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Rippled state of double-layer quantum Hall systems

C. B. Hanna
Department of Physics, Boise State University, Boise, Idaho 83725

~Received 27 September 2001; published 31 October 2002!

The incommensurate phase of a bilayer quantum Hall state is found to have a ‘‘rippled’’ dipole charge
density whenever the layers are unbalanced. This tunable dipole-density-wave instability could be detected by
sensitive capacitance measurements and by anisotropic transport. We demonstrate this explicitly by carrying
out a Hartree-Fock calculation of the layer densities and capacitance for a double-layer quantum Hall state at
a total filling factor of 1.

DOI: 10.1103/PhysRevB.66.165325 PACS number~s!: 73.43.Cd, 64.70.Rh, 71.10.Pm, 71.45.Gm
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I. INTRODUCTION

The combination of reduced dimensionality and stro
interparticle interactions can have spectacular effects on
nature of the ground-state and dynamical properties of ma
particle systems. This is especially evident in the fractio
quantum Hall regime,1,2 where a strong magnetic field i
applied perpendicular to a two-dimensional electron gas
very low temperatures. The powerful magnetic fie
quenches the kinetic energy of the electrons, so that inte
tions between electrons dominate the energetics. The res
a highly correlated, incompressible quantum-liquid grou
state that supports fractionally charged excitations.3 Even at
integer filling factors~especiallynT51), the combination of
the quenched kinetic energy of interacting electrons plus
tra electronic degrees of freedom~i.e., spin or multiple lay-
ers! can give rise to correlated ground states that sup
remarkable topological excitations, such as charg
skyrmions.4,5

Another important class of systems in which reduced
mensionality and interactions strongly affect the ground s
and dynamics are systems with charge-density-wave or s
density-wave ground states,6 and also systems that exhib
commensurate-incommensurate~CI! transitions.7,8 Systems
with charge- or spin-density-wave ground states occur m
famously ~although not exclusively! in quasi-one-
dimensional materials, where the reduced dimensionality
hances fluctuation effects and leads to broken-symm
ground states.6 Systems exhibiting CI transitions have br
ken translational symmetry states with rich structures, m
notably arrays of domain walls that arise from the comp
tion between interparticle interactions and external perio
potentials.7,8

Double-layer quantum Hall~2LQH! systems can show
both types of behavior: they support unusual fractiona
charged topological excitations,9,10 and they apparently ex
hibit a CI transition to a state with broken translational sy
metry in the presence of a sufficently strong in-plane m
netic field.9 It is interesting that in 2LQH systems, broke
translational symmetry can coexist with the hidden o
diagonal long-range order11 characteristic of quantum Ha
states. The evidence for a CI transition in 2LQH systems
however, indirect. Activation energy measurements sh
that a sufficiently large in-plane magnetic field drives a tra
sition between two different types of many-body grou
0163-1829/2002/66~16!/165325~10!/$20.00 66 1653
g
he
y-
l

at

c-
t is
d

x-

rt
d

i-
te
in-

st

n-
ry

st
i-
ic

y

-
-

-

s,
w
-

states,12 and the strength of the in-plane magnetic field a
the size of the energy gaps are consistent with the
scenario.9,12 In order to establish the nature of the competi
quantum Hall ground states and the transition between th
additional types of experimental measurements are nee
Various types of experimental signatures of the CI scena
have been proposed, including predictions of the form of
energy gap,13 a predicted Kosterlitz-Thouless transition,10

anisotropic transport in narrow samples,14 and the field de-
pendence of the in-plane magnetization.15,16 Here we pro-
pose that the CI transition in 2LQH systems could be stud
directly by capacitance measurements, and by anisotr
transport produced by the dipole-density wave described
low.

This paper examines a novel effect of unequal layer d
sities on the CI transition in 2LQH systems.~Interestingly,
unequal layer densities can actually enhance the stabilit
the 2LQH state at total filling factornT51.17,18! It is found
that when the layer densities are not equal, they go fr
being uniform in the commensurate phase to becom
‘‘rippled’’ in the incommensurate phase; this allows the
transition to be detected by sensitive capacitan
measurements.17 The layer imbalance can be produced
two ways: most commonly by an external bias, but perh
also spontaneously in a tilted sample with an unusually sm
capacitive charging energy and a sufficiently large interla
tunneling.19,20 We will focus here on bias-driven imbalanc
since it is easier to achieve experimentally. In addition,
pacitive techniques provide a quantitative measure of the
terlayer exchange and pseudospin stiffness in 2LQH syste
This is illustrated in the following sections by a Hartree-Fo
calculation of the layer densities and capacitances fo
2LQH state at a total filling factornT51. Similar effects
should, in principle, occur at other filling factors, althoug
nT51 is probably most promising for experimental observ
tion.

