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Hybrid-phonon resonance in a three-dimensional anisotropic quantum well
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Mordovian State University, 430000 Saransk, Russia
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This paper reports on a theoretical study of intraband resonances arising in the absorption of electromagnetic
radiation by an anisotropic parabolic quantum well. It is shown the scattering of electrons by optical phonons
leads to the resonance absorption. The shape of resonance peaks on the absorption curve is studied, and their
multiplet nature is demonstrated.
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I. INTRODUCTION

Rapid advances on nanofabrication technology have m
it possible to manipulate electron and phonon properties
nanostructures. For example, the size and shape of qua
wells and dots can be controlled in experiments.1 This opens
possibilities to study nanostructures. In particular, the fo
of confining potentials in quantum wells~dots! depends on
growth conditions. Note that a hard-wall potential is a go
approximation to describe the lateral confinement of el
trons in dots in the case when the dots are obtained from
growth of semiconductor crystallites in a glass or polym
matrix,2 but is not suitable for dots defined from a tw
dimensional electron gas with a subsequent etching proc
ing, ion implantation, or application of electrostatic gate
where one should expect a parabolic confining potential.3,4 In
particular, it was shown that in self-assembled quantum d
generated by the Stranski-Krastanow growth mode the lat
potentials can be treated approximately as being parabo5

The parabolic potential is widely employed in theoretic
investigations to study the physical properties of quant
well ~dots!. We will use the parabolic potential in the prese
work. Note that theoretical studies6–8 on the electronic prop-
erties of parabolic quantum dots and wells generally in go
agreement with the experimental results.9–11 It is well known
that intraband excitations are insensitive to electron-elec
interactions in quantum dots~wells! with parabolic potentials
as a consequence of the generalized Kohn theorem.8,13–15In
the case of a parabolic confinement potential the electro
motion can be separated into uncoupled center-of-mass
tion and relative motion. However, the far infrared radiati
only couples to the center-of-mass motion and we have
same dipole resonance frequencies as a single electro
particular, positions of resonance peaks are independen
the number of electrons. This is in good agreement w
experimental data.9 Note that deviations from parabolic con
finement change the dipole selection rules for the center
mass motion, and couple the center-of-mass motion and
relative motion of the electron in the well. In this ca
electron-electron interaction can also play an import
role16,17 in the case of interband excitations.

The motion of electrons is confined in all directions in o
case. Hence optical measurements using resonance
niques are the most preferable means for studying phys
properties of quantum wells and dots, because in this cas
0163-1829/2002/66~16!/165324~7!/$20.00 66 1653
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have no attached contacts which can influence the phys
properties of our system.

The hybridization of the size and magnetic quantizat
can lead to interesting optical properties of these structu
placed in a magnetic field.18–20 Moreover, studies of the in-
traband absorption by quantum wells are very advanced
cause semiconductor quantum wells have many potentia
plications in the electronic devices~for example, the
quantum well laser and the quantum well infrared detect!,
and nonlinear optics. Most of the works on these syste
concerned isotropic wells and dots; there have been s
recent experimental studies on anisotropic wells.11,12 It
should be noted that if the symmetry of the system is
duced, the degeneracy of the resonance at zero magnetic
is lifted and we can observe two or three resonance peak
zero magnetic field.10,11,18,19,21

The general case of an arbitrary direction of the magn
field as well as the polarization vector was studied by
authors in the case of a three-dimensional anisotropic p
bolic well using the method of linear canonical transform
tions of the phase space.21

Participation of optical phonons in absorption can prov
the additional scope for studying physical properties of na
structures. In view of this, there is a great deal of interes
the phonon properties of the quantum wells and dots.

For example, the hot-electron magnetophonon resona
of quantum wells in tilted magnetic fields was investigated
Ref. 22, optical phonon modes in spherical quantum d
were studied in Refs. 23–25, the influence of spatial disp
sion of LO phonons on the energy spectrum of magneto
larons in quantum wells was investigated in Ref. 26, a
multiphonon processes in the quantum dots were studie
Ref. 27. The intraminiband absorption of quantum super
tices was theoretically investigated in Ref. 28. The re
nances with the participation of phonons in a quasi-tw
dimensional structure were examined in Ref. 29. Note t
the generation of coherent confined phonons in nanost
tures has been achieved~see, for example, Ref. 30!.

