the average of 100 MC runs. The curves show re
of the continuum model using~a! Ising step energy~solid! and ~b!
isotropic step energy~dashed!.
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We also show for comparison the result of theisotropic
continuum model in Fig. 3. The main difference is that he
the growth rate of the neck width is strongly decreasing w
time, while the results of the KMC model and the continuu
model with Ising step energy show a near constant gro
~except for the very beginning and the end of the sinter
processes!.

2. Results with large corner rounding barrier (dÌ0):
Breakdown of scaling

Behavior is somewhat different when an large additio
corner rounding barrierd is present. Figure 4 plots nec
growth from KMC simulations of the atomistic model wit
f50.235 eV andd50.16 eV at 300 K, again with time
renormalized byL4. Initially, the data collapse is quite good
reproducing the conventionalL4 scaling. However, after the
neck width grows to about 0.8L, this scaling starts to brea
down.

To measure the later stage growth rate, we fit the dat
Fig. 4 for neck widths between 1.2L and 1.5L to a straight
line asa1RLt. We then fit the growth rateRL to Ln21. ~This
type of analysis has also been employed in Ref. 1.! Results
are shown in Fig. 5, along with results ford50. Using data

FIG. 5. MC results for the neck-width growth rateRL , in unit of
te

21 . Key parameters aref50.235 eV andT5300 K.

l,
.
lts

FIG. 4. Growth of the neck-width measure along the diagon
for f50.235 eV and extra corner rounding barrierd50.16 eV at
300 K. Results forL510–20 are averages of 100 MC runs, a
results forL528 and 40 are averages of 10 MC runs.
7-5
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for L57 to L520 we obtainn53.77(3) for the previous
case withd50, andn53.10(6) ford50.16 eV. Note that the
continuum model predictsn54.

B. Faceted rectangular clusters„side-to-side coalescence…

Motivated by the predictions and analysis of Refs. 14 a
15 for relaxation of convex faceted clusters, we also cons
the case of an initial rectangular configuration. Experim
tally, such configurations are naturally created by side-to-s
collision of clusters. Although typically clusters have diffe
ent sizes, a near-rectangular configuration is quickly form
from the initial configuration of touching unequal size
squares. Then the metastable rectangular configura
slowly relaxes to the near-equilibrium square shape.1

1. Results without corner rounding barrier (dÄ0)
Figure 6 shows two snapshots of the sintering proc

with d50 for two clusters of size 20320 joined at one side
Symbols are the average of cluster boundaries of 100
runs and solid line is the continuum model prediction. T
energetics and temperature are the same as in Sec. I
However, unlike the previous case, relaxation predicted
the continuum model is much too fast. Also shown are c
figurations of a single MC simulation.

Starting from a perfect rectangle of sizeL32L, we mea-
sure the aspect ratio by calculating the radii of gyration,r x
and r y , as in Ref. 14. Figure 7 plots results of differe
system sizes usingf50.235 eV andd50 at 300 K, with the
prediction of the continuum model plotted as the solid lin
In contrast to the results in Sec. III A and consistent w
results in Refs. 14 and 15, there is a large discrepancy
tween the KMC results and the continuum model predict
for systems withL,100. Indeed, analysis of the decay
the aspect ratio is best described by an effective expo
n52.7, rather thann54 ~see below!.

2. Results with large corner rounding barrier (dÌ0)

As in Sec. III A, the presence of an extra corner round
barrier d shifts the size scaling exponent to an even low
number. Figure 8 shows theL dependence of the averag
relaxation timeteq measured as the first time that the asp
ratio of the cluster reaches 1.5. Also shown for compari
are results of simulations and the prediction of the continu

FIG. 6. Snapshots of the sintering process of two square clus
joined at one side. The solid line shows the continuum predict
Symbols are the average of 100 MC runs of the atomistic mo
with f50.235 eV andd50 at 300 K, withL520. Configurations of
a single MC run are also overlayed.
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model usingd50. Fitting the KMC simulations data forL
55 to 20 to a power lawteq;Ln givesn52.7 ~for d50! and
n52.2 ~for d50.16 eV! at 300 K. We can also see that fo
L*100, results of the atomistic model withd50 are closer
to the continuum prediction. We expect that in both cases
scaling exponent will cross over ton54 asL increases.