II. RIPPLED STATE

Interlayer Coulomb interactions at low filling factors ca
stabilize 2LQH states when the layer spacing is compara
to the separation between electrons within the layers.21 Even
at a total ‘‘integer’’ filling factornT51, experiments indicate
that the quantum-Hall ground states are stabilized by C
lomb interactions and do not require interlayer tunneling
©2002 The American Physical Society25-1
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their existence.21,22 Further evidence of the rich variety o
2LQH states atnT51 comes from measuring the effects
an in-plane magnetic field, which induces a transition
tween two types of quantum Hall ground states.12 These ef-
fects have been discussed in terms of an unusual bro
symmetry quantum Hall ground states that exhi
spontaneous interlayer~phase! coherence~SILC!.9,10

At sufficiently small layer separation, a 2LQH system
an unusual quantum itinerant ferromagnet.5,9,10 The SILC
2LQH quantum ferromagnet exhibits a rich variety of grou
states, phase transitions, and charged and ne
excitations.10,23 Murphy et al. investigated the effect of an
in-plane magnetic fieldBi on 2LQH systems, and found ev
dence of a phase transition between two competing
ground states at a critical valueBi5Bc .12 These two ground
states have been explained theoretically9 by showing that
application of a sufficiently strong parallel magnetic fie
Bi.Bc produces a soliton-lattice~SL! ground state in the
incommensurate phase of the 2LQH system. Recent m
surements of the interlayer tunneling conductivity in bilay
quantum-Hall samples have provided dramatic evidence
interlayer phase coherence.24

A. Effective Hamiltonian

Formally, it is simplest to obtain the ground-state char
teristics of the SILC 2LQH state from the energy per u
area within a gradient approximation9 in which the pseu-
dospinm(r ) is assumed to vary slowly on the scale of t
magnetic lengthl. In doing so, it is convenient to specify th
order parameterm(r ) in terms of two quantities:mz(r ), the
local difference in layer occupancies, andu(r ), the projected
angle ofm in the xy plane measured with respect to thex
axis. For constantmz5n12n2 and in-plane magnetic field
Bi , the energy per unit area of the SILC 2LQH state has
form9,10,23

E5
1

2p l 2 F2t cosũ1
1

2
rs2p l 2~¹ũ2Q!2

1
U

4
mz

22
1

2
VgmzG , ~2.1!

whereE has been expressed in terms ofũ5u1Q•r , Q[ ẑ
3Bi2pd/f0 , d is the interlayer spacing, andf05h/e is the
magnetic-flux quantum. Mean-field equations forũ and mz
are obtained by minimizing Eq.~2.1! with respect to those
same quantities.

The first two terms of Eq.~2.1! constitute the Pokrovsky
Talapov ~PT! model7–9,25 with coefficients that, in the
Hartree-Fock approximation~HFA!, depend onmz according
to

t[t0A12mz
2e2Q2l 2/45t0A4n1n2e2Q2l 2/4

rs[r0~12mz
2!54n1n2r0 , ~2.2!
16532
-

n-
t

ral

H

a-
r
or

-
t

e

wheret0 is the tunneling-matrix element whenn15n2; it is
equal to half the symmetric-antisymmetric gapDSAS. In the
presence of a parallel magnetic field,

t0→t0exp~2Q2l 2/4!, ~2.3!

which is a single-body effect.26 The interlayer pseudospin
stiffness when the layers are balanced is

r05
e2

4pe l

1

16pE0

`

dxx2e2x2/2e2xd/ l ~2.4!

in the HFA. The value ofrs will be reduced due to quantum
fluctuations27,28 and finite-thickness effects. By adjusting th
front and back gate voltages of the sample,n1 andn2 may be
varied ~with nT[n11n251), thereby allowingt and rs to
be adjusted.

The third term~quadratic inmz) in the energy density
@Eq. ~2.1!# is a capacitive charging energy that favors eq
layer densities.9 The capacitive energyU is given in terms of
the electrostatic Hartree energy (D̄1) and the intralayer (Ē0)
and interlayer (Ē1) exchange energies by

U5D̄12Ē01Ē1 ,

D̄15
e2

4pe l
d/ l ,

Ēj5
e2

4pe l
I j[

e2

4pe l E0

`

dxe2x2/2e2xd j/ l , ~2.5!

where the exchange integralsI j have been evaluated in th
HFA. Most treatments of the SILC 2LQH state have been
equal layer densities (mz50), since there is a significant cos
in capacitive charging energy to unbalance the layers.9 How-
ever, an application of back and front gate voltages allo
charge to be transferred from one layer to another, giving
to a tunable nonzero value formz in the 2LQH ground state
The effects of charge-transfer imbalance were studied b
theoretically and experimentally, and it was found th
charge imbalance can actuallyincreasethe stability of the
2LQH state.17,29,30

We shall estimate the numerical values of our results fo
hypothetical ‘‘typical’’ GaAs (m* '0.07me ,e r'13) 2LQH
sample,16 with a total densitynT51.031011 cm22, a layer
~midwell to midwell! separationd520 nm, and a tunneling
energyt050.5 meV (DSAS511.6 K). Such a sample would
have l'12.6 nm,d/ l'1.6,\vc'6.9 meV for nT51, and
e2/4pe l'8.8 meV. In the HFA, r0'0.03 meV,D̄1
514 meV, andU57.4 meV.

The effect of the gate voltages is described by the
(Vg) term in the energy density in terms of effective fillin
factorsn̄F and n̄B for the front ~F! and back~B! gates:

Vg5~ n̄F2 n̄B!D̄1 . ~2.6!