Scattering by phonons in a quantum well can lead to
process in which the transition between electronic states
curs under the simultaneous action of two factors, i.e., w
the absorption of a quantum\v of the high-frequency field
is accompanied by the absorption or emission of an opt
phonon. Note that, to our knowledge, no experimental w
has yet been reported for such a process in quantum w
~dots!.
©2002 The American Physical Society24-1
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In this paper we present a theoretical study of the hyb
phonon resonance in an anisotropic parabolic quantum
placed in a magnetic field arbitrarily directed with respect
the potential symmetry axes of the well. Since the spectr
and wave functions of one-electron states have a simple
lytic form it is possible to derive the explicit analytic expre
sion for the absorption coefficient of a high-frequency el
tromagnetic field.

II. GENERAL EXPRESSION FOR THE ABSORPTION
COEFFICIENT

The energy spectrum of an electron in an anisotropic p
bolic quantum well placed in an arbitrarily directed magne
field B has the form

«nml5\v1S n1
1

2D1\v2S m1
1

2D1\v3S l 1
1

2D , ~1!

where hybrid frequenciesv i( i 51,2,3) are obtained from th
sixth-order algebraic equation.31 Let us consider the absorp
tion as the two-stage process in which an electron absor
photon, excites in the intermediate state, and, finally, abs
~emits! a phonon.

Since in our case the electron transitions are between
brid levels we call a resonance in absorption due to proce
of this type a hybrid-phonon resonance in distinction from
cyclotron resonance with transitions between Landau lev
A hybrid-phonon resonance can be observed only if all lev
are well-resolved and the photon frequency is sufficien
monochromatic. Hence in what follows we assume that
photon frequency is high (vt@1), the hybrid confinement is
sufficiently strong (v it@1) and quantizing (\v i@T). In
this case the transitions occur between levels of the disc
spectrum@Eq. ~1!#. The possible types of electron transitio
are depicted in Fig. 1. Let us consider only long-wa
phonons. In this case the phonon frequency is quite mo
chromatic to observe the resonance.

Let us discuss the physical nature of a hybrid-phon
resonance. The absorption peaks in the hybrid phonon r
16532
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nance are due to the selection rules for the transitions
second-order perturbation theory and the law of energy c
servation in such transitions. Because the spectrum of o
electron states is discrete, the first leads, if we ignore opt
phonon dispersion, to delta-function singularities in the a
sorption of high-frequency radiation. The singularities a
proportional tod(«n8m8 l 82«nml1\v7\vq), where vq is
the phonon frequency, andv is the photon frequency. Note
that in the 3D case, as was shown in Ref. 32, the absorpt
coefficient has a logarithmic singularity in the case
cyclotron-phonon resonance. However, if the weak phon
dispersion is taken into account, the singularities beco
smeared. In particular, the resonance peaks have the com
multiplet structure in our case.

Using the method suggested in Ref. 32, we find the
sorption coefficient by applying ordinary perturbation theo
for the interactions of electrons with the high-frequency fie
HR and the latticeHL , which are switched on simulta
neously. In this case we use second-order perturbation th
in HR1HL to study the electron transitions.

In the case of nondegenerated gas the absorption co
cient is described by the expression

FIG. 1. Transitions leading to resonant absorption.
G6~v!5
2pA«~v!

c\Nf
F12expS 2

\v

T D G(
nml

(
n8m8 l 8

(
q

f 0~«n8m8 l 8!u^0,0,nmluVu2f,6q,n8m8l 8&u2

3d~«n8m8 l 82«nml7\vq1\v!, ~2!

where«(v) is the real part of the dielectric constant,f is the wave vector of photons,f 0(«mnp) is the electron distribution
function normalized to unity,Nf is the number of initial-state photons, and the factor 12exp(2\v/T) takes into account
spontaneous transitions.