IV. DISCUSSION

Results in Sec. III reveal that the sintering of two nan
clusters can be characterized by a variety of size sca
exponentsn, which for sufficiently small clusters deviat
from the continuum predictionn54. We emphasize tha
this deviation occurs even though mass transport is p
ly through periphery diffusion. As noted in Sec. I, such d
viations have already been observed in both experim
and simulations. Furthermore, we will see that analy
theories15,29which have been developed to describe behav

rs
.

el

FIG. 7. Time dependence of the aspect ratio of rectangular
lands of sizeL32L for f50.235 eV andd50 at 300 K. The solid
line is the prediction of the continuum model wherer x and r y are
the sizes of the cluster in thex andy directions, and the symbols ar
KMC simulation results wherer x andr y are the gyration radii along
the x andy directions.

FIG. 8. Relaxation timeteq ~in unit of te) measured as the firs
time that the aspect ration reaches 1.5 for different systems s
Diamonds are results forf50.235 eV andd50, and asterisks are
results forf50.235 eV andd50.16 eV at 300 K. The dotted line is
the prediction of the continuum model withd50.
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SINTERING OF TWO-DIMENSIONAL NANOCLUSTERS . . . PHYSICAL REVIEW B 66, 165407 ~2002!
for relaxation of convex faceted clusters for the cased50,
apply to describe behavior for relaxation of rectangular cl
ters observed in Sec. III B 1. A key conclusion in Refs.
and 15 is that crossover behavior~for d50! is determined by
the relative magnitude of the linear cluster sizeL and a char-

acteristic lengthLc5exp@ 1
2f/(kBT)# ('94 lattice constants

for our parameters!, which measures the typical separati
between kinks on an extended@110# step edge.

Beyond these previous studies, our results reveal
there are two crucial additional factors controlling the rela
ation dynamics of 2D nanoclusters and, specifically, the s
scaling exponentn: ~a! the geometry of the cluster; and~b!
the kink rounding barrierd. Indeed, then'3 behavior for a
large d found in Sec. III A 2 seems to match well previou
studies1 of dumbbell relaxation in the Ag/Ag~100! system at
300 K. Below, we elucidate the dependence ofn on these
factors in terms of the individual atomistic PD process
The effective Arrhenius barrier for relaxation is also char
terized in terms of the barriers for these individual process

For L@Lc , the step edge is rough due to thermally ac
vated kinks, and the system is well described by the c
tinuum model. The size scaling is given byn54 for all
cases, so we provide no detailed discussion of this reg
The following simplified analyses apply to situations whe
L&Lc .

A. Initial stages of dumbbell evolution:
Entropy-driven relaxation

For the initial relaxation of clusters formed by corner-t
corner coalescence, atoms flow primarily from the outer c
ners towards the inner region, thus developing a neck. At
stage, it is not common to completely remove outer edge
atoms~see Fig. 2 fort̃ 50.027). The latter feature implie
that this process does not involve a change of energy~as an
energy decrease only occurs upon moving the last atom f
an outer edge to the neck region!.30

More explicitly, consider dumbbell configurations of th
cluster which retain portions of the four faceted outer ed
of the initial configuration~see Fig. 9!. Then, provided the
four portions of kinked step edges between the faceted
gions each have kinks of only one sign, the energy of