The effective filling factorsn̄a ~wherea5F,B) are defined
by the the electric fieldsEa produced by the front and bac
5-2



te

-

-

h,

he

e
m
l

io

s
b

d

.
as

to
e

d

ic

-

ds
-

us
-

-
ow

e
-
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gates through Gauss’ lawEa5en̄a/2p l 2e, wheree ~approxi-
mately 13e0 for GaAs! is the dielectric constant appropria
to the 2LQH sample.

B. Parallel magnetic field

When QÞ0, the pseudospin stiffnessrs competes with
the rotating Zeeman pseudofieldt cosũ to determine the spa
tial orientations of the pseudospins. MinimizingE in Eq.
~2.1! with respect to ũ gives the two-dimensional sine
Gordon equation

j2¹2ũ5sinũ, ~2.7!

where the width of the soliton is proportional to the lengt

j5A2prs/t5j0~12mz
2!1/4, ~2.8!

which for our hypothetical sample givesj0'17 nm. The
soliton width j sets the scale for spatial variations of t
pseudospinm(r ); thus the condition for the validity of the
gradient approximation is thatj be significantly larger than
the magnetic lengthl.

For sufficiently smallQ, Eq. ~2.1! is minimized byũ(r )
50. This is the commensurate~C! phase, and in this phas
the pseudospins align themselves with the rotating Zee
pseudofield, so thatu52Q•r . However, above a critica
value of Bi corresponding toQc54/(pj)5(4/p l )At/2prs,
it becomes energetically favorable to produce dislocat
lines ~solitons!. The soliton widths are of orderj. Solitons
proliferate rapidly forQ.Qc ~incommensurate phase! be-
cause they repel each other only very~exponentially! weakly
~at zero temperature!. The resulting array of solitons break
the translational symmetry of the 2LQH ground state
forming a SL. For largeQ@Qc , the rapidly varying tunnel-
ing phase factor causes the pseudospins to behave~nearly! as
if t50. In the HFA, the critical value of the in-plane fiel
varies with the layer filling factors likeQc}(12mz

2)21/4;
thus tuning the layer filling factors (mz) via gate voltages
allows the location (Qc) of the CI transtion to be fine tuned

The density of soliton lines in the incommensurate ph
is proportional to the soliton wave vectorQs52p/Ls , where
Ls is the spacing between solitons in the SL. The soli
density~proportional toQs) is calculated as a function of th
in-plane field~proportional toQ) via two equations involv-
ing an intermediate parameterh. The parameterh is defined
by7,16

Qs /Qc5~p/2!2/@hK~h!#, ~2.9!

approaches 1 near the CI transition (Qs→0), and goes to 0
deep in the incommensurate phase (Qs→`). HereK(h) is
the complete elliptic integral of the first kind.31

When the layers are balanced (n15n2), minimizing the
total energy with respect toQs gives7,16

Q/Qc5E~h!/h, ~2.10!

whereE(h) is the complete elliptic integral of the secon
kind.32 Equations~2.10! and ~2.9! together determine the
soliton density~or Qs) as a function of the in-plane magnet
16532
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field ~or Q). Qs /Qc is plotted as a function ofQ/Qc in Fig.
1, for the balanced case16 (mz50, solid curve! and for the
rippled state (mz50.5, dashed curve!. Note the abrupt rise in
soliton density forQ.Qc . The compressional stiffnessK1
of the SL16 is proportional to the slope of theQs versusQ
curves in Fig. 1~see Ref. 16!:

rs

K1
5

]Qs

]Q
. ~2.11!

As expected,K1 vanishes asQ→Qc .

C. Rippled layer imbalance

Minimizing Eq. ~2.1! with respect to variations inmz
gives

mz5
Vg

U1@2t cosũ24p l 2rs~¹ũ2Q!2#/~12mz
2!

.

~2.12!

This equation determines~in the Hartree-Fock gradient ap
proximation! the filling factor of each layer for thenT51
SILC state. For sufficiently small in-plane magnetic fiel
(Q,Qc),ũ50 ~the commensurate state!, and the assump
tion that mz is constant is self-consistent, provided thatt
!U.23 However, whenQ>Qc , the quantum Hall ground
state breaks translational invariance:ũ is not spatially uni-
form and the soliton-lattice state is obtained.9 WhenQ>Qc

andn̄1Þn̄2, Eq. ~2.12! shows thatmz also breaks translation
invariance, and one obtains ‘‘rippled’’ layer densities. Th
uniform mz is not consistent with the broken translation sym
metry of ũ50 in the incommensurate phase, whenn̄1Þn̄2.
The resulting behavior ofmz(r ) is illustrated in Fig. 2.

It is important to note that Eq.~2.12! is valid even in the
incommensurate state of spatially varyingũ, but only to first
order int/U. Sincet/U is small in the bilayer samples stud
ied so far, this assumption is not too restrictive. From n
on, we shall work only to lowest non-trivial order int/U, and

FIG. 1. Soliton density~times 2p) vs in-plane magnetic field
for balanced layers (mz50, solid curve! and for the rippled state
(mz050.5, dashed curve!. The soliton density rises abruptly in th
incommensurate phase,Q.Qc . There are no solitons in the com
mensurate phase,Q,Qc .
5-3



o

on

ye

n
oc
th
t

n
on
h

by

o

-
it

a
pu
t

q.
ac-

nt

the
or

ures
The

d

to

d
n
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expandmz as described in the Appendix. Thus we shall n
include the effect of the rippling ofmz on the soliton width
j, since this would produce only small corrections~i.e., of
higher order int/U) to the results presented here. The solit
width j in Eq. ~2.8! is therefore computed usingmz'mz0,
wheremz0 is the layer imbalance in the absence of interla
tunneling, as defined in the Appendix. The value ofmz0 de-
pends on the gate voltageVg , but not on the ‘‘rippling’’
effect ~which is of higher order int/U!.