We can write the matrix elements of the transition depicted in Fig. 1 as follows:

^0,0,nmluVu2f,6q,n8m8l 8&5 (
n9m9 l 9

^n8m8l 8,0uHRun9m9l 9,2f&^n9m9l 9,0uHLunml,6q&

«n8m8 l 82«n9m9 l 91\v

1 (
n9m9 l 9

^n8m8l 8,0uHLun9m9l 9,6q&^n9m9l 9,0uHRunml,2f&

«nml2«n9m9 l 92\v
. ~3!
4-2
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In the first term transitions pass through the virtual on
un9m9l 9,2f&, i.e., at first a number of photons changes a
then a number of phonons changes. In the second term
sitions pass through the virtual onesun9m9l 9,6q&, i.e., at
first a number of phonons changes and then a numbe
photons changes. Figure 1~a! shows transitions which ar
associated with the first term in Eq.~3!, and Fig. 1~b! shows
transitions which are associated with the second term
Eq. ~3!.

The interaction with the lattice is represented by the
eratorHL ,

HL5(
q

hL~q!, hL~q!5Dqcqe
iqr1c.c., ~4!

here Dq is the electron-phonon coupling constant, and
operatorHR of the electron-photon interaction can be e
pressed as

HR5
e

m*
A2p\Nf

«~v!v
efS p2

e

c
AD ~5!

whereef is the polarization vector,p is the electron momen
tum, andA is the vector potential of the fieldB.

The matrix elements ofHR have been calculated in Re
21 using the method of a linear canonical transformation
the phase space

^n8m8l 8,0uHRun9m9l 9,2f&

5 ie\A pNf

m* «~v!v
3$X1An811dn8,n921dm8,m9d l 8,l 9

1X2Am811dm8,m921dn8,n9d l 8,l 9

1X3Al 811d l 8,l 921dm8,m9dn8,n9% ~6!

hereXi ~the coordinates of the vectorX) were found in Ref.
21. Note thatXi depends both on the hybrid frequencies a
magnetic field.

Matrix elements of the operatorhL(q) have the form

^n9m9l 9,0uhL~q!unml,6q&

5DqANq1
1

2
6

1

2
^n9m9l 9ue6 iqr unml&; ~7!

hereNq is the number of phonons with the wave vectorq.
We calculate the matrix elementshL(q) in the new phase

coordinates (Pi ,Qi) because in this case the wave functi
of electrons has the simplest form of the product of the
cillator functions. Let us introduce the matrixL5(bi j ) ( i
51,2,3;j 51, . . . ,6),

x5b11P11b12P21b13P31b14Q11b15Q21b16Q3 , ~8!

y5b21P11b22P21b23P31b24Q11b25Q21b26Q3 ,

z5b31P11b32P21b33P31b34Q11b35Q21b36Q3 ,

where (bi j ) were found in Ref. 21.
Next we use the relationship
16532
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expS 6 i
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\
Pi DF~x!5F~x6a!, i 51,2,3 ~9!

which follows from the fact that the exponential operator
the generator of the translation group. Then

^n9m9l 9ue6 iqr unml&5^Fn9~Q1!ue6 ik1Q1uFn~Q16l1!&

3^Fm9~Q2!ue6 ik2Q2uFm~Q26l2!&

3^F l 9~Q3!ue6 ik3Q3uF l~Q36l3!&;

~10!

here Fn(x) are the oscillator functions,l i5\(b1iqx
1b2iqy1b3iqz) ( i 51,2,3), k i 235b1iqx1b2iqy1b3iqz ( i
54,5,6).

After some cumbersome algebra, evaluating the integ
in Eq. ~10! we obtain

^n9m9l 9,0uhL~q!unml,6q&

5DqANq1
1

2
6

1

2 S n9!m9! l 9!

n!m! l ! D 1/2

3~21!n2n9~21!m2m9~21! l 2 l 9g1
n2n9g2

m2m9

3g3
l 2 l 9eiw1(n2n9)eiw2(m2m9)eiw3( l 2 l 9)

3e2g2/2e2(k1l 11k2l 21k3l 3) i /2

3Ln9
n2n9~g1

2!Lm9
m2m9~g2

2!Ll 9
l 2 l 9~g3

2!; ~11!

here tanw i5k i l i
2/l i , gi5Al i

21k i
2l i

4/A2l i , l i5A\/m* v i

( i 51,2,3) are the hybrid lengths,g25g1
21g2

21g3
2,Ln

n8(x)
are generalized Laguerre polynomials.

