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Rippled state of double-layer quantum Hall systems
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The incommensurate phase of a bilayer quantum Hall state is found to have a “rippled” dipole charge
density whenever the layers are unbalanced. This tunable dipole-density-wave instability could be detected by
sensitive capacitance measurements and by anisotropic transport. We demonstrate this explicitly by carrying
out a Hartree-Fock calculation of the layer densities and capacitance for a double-layer quantum Hall state at
a total filling factor of 1.
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I. INTRODUCTION states? and the strength of the in-plane magnetic field and
the size of the energy gaps are consistent with the CI
The combination of reduced dimensionality and strongscenarid’*?In order to establish the nature of the competing
interparticle interactions can have spectacular effects on th@uantum Hall ground states and the transition between them,
nature of the ground-state and dynamical properties of manyadditional types of experimental measurements are needed.
particle systems. This is especially evident in the fractionaMarious types of experimental signatures of the CI scenario
quantum Hall regimé? where a strong magnetic field is have been proposed, including predictions of the form of the
applied perpendicular to a two-dimensional electron gas a&nergy gap; a predicted Kosterlitz-Thouless transitith,
very low temperatures. The powerful magnetic fieldanisotropic transport in narrow sampiésand the field de-
quenches the kinetic energy of the electrons, so that interagiendence of the in-plane magnetization® Here we pro-
tions between electrons dominate the energetics. The resultR9se that the CI transition in 2LQH systems could be studied
a highly correlated, incompressible quantum-liquid grounddirectly by capacitance measurements, and by anisotropic
state that supports fractionally charged excitatfofsen at ~ transport produced by the dipole-density wave described be-
integer filling factors(especiallyrr=1), the combination of ~low.
the quenched kinetic energy of interacting electrons plus ex- This paper examines a novel effect of unequal layer den-
tra electronic degrees of freedofire., spin or multiple lay- sities on the CI transition in 2LQH system@nterestingly,
ers can give rise to correlated ground states that supporgnequal layer densities can actually enhance the stability of
remarkable topological excitations, such as chargedhe 2LQH state at total filling factor;=1."*9 It is found
skyrmions*® that when the layer densities are not equal, they go from
Another important class of systems in which reduced dibeing uniform in the commensurate phase to becoming
mensionality and interactions strongly affect the ground statérippled” in the incommensurate phase; this allows the CI
and dynamics are systems with charge-density-wave or spiftansition to be detected by sensitive capacitance
density-wave ground statésand also systems that exhibit Measurements. The layer imbalance can be produced in
commensurate-incommensurai@l) transitions’® Systems two ways: most commonly by an external bias, but perhaps
with Charge- or Spin-density-wave ground states occur moﬁlSO spontaneously in a tilted sample with an unusually small
famously (although not exclusively in quasi-one- capacitive charging energy and a sufficiently large interlayer
dimensional materials, where the reduced dimensionality erfunneling'*?°We will focus here on bias-driven imbalance,
hances fluctuation effects and leads to broken-symmetr§ince it is easier to achieve experimentally. In addition, ca-
ground state8.Systems exhibiting CI transitions have bro- pacitive techniques provide a quantitative measure of the in-
ken translational symmetry states with rich structures, mosferlayer exchange and pseudospin stiffness in 2LQH systems.
notably arrays of domain walls that arise from the competi-This is illustrated in the following sections by a Hartree-Fock
tion between interparticle interactions and external periodi€alculation of the layer densities and capacitances for a
potentials’-® 2LQH state at a total filling factow;=1. Similar effects
Double-layer quantum Hal(2LQH) systems can show should, in principle, occur at other filling factors, although
both types of behavior: they support unusual fractionallyrt=1 is probably most promising for experimental observa-
charged topological excitatios? and they apparently ex- tion.
hibit a CI transition to a state with broken translational sym-
metry _in tge presence c_)f a suffipently strong in-plane mag- Il. RIPPLED STATE
netic field” It is interesting that in 2LQH systems, broken
translational symmetry can coexist with the hidden off- Interlayer Coulomb interactions at low filling factors can
diagonal long-range ord¥rcharacteristic of quantum Hall stabilize 2LQH states when the layer spacing is comparable
states. The evidence for a Cl transition in 2LQH systems isto the separation between electrons within the lageEzen
however, indirect. Activation energy measurements showvat a total “integer” filling factorv+=1, experiments indicate
that a sufficiently large in-plane magnetic field drives a tran-that the quantum-Hall ground states are stabilized by Cou-
sition between two different types of many-body groundlomb interactions and do not require interlayer tunneling for

0163-1829/2002/68.6)/16532%10)/$20.00 66 165325-1 ©2002 The American Physical Society