Becausemz5n12n2 is associated with differences i
layer electron densities, the rippling has the effect of ass
ating an electric-dipole density with each soliton. When
solitons are separated (Ls.j), the dipole-moment per uni
length is~see the Appendix!

dp

dy
52

edj0

2p l 0
2

2t0

U

mz0

~12mz0
2 !1/4

~4Q/Qc23!, ~2.13!

which has a value of about20.10e when mz050.5 andQ
5Qc . Because the solitons have associated dipole mome
the dominant interactions between solitons when the solit
are separated will be their dipole-dipole repulsion. In t
limit that the solitons are well separated (Ls@j,d), the in-
teraction per unit length between two solitons separated
distancex is

V
L

5
~dp/dy!2

2pex2
, ~2.14!

so that the solitons repel each other with a force that falls
with distance as an inverse power~for n1Þn2), rather than
exponentially ~for n15n2). Summing all the the dipole
dipole soliton interactions gives, in the thermodynamic lim

V
LxLy

5
p

12

~dp/dy!2

eLs
3

5
1

96p2

~dp/dy!2

e
Qs

3 , ~2.15!

which is proportional to (t/U)2 and is therefore small in
magnitude. However, near the CI transition, the solitons
well separated and dipole interactions dominate the re
sions between the solitons, which has a strong effect on

FIG. 2. Rippled layer imbalancemz(x) vs position for a soliton
lattice with spacingLs /j520 between soliton lines. We have use
the parameters for the ‘‘typical’’ sample described in the text, a

takenmz050.5. For these parameters,m̄z150.048.
16532
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compressional stiffnessK1 of the SL. The relation between
the wave vectorQ and the parameterh is obtained by mini-
mizing the total energy per unit area with respect toQs at
fixed Q ~Ref. 16!; when the layers are balanced, Eq.~2.10!
results, and Eqs.~2.9! and~2.10! may be combined to obtain
Qs as a function ofQ. When the layers are imbalanced, E
~2.10! acquires an additional term due to the dipole inter
tions between solitons,

Q/Qc5E~h!/h1
1

rsQc

]

]Qs

V
LxLy

5E~h!/h1C~Qs /Qc!
2,

~2.16!

where C;0.14 for the hypothetical ‘‘typical’’ sample with
mz050.5 andQ5Qc . Near the CI transition Eq.~2.16! gives

Qs /Qc'A~Q/Qc21!/C,

K1 /rs'2AC~Q/Qc21!. ~2.17!

The corresponding formula for the balanced (n15n2) case
are quite different:Qs;21/ln(Q2Qc) and K1;(Q2Qc),
up to logarithmic corrections. Nonetheless,K1 ~and, by defi-
nition, Qs) vanishes at the CI transition which has importa
consequences for the capacitance near the CI transition.

D. Topological charge

We also note that when the layers are imbalanced,
soliton lines acquire a charge density when they are tilted
sheared. In the lowest Landau level, the pseudospin text
with topological charge possess an electric charge.
electric-charge densitydr(r ) is just the topological-charge
density~i.e., the Pontryagian index density10! times2enT ,

dr5
enT

8p
e i j m•~] im3] jm!, ~2.18!

wheree i j is the totally antisymmetric tensor of rank 2, an
we sum overi and j over the values 1 and 2 (x andy). The
total filling factor is defined asnT5n11n2. Expression
~2.18! in terms ofmz andu using

mx5A12mz
2cosu, my5A12mz

2sinu ~2.19!

gives

dr~r !5
enT

4p
~]xu]ymz2]xmz]yu!

5
enT

4p
@~]xũ2Q!]ymz2]xmz]yũ #, ~2.20!

where we have takenQ to be along thex̂ direction. If we
rotate the soliton lines by taking

ũ0~x!→ ũ0~ax1by!, ~2.21!

and also transform the rippled layer imbalance according

dmz1~x!→dmz1~ax1by!, ~2.22!

then the associated charge density is

d

5-4
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dr52
enT

4p
Q]ydmz1~ax1by!, ~2.23!

which associates a spatially varying charge density prop
tional to bt/U to the tilted soliton lines. The integrate
charge of the soliton lines remains zero, so the sh
stiffness16 may not be greatly affected.

E. Anisotropic transport

Application of a sufficiently strong in-plane magnet
field produces soliton lines that are parallel to the in-pla
magnetic field. When the layers are imbalanced, these so
lines possess dipole-charge densities. The resulting ele
fields associated with the dipole-charge densities will m
the conductivity anisotropic in the incommensurate pha
Transport parallel to the soliton lines~along the direction of
the in-plane magnetic field, say2 ŷ) is expected to be easie
than in the direction perpendicular~along x̂) to the soliton
lines: i.e., when the layers are imbalanced, we expect

rxx'ryy , Q,Qc ,

rxx.ryy , Q.Qc . ~2.24!