FIG. 9. Illustration of the early stage of dumbbell relaxatio
Note the coincidence of the outer layers of the dumbbell confi
ration with the initial configuration.
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dumbbell configuration equals that of the initial configur
tion. This is most easily seen by noting that~in both cases!
the total number of broken bonds equals twice the sum of
distances measuring the span of the cluster along the
major axes. Since there is no change in energy, and s
there are clearly many such dumbbell configurations~com-
pared with just one initial configuration!, we naturally de-
scribe evolution as entropy driven. Although the outer ste
are faceted, they do not play an important role in the dyna
ics. Thus the relaxation process in this regime can be v
accurately described by the continuum model. For both
case withd50 andd.0, the size scaling exponent isn54
~cf. Fig. 3 and Fig. 4!. The relaxation rate is governed by th
PD mobility coefficientsPD, with activation energyEe1f
1d.

B. Later stage of dumbbell evolution:
Energy-driven relaxation

For the later stage of relaxation of corner-to-corner c
lescence, the atoms on the outer steps are removed an
tached to the inner steps. When one layer of atoms on
outer steps are completely removed, the cluster can lowe
energy. This is similar to the situation in Ref. 15 with on
distinction. Here, the inner steps can readily accept ato
from outer steps without first nucleation of a new layer.

At this stage, relaxation is controlled by the removal ra
of outer layers of typical sizeL in the case ofL&Lc . The
typical timet layer for removing a complete layer ofL atoms
satisfiest layer;L2t0, whereh05t0

21 is the exchange rate o
atoms between two adjacent layers. This result is essent
just Einstein’s relation for a system undergoing a rand
walk between configurations with different numbers of tran
ferred atoms. A more detailed derivation follows from ada
ing the master equation formalism of Combe and Larrald15

In order to relax back to the equilibrium shapeO(L) layers
have to be removed, so the relaxation timeteq scales asteq
;Lt layer;L3t0.

It thus remains only to develop an appropriate expr
sion for the characteristic timet0, for atom exchange be
tween layers in order to obtain an explicit expression
the relaxation time. This is done in Appendix D where w
show that t0;(Lr1L)tk ~neglecting constants of orde
unity!. Here (tk)

215hk is the rate for kink escape, andLr
5exp@d/(kBT)# is a length scale associated with the ex
corner rounding barrier. In our simulations withd
50.16 eV at 300 K, one hasLr'490. Lr is the 1D analog of
the so-called Ehrlich-Schwoebel length.31 If the distance be-
tween the kinks is larger thanLr , then the exchange is lim
ited by diffusion of edge atoms. If the distance is smal
than Lr , then it is limited by the rate for corner rounding
Thus we have forL&Lc that

teq;H L4tk for L@Lr ,

L3tc for L!Lr .
~11!

The first caserecovers conventional scaling,teq;L4. How-
ever, there are some subtleties. The rate is proportiona
hk5n exp@2(Ee1f)/(kBT)#. This result follows since here

-
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DA-JIANG LIU AND J. W. EVANS PHYSICAL REVIEW B 66, 165407 ~2002!
L&Lc , thus the outer steps are completely faceted. The
limiting step is the diffusion of a single atom~once it is
detached from a kink position! along a faceted step edge, s
the rate should scale likehe times the density of such atom
In contrast, the continuum model which predicts that the r
is proportional tohc5n exp@2(Ee1f1d)/(kBT)# applies for
L@Lc . Thesecond case, teq;L3, corresponds to an uncon
ventional scaling law.32

