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Possible weak temperature dependence of electron dephasing
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The first-principle theory of electron dephasing by disorder-induced two state fluctuators is developed. There
exist two mechanisms of dephasing. First, dephasing occurs due to direct transitions between the defect levels
caused by inelastic electron-defect scattering. The second mechanism is due to violation of the time reversal
symmetry caused by time-dependent fluctuations of the scattering potential. These fluctuations originate from
an interaction between the dynamic defects and conduction electrons forming a thermal bath. The first contri-
bution to the dephasing rate saturates as temperature decreases. The second contribution does not saturate,
although its temperature dependence is rather wedR/. The quantitative estimates based on the experi-
mental data show that these mechanisms considered can explain the weak temperature dependence of the
dephasing rate in some temperature interval. However, below some temperature dependent on the model of
dynamic defects the dephasing rate tends rapidly to zero. The relation to earlier studies of the dephasing caused
by the dynamical defects is discussed.
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I. INTRODUCTION determining the actual path of the electron, and consequently

to loss of interference. The second one is due to relaxation

The problem of dephasing of electron states in low-dynamics of dynamic defects which fluctuate due to interac-
dimensional structures is the focus of interest for many retion with the thermal bath. Time dependence of the electron
search groups. This is due to novel experiments on th&cattering crossection due to the defects’ fluctuations lead to

Aharonov-Bohm effect in specially designed mesoscopicviolation of the time-reversal symmetry and, as a conse-
circuits”? and on weak localization magnetoresistance induence, to decoherence. To our knowledge, the theory rel-
low-dimensional samplesas well as to new theoretical dis- evant to the second mechanism has not been developed.
cussions of dephasu‘fb‘g In particu'ar, dephasing due to de- HOW(_EveI’, there (.EXISt.S a ter.npe.rature interval where this re-
fects with internal degrees of freedom as a source of depha@xation mechanism is dominating.
ing were recently addresséd.According to the model ~ The paper is organized as follows. Below we will give
discussed in Ref. 7, a temperature interval can exist in whicRhysical considerations to describe dephasing by dynamic
the dephasing rate is almost temperature independent.  defects which will be then confirmed by a diagrammatic ap-
In this work we revisit the dephasing due to dynamicProach, see Sec. Il. In this section the model for electron-
defects which interact with electrons and tunnel betweer LS interaction will be formulated, Sec. Il A; this model will
their two states due to interaction with some thermal bathused to calculated the dephasing rate duel¢ntical TLS's,
Examples of such defects are disorder-induced two-stateec. Il B; and, finally, an average procedure over different
f|uctuat0réoill present in any disordered materiaL impuritiesTLSS will be Considered, Sec. Il C. Estimates and discussion
with noncompensated Spin, etc. These defects produce a raW].“ be giVen in Sec. I”, while the conclusions will be given
dom time-dependent field and in this way they violate thein Sec. IV.
time-reversal symmetry of the problem. According to a con- Qualitative considerationd.et us start with a toy model
ventional opinion, this property is sufficient to produce which illustrates the essence of the phySiCS involved. Then in
dephasing_ However, this is true on|y under the Conditionsec. Il the results will be confirmed by calculation. Consider
that a typical defect relaxation time is shorter that the timethe electron motion in a slowly varying potential field
during which the electron interference pattern is formed. InU(r,t). Let us calculate the phase differentg between
deed, if the defects do not change their state during the pathe electron waves moving from the same poftalong
tern formation they act as static ones and can contribute tde same closed pat? clockwise and counterclockwise,
the interference only in a constructive way. see Fig. 1.
The purpose of this paper is to develop a systematic
theory of weak localization with dephasing due to dynamic
defects interacting with electrons which results in a smooth
temperature dependence at relatively low temperatiites
The dynamic defects are specified as two-level tunneling
states(TLS’s) that exist in any crystalline metal.
The main message of this paper is the following. There
exist two mechanisms of electron dephasing due to dynamic
defects. The first one is due to direct inelastic transitions
between the levels of the TLS leading to the possibility of FIG. 1. A closed-loop trajectory.
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We begin with evaluation of the variatiakS of the elec- — [t
tron’s actionS due to the time variation of potential. We (A€D)2°<U2f dtf1-f(2t—to)].
assume that an electron during its motion along the trajectory 0
P experiences many scattering events against both static amfthere are several mechanisms responsible for dephasing
dynamic defects, so that the trajectory can be approximategharacterized by different coupling strengths and different

by a smooth curve. We have correlation functions the resulting phase variance can be ex-
pressed as
Szf pdrzf p-nds, (1)
Go [t @
wheren=p/p is a unit vector parallel to the tangent to the ¢ s Jo Ts s o

curve’P andds is the length element of the curve. This can

also be written Here we have absorbed the random scattering potential into

the partial relaxation rates; . They, as well as the corre-
lation functions, depend on the properties of dynamic de-
S:j dsy2m(&-U), fects. We wish to emphasize that Eg) demonstrates the
) ) o o following point indicated above. If the defect has not relaxed
£=p“/2m being the electron kinetic energy whife is the  §ring the time 2—t,, between two acts of scattering then in
electron effective mass. Expanding this equation in powergpite of noninvariance of the Hamiltonian respective to the

of the potential energy assumed small, one gets time reversal there is no phase relaxation.
ds We distinguish two mechanisms of dephasing. The first,
AS=— f —U(s,t)=— f dt U(s,,t). which we call the resonant mechanism, is connected to inter-
v actions which cause real transitions between different states

Heres, is the electron’s coordinate on the trajectory param—Of the environment. This can be illustrated by the famous

etrized by timet. SoU depends on time both via the space double slit experiment. If we send electrons at the double
coordinates, and explicitly. slit, it will pass through both slits and interfere with itself,

Let nowt, be the total time of the motion of an electron creating an interference pattern on the screen. Putting detec-

along the loopP. Accordingly, the phase variation in the tors to dgtermine Which slit the electron really _passed
course of a clockwise motion is through will destroy the interference pattern. If the interac-

tion with the environment in any way allows us to determine

1 (to the path of the electron, interference is lost. The second
(Ap) =~ gJ dtU(s;,t), (2 mechanism of dephasing is related to a change in the state of
0 the environment due to its own internal dynamics. A dy-
while for the counterclockwise motion one has namic environment leads to a difference in a scattering po-

tential “felt” by an electron state during clockwise and coun-
1t terclockwise motion. As a result, time-reversal symmetry is
(A‘P)*:_gjo dtu(S’to*t’t)' 3 broken and the interference pattern decays. We call this
mechanism the relaxational mechanism, because it is caused
The dephasing means a non-vanishing phase differarce by the relaxation of the environmental states which results