Thus a disparity between the longitudinal resistivities pa
lel and perpendicular to the in-plane magnetic field indica
the presence of an incommensurate soliton-lattice phas
the imbalanced system.

We note that anisotropic transport in the quantum H
regime has been found in a very different context, in ve
high-mobility single-layer samples at high half-integer fillin
factors.32,33 In this case, the anisotropic transport is taken
indicate the presence of a spontaneously striped anisotr
charge density of the quantum Hall ground state.34 Here, the
stripes are not spontaneous~for t!U), but are produced and
oriented by the in-plane magnetic field. Nonetheless,
stripes~dipolar soliton lines! found here should also produc
anisotropic transport.

III. INTERLAYER CAPACITANCE

Capacitance measurements offer the possibility of dire
probing the ground-state properties of two-dimensional e
tron systems, such as the thermodynamic compressibility.
though the differential gate capacitance, which measu
how the charge on a gate changes with respect to chang
the gate voltage, is slightly affected by the compressibility
the electron gas in the occupied layer that is nearest the g
it is almost entirely dominated by the large gate-to-layer d
tance of the device. A far more sensitive measurement of
electronic compressibility is provided by the Eisenstein ra
RE , which is an interlayer capacitance,35–37

RE5dE12/dEgate, ~3.1!

whereE12 is the electric field that exists between the laye
andEgateis the electric field between the gate and the nea
layer. Classically, conduction electrons in the layers sho
completely screen the electric fields produced by the ga
so thatE1250 andRE50. Indeed, this result is approache
16532
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when the layers are sufficently far apart~beyond several hun
dred Å!. But, due to their finite density of states, the effe
tively two-dimensional electron layers cannot complete
screen the gate electric fields, soE12 is nonzero when the
gates are unbalanced.

The Eisenstein ratio has been measured experimental
two-dimensional electron gas~2DEG! systems, and used t
determine the negative compressibility of the low-dens
2DEG;35 it has also been calculated theoretically at ze
magnetic field35,37 and in 2LQH systems.36 The calculation
of the Eisenstein ratio is discussed in some detail in R
35–37; here we shall briefly outline only the key steps.

It is covenient to separate the total energy per unit are
the 2LQH system into an electrostatic part~i.e., the inte-
grated electrostatic energy densityeE12

2 d/2 between the lay-
ers! and a many-body part̂«&, which would be the energy
per area for a system with neutralizing charge backgrou
in each layer.36 The chemical potential relative to the botto
of quantum welli is given by35

m i5]^«&/]ni , ~3.2!

whereni5n i /2p l 2 is the areal number density in layeri. RE
can be expressed in terms of the interlayer separationd and
the effective electronic lengthssi j , defined as

si j 5
e

e2

]m i

]nj
5

l

2

]2

]n j]n i
S 2p l 2^«&

e2/4pe l
D , ~3.3!

from which it follows thatsji 5si j . In the absence of inter
layer interactions~the case considered in Ref. 35!, s125s21
50 and the lengthsii is inversely proportional to the elec
tronic compressibilityk i in layer i ~Ref. 36!:

sii 5
e

e2ni
2k i

. ~3.4!

If the front-gate and back-gate voltages are varied sim
taneously so that the total layer density is kept fixed (n1
1n251), then

RE[dE12/dEgate5
s11s2

d1s11s2
, ~3.5!

where

s1[s112s12, s2[s222s21. ~3.6!

If only one of the gate voltages is kept fixed, then the n
merator of Eq.~3.5! is equal to eithers1 or s2, instead of
their sum.37 At high densities,si ~and thusRE) are positive,
but at suffiently low densities, they become negative, res
ing in the negative values ofRE that have been measure
experimentally.35

The Eisenstein ratio has been calculated for anT51
2LQH state,36 although without a parallel magnetic field.
was found that, although the lengthssi were negative, the
criterion for stability against abrupt interlayer charg
transfer,37

d1s11s2.0, ~3.7!
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is still satisfied. It follows from Eqs.~3.5! and ~3.7! that
whenRE diverges, it signals an interlayer charge-transfer
stability.

In the next two subsections, we calculate the contribut
RE1 of the PT Hamiltonian to the Eisenstein ratio.RE1 con-
tains the dependence ofRE on the tunnelingt, pseudospin
stiffnessrs , parallel magnetic fieldQ, and layer imbalance
mz0. It is convenient to separateRE1 into two parts: one tha
is formally divergent atQ5Qc when the layers are unba
anced (mzÞ0), and one that does not diverge, but whi
nevertheless exhibits a nontrivial dependence onQ andmz0.