C. B. HANNA

PHYSICAL REVIEW B 66, 165325 (2002

their existencé™?? Further evidence of the rich variety of wheret, is the tunneling-matrix element when = v,; it is
2LQH states awt=1 comes from measuring the effects of equal to half the symmetric-antisymmetric gAgas. In the
an in-plane magnetic field, which induces a transition bepresence of a parallel magnetic field,

tween two types of quantum Hall ground statéShese ef-

fects have been discussed in terms of an unusual broken-
exhibit

symmetry quantum Hall ground states that
spontaneous interlayéphasé coherenceSILC).%1°

At sufficiently small layer separation, a 2LQH system is

an unusual quantum itinerant ferromagnet® The SILC

2LQH quantum ferromagnet exhibits a rich variety of ground
neutral
excitations %2 Murphy et al. investigated the effect of an

in-plane magnetic fiel®; on 2LQH systems, and found evi-
dence of a phase transition between two competing Q

states, phase transitions, and charged and

ground states at a critical valig = B..*? These two ground
states have been explained theoretiCally showing that

application of a sufficiently strong parallel magnetic fiel

Bj>B. produces a soliton-latticéSL) ground state in the

incommensurate phase of the 2LQH system. Recent me
surements of the interlayer tunneling conductivity in bilayer
guantum-Hall samples have provided dramatic evidence f

interlayer phase coherentk.

to—toexp — Q?1%/4), 2.3

which is a single-body effeéf The interlayer pseudospin
stiffness when the layers are balanced is

e’ 1

PO~ Zrmel 167 2.4

o)
f dxxe™ x2/2e— xd/l
0

in the HFA. The value opg will be reduced due to quantum
fluctuationd’-?8 and finite-thickness effects. By adjusting the
ront and back gate voltages of the sampleandv, may be
varied (with vi=v,+v,=1), thereby allowing and pg to

d be adjusted.

The third term(quadratic inm,) in the energy density
Eg. (2.1)] is a capacitive charging energy that favors equal
ayer densitieS. The capacitive energy is given in terms of

ohe electrostatic Hartree energ {) and the intralayeri)

and interlayerEl) exchange energies by

A. Effective Hamiltonian U=D;—Eo+Ey,
Formally, it is simplest to obtain the ground-state charac- e
teristics of the SILC 2LQH state from the energy per unit Dlzmdll,

area within a gradient approximatibin which the pseu-

dospinm(r) is assumed to vary slowly on the scale of the
magnetic length. In doing so, it is convenient to specify the

order parametem(r) in terms of two quantitiesm,(r), the
local difference in layer occupancies, afd), the projected
angle ofm in the xy plane measured with respect to the

2

2
_ e e? (= ) .
E=——]=— J' dXe_XIZe_XdJ”,
V' Amel ) Amel )q

(2.5

where the exchange integrdlshave been evaluated in the

axis. For constanin,=»,— v, and in-plane magnetic field HFA. Most treatments of the SILC 2LQH state have been for
By, the energy per unit area of the SILC 2LQH state has th@qual layer densitiesf,=0), since there is a significant cost
1

formg’ 0,23

£ ! 0 ! 2m2(Vo—Q)?
=52 t cos +§ps 1 4( Q)
u ., 1
+ZmZ—EngZ, (2.2

where & has been expressed in terms@f 6+Q-r, Q=2
X Bj2md/ ¢q, dis the interlayer spacing, angh=h/e is the

magnetic-flux quantum. Mean-field equations foand m,
are obtained by minimizing Eq2.1) with respect to those
same quantities.

The first two terms of Eq(2.1) constitute the Pokrovsky-
Talapov (PT) model 2% with coefficients that, in the
Hartree-Fock approximatiofiHFA), depend omm, according
to

2,2 2,2
tEto\ 1_mze7Q ! /4:t0 41/11/267Q 14

ps=po(1—m3)=4v1v,p, (2.2

in capacitive charging energy to unbalance the layétew-
ever, an application of back and front gate voltages allows
charge to be transferred from one layer to another, giving rise
to a tunable nonzero value fam, in the 2LQH ground state.
The effects of charge-transfer imbalance were studied both
theoretically and experimentally, and it was found that
charge imbalance can actuallycreasethe stability of the
2LQH statet”2%%0

We shall estimate the numerical values of our results for a
hypothetical “typical” GaAs (m* ~0.07m,,€,~13) 2LQH
samplet® with a total densityn;=1.0x10"* cm 2, a layer
(midwell to midwell) separatiord=20 nm, and a tunneling
energyty=0.5 meV Agas=11.6 K). Such a sample would
have |~12.6 nmd/l~1.6/w.~6.9 meV for v;=1, and
e’/4mel~8.8 meV. In the HFA, py,=~0.03 meVp;
=14 meV, andU=7.4 meV.

The effect of the gate voltages is described by the last
(Vy) term in the energy density in terms of effective filling
factorsvg and vg for the front(F) and back(B) gates:

Vy=(ve—vg)D;. (2.6)

The effective filling factors;a (wherea=F,B) are defined
by the the electric field&, produced by the front and back
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gates through Gauss’ lak, = e?a/27rl 2¢, wheree (approxi-
mately 13, for GaAs is the dielectric constant appropriate
to the 2LQH sample.