=(A¢);—(Ag)_. Thus, when the environment is considered to be in contact with a
thermal bath.
Ao)2= Ao —(Ao)(Ao)-]. At this point we would like to compare our description to
(Ae) z [(Ae)i—(Ae)-(A¢)s] the one given in Ref. 12, where it is proved that the dephas-

._ing can be described in two equivalent ways. Either you
: D bt i i tonsider the change in the electron phase of you consider the
through[ Jdtf 7dt’U(s,,t)U(sy,t") wherei, k==, t,=t,  change of state of the environment, where complete dephas-
t_=ty—t. We assume that there i® spatial correlation ing corresponds to the environment being in orthogonal
between the scattering centersU(s,,t)U(s; ,t") states. The last point of view would imply the existence of

« 8(s;—S+), which implies only the first mechanism of dephasing that we consider, reso-
nant transitions of environment states. We want to emphasize
U(s,_,DU(sy t")<U%(s,t) s(t—t'), that our second, relaxational mechanism is not in conflict

with this, but is a result of oudescriptionof the process. In
Ref. 12 the environment is considered as a mechanical sys-
tem evolving according to its own Hamiltonian, whereas we
ﬁonsider the environment to be a statistical system at some
temperature. That is, we calculate the action of the environ-
ment on the electrons, but do not consider the action of the

U(s DU(sy 1)< U(s,U(s,to—1) 81+t~ o).

Using these expressions and introducing the time correlatio
function of the time-dependent random potential as

Wsz(t—t’) WEUZ(S 1),f(0)=1 electrons on the environment. In principle, if one were to
' ' ’ o ’ follow all the complex dynamics of the environment one
one obtains would find that it does indeed evolve into orthogonal states
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Let us estimate the dephasing rates in the different cases.
Consider first the resonant mechanism where we have inelas-
tic electron scattering due tdirect transitions between the
two TLS states. We emphasize that the inelasticity is not
essential to this channel of dephasing. The important point is
that there is a real transition between orthogonal states of the
TLS. Since we are not considering degenerate states this will
mean inelastic scattering in our case. If the energy trarsfer
is large enough, the phase relaxation timeis equal to the
typical inelastic relaxation time;, which is a function of the
t=T defect parameters. The criterion of “larg&’in this case is
) given asEr,/Ai>1. For smallerE one deals with a phase
FIG. 2. Closed loop with TLS detector. diffusion or wandering To estimate the dephasing time for

as the electron dephases according to the relaxational mecHAIS case let us recall that the phase coherence for any two-
nism, and it would be seen that this is only the resonantevel system is conserved during the tirhe7/E. While
mechanism in disguise. However, as the environment conffaversing the trajectory during the tirhan electron appears
sists of a macroscopic number of degrees of freedom is {0 be coupled witiN~t/7; dynamic defects. The evolution
more natural to treat it statistically as a thermal bath. In othePf the electron wave function due to coupling with any of
words, the phase of an electron state forming a Cooperofhese defects is described by a phase factor (%)
trajectory decays due t@al transitionsin the thermal bath Where = corresponds to the sign of the energy transfer. If
formed by other electrons assisted tWiytual processes in- T=E the probabilities of the both defect states are almost
volving dynamic defects. In a perturbative approach thes€dual, and the correlation function of the time-dependent
processes occur in the fourth order in the electron-defedtandom potential i$(t) = cosEt%), see the calculation later.
coupling constant. In particular, they do not enter the secondfhe resulting electron phase shift turns out toNV&E /4.
order calculation of defect-enhanced electron-electrorConsequently, the phase relaxation time can be estimated as
interaction®® However, it will be shown that they play an 7-¢~ﬁ2/37-1/3/E2/3_ A similar expression for the dephasing
important role in dephasing. time has been introduced in Refs. 14 in connection with de-
A different classification can be made by discriminating coherence due to quasielastic electron-electron scattering and
between the two different regimes of phase dynamics—in Refs. 15,16 in connection with decoherence by low-
phasejumpsand phasevandering(or phase diffusion To  frequency phonons. In the following we will call this regime
understand this, let us consider the resonant mechanisithe phase wanderingSummarizing, we can express the con-
Consider the case of interest for weak localization, that otribution of inelastic processes as
one electron traveling around a closed loop both in the clock-
wise and counterclockwise direction, and interferes with it- T =max ry, 7y (H/E)¥3}. (5)
self after completing a full circuit. If we can determine which
direction the electron went, we will not get interference. If Moving to the relaxational mechanism, we find that the
we are unable to do so, it will appear. As a detector we use 8implest way to evaluate this contribution is to note that
two level system that is placed at a point on the right handas a sense of the time at whidhp(t)~1 providedall the
side of the loop, the distance from the startiapd ending  involved defects would suffer a transition. It is clear that if
point being a fractiorv<% of the total circumferencésee the phase shif6y due to transition of a single defectisl
Fig. 2. then a single TLS is enough to produce the dephasing. For
The energy splitting of the two level systemBs and it  d¢<<1 the significant phase evolution is possible only with
starts out in the lower state. When the electron passes, #he help of many defects. The actual dephasing tirpés
excites the two level system. We determine the direction oflso sensitive to the defect transition ratelndeed, the cor-
the electron by measuring the time at which this happengelation functionf(t) for statistically independent defects is
The accuracy with which we can make this measurement isxpected to have a forii(t) =e~2"1! (this form will be sup-
limited by the uncertainty principlAtAE>%. If E is large  ported by the calculations in Sec. ) Bf y7;=1, then with
there is no problem, and the interference is destroyed by a help of Eq.(4) one obtaing A ¢)?=t,/ 75 (for the reasons
single detection event. This case we call a phase jump. In thethich will be clear later we ascribe the subscript 3 for the
opposite case wher€ is small we can not determine with relaxation mechanismIf yr;<1, one hagA ¢)?~ ’yt%/’Tg.
certainty which direction the electron went, and the interfer\yje observe that there is a phase wandering regime also for
ence pattern will be ;meareq OUt,-bUt not lost entirely. In thl&ms relaxation mechanism. Again, defmm-g as a time at
case we need the interaction with a n_umber of two levelynich (Ag)2~1 one has
systems along the path, and the combined result of all the
detection times can be put together to determine the direc- 7293)=max{73,(73/y)1/2}_ (6)
tion. In this case we speak about phase wandering or phase
diffusion, since the random contributions of the difference One notes that in course of the above considerations we
two level systems makes the electron phase change in a diéxploit the additions to the electron phase acquired by an
fusive way. electron in course of traversing of the potential induced by
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the TLS's. For each TLS the corresponding contribution caristribution of InA is assumed to be uniform, however re-
be estimated al or/ve, whereU is the potential magni- sembles the TLS model for crystalline materials suggested
tude, or is the potential spatial scale, whilg: is the Fermi by Phillips® to describe acoustic experiments in crystal-
velocity. An important note should be made in this concernline Si.
Since the trajectory in Eq1) and in the following ones is Consider now spinless electrons which scatter against tun-
considered to be given and the positions of the scatterers argling defects with the Hamiltoniafiv). The total Hamil-
expected to be along the electron trajectory, the phase addisnian then can be expressed in the form
tion mentioned above is, strictly speaking, beyond the Born
approximation for the electron scattering. Indeed, in the Born
approximation the scattering amplitude is real at least for
symmetric scattering potentials. However it is possible to
describe the phase relaxation even within the framework ofvhere
the Born approximation if one takes into account that the 1
“centers of gravity” of the two TLS states are spatially sepa- = TV - At i(p—p')-rylh
rated by some vectaa (which is an inherent feature of the Hin=75 2 (1Vppr 05V )Cp Cpr@ - O
model suggested in Ref. 1L7n this case the phase variation .
due to a transition within théth defect is simply given as Here 1is the unit matrix,vV= represent the components of a
S¢~(p-a)lh. Correspondingly, the estimate for the propershort-range defect potential, whilg is the coordinate of the
rates in Eq(4) is 7, 3~ 7, 3(pra/f)? wherer, ] is a typical ~ nth defect. The Hamiltoniaf®) is equivalent to the assump-
elasticrelaxation réte dué to dynamic defe&g-s tion that the electron Scattering amplitudes m@i V™ in