A. Divergent contribution

We shall first consider only the contributions to the ele
tronic lengthssi that become negative and divergent at the
transition. We therefore focus on how changes in the la
imbalancemz allow one to cross through the CI transitio
due to themz dependence of the critical parallel magne
field ~or of Qc), as discussed in Sec. II B and in Ref. 16. W
therefore consider only the PT part of the the energy per a
in Eq. ~2.1!, and then only that part of the PT energy th
depends onmz throughQ/Qc . ~There are other terms tha
contribute tosi , but they do not give rise to a divergence
the CI transition, at least fort/U!1, which is the usual
situation in most samples.! Because we are focusing on th
effects of passing throught the CI transition, rather than
effects of changing the total filling factor, we restrict o
attention to the case of fixed total filling factornT . With
these restrictions, the effect of taking a derivative of a fu
tion of Q/Qc with respect to the layer filling factorn i pro-
duces the equivalence

]

]n i
→2

]mz

]n i

]QC

]mz

Q

Qc

]

]Q
5

~21! i

2

mz

12mz
2

Q
]

]Q
.

~3.8!

Combining Eqs.~3.3! and ~3.8! with the magnetization cal
culations of Ref. 16 gives

s11s2

l
;2pS mz

12mz
2D 2

~Ql !2
rs

e2/4pe l

]Qs

]Q
, ~3.9!

where we have kept only the contribution that diverges at
CI transition. The divergence occurs because nonzeromz al-
lows small changes in the layer filling factors to tune t
system through the CI transition. The divergent part of
electronic lengthssi are thus proportional to the in-plan
differential magnetic susceptibility that was calculated
Ref. 16, and which diverges at the CI transition.

Unfortunately, the divergence in the electronic lengthssi

at the CI transition is weak, proportional to 1/AQ2Qc, with
a small prefactor. For the hypothetical sample considere
this paper andmz050.5, Eqs.~2.17! and ~3.9! give

s11s2

l
;2

0.005

AQ/Qc21
, ~3.10!
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which requires (Q/Qc21);1025 to give a divergent value
of the Eisenstein ratio~i.e., d1s11s250), at least for a
tunneling-matrix elementt050.5 meV. The required near
ness to the CI transition~i.e., the smallness ofQ/Qc21) is
inversely proportional tot0, so makingt0 smaller might be
of some help. However, it may be that in practice, sam
disorder smears out the CI transition well before the div
gence inRE can be approached.

B. Nondivergent contributions

We saw in Sec. III A that, although there is a contributi
to the interlayer capacitance~the Eisenstein ratioRE) which
is formally divergent at the CI transition, it may be difficu
in practice to tune close enough to the transition to obse
the divergence. It may be that the nondivergent contribut
of the PT contribution toRE is more easily detected. W
calculate this contribution below for small 2t0 /U.

For simplicity, we focus on the case of fixed total fillin
factor. Then it follows from the definition ofRE in Eq. ~3.1!,
from Gauss’ law, from the definition ofVg in Eq. ~2.6!, and
from Eq. ~2.12!, that we may expressRE as

RE512
D̄1

U

]^mz&
]mz0

'RE01RE1 ,

RE0512D̄1 /U,

RE152
D̄1

U

]^mz1&
]mz0

5
2t0

U F ^cosũ0&

~12mz0
2 !23/2

2j0
2^~¹ũ02Q!2&G . ~3.11!

The largest contribution to the Eisenstein ratio isRE0, and it
was this quantity that was calculated in Ref. 36. For
hypothetical sample parameters in the text,RE0520.9, in-
dependent ofmz0 and Q. RE5RE0 when the interlayer-
tunneling amplitudet0 is very small, or when the paralle
field is large (Q substantially larger thanQc).

RE1 contains all the dependence ofRE on the in-plane
magnetic field and layer imbalance. Ift/U is made as large
as possible, then by measuring theQ andmz0 dependence of
RE , it may be possible to measureRE1. In the commensurate
phase (Q,Qc),ũ050, so

RE152
D̄1

U

2t0 /U

A12mz0
2 F 1

~12mz0
2 !

2S 4

p

Q

Qc
D 2G .

~3.12!

In the absence of an in-plane magnetic field (Q50),

RE1~Q50!52
D̄1

U

2t0 /U

A12mz0
3/2

'20.39, ~3.13!

for the hypothetical sample parameters described in the t
with mz050.5, so that in this caseRE1 is almost half the size
of RE0. As Q increases,RE1 decreases in magnitude an
5-6
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provided thatmz0,A12(p/4)2'0.62, passes through zer
and becomes positive near the CI transition.

At the CI transition, this nondivergent part ofRE1 is

RE1~Q5Qc!5
D̄1

U

2t0 /U

A12mz0
2 F S 4

p D 2

2
1

~12mz0
2 !

G ,

~3.14!

which for the sample parameters described in the text h
value of RE1(Q5Qc)50.16 for mz050 and RE1(Q5Qc)
50.08 for mz050.5. In the incommensurate phase,RE1
drops rapidly to zero due to rapid spatial variations
ũ0(x).16 By measuring how the in-plane magnetic field a
layer imbalance affect the interlayer capacitanceRE , it may
be possible to estimate the pseudospin stiffnessrs in the
commensurate phase, and also to detect the incommens
phase, as signaled by a rapid decrease in the sensitivity oRE
to Q andMz0.

