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Hybrid-phonon resonance in a three-dimensional anisotropic quantum well
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This paper reports on a theoretical study of intraband resonances arising in the absorption of electromagnetic
radiation by an anisotropic parabolic quantum well. It is shown the scattering of electrons by optical phonons
leads to the resonance absorption. The shape of resonance peaks on the absorption curve is studied, and their
multiplet nature is demonstrated.
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[. INTRODUCTION have no attached contacts which can influence the physical
properties of our system.

Rapid advances on nanofabrication technology have made The hybridization of the size and magnetic quantization
it possible to manipulate electron and phonon properties ofan lead to interesting optical properties of these structures
nanostructures. For example, the size and shape of quantupiaced in a magnetic fielf2° Moreover, studies of the in-
wells and dots can be controlled in experimehithis opens  traband absorption by quantum wells are very advanced be-
possibilities to study nanostructures. In particular, the formcause semiconductor quantum wells have many potential ap-
of confining potentials in quantum wellglots depends on plications in the electronic devicegfor example, the
growth conditions. Note that a hard-wall potential is a goodquantum well laser and the quantum well infrared detggctor
approximation to describe the lateral confinement of elecand nonlinear optics. Most of the works on these systems
trons in dots in the case when the dots are obtained from thgencerned isotropic wells and dots; there have been some

growth of semiconductor crystallites in a glass or polymerf€cent experimental studies on anisotropic WEH:. It
matrix2 but is not suitable for dots defined from a two- Should be noted that if the symmetry of the system is re-

dimensional electron gas with a subsequent etching procesgyl(_:f(ted('j the ddegeneract))/ of thetresonamce atzero magnenckflektj
ing, ion implantation, or application of electrostatic ga'[es,IS Iited and we can ouserve two or tnree resonance peaks a

where one should expect a parabolic confining poteffish zero magnetic field? 110,792

. . P be gp i The general case of an arbitrary direction of the magnetic
particular, it was shown that in self-assembled quantum dOtﬁeId as well as the polarization vector was studied by the
genergted by the Stranskl—Krastal_flow growth mpde the Iate.@uthors in the case of a three-dimensional anisotropic para-
potentials can be treated approximately as being para%ohcbo

) o s . : lic well using the method of linear canonical transforma-
The parabolic potential is widely employed in theoreticaljons of the phase spadk.

investigations to study the physical properties of quantum  papticipation of optical phonons in absorption can provide
well (dots. We will use the parabolic potential in the presentine additional scope for studying physical properties of nano-
work. Note that theoretical studf$ on the electronic prop-  structures. In view of this, there is a great deal of interest in
erties of parabolic quantum dots and wells generally in gOOdhe phonon properties of the quantum wells and dots.
agreement with the experimental resdlt&t It is well known For example, the hot-electron magnetophonon resonance
that intraband excitations are insensitive to electron-electronf quantum wells in tilted magnetic fields was investigated in
interactions in quantum dotsvells) with parabolic potentials Ref. 22, optical phonon modes in spherical quantum dots
as a consequence of the generalized Kohn the8rént’In  were studied in Refs. 23-25, the influence of spatial disper-
the case of a parabolic confinement potential the electronision of LO phonons on the energy spectrum of magnetopo-
motion can be separated into uncoupled center-of-mass mdéarons in quantum wells was investigated in Ref. 26, and
tion and relative motion. However, the far infrared radiationmultiphonon processes in the quantum dots were studied in
only couples to the center-of-mass motion and we have th&ef. 27. The intraminiband absorption of quantum superlat-
same dipole resonance frequencies as a single electron. fices was theoretically investigated in Ref. 28. The reso-
particular, positions of resonance peaks are independent ofinces with the participation of phonons in a quasi-two-
the number of electrons. This is in good agreement withdimensional structure were examined in Ref. 29. Note that
experimental datd Note that deviations from parabolic con- the generation of coherent confined phonons in nanostruc-
finement change the dipole selection rules for the center-oftures has been achievéske, for example, Ref. 30
mass motion, and couple the center-of-mass motion and the Scattering by phonons in a quantum well can lead to a
relative motion of the electron in the well. In this case process in which the transition between electronic states oc-
electron-electron interaction can also play an importanturs under the simultaneous action of two factors, i.e., when
role'®!in the case of interband excitations. the absorption of a quantufw of the high-frequency field
The motion of electrons is confined in all directions in ouris accompanied by the absorption or emission of an optical
case. Hence optical measurements using resonance tegtionon. Note that, to our knowledge, no experimental work
nigues are the most preferable means for studying physicdias yet been reported for such a process in quantum wells
properties of quantum wells and dots, because in this case weots.
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In this paper we present a theoretical study of the hybrid-(a) mapmmmmmmmmmm e " me e (b)
phonon resonance in an anisotropic parabolic quantum wel :
placed in a magnetic field arbitrarily directed with respect to |
the potential symmetry axes of the well. Since the spectrum :
and wave functions of one-electron states have a simple ane |
lytic form it is possible to derive the explicit analytic expres- :
sion for the absorption coefficient of a high-frequency elec- --t
tromagnetic field. l
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COEFFICIENT 1| hog