The previous estimates are relevant to a set of defectdie “left” and the “right” defect positions, respectively. Es-
having identical parameters. However, in real systems thetimates forV*™ andV~ are given in Refs. 11,18. After the
defect parameters are scattered, and one has to performtransform which make%{, diagonal we arrive at the Hamil-
proper average. As we will demonstrate, for a realistic modetonian
the phase wandering regime turns out to be important. To our .
knowledge, this fact has not been appreciated in the previous B +
papers dealing with defect-induced decoherence. H= 2 zn: Enogt zp: €pCp Cp

In the following sections we will give a more formal deri-

ﬂ:ﬂd_}_E EpC;Cp‘F Hint! (8)
p

pp’n

vation of the dephasing rate using the Green function 1 S Ay A, _
method. It will permit us to consider not only the limiting t3 2 [1\/pp”L E_n‘fl“L E_n‘73>vpp’]
cases but any relations between various times of relaxation. ppn

In the Appendix B we will map the results for the relaxation- xC;Cp,ei(P—P')'fn/fi, (10)

dynamics contribution to a simple model of short-range de-
fects hopping between two states separated some distanceviiereE,= yA;+ A7, One observes that there are two pro-
real space. This model is often used to interpret results on theesses of electron-defect interaction described by the items
so-called random telegraph noise observed in nanostructurgyoportional too; and o3, respectively. They correspond to
the two mechanisms discussed above and described by Egs.
Il. THEORY (5) and(6). Now we proceed to more formal calculations in
which the relaxation time; and 73 will be specified.

A. The model
The dephasing mechanism is based on the assumption that B. Quantum contribution to conductance
In any crystalline metal there exist dynamlc defectg of aspe- g object which we will consider is the weak localiza-
cial type. These defects are tunneling states which are dgj, correction to the conductivityer, which for the case of

scribed by the Hamiltonian a short-range scattering potential can be expressed through
the electron Green’s functiorBg, in the formt®

Hy=(Aoz—Aoy)/2 7)
2
where A is the diagonal level splittingA is the tunneling Sor= e_f (dp)(dq)pzf (_ @) d_s d_“’
amplitude, whileo; are the Pauli matrices. The tunneling m2d de) 27) 27

amplitudeA describes the tunneling between the interstitial

positions while the spread of is determined by(mesos- X GR(e,p)Gale,p)F(s,@,p,q—p)

copio disorder around the mobile defect. Consequently, we _ _

will assume that the distribution ok is narrow and it is X Gr(e+®,q=p)Gale+@.q=p). (@
centered around some valug,. As we will see, one can Here d is the dimension of the problem df)
expect smooth temperature dependence of dephasiifg at=d%/(27%)%, n(e) is the Fermi function, while
=A,. The above model has been proposed and successfulf(s,w,p,p;) is a two-particle Green’s function specific for
exploited in Ref. 17 to interpret zero-bias anomalies ob-the problem under consideration. The above expression de-
served in metallic point contacts. Note that it differs from thescribes the main contribution to the conductivity which
well-known TLS model in amorphous metdiswvhere the arises from the regiomr,ql<1, wherer andl are the total
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relaxation time and length, respectively. The functionwhere\ is an auxiliary “chemical potential” which after-
F(e,w,q,p) can be represented as a sum of the maximallyards will be tended to infinity. This trick allows one to
crossed diagramighe so-called Coopergmvhich is a sum of remove extra unphysical states which appear since the Fermi
a ladder in the particle-particle channel. This is the sameperators have more extended phase space that the spin
approximation as was used in Ref. 14, and is valid if theones?>?'As a result, the Matsubara technique can be effec-
inequalitiespel/A>In(7,/7)>1 are met. The Cooperon sat- tively used, and after a proper analytical continuation and the
isfies the Dyson equation shown in Fig. 3. limiting transition\ — o the quantity\ drops out of all the

In this figure, the Cooperon is drawn as a filled squaregxpressions. As a result, the retarded propagator describing
thick lines with arrows correspond to the Green'’s functionsthe interlevel transitions in the defect can be expressed as
averaged over the defect position, as well as over the states
of the thermal bath, while dotted lines represent propagators R, .\ E 1
for electron scattering against dynamic defects. Since the in- Di(w)= _tanhﬁ w—E+i8 w+E+id/
teraction Hamiltoniar{10) contains items of three types, the _ ) )
propagator consists of a sum of three terms. Each propagatbiére ¢ is the adiabatic parameté— +0. The propagator
can be expressed as a loop graph where dotted lines repres€§gcribing electron-assisted transitions has the form
Green'’s functions for a dynamic defesee Fig. 4. )

To express the propagators in an analytical form we will DR(w)= 1 2iy
employ the technique developed by Abrikog8wccording 3@ T cosR(E/2T) @+2iy’
to this technique, a two-level system describing the dynamic
defect is interpreted as a pseudo-Fermion particle with th&lere
Green'’s function

A\? E
g.(€)=(eFER-N+id) (12) V(A’E)_(E) vo(E). ol E)=xEcothyr, (19

(13

(14)

where y=0.01-0.3 is dimensionless constant dependent on
the matrix element(!) defined below, and wherg,(E) has
the meaning ofmaximumhopping rate for the systems with a
given interlevel spacingt

For the elastic componentl we shall use a trick which
: : will allow us to consider the elastic channel in a unified way
HEC ‘ with the inelastic ones. Namely, to keep proper analytical
Z ‘ 1') w, properties of the retarded Green’s function we define the
. ; elastic propagator as

i

v 1 1
T 2T lw+v+id w—v+id)”