Substituting Eqs.~6! and ~11! into Eq. ~3!, we can write
the squares of the matrix elements of the perturbation op
tor

u^2f,6q,n8m8l 8uVu0,0,nml&u2

5
e2

m*

Nf~Nq11/261/2!

«~v!v
e2g2/2uDqu2uA~v!u2

3
n8!m8! l 8!

n!m! l !
g1

2(n2n8)g2
2(m2m8)g3

2(l 2 l 8)

3@Ln8
n2n8~g1

2!Lm8
m2m8~g2

2!Ll 8
l 2 l 8~g3

2!#2; ~12!

here

A~v!5
X1g1e2 iw1

v2v1
1

X2g2e2 iw2

v2v2
1

X3g3e2 iw3

v2v3
. ~13!

We introduce partial absorption coefficients by the followi
formula

Ḡ (6)~v!5 (
nml,n8m8 l 8

Ḡ (6)~n8m8l 8,nml!. ~14!
4-3
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Note that we replaceNq by the Planck distribution function
NT , which results from thermal averaging over phon
states.

We also introduce the resonance detuning

Dvq5v1~n2n8!1v2~m2m8!1v3~ l 2 l 8!1v7vq .
~15!

Then for the partial absorption coefficient we obtained
equation

Ḡ (6)~n8m8l 8,nml!

5
2pe2

m* c\2vA«~v!
F12expS 2\v

T D G
3 f 0~«nml!(

q
uDqu2uA~v!u2e2g2 n8!m8! l 8!

n!m! l !
g1

2(n2n8)

3g2
2(m2m8)g3

2(l 2 l 8)@Ln8
n2n8~g1

2!Lm8
m2m8~g2

2!Ll 8
l 2 l 8~g3

2!#2

3S Nq1
1

2
6

1

2D d~Dvq!, ~16!

where

f 0~«mnl!5sinh~\v1/2T!sinh~\v2/2T!

3sinh~\v3/2T!exp~2«nml /T!.

Equation ~16! clearly shows that if one ignores th
optical phonon dispersion, the partial coefficien
Ḡ (6)(n8m8l 8,nml) have delta-function singularities at th
points whereDvq50. Replacing the sum by the integral an
assuming a parabolic dispersion law for long-wave phon
vq5v0(12v0

22vs
2q2), where v0 is the optical-phonon

threshold frequency andvs is the speed of sound, we ca
easily evaluate the integral with respect touqu thanks to the
presence of a delta function of the formdvq5d(Dv
6v0

21vs
2q2), whereDv05v1(n2n8)1v2(m2m8)1v3( l

2 l 8)1v7v0
The electron-phonon coupling constant for deformat

potential scattering~DO phonons! and polarization potentia
scattering~PO phonons! is32

uDqu25
2p\2aLv0

m*
H A2m* \v0/q2 for PO phonons,

4\2/A2m* \v0 for DO phonons.
~17!

Here aL is the dimensionless electron-lattice coupling co
stant.

Converting to spherical coordinates we obtained the
lowing equation for DO phonons:
16532
e

s

n

-

l-

ḠDO
(6)~n8m8l 8,nml!

G0

5
n8!m8! l 8!

n!m! l ! S N01
1

2
6

1

2D
3F12expS 2\v

T D G f 0~«mnl!AuDv0u
v0

3E
0

2p

dwE
0

p

sinuduy1
2(n2n8)y2

2(m2m8)

3y3
2(l 2 l 8)uA0~v!u2e2y2

3@Ln8
n2n8~y1

2!Lm8
m2m8~y2

2!Ll 8
l 2 l 8~y3

2!#2, ~18!

whereA0(v)5v0A(v)/Av, N is the electron concentration
and G058\2aLNe2v0

1/2/pvs
3cA«m* 2A2m* \, here yi can

be obtained fromgi if we write the vectorq in the spherical
coordinates.