|

J

The energy spectrum of an electron in an anisotropic para- T S nme
bolic quantum well placed in an arbitrarily directed magnetic

. FIG. 1. Transitions leading to resonant absorption.
field B has the form 9 P

) nance are due to the selection rules for the transitions in
' second-order perturbation theory and the law of energy con-

. o . servation in such transitions. Because the spectrum of one-
where hybrid frequencies;(i = 1,2,3) are obtained from the electron states is discrete, the first leads, if we ignore optical

sixth-order algebraic equatidhLet us consider the absorp- honon dispersion, to delta-function singularities in the ab-
tion as the two-stage process in which an electron absorbsg O™ pe ' - gufar .
rption of high-frequency radiation. The singularities are

photon, excites in the intermediate state, and, finally, absorby’ . _ :
(emit9 a phonon. proportional toﬁ(an/mm—enm|+hw+ﬁwq), where o, is
Since in our case the electron transitions are between hy'® Phonon frequency, and is the photon frequency. Note
brid levels we call a resonance in absorption due to processédat in the I case, as was shown in Ref. 32, the absorption
of this type a hybrid-phonon resonance in distinction from acoefficient has a logarithmic singularity in the case of
cyclotron resonance with transitions between Landau levelgyclotron-phonon resonance. However, if the weak phonon
A hybrid-phonon resonance can be observed only if all levelglispersion is taken into account, the singularities become
are well-resolved and the photon frequency is sufficientlysmeared. In particular, the resonance peaks have the complex
monochromatic. Hence in what follows we assume that thenultiplet structure in our case.
photon frequency is highe{7>1), the hybrid confinement is Using the method suggested in Ref. 32, we find the ab-
sufficiently strong ;7>1) and quantizing fw;>T). In  sorption coefficient by applying ordinary perturbation theory
this case the transitions occur between levels of the discreter the interactions of electrons with the high-frequency field
spectrum Eq. (1)]. The possible types of electron transition H, and the latticeH, , which are switched on simulta-
are depicted in Fig. 1. Let us consider only long-waveneously. In this case we use second-order perturbation theory
phonons. In this case the phonon frequency is quite mongnp Hg+H, to study the electron transitions.

chromatic to observe the resonance. _ In the case of nondegenerated gas the absorption coeffi-
Let us discuss the physical nature of a hybrid-phononsient is described by the expression

resonance. The absorption peaks in the hybrid phonon reso-

8nm|:hw1 +ﬁw2

+l+h |+l
Mz Thes{IT3

N
T3

. 2m\e(w) hw
I (w)=————|1—exp ——| |2 > > folenm)](0,0nmlV|—f,=qg,n m’'I")|?
CﬁNf T nml n’m’l’” d
X&(sn,m,|,—snm|1ﬁwq+ﬁw), (2)

wheree(w) is the real part of the dielectric constaftis the wave vector of photon$g(em,p) is the electron distribution
function normalized to unityN; is the number of initial-state photons, and the facterekp(~7%w/T) takes into account
spontaneous transitions.