B. Parallel magnetic field

When Q+#0, the pseudospin stiffnegs, competes with

the rotating Zeeman pseudofigldosé to determine the spa-
tial orientations of the pseudospins. Minimizirfyin Eq.

(2.1) with respect to@ gives the two-dimensional sine-
Gordon equation

£2VZh=sin6, 2.7
where the width of the soliton is proportional to the length,

£=2mpslt=go(1—m3)™", 2.8
which for our hypothetical sample giveg=~17 nm. The

soliton width ¢ sets the scale for spatial variations of the

pseudospirm(r); thus the condition for the validity of the
gradient approximation is that be significantly larger than
the magnetic length

For sufficiently smallQ, Eq. (2.1) is minimized by#é(r)
=0. This is the commensurat€) phase, and in this phase
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FIG. 1. Soliton densitytimes 27) vs in-plane magnetic field
for balanced layersni,=0, solid curve and for the rippled state
(m,=0.5, dashed curyeThe soliton density rises abruptly in the
incommensurate phas®>Q.. There are no solitons in the com-
mensurate phas€<Q..

field (or Q). Qs/Q. is plotted as a function d®/Q. in Fig.
1, for the balanced ca¥e(m,=0, solid curvé and for the
rippled state n,= 0.5, dashed curyeNote the abrupt rise in
soliton density forQ>Q.. The compressional stiffneds;
of the SL*® is proportional to the slope of th@ versusQ

the pseudospins align themselves with the rotating Zeemagyrves in Fig. 1(see Ref. 1B

pseudofield, so that=—Q-r. However, above a critical
value of B corresponding tdQ.=4/(m§) = (4/ml)\t/2mps,

it becomes energetically favorable to produce dislocation

lines (solitong. The soliton widths are of ordef. Solitons
proliferate rapidly forQ>Q. (incommensurate phasée-
cause they repel each other only véexponentially weakly
(at zero temperatuyeThe resulting array of solitons breaks

the translational symmetry of the 2LQH ground state by

forming a SL. For larg€)>Q., the rapidly varying tunnel-
ing phase factor causes the pseudospins to belmaegly as

if t=0. In the HFA, the critical value of the in-plane field
varies with the layer filling factors likeQ.oc(1—m2)~ Y4
thus tuning the layer filling factorsng,) via gate voltages
allows the location Q.) of the CI transtion to be fine tuned.

The density of soliton lines in the incommensurate phas

is proportional to the soliton wave vectQg=2=/Lg, where
L, is the spacing between solitons in the SL. The solito
density(proportional toQ) is calculated as a function of the
in-plane field(proportional toQ) via two equations involv-
in% %n intermediate parameter The parametey, is defined
by

Qs/Qc=(m/2)%[ K ()], (2.9

approaches 1 near the Cl transitiocQs(—~0), and goes to 0
deep in the incommensurate phasg ). HereK(7) is
the complete elliptic integral of the first kirid.

When the layers are balanced;E& v,), minimizing the
total energy with respect 1@ gives

QIQ.=E(n)/n, (2.10

ﬁ:ﬁQs
Ky 9Q°

(2.1)
As expectedK; vanishes a— Q..

C. Rippled layer imbalance
Minimizing Eq. (2.1) with respect to variations im,
gives
Vg
m;= Z 2 (vh 2 2y
U+[2tcosf—4ml“pg(VO—Q)°]/(1—my)
(2.12

eI'his equation determine@n the Hartree-Fock gradient ap-
r]proximatior) the filling factor of each layer for thet=1

SILC state. For sufficiently small in-plane magnetic fields
(Q<Q,),#=0 (the commensurate stateand the assump-
tion that m, is constant is self-consistent, provided that
<U.% However, whenQ=Q,, the quantum Hall ground
state breaks translational invarianagis not spatially uni-
form and the soliton-lattice state is obtairfedhen Q= Q.
and v, # v,, EQ.(2.12 shows thaim, also breaks translation
invariance, and one obtains “rippled” layer densities. Thus
uniform m, is not consistent with the broken translation sym-
metry of #=0 in the incommensurate phase, when v,.
The resulting behavior ai,(r) is illustrated in Fig. 2.