C. Evolution of rectangular clusters:
Nucleation-limited relaxation

Here, we exploit the ideas developed by Combe a
Larralde15 for relaxation of convex faceted clusters for a g
neric PD model with no corner rounding barrier on a he
agonal lattice. These ideas can be directly applied to ana
the relaxation of rectangular clusters@created by side-to-side
coalescence in metal~100! homoepitaxial systems# for the
cased50. Furthermore, we also extend this approach to tr
d.0. Specifically, we consider the relaxation of a ne
rectangular cluster~dimensionsL3lL, with l.1! to its
near-square equilibrium shape at lowT. Again we consider
the case ofL&Lc only, so that the edges of the rectangu
cluster are faceted. The key process is nucleation and gro
of a new terrace on a perfect long edge due to transfe
atoms from the short edge.15 Successive completion of suc
new terraces will shift the cluster towards a square sha
However, there is no energetic advantage to nucleation
new terrace on the long edge~versus the short edge! or to the
subsequent mass transfer~and it is quite likely that nucle-
ation occurs on the short edge potentially shifting the sh
away from equilibrium!. The resolution is this apparent d
lemma is that for nucleation on the long edge, subsequ
transfer of sufficiently many atoms can completely remo
one layer of the short edge. Transfer of the last atom in
process leads to an energy decrease, so the reverse proc
very unlikely.15 In contrast, the latter is not possible fo
nucleation on the short terrace.

Detailed ~but approximate! analysis of the process o
complete removal of a layer from the short edge of the cl
ters can be achieved following Ref. 15. One treats evolu
of the system through configurations with various numb
of transferred atoms as a Markov chain, regarding the fi
configuration as an absorbing or trapping state. Then,
develops and solves an appropriate set of coupled equa
for the trapping times starting from various configuration
While this approach yields explicit results including corre
tions to size scaling, it should be emphasized that these
details are not so germane to behavior in real systems du
the assumptions in the modeling~e.g., ignoring roughening
of the corners of the rectangular cluster, and assuming a
fectly absorbing final state!. Thus we prefer here to avoi
the complex details of the mathematical analysis, instead
cusing on the basic physics which drives the dominant s
scaling.

The central result from a mathematical analysis of
above type is that the time for removal of the complete la
has the formt layer;Ltc /K1L2t0, for L&Lc ~neglecting
constants of order unity!.
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The first term in t layer reflects the ‘‘difficult’’ nucleation
step: after the first atom is ejected from the short edge o
the long edge with low ratehc , it is much more likely that
the system will return to its initial configuration rather tha
eject a second atom, and nucleate a new layer on the
side. In fact,K!1 corresponds to an ‘‘equilibrium constant
with the following interpretation. Suppose that the syste
has evolved from the initial perfect rectangular stateI to the
stateSwhere the first particle has been ejected from the sh
edge. Letp2 denote the conditional probability that give
the system is inS, it returns toI. Let p1 denote the condi-
tional probability that given the system inS, a second par-
ticle is ejected from the short edge and leads to nucleatio
a new layer on the long side. Then, one hasp21p151, and
K5p1 /p2 . The secondterm in t layer reflects the feature
that after the new layer is nucleated, the system essent
follows a random walk through configurations with differe
numbers of atoms transferred between the short and
edges. It is analogous to the Einstein-type relation in S
IV B, and h05t0

21 is now the exchange rate of atoms b
tween two sides. The analysis in Appendix D shows thatt0
;(Lr1L)tk has exactly the same form as in Sec. IV B.

Since relaxation back to equilibrium requires transfer
O(L) layers, the relaxation timeteq has the form

teq;Lt layer;L2tc /K1L3t0 , ~12!

for L&Lc . This is our key result for the relaxation time.
The presence of a kink rounding barrier affects both

nucleation process~and specifically the values oftc andK),
as well as the subsequent mass transfer~as is evident from
the explicit form fort0). To obtain explicit forms forteq, it
just remains to determine those forK. For d50, the analysis
of Ref. 15 shows thatK;exp@2f/(kBT)#. For larged, it is
clear that if the second atom is ejected from the short e
when the first ejected atom is still on the long edge, then t
will almost certainly meet and nucleate a new layer~since
the alternative is to return around the corner, which is di
cult!. Consequently,K is given by the ratio of the rate to ejec
the second atomhc to the rate for the first ejected particle t
return to the short edgehr /L ~noting that the probability for
this atom to be on the corner site is;1/L!. Thus, finally, one
has that K;exp@2f/(kBT)#L, for large d, exceeding the
value ford50.33