We can write the matrix elements of the transition depicted in Fig. 1 as follows:

O Hg/n"m"l”, —f)(n"m"1”,0|H |nml, = g)

n'm'l’
(0,0nmlV|—f,£qn'm'1")= >, <

n"m”1” Snrmr|r_8numn|u+ﬁa)

(n'm’1"0[H [n"m"1”, = g){n"m"1” ,0|Hg|nml, —f)
+ S : ()

""" 8nml_8n”m”l”_ﬁw
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[n"m”l”,—f), i.e., at first a number of photons changes and
then a number of phonons changes. In the second term tran-
sitions pass through the virtual ongs’'m’l”,+q), i.e., at  which follows from the fact that the exponential operator is
first a number of phonons changes and then a number ahe generator of the translation group. Then

photons changes. Figurgal shows transitions which are

associated with the first term in E), and Fig. 1b) shows  (n"m’1”|e*'¥|nml)= (D (Q)|e**191|d(Q £\ ,))
transitions which are associated with the second term in

In the first term transitions pass through the virtual ones r{
ex
h

iiEPi><I>(X)=CI)(Xta), i=123 9

Ed. (3. X (@ y(Qy)[€142%2| D (Qa X))
The int ti ith the lattice i ted by th - P
eratoreHT,eraC ion with the lattice is represented by the op (D Qa)| 51755 B, (Qat M)
(10)
HL:% hu(a), hy(q)=Dgce"+c.c., (4 here ®,(x) are the oscillator functions\;=7%(by;0y

+byiay+b30,) (1=1,2,3), kj_3=Dby;0x+ b2, +bsiq, (i
here D, is the electron-phonon coupling constant, and the=4,5,6).
operatorHg of the electron-photon interaction can be ex- After some cumbersome algebra, evaluating the integral

pressed as in Eg. (10) we obtain
27fiN; e (n"m"1”,0lh (q)|nml,=q)
m elw)w \/ﬁ ntm’1" 1/2
whereg; is the polarization vectop is the electron momen- =D Nq+2 2 ( n'm!! )
tum, andA is the vector potential of the fielB. , ) , , ,
The matrix elements dfiz have been calculated in Ref. X (=)= (—1)! gl gl

21 using the method of a linear canonical transformation of

the phase space ><g's""ei‘Pl(n’””)ei‘”(m’m”)ei e3(1-1")

<nrmr| r,o| HR| n”m”l”, —f> X e—g2/2e—(Klll+K2|2+ k3lg)il2

/ N, —— XL " (gL, ™ (gL, 11
m*s(w Yw

here tanp;=«il?/\;, gi= N2+« Z,/\/_I,, = VhIm* o,

+Xo VM + 180 = 1607 r Sy 11 (i=1,2,3) are the hybrid Iengthsf—gfr gz+ gg,L”'(x)
- are generalized Laguerre polynomials.
+ X3l O 1—10m v O v ©) Substituting Egs(6) and (11) into Eq. (3), we can write

hereX; (the coordinates of the vectd® were found in Ref. the squares of the matrix elements of the perturbation opera-
21. Note thatX; depends both on the hybrid frequencies andtor
magnetic field.

Matrix elements of the operatdy (q) have the form [(=f,=q,n'm'I’|V]0,0nmD)|?

(n"m”"1”,0lh (q)|nml, = q) Z Ni(Ng+1/2+1/2)

e
T me e(wo
- nratior .
=Dq\/Nq +3 (n m’l”[e*'" nml); (7) TV

_n! _m! | =1
%(n n )gg(m m)gg( )

e 92D 2| A(w)[?

hereN, is the number of phonons with the wave vector nimtl!