It is important to note that Eq2.12) is valid even in the
incommensurate state of spatially varyifigbut only to first

where E( %) is the complete elliptic integral of the second order int/U. Sincet/U is small in the bilayer samples stud-
kind.32 Equations(2.10 and (2.9) together determine the ied so far, this assumption is not too restrictive. From now
soliton density(or Q) as a function of the in-plane magnetic on, we shall work only to lowest non-trivial orderifiJ, and
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1.0 ' ' ' , compressional stiffness; of the SL. The relation between
the wave vectoR and the parametey is obtained by mini-
0.8 | 1 mizing the total energy per unit area with respecttp at

fixed Q (Ref. 16; when the layers are balanced, EJ.10
06 | /”\ /\{\ /v\ /V\ /"\ 1 results, and Eq€2.9) and(2.10 may be combined to obtain
g Qs as a function ofQ. When the layers are imbalanced, Eq.
0.4 ¢ T (2.10 acquires an additional term due to the dipole interac-

tions between solitons,
02}

: : : : IQc=E(n)n+—= = =E(5)/ 7+C(Q4/Q.)?,
%0020 40 e 80 100 QIQe=E(mly psQc Qs LyLy (mIn+CQs/Q0)
e (2.16

where C~0.14 for the hypothetical “typical” sample with

FIG. 2. Rippled layer imbalanam,(x) vs position for a soliton — _ - .
lattice with spacind-s/&=20 between soliton lines. We have used Mz =0.5andQ=Qc. Near the Cl transition Eq2.16 gives

the parameters for the “typical” sample described in the text, and - \/i_
takenm,=0.5. For these parameters,; =0.048. Qs/Qe=V(QIQe~1)/C,

. . . ~ \ - . .
expandm, as described in the Appendix. Thus we shall not Ki/ps=2C(QIQe—1) (217
include the effect of the rippling af, on the soliton width  The corresponding formula for the balanced € v,) case
&, since this would produce only small correctiofie., of  are quite different:Qs~—1/IN(Q—Q,) and K;~(Q—Q,),
higher order irt/U) to the results presented here. The solitonup to logarithmic corrections. Nonethele&s, (and, by defi-
width & in Eq. (2.9) is therefore computed using,~m,, nition, Q) vanishes at the CI transition which has important
wherem, is the layer imbalance in the absence of interlayerconsequences for the capacitance near the Cl transition.

tunneling, as defined in the Appendix. The valuawgf, de-
pends on the gate voltagé,, but not on the “rippling” D. Topological charge

effect (which is of hlghe( order m./U)' . , . We also note that when the layers are imbalanced, the
Becausem,=v,—», is associated with differences in g4 jiton jines acquire a charge density when they are tilted or
layer electron densities, the rippling has the effect of assoCigpeared. In the lowest Landau level, the pseudospin textures
atir)g an electric-dipole density with_ each soliton. When _thewith topological charge possess a'm electric charge. The
solitons are separated {>¢), the dipole-moment per unit oo ctric-charge densityp(r) is just the topological-charge
length is(see the Appendix density(i.e., the Pontryagian index densitytimes —evr,

op  edé 2ty My
o  2mlf U (1-m)H

which has a value of about0.102 whenm,,=0.5 andQ wheree;; is the totally antisymmetric tensor of rank 2, and
=Q, . Because the solitons have associated dipole momentg/e sum oveii andj over the values 1 and 2 (andy). The
the dominant interactions between solitons when the soliton®tal filling factor is defined asyt=wv,+v,. Expression
are separated will be their dipole-dipole repulsion. In the(2.18) in terms ofm, and 6 using

limit that the solitons are well separated & £,d), the in-

ev

teraction per unit length between two solitons separated by a m=+1-micosd, m,=\1-mising (2.19
distancex is gives

VY (6pldy)?

L (2.14 Sp(r)= 2T (5, 00, My— dym, 0. 0

L 21T€X2 p(l’)— 47T( X ymz xMy y )

so that the solitons repel each other with a force that falls off evr - ~
with distance as an inverse powgor v,+ v,), rather than = 4—[((9X0—Q)aymz—axmz&y0], (2.20
exponentially (for v;=wv,). Summing all the the dipole- &
dipole soliton interactions gives, in the thermodynamic limit,\yhere we have takef to be along thex direction. If we
rotate the soliton lines by taking
Vv w (8pldy)® 1 (8pldy)?

= = 3 ~ ~
LL, 12 a8 oo € 0 @D Bo(X) — Dol ax-+ By), (2.2
which is proportional to /U)? and is therefore small in and also transform the rippled layer imbalance according to
magnitude. However, near the CI transition, the solitons are
well separated and dipole interactions dominate the repul-
sions between the solitons, which has a strong effect on thénen the associated charge density is