For L<Lc , it is easy to check that the first term in E
~12! either dominates or comparable to the second te
Thus we can summarize our findings by the relations

teq;L2exp@f/~kBT!#tk ~13!

whend50, and

teq;L exp@f/~kBT!#tc ~14!

whend.0 andL!Lr .
To summarize, in Table I, we list the equilibration time

clusters for different size regimes and geometries.
7-8
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V. SUMMARY AND CONCLUSION

We have provided a detailed comparison of the pred
tions of continuum and atomistic models for the sintering
pairs of 2D nanoclusters in metal~100! homoepitaxial sys-
tems. For relaxation of dumbbell-shaped clusters formed
corner-to-corner coalescence, the atomistic modelwithoutan
extra corner rounding barrier agrees both qualitatively a
quantitatively with the prediction of the continuum mode
even for small sizes or low temperatures. However, an e
corner rounding barrier produces a smaller size scaling
ponent for the later stage of the sintering process. This re
can be utilized to determine from experimental data the b
kinetic properties of step edges, specifically, the existe
and magnitude of any kink rounding barrier. Such an ana
sis indicates the existence of a substantial kink rounding
rier for the Ag/Ag~100! system.1 For relaxation of rectangu
lar clusters formed by side-to-side coalescence of near sq
islands, there is a large discrepancy between continuum
atomistic predictions for small sizes or low temperatur
The discrepancy is more extreme in the presence of a co
rounding barrier. All the above types of behavior can be
plained in terms of the underlying atomistic PD processes
particularly relevant recent paper by Pierre-Louis29 devel-
oped a modified continuum theory which can account for
unconventional scaling in the case of faceted clusters.

We have noted in the introduction that several aspect
our analysis extend beyond relaxation of adatom cluster
metal~100! homoepitaxial systems. Clearly in the Mullins r
gime whereL@Lc andLr , the exact continuum theory wil
apply for advacancy cluster relaxation~with the same aniso
tropic step edge stiffness and mobility as for adatom cl
ters!. In fact, we have already used such a formulation
successfully describe a novel pinch-off phenomena obse
for wormlike advacancy nanoclusters in the Cu/Cu~100! and
Ag/Ag~100! systems.5 However, for smallerL, significant
differences in behavior from the corresponding adatom c
ter case can emerge due to an expected large asymm
between activation barriers of single advacancy and sin
adatom diffusion at step edges. The details of mass fl
under PD can be quite different. For vacancy dumbbell
structuring, we do expect an initial entropy driven relaxatio

TABLE I. Characteristic relaxation time for entropy-driven~A!,
energy driven~B!, and nucleation-limited~C! relaxation discussed
in Sec. IV. Heretc and tk stand for the characteristic time fo
corner breakup and kink escape, respectively, andr5e2f/(kBT).
Note that the second column applies for 0<d,f/2. Footnotes in-
dicate which of our MC simulation results illustrate the vario
regimes.

L!Lr ,Lc Lr!L!Lc Lc!L

A ~entropy! L4tc
a L4tc

d L4tc

B ~energy! L3tc
b L4tk

b L4tc

C ~nucleation! Ltcr
21 c L2tcr

21 c L4tc

aSee Fig. 4.
bSee Fig. 5.
cSee Fig. 8.
dsee Fig. 3.
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analogous to the adatom case~although the dominant adatom
mass flow will be from the neck region outward!. Also, scal-
ing should be influenced by the presence of a kink round
barrier ~as with adatom clusters!. For the relaxation of rect-
angular advacancy clusters, details of the kinetics will
doubt be quite different from the nucleation-mediated a
tom cluster case. However, energy minimization associa
with complete removal of advacancy layers from the sh
edge of the cluster does presumably drive the process.
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APPENDIX A: CLUSTER DIFFUSION VIA PD