Do) (16)

‘ At the final stage, the limiting casé—0,»—0 should be
i calculated. Note that the factdr * will be canceled by the
Planck functionNy(w) which will appear in course of deri-

FIG. 4. Schematic representation of the defect propagator.  vation of the equation shown in Fig. 3. The physical reason
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of this cancellation is that the elastic impurity scattering isThe functionsg, ; are discussed in Appendix A. We show

temperature independent. Note that the propagators do ntiat they decay exponentially B&T, and only the regions

include the electron-defect coupling constant, hence eachith e<T are important. Since we only are interested in this

propagator should be multiplied bjw(®|?2 where W(®)  region, we will neglect the energy dependence of these func-

=V*', W=(A/2E)V~, W) =(A/2E)V™ . If there are ad- tions, and put them to 1 in the following. The two sets of

ditional static short-range defects their contribution modifiegelaxation rates will then be the same.

zeroth propagator by the replacemefiv(®|?—|W? To analyze Eq(17) it appears convenient to transform it

+|W(®)]2 whereWs is the contribution of static defects. to the form similar to the Boltzmann equation for an electron
The equation shown in Fig. 3 has been analyzed followingliffusion. For this let us take into account that at snogdind

the procedure of analytical continuation of Matsubaraw the product of the Green functions in the integrand is a

Green’s functiof® with making use of analytical properties sharp function centered at= £, = €g Whereeg is the Fermi

of two-particle Green’s function€. The resulting equation level. Thus it is natural to assume thB(e,w,p’,q—p;)

for F(e,w,p,q—p;) has the form depends only om, w and the producg-v’. Having that in
(dp')de’ mind we first integrate ovee, and make use of the in-
o _ p)dw b equalitiespel/A>1h w<T which we assume to be met.
F(e,0,p,a=p)=D(w) 2 Fle,0’,p",a-p) The result can be expressed in terms of a new function
XD(w—w')GRe+tw—o',p' )G F(e,w,p,0—
Fle,q,w)= (:L—pqp), (22
X (e+0',q-p")[No(0') ~No(0' — )], o(1=179-v)

(17)  Wherev is the electron velocity. Here we assume thatT
and omit the variable.

Here @d p)EZdzp/(ZqTﬁ)ZEpdgpd 02, 6 is the angle with Following the procedure described in Ref. 15 we express
thex axis and we write all formulas for the most interesting {he equation forr in the form:

case of a two-dimensional system
(1+Dg?7) Fle,q,0)
D(0)=|W’nD5(w) ~Dp(w)]

~ D(w) J do’
+3 WO DR(w)-DAw)]. (18 4mpo | (2mi)(0—20' +i/27)
|
Equation(17) describes the dominant contribution provided , D(w—w")
the sum of the incoming momentgis small: X Fe,q,07) o (23
gl<1. (19 Here D=uvgl/d is the diffusion constant. Transforming Eq.

. _ 23) to the time representation with respectdowne obtain
Herel=vg7 is the electron mean free path, whiteis the @3 P P

electron lifetime (1+Dg?7) Fe,q,t)
— -1 -1 -1 ’
T 1:Te +7 7T (20 =(D(8,t)+ft d_te(t’ft)/r
Here we introduce the elastic relaxation rate as a sum of the 27Tp - T
contributions of static and dynamic defeefs'= o 2+ 7. § X Fle.qut')D(e,2—t') (24)
with o ' '
Here we denote
7;51=27Tan|VS|2/ﬁ, T;é=2wpnd|vg|2)/ﬁ, -
T T T
and a typical inelastic relaxation rate as ®(e,t)=—+ —cos— + —e W, (25)
Te 71 h T3

7 t=2mpng|Vq |%1h,  TeqlTi~(pralfi)®<1. (21)  Here the limiting transitionv—0 has been already done.

Hereng is the concentration of static defects whilg is the Note that the funcnonb(s,.t) dgpends on the energy vari-
able ¢ through the relaxation times,, 71, and 7. In the

concentration of dynamic ones, apds the electron densit . . X . . .
y 4 y following we omit the variable in all the functions keeping

of states. In principle we now have two sets of relaxation. . .
rates. From the interaction vertices we get in mind that the relaxation rates are energy dependent, see

Appendix A. Also in writing the expression fab(e,t) we
Tl—lzTi—l(A/ZE)z, T;lzTi—l(A/ZE)z, have assumed thaI<T: For E>T it decays. to 1 which
means that defects witle>T do not contribute to the
while the rates appearing in E(0) arises in the evaluation dephasing, see the discussion below 8§)
of the self-energy diagrams as shown in Appendix A, and are Equation(24) can be solved exactly. The solution is based
given by on the relation between the kernel of the integral equation

7 =1 (AI2E)%Gy(s), 73'=1 Y(AI2E)?Gy(e). K(t,t')=(Dg?7r—1)e® "V T1-\(2t—t")],
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T Et
)\(t)E—(l—cos—
71

T
+ —(1— —2ytlh
h 7'3(1 € )

and its resolvenR defined by the integral equation

ftd—:_IC(tl,t’)R(t’,t)=IC(t1,t)+R(t1,t). (26)
t

1

The relationship has the fofth

t

dt’
]:(t,q)=<b(t)+f TR(t,t’)@(t’). (27

If one can construct a differential operator of the foﬁq
=3,a(t,)(d//dt}) such that

Ly K(t;,H)=0 (28)

for any t, then the integral equatiof27) is reduced to the
differential equation28) for a fixedt. That can be directly
checked applying the operatcfl‘)tl to relation (26). The
boundary conditions corresponding fo—t can be ex-
tracted from the integral relatidi26) and its derivatives with
respect tat; att;—t.

The results have the simplest form ai<<rqy,73,%/7.
Then one can choose

PHYSICAL REVIEW B 66, 165326 (2002

o dt’ ,
]-'(O,q)=J ch(t’)ef"(t), (32)
t  Sin(Et/%)
9(t)=Dg’t+ T——W}

t

—(ezwﬁ—l)}, t<0. (33
T3 2YT3
An important feature of Eq(33) is that if one neglects the
processes in which the defect changes its state then the
dephasing is absentindeed, puttingr,=73=c we get
®(t)=1 and F(q)=(Dg? . This results in logarithmic
divergence of the conductance in the 2D case. Another im-
portant feature is that at small tintewhich has a physical
meaning of the time difference for the collision act for clock-
wise and counterclockwise partial waves, no linear term
is originated by inelastic processes. Physically it means that
no dephasing takes place if the scattering defect had no
enough time to change its state. Therefore, the dephasing
appears proportional to the probability for the defect to es-
cape the state in which it has been registered by one partial
wave.