SMyq(X) — My (ax+ By), (2.22
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evr when the layers are sufficently far apéreyond several hun-
Op=— 7~ Qdydmy(ax+By), (223  dred A). But, due to their finite density of states, the effec-
tively two-dimensional electron layers cannot completely
which associates a spatially varying charge density proporscreen the gate electric fields, &g, is nonzero when the
tional to Bt/U to the tilted soliton lines. The integrated gates are unbalanced.
charge of the soliton lines remains zero, so the shear The Eisenstein ratio has been measured experimentally in

stiffness® may not be greatly affected. two-dimensional electron gaDEG) systems, and used to
determine the negative compressibility of the low-density
E. Anisotropic transport 2DEG2 it has also been calculated theoretically at zero

o . . . magnetic field®3" and in 2LQH system¥ The calculation

g Yy
Application of a sufficiently strong in-plane magnetic . . LT . i
' ; . . of the Eisenstein ratio is discussed in some detail in Refs.
field produces soliton lines that are parallel to the m-plan%S_s?, here we shall briefly outline only the key steps
magnetic field. When the layers are imbalanced, these soliton Itis ,covenient to separate the total energy per unit a?ea of

lines possess dipole-charge densities. The resulting electrj ; ; 4 .
fields associated with the dipole-charge densities will mak(iﬁe 2LQH SVSte”.‘ Into an electrosztat|c paie., the inte
rated electrostatic energy densitff7,d/2 between the lay-

the conductivity anisotropic in the incommensurate phase‘.J .
Transport parallel to the soliton lindalong the direction of ers and a many-body pats), which would be the energy

the in-ol tic field A ted 1o b . per area for a system with neutralizing charge backgrounds
€ in-plane magnetic field, sayy) is expected 1o be €asier j, gach jayef® The chemical potential relative to the bottom
than in the direction perpendiculéalongx) to the soliton  of quantum welli is given by®

lines: i.e., when the layers are imbalanced, we expect

/Li:(9<8>/(9ni , (32)

Pxx™ Pyy Q<Qc, 5. L .
wheren; = v;/271“ is the areal number density in layeRg
PPy Q>Qc. (2.24  can be expressed in terms of the interlayer separatiand

, , o L the effective electronic lengths; , defined as
Thus a disparity between the longitudinal resistivities paral-

lel and perpendicular to the in-plane magnetic field indicates e du | R [2m¥e)
the presence of an incommensurate soliton-lattice phase in siJ-:—Zﬁ:E v\ 2| (3.3
the imbalanced system. e 7N Viovi| eflAmel

We note that anisotropic transport in the quantum Hallirom which it follows thats;;=s;; . In the absence of inter-
regime has been found in a very different context, in veryjayer interactiongthe case considered in Ref.)35;,=S,;

high-mobility single-layer samples at high half-integer filling —g and the lengtrs;; is inversely proportional to the elec-
factors?**In this case, the anisotropic transport is taken toonic compressibilityx; in layeri (Ref. 36

indicate the presence of a spontaneously striped anisotropic

charge density of the quantum Hall ground st4telere, the €
stripes are not spontaneofisr t<U), but are produced and Si= 55 (3.9
oriented by the in-plane magnetic field. Nonetheless, the eni ki

stripes(dipolar soliton lines found here should also produce

. . If the front-gate and back-gate voltages are varied simul-
anisotropic transport.

taneously so that the total layer density is kept fixed (

+v,=1), then
IIl. INTERLAYER CAPACITANCE

Capacitance measurements offer the possibility of directly Re= S6E,,/ 5E S178

probing the ground-state properties of two-dimensional elec- 9% d+s+s,’
tron systems, such as the thermodynamic compressibility. Alyhere

though the differential gate capacitance, which measures

how the charge on a gate changes with respect to changes in S1=S11—S12, Sp=S5—S,1. (3.6

the gate voltage, is slightly affected by the compressibility of . )

the electron gas in the occupied layer that is nearest the gat ’only one of the ggte voltages IS kept f|xed,.then the nu-
it is almost entirely dominated by the large gate-to-layer disMerator %f7 Eq.(3.9 is equal to eithes, or sy, instead of
tance of the device. A far more sensitive measurement of thi1€ir SUM-" At high densitiess; (and thusRg) are positive,
electronic compressibility is provided by the Eisenstein ratioPut at suffiently low densities, they become negative, result-

(3.5

Re, which is an interlayer capacitan®e.®’ ing in the negative values dRg that have been measured
o ’ experimentally’®
Re= 6E 1,/ 6Egate, (3.1 The Eisenstein ratio has been calculated fowa= 1

_ - _ 2LQH state®® although without a parallel magnetic field. It
whereE,, is the electric field that exists between the layers,yas found that, although the lengteswere negative, the

andEggeis the electric field between the gate and the nearesfsiterion for stability against abrupt interlayer charge
layer. Classically, conduction electrons in the layers shouldrgnsfer”

completely screen the electric fields produced by the gates,
so thatE;,=0 andRg=0. Indeed, this result is approached d+s;+s,>0, (3.7
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is still satisfied. It follows from Egs(3.5 and (3.7) that  which requires Q/Q.—1)~10 ° to give a divergent value

whenRg diverges, it signals an interlayer charge-transfer in-of the Eisenstein ratidi.e., d+s;+s,=0), at least for a

stability. tunneling-matrix element,=0.5 meV. The required near-
In the next two subsections, we calculate the contributiomess to the CI transitiofi.e., the smallness d@/Q.—1) is