For the surface diffusion of large 2D clusters via P
continuum theory~as well as simple atomistic argument!
predict scaling of diffusion coefficientD with linear sizeL of
the form D;L2a, with exponenta53.34 However, large-
scale atomistic simulations of cluster diffusion via PD reve
that a deviates significantly below 3. Furthermore, of pa
ticular relevance to this work is the interesting proposal t
a is generally related to the exponentn for restructuring via
a5n21.10,14,35

Simulations by Millset al. of cluster diffusion at higherT
for a generic model for metal~100! homoepitaxy withf50.3
eV recovereda53 at 800 K, and an activation barrier o
Ediff'Ec5Ee1d1f.36 However, for lowerT, a deviated
below 3 ~down to 1.2 at 300 K whereL,Lc), and Ediff
increased to'Ee12f. These authors proposed that diffu
sion is limited by nucleation of a new edge at a rate
he(neq)

2, where neq;exp@2f/(kBT)#, implying that Ediff
5Ee12f. This is just the picture of Jensenet al.14 and of
Sec. IV C for relaxation of convex faceted clusters at lowT
~with d50!. Indeed, Jensenet al. noted that usinga5n
21, their theory also explained the size scaling in Ref. 3

Experiments also reveal low values ofa'2 for homoepi-
taxial metal~100! and metal~111! systems at 300 K where
cluster diffusion is known to be controlled by PD.4,35 It is
plausible that this just represents crossover behavior tow
nucleation-mediated behavior. Indeed, simulations of
model withf50.235 eV andd50 at 300 K yielda'1.8 ~cf.
n52.7). One could match the slightly higher experimen
values by further decreasingf below 0.235 eV~and by in-
creasingd well above the value in Ref. 36!. As in Sec. III B,
the main effect ofd in this temperature range is to decrea
the overall step edge atom mobility, and thus the cluster
fusion rate. The effect ofd on the size scaling exponen
seems secondary to that of nucleation-limited relaxat
which can shifta from 3 to 1.

APPENDIX B: MODEL AND SIMULATION DETAILS

For the most part we follow the so-called Bortz orn-fold
algorithm37 in our kinetic Monte Carlo~KMC! simulations
7-9
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DA-JIANG LIU AND J. W. EVANS PHYSICAL REVIEW B 66, 165407 ~2002!
of the atomistic model with a broad range of hopping rateshi
described in Sec. II A. Surface atoms are categorized
five classes, i.e., with lateral bond numberm from 0 to 4.
Atoms from each class are chosen with probability prop
tional to e2mf/(kBT). Once chosen, it can perform either
NN or a second NN~2NN! hopping, with probability propor-
tional to 1 ande2d/(kBT), respectively. The move is accepte
provided the site that an atom hop to is vacant. This al
rithm is not completely ‘‘reject-free,’’ but rather a compris
between efficiency and the programming complexity. W
note that in contrast to similar previous studies,1,14,16we do
allow atoms with three or more neighbors to hop. Th
avoids violating detailed balance, and also avoids the arti
that a close-packed step edge is completely frozen. For
temperature range and relaxation processes considered
havior of our models is very close to the model where ato
with three NN bonds are immobile.

Finally, we note that disconnected cluster configuratio
can be generated ‘‘indirectly’’ in our model, e.g., if an ato
has just one NN which hops away. However, these ene
increasing events are extremely rare, so their effect can
ignored. One can further limit these situations by demand
that atoms must have at least one 2NN after hopping. S
algorithms, which impose some sort of connectivity con
tion by checking only the state of the hopping atom~and not
that of all atoms its neighborhood! are very efficient, but
suffer from a weak violation of detailed balance.