With substitution of Eq(32) into Eq. (22) and then into
Eqg. (11) we obtain for 2D case the expression for the quan-
tum contribution to the conductance. Since onb|<T
<ep are important one can negleet dependence of the
relaxation rates and put=0 in the expressions for the these
quantities. As a result, one arrives at the well-known expres-

. . . sio
From Eq. (26), the differential equation for the resolvent

R(t,t) acquires the form
[2(d3dt3) + 72(2+ N ) (d?/dt?)

+ (142N ) (d/dD) + N, ]R(L,0)=0. (29

Here A;=A+Dg?7. Since the phase relaxation is a slow

process with respect to the scatethe equation(29) has

small coefficients at senior derivatives which makes useful

82 T

_ @
22k n T’

So=
wherer, is defined according to the equation

7 e T1(nEA)-T3(nEN), (34)

the WKB approximation. Consequently, the physical solution

can be sought in the forrk(t, 8)<exd ¢(t)/7] where ¢(t)
satisfies the equation,el1)2[¢+\4(t)]=0. Since\(t)
<1, the WKB solution corresponds to the equation

e+, (t)=0. (30)

The boundary condition to EG30) can be extracted from the
relationR(t,t)=0. In this way, we obtain the quasiclassical

solution in the form

wt'
M), 3D

R(t,tl) = eXF{ -

Now we substitute Eq(31) in the expressioli27) to obtain
the final expression for the Coopergh The first item in Eq.
(27) is the contribution of lowest order scattering and

so only 7(0) is important. As a result, we obtain

T =d
In—‘”zf —
T 17
r

B sin( nE/#)
Fy(nEAN)= T T Edn

r
U3(7,E,A)=—

_ 1— —2qnytlh
=7 277( e )

where n=t/7. This equation is obtained by the integration
overg.

We can now recover our estimat€s) and (6) by the
approximate value of the integral

I=| —e o
17

it in the case where<1. We split the integral at the point*:

should be neglected in the diffusion approximation. Here we
analyze the quantum contribution to the static conductance,

| = Jn*d_,r]e_aﬂn_l_ foc d_ne_a'rlnl
/) n* 7
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Defining »* such thata»*"=1, we havep*>1. The inte- Below we will discriminate between two model distribu-
grand will be very small in the last integral, and we neglecttions. The first one will be referred to as the “glass model”
this. In the first integral we put the exponent equal to 0, andGM).%?* According to this model the distribution df is
get assumed to be smoot®, = P,. Since the tunneling integral
A is an exponential function of the distance between the
I ~In7* =Ina N (35 potential minima and the latter is smoothly distributed, it is
assumed thaP, = A 1. Within this model it is natural to
Expression(34) depends upon two dimensionless quanti-choose the interlevel splittinge and the quantity p
ties. The first one i€t/A. As follows from Eq.(35), the ~=(A/E)? as independent parameters. Singep, Eq. (15)
typical value oft is 7,,. This parameter determines the effi- can be rewritten ag=pyo(E). Consequently, the GM re-
ciency of the resonant mechanism of dephasing, that of disults in theexponentially broaddistribution of relaxation
rect transitions of the TLS states.Hfr,/fi<1 we are in the rates. Furthermore, to keep the distribution normalized, we
regime of phase wandering, and we can expBpdn Eq.  introduce cutoff pyin(E)= ymin(E)/v(E)<1 and assumel
(34) in powers of this parameter up to the lowest order. How-=IN(1/pmin) =IN(v0/¥min) to be energy independent. A cutoff
ever, ifE7, /=1 we have the case of phase jumps, and weenergy in the smooth distribution & at someE* is also
can neglect the sine term I?,. These expansions are given assumed. As a result, we get the distribution
in Egs. (38) and (39) below. In both cases we can use the
formula (35) to arrive at the estimatéb). O(E*—E) 1
The second dimensionless parameteryis /7. It de- Pem(E,p)= . NS (36)
scribes the effect of the relaxational mechanism of dephasing E°L  pyl-p
arising from theo; vertex. The physical explanation is that . . « .
the dephasing occurs only if the partial waves meet the scat- Ano“ther mpdel which we V‘."” call the tun.nellng-sta.tes
terer in different states. Expanding in smighase wander- model” (TM) is more appropriate for crystalline materials.

; ; ; There the tunneling integrals is determined by the crystal-
ing, Eq.(45)] and largg phase jumps, Eq46)] values of this .
pagramqe'fer)\}ve arriveggf the ertimZ(&; 446} line structure and are almost the same for all dynamical de-

In addition there is also the dimensionless parametef€CtS- On the other hand, the parameters determined by
yr, /% which will control the effect of the relaxational 'ON9-Tange interactions, and it is assumed distributed
mechanism acting through the, vertex. This has been ne- SMOothly within some band, cf. Ref. 17. Then
glected in the above calculations since the inequality
<E/# is met. O(E*-E) E

If the estimateg5) and(6) have different orders of mag- Pra(E,A)= E* E2_
nitude then the shortest one is effective. However,

S(A—Ag). (37)
0

In the following we will assume that the dynamical defects
Ur,# UrP+ 1/ are characterized by ,<T. To calculate the total contribu-
tion of the dynamical defects in the case when their param-
sincel’; andI'; depend on time in different ways. The most eters are random one has to repldtein Eq. (34) by the

clear manifestation of this fact is seen in the magnetic fieldaveragef(n)zfd EJAT(7,E,A). Below we will discuss
. . | 1 1 L "
dependence of the quantum contribution. in detail only the tunneling-states model which seems to be
more appropriate for crystalline materials. Let us discuss the
C. Average over different dynamic defects contribution of direct transitions and relaxation separately.

To calculate the quantum contribution to conductance on () Contribution of direct (resonant) transitionshe item

has to sum over different dynamic defects. In the previous. I’ responsible for the_dlrect transitions, is proportlo_nal to
considerations we have assumed that all dynamic defect ha ¥:V1|2: WE)Z'Y(”'Z- SmcePTM(ZE,A)oczé(A—Ao).the In-
the same interlevel distanéand the same tunneling ampli- (€gral overA yields lth"j factorAg/EVE“— A, Using EQ.
tude A. Consequently, the summation over different defectd39). the quantity ") is estimated from the expression
has been allowed for by the factog in the expressions for Fl(rfol)/r)= 1. The following calculation depends on the re-
the relaxation times; . However, in realistic systems bokh  lationship betweefk and 7, . At E7,/A <1 one can expand
and A can be distributed over a significant range. Since thehe expression fof'; as

number of dynamic defects at a typical electron trajectory is

assumed to be large the summation over different defects can Iy(79,E,A)~(AIR)2(n7)3l T, (39

be replaced by a proper average. To calculate the latter it is

necessary to specify the distribution functi®(g,A) which ~ while atE7,/A>1

we assume to be normalized to 1. To specify this function, let

us come back to the effective Hamiltonién). SinceA is I'y(n,E,A)~(AIE)?y7lT,. (39
determined by the defect's neighborhood whieis deter- .