Rg; of the PT Hamiltonian to the Eisenstein ratRg; con-  inversely proportional tdy, so makingt, smaller might be

tains the dependence & on the tunnelingt, pseudospin of some help. However, it may be that in practice, sample

stiffnesspg, parallel magnetic field, and layer imbalance disorder smears out the CI transition well before the diver-

M,o. It iS convenient to separai®:, into two parts: one that gence inRg can be approached.

is formally divergent alQ=Q. when the layers are unbal-

anced (,#0), and one that does not diverge, but which B. Nondivergent contributions

nevertheless exhibits a nontrivial dependenc&andmy. We saw in Sec. Il A that, although there is a contribution

to the interlayer capacitancéhe Eisenstein rati®g) which
A. Divergent contribution is formally divergent at the CI transition, it may be difficult
We shall first consider only the contributions to the elec-in practice to tune close enough to the transition to observe
tronic lengthss; that become negative and divergent at the Cithe divergence. It may be that the nondivergent contribution
transition. We therefore focus on how changes in the layeff the PT contribution toRg is more easily detected. We
imbalancem, allow one to cross through the ClI transition, calculate this contribution below for smalt2U.
due to them, dependence of the critical parallel magnetic ~ For simplicity, we focus on the case of fixed total filling
field (or of Q.), as discussed in Sec. Il B and in Ref. 16. We factor. Then it follows from the definition d®¢ in Eq. (3.1),
therefore consider only the PT part of the the energy per areiom Gauss’ law, from the definition of; in Eqg. (2.6), and
in Eq. (2.1), and then only that part of the PT energy thatfrom Eq.(2.12, that we may expresRe as
depends omm, throughQ/Q.. (There are other terms that _
contribute tos; , but they do not give rise to a divergence at Ro—1_ E a(my) ~R.+R
the CI transition, at least fot/U<1, which is the usual E"" U gm, EO EDL
situation in most samplesBecause we are focusing on the
effects of passing throught the CI transition, rather than the Rgo=1—D; /U,
effects of changing the total filling factor, we restrict our
attention to the case of fixed total filling facter. With
these restrictions, the effect of taking a derivative of a func- F1=—
tion of Q/Q. with respect to the layer filling factow; pro- U dmyg
duces the equivalence 2t (005790> L ,
, = U |7z l(V—Q)% . (3.1
J M, dQec Q d (-1 m, _ 4 (1—m3)

v, - dv; dm, Q. dQ 2 1—m§ Q’ The largest contribution to the Eisenstein ratidrig,, and it
(3.9 was this quantity that was calculated in Ref. 36. For the
hypothetical sample parameters in the té¥t,=—0.9, in-
Combining Egs(3.3) and(3.8) with the magnetization cal- dependent ofm,, and Q. Re=Rg, when the interlayer-
culations of Ref. 16 gives tunneling amplitudety is very small, or when the parallel
field is large Q substantially larger tha@.).
s;+5s, m, 2 , ps Qs Rg; contains all the dependence BE on the in-plane
T 5| QD= 70 (3.9  magnetic field and layer imbalance.tfU is made as large
z efamel as possible, then by measuring Reandm,, dependence of

I . Rg, it may be possible to meas . In the commensurate
where we have kept only the contribution that diverges at the © ybep UR2,

Cl transition. The divergence occurs because nonzeral- ~ Phase Q<Qc),f,=0, so
lows small changes in the layer filling factors to tune the

Dy &(myy)

N 2
system through the CI transition. The divergent part of the _ E 2o /U 1 _(i 2) _
electronic lengthss; are thus proportional to the in-plane i U J1-m%|(1-m%) |7 Qc
differential magnetic susceptibility that was calculated in (3.12

Ref. 16, and which diverges at the CI transition.

Unfortunately, the divergence in the electronic lengths
at the ClI transition is weak, proportional toy@ — Q,, with —
a small prefactor. For the hypothetical sample considered in Re (Q=0)=— E 2to/U ~—0.39 3.13
this paper anan,;=0.5, Egs.(2.17) and (3.9 give El

In the absence of an in-plane magnetic fie@=0),

for the hypothetical sample parameters described in the text,

Sifs, 0005 , (310  With my=0.5, so that in this casg, is almost half the size
| VOQ/Q.—1 of Rgg. As Q increasesRg; decreases in magnitude and,
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provided thatm,o</1— (7/4)?~0.62, passes through zero to Rg which diverges at the ClI transition. However, observ-
and becomes positive near the ClI transition. ing this contribution is likely to be problematic because it
At the CI transition, this nondivergent part BE; is requires that the CI transition be very shagmsmeared by
disordej. We also calculated a contribution ®: which

51 2ty /U 4\2 1 does not diverge at the ClI transition, but which nevertheless
Re1(Q=Q.)= RN (—) -] offers a good possibility of experimental detection. We cal-
1I-my [\ 7 (1-mg) culated the in-plane magnetic-field dependencB©f along

314 with its dependence on layer imbalance, especially in the
%ommensurateQ<QC) phase, up to the CI transitiorQ)(
=Q.), and discussed its behavi@mapid decling in the in-
commensurate@>Q.) phase. By measuringg, the pseu-
dospin stiffness could be estimated and the incommensurate

which for the sample parameters described in the text has
value of Rg1(Q=Q.)=0.16 for m,y=0 and Rg1(Q=0Q,)
=0.08 for m,,=0.5. In the incommensurate phadeg;
drops rapidly to zero due to rapid spatial variations mphase detected.