IV. CONCLUSIONS

It has been shown that the incommensurate phase
bilayer quantum Hall state has a ‘‘rippled’’ dipole charg
density whenever the layers are unbalanced. The ripp
arises because the layer imbalancemz and the interlayer
phaseu are coupled through themz dependence of the effec
tive tunneling energyt and pseudospin stiffnessrs in the
Pokrovsky-Talapov part of the total energy in Eq.~2.1!. This
coupling between the layer imbalance and interlayer ph
produces the rippled state when the translational symm
of the phase is broken in the incommensurate phase.
rippled layer imbalance was calculated within the Hartr
Fock-gradient approximation and is illustrated in Fig. 2. T
details of the calculation are given in the Appendix. We
cused on the limit where the interlayer-tunneling energy
smaller than the charging energy of the bilayer (t!U),
which is the case for all bilayer samples which have be
studied experimentally so far.

Because solitons have an associated dipole-moment
unit length ~which we estimated in the Appendix! in the
rippled state, well-separated soliton lines experience
power-law ~inverse cube! repulsive-force per unit length
rather than the much weaker exponentially-decaying re
sion between solitons found in the balanced case. This h
strong effect on how the density of solitons depends on
in-plane magnetic field near the CI transition, as illustrated
Fig. 1.

The fact that solitons have an electric dipole moment
the rippled state makes it likely that they produce anisotro
transport. Transport parallel to the soliton lines (6 ŷ) is
likely to be easier than transport perpendicular to the sol
lines (6 x̂). We expect the ratiorxx /ryy to increase when the
rippled state is entered. This could provide an experime
signature for the incommensurate state.

We calculated the interlayer capacitance, specifically
Eisenstein ratioRE , which is a sensitive measure of the ele
tronic compressibility and of interlayer electronic corre
tions. When the layers are unbalanced, there is a contribu
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to RE which diverges at the CI transition. However, obse
ing this contribution is likely to be problematic because
requires that the CI transition be very sharp~unsmeared by
disorder!. We also calculated a contribution toRE which
does not diverge at the CI transition, but which neverthel
offers a good possibility of experimental detection. We c
culated the in-plane magnetic-field dependence ofRE , along
with its dependence on layer imbalance, especially in
commensurate (Q,Qc) phase, up to the CI transition (Q
5Qc), and discussed its behavior~rapid decline! in the in-
commensurate (Q.Qc) phase. By measuringRE , the pseu-
dospin stiffness could be estimated and the incommensu
phase detected.

The existence of ‘‘rippled’’ layer densities in the incom
mensurate phase of unbalanced 2LQH systems is expect
be valid beyond the HFGA, although the size of the dens
variations will be reduced by quantum fluctuations.27,28 As
long as the layer densities are ‘‘rippled,’’ they will make a
anomalous contribution to the capacitance. Although fluct
tion effects change the sizes ofrs andt,27,28the basic physics
of producing ‘‘rippled’’ layer densities still holds beyond th
HFA. In particular,rs and t will still change with the layer
imbalancemz , and this dependence onmz will produce a
coupling betweenmz and the pseudospin angleu, leading to
nonuniformmz in the incommensurate phase whenn1Þn2.

Several remarks about the observability of the capaci
effects found here are in order, especially the effects of
cluding finite temperature and disorder. In practice, both
nite temperature and disorder limit the minimum effecti
value of (Q/Qc21) that can be obtained. These are imp
tant topics which deserve further study; only some prelim
nary considerations are discussed here.

Ignoring the effects of disorder for the moment, it is im
portant to note that the soliton lattice exists only at su
ciently low temperatures. The soliton lattice supports
finite-temperature Kosterlitz-Thouless~KT! transition due to
dislocation-mediated melting of the lattice of solito
lines.8,38The KT temperature for melting the soliton lattice
roughly kBTKT;(p/2)AK1K2, whereK1 is the longitudinal
stiffness andK2 is the transverse stiffness of the solito
lattice.13 BecauseK1→0 as Q→Qc , the KT temperature
drops as the CI transition is approached. This sets a limi
how close one can get to the CI transition, which may
estimated in the case of finite layer imbalance by usingK1

52AC(Q/Qc21) @see Eq. ~2.17!# and K25rs .16 From
these considerations, the requirement thatT,TKT gives

~Q/Qc21!.
1

4 S 2

p

kBT

rs
D 4

'2.4S T

1 KD 4

~4.1!

for the sample parameters used in the text. ForT
5100 mK, this yields (Q/Qc21).2.431024.

The smearing of the CI transition due to disorder is mo
problematic. Even in capacitance experiments designe
measure the~in!compressibility of the fractional quantum
hall ~FQH! state~which would, in the absence of disorde
lead to a divergentRE at odd-denominator filling factors!,
only finite changes inRE are found at the FQH filling fac-
tors, due to the effects of disorder.35 It is to be expected tha
5-7
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disorder may eliminate any abrupt features in the interla
capacitanceRE in this case also. Strictly speaking, the lon
range order of the SL is destroyed by any finite amount
disorder;39 presumably the SL has only a finite correlatio
length zd,` due to disorder. Roughly speaking, the ma
mum spacing between solitons (Ls) will be limited to Ls
,zd , so that

~Q/Qc21!.CS p2

2

j

zd
D 2

. ~4.2!