mined by the distance between two metastable states it iBo estimatd™;(#) let us introduce the energy splittiri, at
natural to assumeél and A to be uncorrelated P(A,A) which E7,/f=1. The meaning of this is that a TLS with an
=Pr(A)Pr(A). energy splitting less thai, will not by itself cause com-
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plete phase loss, i.e., we are in the regime of phase wandéddsing the distributior{37) and returning to dimensional time

ing. A TLS with E>T, causes a phase jump. Let us first
assume that
Ap<T,\<T. (40

Using the distribution37) and returning to dimensional time
one obtains

Now, let us definer{") and T, to make both contributions to
I';(7") equal to 1. This definition oT , is consistent with

2

f

2TA

E*’

t

T

(41)

one obtains

(48)

Now, let us definer, andE, to make both contributions to

T'; equal to 1. This procedure indicates that the defects with
E=E, are those which experience a hop during the typical
Cooperon trajectory traversal time. One obtains
3)_ 1
1/7'50)—Ti (E,/E¥),

E =Ao(XTTa/0)'3 (49

Introducing the characteristic temperatufe,=#/y7, at

that given above within the accuracy of the approximationwhich E,= A, one can express the dephasing rate as

because the two terms are the expansions in large and small

values ofE7,/%. The point where both terms becomes of

U= (TIT )Y (50)

the order 1 should then correspond to the crossover poitknother important characteristic energy is the temperature

E7,/hi=1. This is easily checked from the formulas below.
In this way we get

=10 (TxlAp), (42)

where
Ta=(fiAgl 7)Y, (43

The time 7, is due to the dynamic defects with symmetric
potentials and energy splitting equalAg. At T<T, for all
energies the inequalitg7,/2<1 is met, and only the sec-
ond item in Eq.(41) is important. One should replade, by
T in this expression to obtaiff))= 7, (T, /Ag)(T,/T)*> In
contrast, if Ty<A, then only the first item in Eq(41) is
important. In this case)=17, .

The result can be summarized as

TA= ’Ti(E*/AO).

1 1 Ag[min{(TITH)Y3 1}, Ty>Ao,

_— 44
Tspl) TA TA TA/A(), TA<A0. ( )
(b) Contribution of relaxation processe&ince only E
=T are important, for
EcothE/2T~2T. Thus, y,~2xT becomesE-independent.
For the same reason, * can be approximated as *(A/E).

The following calculation depends on the relationship be-

tweeny andr,. At y7,<1 one can expand the expression
for I' as

T3(n,E,A)~ n?y7?l 13=yo(p7)27 "A2A?/E®, (45)
while at y7,>1 one has

I'3=n(7/m3)*(AIE)?. (46)
To estimatd’5( ) let us introduce the energy splittirkg, at
which y7,=1. The meaning of this is that a TLS with
<E, will probably jump during the trajectory traversal time
7, (it is “fast moving”), whereas a TLS wittE>E, will
have a low probability to jump in the same tirfieis “slow
moving”). First we assume that

Ao<E,<T. (47

estimates one can assume

T, at which E, =T, Tz=A3YT.?. The ratio T,/T,
=(xAq7,/%)%? can be arbitrary.

The meaning off , and T4 can be understood as follows.
Imagine starting at some large temperature wherekE,
>Ao. As we lower the temperaturg, is also decreasing,
but it decreases at a slower rate tHi(E,~T*3). At the
temperaturd ,, E, = A,. SinceA, is the lower cutoff forE,
if T<T, all defects are slow moving because no defects
exist with sufficiently low splitting. Alternatively, since is
decreasing faster thdh, , T will overtakeE, at the tempera-
ture T;. For T<Tj all defects are fast, because the slow
ones are frozen out. Which temperature is reached first de-
pends on the specific values of the paramd@rge the ratio
T,/Tg is arbitrary. Also, if T,>T, thenE <A, forall T
<T,, so in particularT;<A, and is thus unimportant.
Similarly, if T,<Tz thenT,<A,.

The result(49) is valid if T>E,>Aq, or atT>T,,Tg.

At E,>T>A,, or Tg>T>A,, only the first item in Eq.
(48) exists and the quantitlg, should be replaced by. As a
result,

T~ 7 N(TIA). (51)

Since Ao=T5°T5° the results(50) and (51) match atT

=T, This temperature region exists only Ti;>T,. At T

= A, the dephasing rate strongly decreases with the tempera-
ture decrease.

If T,>T>T, the relaxation is slow for all the dynamic
defects and the second item in E¢8) is important. How-
ever, in this case one has to repldgg— A in its estimate.

As a result,

UrQ =1 N(TIT Y2 (52)

The temperature dependencemnfis sketched in Fig. 5 for
T,<Tgand in Fig. 6 forT,>Tg.

(c) ComparisonNow we are in a position to compare the
contributions to the dephasing rate. Both contributions to
1/7, are parametrized by the quantityr}/, the relative con-
tributions being dependent on the temperature. The relative
resonant contribution crosses over fromo(T,)(T/T )3
to Ag/T, at T=T,. The relative relaxation contribution
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In 7, 7)}\:./\/6—0\—%0)2/2;2_ (54)
Here \ is a proper normalization factor which at<\, is

equal to (Ezrp)‘l’z. As we have seen, for most interesting
regimes it is the quantity\? that has to be averaged. The
results then can be expressed as

A o _
P:NJ dee 26-€ e gt )\ s
0 o

To, Ag TB T o .
As itis seen, the only effect of the scattemircorresponds to
FIG. 5. Schematic picture of hj;1 as function of temperature renormalization of the tunneling matrix element by a con-
for T,<Tg. stant factorep. Since this factor is temperature independent,
it does not affect qualitatively the picture obtained with an
crosses over frofi/Agto (T/T,) " atT=T,if Tz;=T,.In  assumption of a fixed value of. One also notes that the
the opposite case is crosses over ToT,) " at T=Aq and  averaging procedure practically cuts out a contribution of the

thento (T/T,) R atT=T,. region \>\, since at this region the tunneling matrix ele-
We conclude that af=T, , T4 the relaxation contribution ment exponentially decays with. Thus the picture is not
dominates, and the dephasing rate is sensitive to this region, and any distribution ®f with a
lower cutoff (even allowing a Gaussian smearing of this cut-
7-;1= Xl[(T/Ta)1’3+ ], (53 off) does not change the considerations made in an assump-

tion of a fixed value ofA = A,.

where ¢ is a constant of the order 1 originating from the
resonant contribution. lll. ESTIMATES AND DISCUSSION

At low temperatures both contributions can be important, ] ] .
their interplay depending on the relationship between the T0 make estimates we rewrite the expressiib for 7; in
temperaturel and the characteristic energids, T,, T,, the form
andT ;. For both mechanisms the dephasing rate vanishes as
T—0 and there is is a region in which the dephasing rate is

H 1/3
proportional toT=™. whereg{ is the cross section of elastic electron scattering by

As 't. IS seen, can .the. suggested mechanism mdeed eXh'bétdynamic defect. Correspondingly, the key parameter of our
saturationlike behavior in some temperature region. Unfortufheory 7\ iS given as

nately the existing experimental data are obtained in a rela-
tively narrow temperature intervélypically no more than 2 TxleoPdffva, (56)
decadepwhich does not allow one to determine the tempera-

ture dependence with an accuracy that is sufficient to provevhere Py=ny4/E* is the density of states of the dynamic

or disprove Eq(53). defects.