0o(X) -_16 By measuring how the in-plane magnetic field and” ¢ existence of “rippled” layer densities in the incom-
layer imbalance affect the interlayer capacitaReg it may  mensurate phase of unbalanced 2LQH systems is expected to
be possible to estimate the pseudospin stiffnessn the  pe yajid beyond the HFGA, although the size of the density
commensurate phase, and also to detect the incommensurdt&iations will be reduced by quantum fluctuatiGhg® As
phase, as signaled by a rapid decrease in the sensitiiR¢ of |ong as the layer densities are “rippled,” they will make an
to Q and M. anomalous contribution to the capacitance. Although fluctua-
tion effects change the sizes@f andt,??®the basic physics
IV. CONCLUSIONS of producing “rippled” layer densities still holds beyond the
) HFA. In particular,ps andt will still change with the layer
It has been shown that the incommensurate phase of ifhbalancem,, and this dependence an, will produce a
bilayer quantum Hall state has a “rippled” dipole charge coupling betweem, and the pseudospin angle leading to
de_nsity whenever the Iaye_rs are unbalanced. _The ”pp"”ﬂonuniformmz in the incommensurate phase whep# v,.
arises because the layer imbalanog and the interlayer Several remarks about the observability of the capacitive
phased are coupled through the, dependence of the effec- effects found here are in order, especially the effects of in-
tive tunneling energyt and pseudospin stiffness; in the  ¢jyding finite temperature and disorder. In practice, both fi-
Pokrovsky-Talapov part of the total energy in E2.1). This  pjte temperature and disorder limit the minimum effective
coupling between the layer imbalance and interlayer phasgq e of Q/Q.—1) that can be obtained. These are impor-
produces the rippled state when the translational symmetry¢ topics which deserve further study; only some prelimi-
of the phase is broken in the incommensurate phase. Trﬁ\ary considerations are discussed here.
rippled layer imbalance was calculated within the Hartree- Ignoring the effects of disorder for the moment, it is im-
Fock-gradient approximation and is illustrated in Fig. 2. Theportant to note that the soliton lattice exists only at suffi-
details of the calculation are given in the Appendix. We fo-ciently low temperatures. The soliton lattice supports a
cused on the limit where the interlayer-tunneling energy isinjte-temperature Kosterlitz-Thouleg&T) transition due to
smaller than the charging energy of the bilayér<U),  gislocation-mediated melting of the lattice of soliton
which is the case for all bilayer samples which have beeffines®3#The KT temperature for melting the soliton lattice is
studied experimentally so far. _ , roughly kg T~ (7/2)JK;K,, whereK is the longitudinal
Because solitons have an associated dipole-moment pgfitness andK, is the transverse stiffness of the soliton
u_nlt length (which we estimated in the _Appendlxn _the lattice 13 BecauseK; 0 asQ—Q,, the KT temperature
rippled state, well-separated soliton lines experience rqns as the Cl transition is approached. This sets a limit to
power-law (inverse cubg repulsive-force per unit length, [,y close one can get to the CI transition, which may be
rather than the much weaker exponentially-decaying repu'éstimated in the case of finite layer imbalance by using
sion between solitons found in the balanced case. This has a,, C(Q/Q.—1) [see Eq.(2.17)] and K,=p,.® From

strong effect on_ho_vv the density of SO”Fan dep_ends on tr.wi"hese considerations, the requirement fhatTy gives
in-plane magnetic field near the Cl transition, as illustrated in ’ KT