For partial absorption coefficientḠPO
(6)(n8m8l 8,nml) we

have

ḠPO
(6)~n8m8l 8,nml!5

mvs
2

2\uDvu
ḠDO

(6)~n8m8l 8,nml!.

~19!

Transitions from the ground staten85m85 l 850 will pro-
vide the major contribution to the absorption coefficient.
this case the expression for the partial coefficient has
simple form

ḠDO
(6)~000,nml!

G0
5n!m! l ! S N01

1

2
6

1

2D
3F12expS 2\v

T D G f 0~«mnl!

3E
0

2p

dwE
0

p

sinudu

3y1
2ny2

2my3
2l uA0~v!u2e2y2

. ~20!

Note here that absorption peaks have the amplit
smaller by a factor of exp(2\v0 /T) than emission peaks
though their form doesn’t vary. If we allow for the smearin
of the hybrid-oscillation levels caused by collisions, th
G(Dvq) must be replaced by ReG(Dvq1 ig), with the col-
lisional spreadg5t21.

III. STRUCTURE AND AMPLITUDE OF RESONANCE
PEAKS

Let us consider the two most important cases: the po
ization vector is perpendicular to the magnetic field and
polarization vector is parallel to the magnetic field.

In the first casevcx5vcy50 and vcz5vc and hybrid
frequencies are determined by the formulas
4-4
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v1,25
1

2
@A~Vx1Vy!21vc

26A~Vx2Vy!21vc
2#, ~21!

v35Vz .

The values ofyi have a form

yi5
l i

A2
Av0uDv0u

vs
2

sinu

Avc
2Vx

21~Vx
22v i

2!2

3@~Vx
22v i

2!2sin2w1vc
2v i

2cos2w#1/2. ~22!

Let us only examine transitions which originate from t
statesun8,0,0& into un,0,0& because the changes of the qua
tum numbersm l have no influences on the form of absor
tion peaks.

It should be noted that at the points where the freque
of the electromagnetic radiation satisfiesDv050 these co-
efficients vanish. As seen from Eq.~18! within a small neigh-
borhood of this point, the partial coefficients increase acco
ing to a power law, and then fall off exponentially. Hence w
can only observe the resonance within a small neighborh
of the point whereDv050, namely, in the frequency rang
order of magnitude 109 s21. This is small compared to th
characteristic frequenciesvc ,v i ,v0 (;1012 s21) in the sys-
tem.

Below we consider only transitionsun8,0,0&→un8
11,0,0&. It is clearly the transitionsun8,0,0&→un81k,0,0&,
where k52,3, . . . do not differessentially fromun8,0,0&
→un811,0,0&, and partial coefficients are equal in the ca
of the transitionsun8,0,0&→un82k,0,0& and un8,0,0&→un8
1k,0,0&.

In view of the complexity of the analytic formulas for th
partial coefficient, a detailed description of the absorpt
peaks requires numerical studies. In the case of transit
from the ground state (n5m5 l 50) the absorption coeffi-
cients have two symmetrically positioned sharp peaks~to the
left and right of the point! within a small neighborhood o
the point whereDv050, i.e., the partial absorption peak
have a doublet structure~Fig. 2!.

In the case of transitions from the first state (n51,m,l
50) each of the doublet peak splits up into two ones~Fig.

FIG. 2. Partial absorption coefficients in the case of emission
DO phonons in the case of the transitionsu0,0,0&→u1,0,0&. «
513, B56.53104 Oe, v05831013 s21, Vx53.731013 s21, Vy

56.231013 s21, andVz53.431013 s21.
16532
-

y

-

d

e

n
ns

3!, in the case of transitions from the second staten
52,m,l 50) each of the doublet peak splits up into thr
ones~Fig. 4!, in the generic case of transitions from the sta
(n8,m,l 50) each of the doublet peak splits up inton811
ones. Thus we can determine the number of the resona
level if we know the number of maxima in the neighborho
of a point Dv050. The number of peaks is determined b
the the low number of the Laguerre polynomials. In partic
lar, if the low number of the Laguerre polynomials is equ
to k then the number of maxima at the right~left! of the point
Dv050 is equal tok11. It should be pointed that the ex
ponential character of the dependence of the partial co
cient on the numbern8, m8, and l 8 guarantees a sharp de
crease in partial absorption as the level number grows.