(d) Averaging over the tunneling matrix elemeht.our The density of stateBy can be, in principle, estimated for
considerations we have assumed tRaf < 5(A —Ay), i.e.,  a given material on the basis of point contact measurements.
that the tunneling matrix element is given. Note, however, Namely, metallic point contacts are known to exhibit, first,
that due to disorder the barrier parameters are also scatteradlegraph resistance nofSe and, second, zero-bias
To discuss role of such a scatter let us assume that the oveanomalie® both effects are expected to be associated with
lap integral A is given by the expression =(fwg/m)e ™  the dynamic defecty,?>26
where wqy is some attempt frequency while the barrier  Although we appreciate that the material preparation pro-
strength\ is distributed according to Gaussian law aroundcedure can significantly affect the defect system, we believe
some central valug o= Infiwy/mA>1, that such experiments can provide more or less reasonable

estimates forP4. The telegraph noise studfésfor a Co
-1 nanoconstriction with a size of 10 nm revealed the pres-
ence of about several dynamic defects at energies less than
10 mV. This would give us the valuePy~(3-5)
X 10°2 erg * cm™3. However, the telegraph noise is related
to TLS with rather slow relaxation ratess(10® s~ 1) while
we are interested in the defects with switching times of the
order of 10 ° s. Consequently, these estimates most probably
significantlyunderestimate p. What is more instructive, the
magnitude of the resistance noise revealed rather large defect

FIG. 6. Schematic picture of In,* as function of temperature asymmetry —corresponding to the estimater,~ o
for T,>Tp. ~10 Y en?.

7= oEng,  op=adV IVT|? (55

Ap T T

o

Ty
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We believe that the zero bias anomalies can give mor&LS are not expected to affect significantly the properties of
reliable information concerning4. The magnitude of these the material, such as heat capacity.

anomalies for Co nanoconstrictiGfisof the same type as

Now we would like to compare our results with the cal-

mentioned above corresponds to a presence of several tensaflations given in Refs. 7—9 where a similar problem was

TLS at the energy region about 1 m&4%° Correspondingly,
one obtainPy~(3—5)x10** erg * cm™3.

Based on these estimates and takind?y
~10*%erg ' cm 3, o,,=10 ¥ cn?, ve~10° cm/s, and
Ao~10 mK we obtainr,~10"° s. Equationg55) and(56)
yield Ty=A,. Thus at temperatures larger thdn~A,
~10 mK one expects, according to E@4), temperature-
independent contribution of resonant processes.

For the relaxation channel, one obtaing,~Tg
~10 mK. Consequently, aT=T,~T,~10 mK one ex-
pects that dephasing rate obeys Esg) with 7,~10 ° s.
Now let us check if our assumptiohg~10 mK is realistic.
We will exploit a crude estimate

2 (a
AozTex;{—%Ldr\/ZMU(r)), (57)

whereU(r) is a potential relief between the two stable defect
positions separated by a distarecandM is the defect mass.

Taking as an exampld (r) = (Uy/2)[ 1— cos(2rr/a)] one ob-
tains for the exponent @ =#)2UyM. Taking for a light
defect wo~10"s ! and assuminga~108cm, U,
~0.2 eV one estimates that the valte=10 mK is achiev-
able for M~2x1022g which corresponds to atomi
weight ~ 10.

Summarizing our estimates, we can conclude that for re:
alistic parameters of the dynamic defects one can indeed e
pect a slow temperature dependence of the dephasing r
given by Eq.(53) crossing over to a rapid decrease at low
temperatures. The crossover temperature, as well as the b
havior below that temperature, depends on the distribution
A. For a deltalike distributiori37) the TLS spectrum has a
gap of Ay. Thus the TLS contribution to dephasing rate is

exponentially frozen out at fof<<A,, and we are left with

the “standard” mechanisms such as electron-electron scatte

ing. However for the Gaussian distributi¢g4) with x> 1

considered. The authors of Ref. 7 gave a semiphenomeno-
logical treatment of the problem. They exploited the TLS
distribution typical for the standard glassy TLS model, but
with the upper cutoffA g na« for the tunneling matrix ele-
ment. For the resulting dephasing time they reported a pro-
portionality of 7-;1 t0 Agmaxd/E* (in our notation$ in the
limit 7,A o max>%. One notes that such a proportionality is in
agreement with the second line of our E44) although the
total expression forr, was some different from ours. Fur-
thermore, the estimate for the opposite limiting case was
completely different from our Eq44). Since Eq.(44) cor-
responds to the “resonant” or “inelastic” channel we con-
clude that the authors of Ref. 7 accounted for only these
inelastic processes of electron dephasing. The “elastic,” or
o3, channel(which, as we have seen, can dominate with
respect to the “inelastic” oneseems to stay beyond the
quantitative results of Ref. 7.

In Ref. 8 the dephasing due to dynamical defects was
treated within the framework of the two-channel Kondo
model. We believe that this model is not relevant to the me-
tallic samples we are interested in, see Ref. 28.

Then, the dephasing by TLS was also considered in the
recent paper Ref. 9 where the saturation behavior oin

c quantum dots for the TLS distribution with fixed, was

claimed. As follows from the derivatiohpnly the transitions

between TLS states due to interaction with the electron form-

ing the interference loop are taken into account. At the same
me, the transitions due to other electrons forming a thermal

atlgath (second mechanism of dephasirage ignored. Hence,

%r_ﬂy the o, channel is taken into account,and the result is

0§|milar to the second item in our E@9). However, the main

contribution arising from thery channel is omitted.