In practice, such disorder could arise from small variations
the local tunneling ampitudest or the spin stiffnessrs due to
minute variations in the interlayer barrier thickness and
the layer separation. More theoretical work needs to be d
to determine the limits imposed by disorder, but the issue
the observability of the CI transition in capacitance measu
ments must be settled experimentally.
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APPENDIX: DIPOLE MOMENT

In this Appendix, we estimate the dipole-moment per u
length associated with solitons in the incommensurate ph
of an imbalanced 2LQH system. Expanding Eq.~2.1! in
powers of (t/U) gives

mz~r !'mz01mz1~r !, ~A1!

where

mz05Vg /U ~A2!

is the t50 result for the layer imbalance, and

mz1~r !5
2t

U

mz0

~12mz0
2 !

@j2~¹ũ02Q!22cosũ0#, ~A3!

to first order int/U. Hereũ0(r ) is the soliton-line solution to
the PT model for the values oft and rs corresponding to
settingmz5mz0 in Eq. ~2.2!.

For a single soliton, the lowest-order solution forũ is16

ũ0~x!54 arctan exp~x/j!, ~A4!
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where we have takenQ to lie along thex̂ direction. This
gives

12cosũ0~x!5
2

cosh2~x/j!
,

j]xũ0~x!5
2

cosh~x/j!
. ~A5!

It is convenient to expressmz1(r ) as

mz1~r !5m̄z11dmz1~x!, ~A6!

where

m̄z15
2t

U

mz0

~12mz0
2 !

~Q2j221! ~A7!

is the value ofmz1 in the commensurate (ũ050) phase. For
the hypothetical sample described in the text,m̄z1'0.048 for
mz050.5 andQ'Qc . We associate the spatially-depende
part of mz ~see Fig. 3! with the soliton line:

dmz1~x!5
2t

U

mz0

~12mz0
2 !

F 4Qj

cosh~x/j!
2

6

cosh2~x/j!
G .

~A8!
The areal number density of layerj is given by nj

5n j /(2p l 2). Therefore, the dipole-moment per unit area

p

LxLy
52

ed

2p l 2
mz , ~A9!

and we associate an dipole-moment per unit length

FIG. 3. Spatial dependence of the layer imbalancedmz1(x) as-
sociated with a single soliton, vs position for the hypothetical ‘‘typ
cal’’ sample parameters described in the text.
5-8
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dp

dy
52

ed

2p l 2E2`

`

dmz1~x!dx

52
edj

2p l 2

8t

U

mz0

~12mz0
2 !

~pQj23!

52
edj0

2p l 0
2

2t0

U

mz0

~12mz0
2 !1/4

~4Q/Qc23!. ~A10!

For the ‘‘typical’’ sample described in Sec. II A at layer im
balancemz051/2 andQ5Qc ,

dp/dy'20.10e, ~A11!

where2e is the electric charge of an electron.
When the soliton lines do not overlap (Q sufficiently near

Qc), then ũ0(x) is very nearly a periodic superposition o
single-soliton solutions, spaced apart byLs :

ũ0~r !'4(
j

arctan exp@~x2 jL s!/j#. ~A12!

The dipolar interaction-energy per unit length between t
parallel soliton lines separated by a distancex is

V2~x!

Ly
5

~dp/dy!2

2pex2
. ~A13!

Thus the total dipole-interaction energy per unit area is
.

ys

-

,

.

n

16532
o

V
LxLy

5
Ns

LxLy
(
j 51

`

V2~ jL s!5
p

12

~dp/dy!2

eLs
3

5
1

96p2

~dp/dy!2

e
Qs

3, ~A14!

where we have used the fact that the number of soliton
Ns5Lz /Ls .

The relation between the wave vectorQ and the param-
eter h is obtained by minimizing the total energy per un
area with respect toQs at fixed Q;16 when the layers are
balanced, Eq.~2.10! results, and Eqs.~2.9! and~2.10! may be
combined to obtainQs as a function ofQ. When the layers
are imbalanced, Eq.~2.10! acquires an additional term due t
the dipole interactions between solitons,

Q/Qc5E~h!/h1
1

rsQc

]

]Qs

V
LxLy

5E~h!/h1C~Qs /Qc!
2,

~A15!

where

C5
1

8p S dp/dy

e D 2e2/4pe l

rs
Qcl , ~A16!

and C;0.14 for the hypothetical ‘‘typical’’ sample with
mz050.5 and Q5Qc . Because the interaction betwee
separated solitons is an inverse-power law~when unbal-
anced! rather than exponetially decaying function~when bal-
anced!, Qs andK1 are proportional toAQ2Qc near the CI
transition.
B

S.

ys.
1D.C. Tsui, H.L. Sto¨rmer, and A.C. Gossard, Phys. Rev. Lett.48,
1559 ~1982!.

2The Quantum Hall Effect, edited by R. E. Prange and S. M
Girvin ~Springer-Verlag, New York, 1990!, and references
therein.

3R.B. Laughlin, Phys. Rev. Lett.50, 1395~1983!.
4S.L. Sondhi, A. Karlhede, S.A. Kivelson, and E.H. Rezayi, Ph

Rev. B47, 16 419~1993!.
5See S. M. Girvin and A. H. MacDonald, inPerspectives in Quan

tum Hall Effects, edited by S. Das Sarma and A. Pinczuk~Wiley,
New York, 1997!, and references therein.
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