Let us consider the case when the polarization vecto
parallel to the magnetic field. In this casevcx5vcz50,
vcy5vc , and hybrid frequencies are determined by the f
mulas

v1,35
1

2
@A~Vx1Vz!

21vc
26A~Vx2Vz!

21vc
2#,

v25Vy . ~23!

f
FIG. 3. Partial absorption coefficients in the case of emission

DO phonons in the case of the transitionsu1,0,0&→u2,0,0&. «
513, B5105 Oe, v05931013 s21, Vx55.131013 s21, Vy53.2
31013 s21, andVz51.331013 s21.

FIG. 4. Partial absorption coefficients in the case of emission
DO phonons in the case of the transitionsu2,0,0&→u3,0,0&. «
513, B593104 Oe, v057.531013 s21, Vx55.731013 s21, Vy

53.531013 s21, andVz52.331013 s21.
4-5
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It is easy to show that transitions between the level with
different n and l are forbidden, and the coordinatesXi( i
51,3) are equal to zero. The functiony2 has the form

y25
l 2

A2
Av0uDv0u

vs
2

sinusinw. ~24!

In this case we have the same multiplet structure of
resonance peaks as in the first one. It is interesting to n
that in the case of the pure hybrid resonance~without
phonons! the transitions between the levels with the differe
n l are also forbidden and we have only one resonance p
but not three.21

In conclusion, we have investigated theoretically t
hybrid-phonon resonance of a three-dimensional anisotr
quantum well in the presence of an arbitrarily directed m
netic field and polarization vector. If we ignore optical ph
non dispersion, the partial absorption peaks have a de
function singularity at the points whereDv050. Note that
the singularity of the partial absorption peaks is connec
with singularities in the density of the initial and final state

The interesting multiplate structure of peaks arises if o
takes into account the dispersion of optical phonons. Tha
at the points where the frequency of the electromagnetic
diation satisfy conditionsDv050 the partial coeficients van
ish. Within a small neighborhood of this poin

*Electronic address: margulisva@mrsu.ru
†Electronic address: shorohovav@mrsu.ru
1F.B. Pedersen, Y.C. Chang, Phys. Rev. B53, 1507~1996!.
2U. Woggon and S.V. Gaponenko, Phys. Status Solidi B189, 285

~1995!.
3P.D. Wang, Y.P. Song, C.M. Sotomayor Torres, M.C. Hollan

D.J. Lockwood, P. Hawrylak, J.J. Palacios, P.C.M. Christian
J.C. Mann, and J.A. Perenboom, Superlattices Microstruct.15,
23 ~1994!.

4R.C. Ashoori, H.L. Stormer, J.S. Weiner, L.N. Pfeiffer, S
Pearton, K.W. Baldwin, and K.W. West, Phys. Rev. Lett.68,
3088 ~1992!.

5N.H. Quang, S. Ohnuma, and A. Natori, Phys. Rev. B62, 12 955
~2000!.

FIG. 5. Partial absorption coefficients in the case of emission
DO phonons in the case of the transitionsu0,0,0&→u1,0,0&. «
513, B553104 Oe, v05931013 s21, v52.84731013 s21, Vy

53.231013 s21, andVz51.331013 s21.
16532
e

e
te

t
ak

ic
-

a-

d
.
e
s,
a-

G (6)(n8m8l 8,nml) has n811 peaks symmetrically posi
tioned ~to the left and right! to the points whereDv050.
Note that the number of transitions from the staten8 is equal
to n811. The absorption peaks in the hybrid-phonon re
nance are due to the selection rules for the transitions
second-order perturbation theory and the law of energy c
servation in such transitions. The width and the position
the resonance peaks depend strongly on the magnetic
and the characteristic frequencies of the parabolic confi
ment ~Figs. 3–6! but on the whole the general nature of th
G (6) vs the magnetic field or the characteristic frequencie
the same as forG6(v) ~Figs. 5 and 6!