It is worthwhile to mention that similar ideas were used to
explain the magnetoresistance of polynf@r®olymer sys-
P_ams exhibiting rather large fraction of free volume are ex-
pected to form readily mobile and metastable defects of dif-
ferent types.

the situation is different. In this case the cutoff temperature is

given by the renormalized tunneling couplirig,e®” while

IV. CONCLUSIONS

for lower temperatures one deals with rather flat distribution

of A within the region\<\,+\. Correspondingly, at these
temperatures one deals with a glasslike TLS distribution fo

which 7T,

r

To conclude, we have shown that the dynamic defects can
be responsible for the slowing down of the temperature de-
pendence of the dephasing rate at low temperatures. There
are two mechanisms of dephasing. The first one corresponds

Although some papers, e.g., Refs. 9,27, stated that to e
plain the dephasing saturation by a TLS contribution on
would need an unreasonably large concentration of the TL

%o direct inelastic scattering of electrons by the defects, while
ghe second one is due to violation of the time reversal sym-
this conclusion was minly based on the “glassy” model oft Y CEAR, Y2 GO P NG ST BN T
the TLS while we exploited the tunneling state model of . : '

L . .~ second one still contains a temperature dependence although
Refs. 17,19. In general, to obtain independent mformatlona weak one. However wheR< A - the dephasing rate ran-
concerning the TLS concentration based on “bulk” measure- , et ' 0 ' 0 P 9 P
ments such as acoustic measurements or heat capacity mdgY tends o v
surements in conductors is rather difficult due to a presence
of electronic contributions. In particular, the valuey
~10* erg ! cm 2 exploited above is still less than the elec-

tron density of states~<10°® erg"* cm™2 for Co) and so the
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APPENDIX A:
CALCULATION OF THE RELAXATION RATES

PHYSICAL REVIEW B66, 165326 (2002

Gy=cosh 2(E/2T).

It can be easily shown th&f,=1.

(A6)

APPENDIX B:
MAPPING TO A RANDOM-TELEGRAPH-NOISE MODEL

The relaxation rate is determined as an imaginary part of

the analytically continued Matsubara self-energy. In general,

Consider an electron trajectory with the total traversal

we have three contribution to the self-energy due to thredme to which containsN dynamic defects able to hop be-
different types of the electron-TLS interaction. Since for alWeen two sites. They are rather rare, so a typical neighbor of
short-range scattering potential the interaction vertexes dany active dynamic defect isstaticone . The total length of

not have an internal structure, for each bosonic propagatdh€ trajectory is

D, one obtains

EiM(Sk):pgizf d&oF M (ex. &),

(e 6p) = T2 DM (09)G(er—ws &) (A1)
Here p is the electron density of states=2wsT, gy

=2m(k+1)T, §p=p2/2m—u andg; is the proper coupling
constant determined by the Hamiltoniék0). The analytical

M
LO:tOIUF:sgl IR, —RY,

whereM is the total number of defectd >N.

Let us parameterize the electron motion along the trajec-
tory by timet and allow some of the defecfiabeled byj) to
make transitions between their states. For those defects,

R;(1)=R®+u;(1).

The length of distorted trajectorg * traversed in thgosi-

continuation is performed in a usual way. Since there are twdive direction is

cuts in the complex plane, at Imv=0 andrmIm(e — )
=0 for eachi we getFR(ey,£,) =F;+F, where

=+ex N(0)DR(w)d
Fom [ 06, o )~ Gt )],

—oo+gk |

[DR(w)—DA(w)].

*» N(w)Ggr(w)dw
FZ:I N(w)Grlw)dw (A2)

2l

—o0

For brevity we omit the argumentg, of the electron Green’s

M
£7= 2 IRP1+Usia(tern) - RO - ug(to)

N
=L<°>+v*1§l V- uj(t)).

HereT/jE(vj,l—vj) is the change in the electron velocity
due to scattering byth EF.
Now we can specify the displacementjaf EF as

functions. Now we replace the integration variable in the

expression foZ, asw— w— g, and then combine two inte-
grals. Taking in account thall(w+i#wT)=—n(w) where
n(w)=(e”T+1)"%, ImGg(e,£&,) = (e — &,) and making
a straightforward algebra we obtain
+tanH
anf o1

t w
co ﬁ

X Im[DR(w)]5(s—w—§p).

IMFR(e,&p)=— ficdw

Performing trivial integration oveg, and taking into ac-
count the 1/2= —Im2 g we finally obtain

7 M) =2mpg?Gi(e), (A3)
G(e)= | doN(@)n(e—w)n (e m D).
(Ad)
Using Eqg.(13) we obtain
Gi=n(e+E)n(e—E)n"%(e). (A5)

At E>T it is proportional toe /T at any finitee.

While calculatingG; one can expantN(w)~T/w, n(e
—w)/n(g)=1. After that

uj(t)=a;¢;(t),
whereg;(t) is a random telegraph proce$TP), i.e., a func-
tion switching between the valuesl1 at random times and
having the correlation function
(E(DE()) = o2l

Then the time-dependent contribution to the length is

(60);(t)=1;§;(1),
For a given defect, the phase difference is just

(6®)(to)=(pel; IA)[ (L) — E(to—1)) ]

Let us split the calculation of the average' °®) in two
steps. First let us calculate the average over different realiza-
tions of a given RTP

|]E(Vja])lv

K(tg) = (e e~ &to=01y o

This sum can be calculated using the generation funéfan
tg>t,)
B @

J=pel/h.

K(X,y) = <e7iX§(tLy)*iY§(tﬁ)> =e Y(tﬁftu)[cogx_k y)COSh’)’

X(tg—t,)+cogx—y)sinhy(tz—t,)].
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Substitutingx= —y=J and considering arbitrary times we phase changes due to individual hops to be small to keep the
obtain treatment consistent. Assumidggl we easily average over

et P 2 2
_ . ~24lte—2t] the directions of hops to g&f = (472/3)(pra/#)?. Now let
k(t,tg)=2 cosI+2 sirfJe ¢ us average over the positions of the defects along the trajec-
We observe that the function depends explicitly on the positories. This is done as
tion of the scatterer along the trajectory, that is natural. It o
does not contain complete destruction of the interference—it to/2 dt J?
appears only after averaging over different dynamic defects.  (to) = 2J? ‘ n(to= ) =5-(2y~ 1+e 7).
: - : o 2y

The average over different dynamic defects will be per-

formed using the Holtsmark proceduisee, e.g., Ref. 30 for

a review according to which We observe thak(ty) ~J“min{yt,1}. Collecting the factors,

we obtain
(e3M)g=e""10), W(tg) =nepVer(to).
. . . . W(to) =~ (t/ m3)min{ yto,1},
Here ng is the concentration of “active” defecty/, is the (to) = (t/75)min{ yto,1}
“contact volume,” while where

W(to) =(1—K(t,tg))g=(2 sirfdn(ty—2t))q,

where n(t)El—e‘zym. The contact volume is estimated as

V.= ovgty, Whereo is the scattering cross section. The concentrationg; depends on the distribution of the TLS
Let us for simplicity assume that the hopping distarees parameters. After evaluating it in a proper way one recovers

of the defects are the same. We have also to assume that ttre results of Eq(41).

73 = (AN el3) (pralh ) 2ovE .
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