The fact that solitons have an electric dipole moment in (Q/Qc—1)>—(— ) %2_4( —> 4.1
the rippled state makes it likely that they produce anisotropic 4\ ps 1K

transport. Transport parallel to the soliton linesy) is  for the sample parameters used in the text. Fbr
likely to be easier than transport perpendicular to the soliton=100 mK, this yields Q/Q.—1)>2.4x10™*.
lines (+X). We expect the ratip,,/pyy to increase when the The smearing of the CI transition due to disorder is more
rippled state is entered. This could provide an experimentgbroblematic. Even in capacitance experiments designed to
signature for the incommensurate state. measure thgin)compressibility of the fractional quantum
We calculated the interlayer capacitance, specifically thénall (FQH) state(which would, in the absence of disorder,
Eisenstein ratidRg, which is a sensitive measure of the elec-lead to a divergenRg at odd-denominator filling factoys
tronic compressibility and of interlayer electronic correla- only finite changes irRg are found at the FQH filling fac-
tions. When the layers are unbalanced, there is a contributiciors, due to the effects of disord®rit is to be expected that
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disorder may eliminate any abrupt features in the interlayer 0.1
capacitancdRg in this case also. Strictly speaking, the long-
range order of the SL is destroyed by any finite amount of 01 L
disorder®® presumably the SL has only a finite correlation '
length {4<e due to disorder. Roughly speaking, the maxi-
mum spacing between solitong § will be limited to Lg 5“ 0.0
<4, SO that

71_2 f 2 -0.1 ¢

(Q/Q.— 1)>C(7 §—> . 4.2
‘ -0.1 : : :

In practice, such disorder could arise from small variations in -100 50 0.0 5.0 10.0
the local tunneling ampitudesor the spin stiffnesgg due to xlg

minute variations in the interlayer barrier thickness and/or
the layer separation. More theoretical work needs to be don
to determine the limits imposed by disorder, but the issue OEZ
the observability of the CI transition in capacitance measure-
ments must be settled experimentally.

FIG. 3. Spatial dependence of the layer imbaladuog,(x) as-
ciated with a single soliton, vs position for the hypothetical “typi-
I” sample parameters described in the text.

where we have take@ to lie along thex direction. This
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APPENDIX: DIPOLE MOMENT
— _2t M,q 5.>
In this Appendix, we estimate the dipole-moment per unit Ma=7 (1—m2,) (Q°¢°-1) (A7)

length associated with solitons in the incommensurate phase
of an imbalanced 2LQH system. Expanding Eg.1) in _
powers of ¢(/U) gives is the value ofm,; in the commensuratedy=0) phase. For

the hypothetical sample described in the te_xglwo.048 for

My(1)~Myo+ My (1), (A1) m,,=0.5 andQ~ Q.. We associate the spatially-dependent
where part of m, (see Fig. 3 with the soliton line:
Myo=Vg/U (A2)
: . Mo 4Q¢ 6
is thet=0 result for the layer imbalance, and oM, (X)= — — .
U (1-m2) | coshix/§)  cost(x/¢)
2t my - - (A8)
ma(D =7 ————[£%(Vbo—Q)*—cosfy], (A3) The areal number density of laygris given by n;
(1—mz) =vj/ (2wl 2). Therefore, the dipole-moment per unit area is

to first order int/U. Here@,(r) is the soliton-line solution to

the PT model for the values dfand pg corresponding to P ed

settingm,=m,q in Eq. (2.2). _ T Tmza (A9)
For a single soliton, the lowest-order solution #Wis'® xby 2w

‘Bo(X) =4 arctan exx/ &), (A4) and we associate an dipole-moment per unit length

165325-8
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5p
E 277I2f oM, (X)dx
S ™ (nqe-3)
2m2 U (1-mZy) &
2
ko2l M0 40i0,-3). (AL0)

277|2 U (1- m2,) Y4

For the “typical” sample described in Sec. Il A at layer im-
balancem,y=1/2 andQ=Q,,
opl oy~ —0.1Ck, (A11)

where —e is the electric charge of an electron.
When the soliton lines do not overla@ (sufficiently near

Q.), thendy(x) is very nearly a periodic superposition of Q/Qc=E(7)/7n+—=-

single-soliton solutions, spaced apart lby:

Bo(r)~4, arctanexp(x—jL)/£]. (A12)
]

The dipolar interaction-energy per unit length between two

parallel soliton lines separated by a distamds

Vo(x) _(8pl8y)?
I-y Z’JTEX2 .

(A13)

Thus the total dipole-interaction energy per unit area is

PHYSICAL REVIEW B 66, 165325 (2002

12 (5p/ dy)?
LyL y y =1 Lg
1 (oploy)*
96 — " QS, (A14)
where we have used the fact that the number of solitons is
Ng=L,/L;.

The relation between the wave vec@Qrand the param-
eter » is obtained by minimizing the total energy per unit
area with respect t®, at fixed Q;*® when the layers are
balanced, Eq2.10 results, and Eqg2.9) and(2.10 may be
combined to obtairQg as a function ofQ. When the layers
are imbalanced, Eq2.10 acquires an additional term due to
the dipole interactions between solitons,

V
(A15)
where
B opl 8y \ 2e?/4mel
=8 = ) o o (Al6)

and C~0.14 for the hypothetical “typical” sample with
m,,=0.5 and Q=Q.. Because the interaction between
separated solitons is an inverse-power lawhen unbal-
anced rather than exponetially decaying functiomhen bal-

anced, Qg andK; are proportional to/Q— Q. near the ClI
transition.
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