The frequency factorA(v) in the absorption coefficien
has singularities at the pointsv i( i 51,2,3). These singulari-
ties, however, are unimportant in studies of the hybr
phonon resonance, since they are shifted far in relation to
points whereDv050 by the optical phonon frequency, wit
the result they lie in the distant region of the wings of t
hybrid-phonon resonance lines. This is an analog of a cy
tron resonance in the system which was studied by the
thors in Ref. 21.

ACKNOWLEDGMENTS

The present work was partially supported by the Russ
Foundation for Basic Research and INTAS grant for you
scientists.

,
,

6A.V. Chaplik, Pis’ma Zh. E´ksp. Teor. Fiz.50, 38 ~1989! @JETP
Lett. 50, 44 ~1989!#.

7Q.P. Li, K. Karrai, S.K. Yip, S. Das Sarma, and H.D. Drew, Phy
Rev. B43, 5151~1991!.

8L. Brey, N.F. Johnson, and B.I. Halperin, Phys. Rev. B40, 10 647
~1989!.

9Ch. Sikorski and U. Merkt, Phys. Rev. Lett.62, 2164~1989!.
10B. Meurer, D. Heitmann, and K. Ploog, Phys. Rev. Lett.68, 1371

~1992!.
11C. Dahl, F. Brinkop, A. Wixforth, J.P. Kotthaus, J.H. English, a

M. Sundaram, Solid State Commun.80, 673 ~1991!.
12T. Hanada, B.H. Koo, H. Totsuka, and T. Yao, Phys. Rev. B64,

165307~2001!.
13W. Kohn, Phys. Rev.123, 1242~1961!.

f FIG. 6. Partial absorption coefficients in the case of emission
DO phonons in the case of the transitionsu0,0,0&→u1,0,0&. «
513, v05931013 s21, v52.84731013, vx55.131013 s21, Vy

53.231013 s21, andVz51.331013 s21
4-6



d

ev

B

ev

. B

la

d

HYBRID-PHONON RESONANCE IN A THREE- . . . PHYSICAL REVIEW B 66, 165324 ~2002!
14U. Merkt, J. Huser, and M. Wagner, Phys. Rev. B43, 7320
~1991!.

15P.A. Maksym and T. Chakraborty, Phys. Rev. Lett.65, 108
~1990!.

16D. Pfannkuche and R.R. Gerhardts, Phys. Rev. B44, 13 132
~1991!.

17V. Gudmundsson and R.R. Gerhardts, Phys. Rev. B43, 12 098
~1991!.

18C.T. Liu, K. Nakamura, D.C. Tsui, K. Ismail, D. Antoniadis, an
H.I. Smith, Appl. Phys. Lett.55, 168 ~1989!.

19T. Demel, D. Heitmann, P. Grambow, and K. Ploog Phys. R
Lett. 64, 788 ~1990!.

20A.V. Madhav and T. Chakraborty, Phys. Rev. B49, 8163~1994!.
21V.A. Geyler, V.A. Margulis, and A.V. Shorokhov, Phys. Rev.

63, 245316~2001!.
22J.Y. Ryu, Y.B. Kang, S. Oh, A. Suzuki, and S.D. Choi, Phys. R

B 52, 11 089~1995!.
23M.C. Klein, F. Hache, D. Ricard, and C. Flytzanis, Phys. Rev
16532
.

.

42, 11 123~1990!.
24J.L. Zhu and X. Chen, Phys. Rev. B50, 4497~1994!.
25S.F. Ren, D. Lu, and G. Qin, Phys. Rev. B63, 195315~2001!.
26L.I. Korovin, I.G. Lang, and S.T. Pavlov, Zh. E´ksp. Theor. Fiz.

118, 388 ~2000! @JETP Lett.92, 338 ~2000!#.
27I.P. Ipatova, A.Yu. Maslov, and O.V. Proshina, Fiz. Tverd. Te

~Leningrad! 37, 1819~1995! @Phys. Solid State37, 991 ~1995!#.
28D.V. Zav’yalov and S.V. Kryuchkov, Fiz. Tverd. Tela~Leningrad!

33, 1355~1999! @Phys. Solid State33, 1225~1999!#.
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