APPENDIX C: PD MOBILITY AND ITS MEASUREMENT
FROM KMC SIMULATIONS

Following Spohn38 and Kruget al.13 we define the mobil-
ity for periphery diffusion as the linear-response coefficie
when an external driving force acts on the step edge atom
the direction parallel to the step edge, i.e.,

sPD5 lim
F→0

JPD~F !/F, ~C1!

whereF5uFu is the magnitude of the external driving forc
and JPD(F) is the magnitude of the net flux. The extern
driving force produces biases in the hopping rates. In
algorithm we assign different probabilities for choosing va
ous hopping directions,13 e.g.,

p~x→x1a,y→y!;~11 f xa/2!,
~C2!

p~x→x1a,y→y1a!;~11 f xa/21 f ya/2!,

to linear order inF. We then measure the net fluxJ5(Jx
1Jy)

1/2 directly from Monte Carlo~MC! simulation using
this bias. Figure 10 shows theu dependence of the mobility
~in unit of ahe) for various d values. We can see that fo
d50, sPD is almost isotropic~within 6%!, with sPD given
approximately byahee

2f/(kBT). As d increases, anisotrop
increases and the overall mobility decreases.
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APPENDIX D: CORNER ROUNDING PROBABILITIES
AND TIME SCALES

We analyze a process involving atom detachment from
kink site, diffusion alongL1 sites on a@110# step edge,
rounding of a corner, diffusion alongL2 sites on a@11̄0# step
edge, and attachment to another kink; see Fig. 11~a!. Thus
we label the linear array of sites traversed byj 51 to L1
1L2, bounded by traps atj 50 and L11L211. Hopping
occurs randomly between adjacent sites at ratehe , except
between sitesL1 andL111 at ratehr , and there is no escap
from traps. Below we setp5hr /(he1hr), q5he /(he1hr)
512p, and Lr5he /hr5exp@d/(kBT)#. Let Pj denote the
probability that an atom starting on sitej is trapped at site

FIG. 10. Angular dependence of the atom mobility for periphe
diffusion measured from Monte Carlo simulations withf
59.4kBT. From top to bottom, one hasd/f50, 1/4, 1/2, 3/4, and 1.
The mobility is measured in unit ofhea, where he is the edge
diffusion rate. The same attempt frequency is used for both NN
second NN hopping.

FIG. 11. Transfer of atoms~shaded squares! around corners to
traps at kink sites~denoted by T!. Distances are in units of the
lattice constanta.
7-10
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L11L211, soP050 andPL11L21151. Then, one has tha

Pj51/2~Pj 211Pj 11!, ~D1!

where 1< j ,L1 andL111, j <L11L2, and

PL1
5qPL1211pPL111 ,

~D2!
PL1115pPL1

1qPL112 ,

where Eq.~D2! accounts for the reduced hop rate to rou
corners. From the first relation, the solution is piecewi
linear in j, i.e., Pj5A j for j <L1, and Pj512B(L11L2
112 j ) for j >L111. The latter relations determineA5B
5hr /@he1hr(L11L2)#, so thatP151/(Lr1L11L2).

For atom transfer between faceted edges, discusse
Sec. IV C, the characteristic rate ish0'hkP1 ~the product of
the microscopic kink detachment rate, and the probability
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successfully round the corner!, where here we setL11L2

5L. Thus one obtainst05h0
21'(Lr1L)tk . For atom

transfer between layers discussed in Sec. IV B, one has c
acteristic rates ofh0(down)'hkP1(L15L,L250) for down-
ward transport@Fig. 11~b!#, and h0(up)'hcP1(L150,L2

5L) for upward transport@Fig. 11~c!#, which in both cases
recoverst05h0

21'(Lr1L)tk .
Finally, we note that one can develop and solve a coup

set of equations for the trapping timest j for a particle start-
ing from various sitesj ~cf. Ref. 15!. Here, we assume that i
the particle returns to the initial kink site, then it can esca
from that site again at ratehk , and thus finally reach the
destination trap site. The results of this analysis recover th
above using an approach based on corner rounding proba
ties, and also produce small correction terms~e.g., an addi-
tional term scaling likeL2te for d50!.
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