We calculate the matrix elemertig(q) in the new phase " mem’, 2 5
coordinates P;,Q;) because in this case the wave function X[Ly " (@Dl (9L, (g3)]5 (12
of electrons has the simplest form of the product of the os-
cillator functions. Let us introduce the matrix=(bj;) (i ere
=1,23;j=1,...,6 - » -

23§=1,....6), Ale)= Xlgle_l(pl+X292e_|¢2+x3939_|¢3 13
X=D11P1+D15P5+D13P3+D14Q1 +b15Qr+b16Q3, (8) ()= 0=, 0— 0—w3 (13
y=b51P1+bsoPs+by3P3+b54Q1+bysQs+ breQs3, We introduce partial absorption coefficients by the following
formula
Z=b31P1+ b3oP, 4 b33P3+ 034Q1 + b3sQo+ b3eQs3,
where ;;) were found in Ref. 21. I ()= E 'S (n'm’l’,nml). (14)
Next we use the relationship nml,n'm’1’
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Note tha_lt we replacél, by the Planck distr_ibution function F(Dto)(n/mll / nml)
N+, which results from thermal averaging over phonon T
states. 0
We also introduce the resonance detuning nrm/’ 1 1
=————|Ngt+t5s£=
nimll! 22
Aquwl(n—n’)+w2(m—m’)+w3(|—|’)+a)—0_—a)q.15 e Aoy
= X 1—exp( - ) Fol&mn)
Then for the partial absorption coefficient we obtained the 2m ™ 2y 2(mem’)
equation X jo d(Pfo singddy; Y5
=+ xy2(=11A 267y
F(,)(n/mrl/’nml) Y3 | O(w)|
At ! =1
2 me? he X[y oy DL T YOL T (v)IE (18
- . .
m* cfiw\e(w) T whereAy(w) = woA(w)/ /o, N is the electron concentration,

and I'y=8%2a Newy? mv3c\em*22m* %, herey; can
g2(nfn’) be obtained frony; if we write the vectorg in the spherical

1 .
n'm!! coordinates.

. Y o o Y For partial absorption coefficie®tSg(n’m’l”,nml) we
- ,
x g™ ™Mgs T (gD T (@)L (997 have Fo

_on'Im'17!
xfo<snm.>2q ID42|A(w)|%e79

11 )
X —*=
Not 3 2)5(Awq)’ (19 F(Pio)(n’m’l’,nml):%ﬂ%(n’m’l’,nml).
(19

where

Transitions from the ground stat€ =m’=I["=0 will pro-

vide the major contribution to the absorption coefficient. In

fo(emn) = siNh(7i w1/2T)sinN(7 w,/2T) this case the expression for the partial coefficient has the
X SNt w5/2T)exp( — & nm/T). simple form
r&d(ooonmi) 1 1
Equation (16) clearly shows that if one ignores the F—O=n!m!l! N0+§i§>

optical phonon dispersion, the partial coefficients
I'®)(n'm’l’,nml) have delta-function singularities at the % 1—exp(_ﬁw) folemr)
points whered w,=0. Replacing the sum by the integral and T oL &mnl
assuming a parabolic dispersion law for long-wave phonons . .
wq=wo(1—wy °v2g?), where w, is the optical-phonon XJ dfPf sin6do
threshold frequency andg is the speed of sound, we can 0 0
easily evaluate the integral with respect|¢p thanks to the 2
presence of a delta function of the forfwg=S(Aw xyTy3myE [ Ag(w)Pe ™Y (20)
+ w0y '029%), whereAwy=wi(N—N')+ w(m—m’) + ws(l . _
—1" 40T wp Note here that absorption peaks have the amplitude

The electron-phonon coupling constant for deformationsmaller by a factor of expffiwe/T) than emission peaks

potential scatteringDO phonons and polarization potential though their form doesn’t vary. If we allow for the smearing
scattering(PO phononis® of the hybrid-oscillation levels caused by collisions, then

I'(Awg) must be replaced by R¢Aw,+ivy), with the col-
lisional spready=r""1.
2mhila wo [ V2M*hwy/q?  for PO phonons,
m* 4h2/\/2m*ﬁw0 for DO phonons. IIl. STRUCTURE AND AMPLITUDE OF RESONANCE
(17) PEAKS

Let us consider the two most important cases: the polar-
Here o, is the dimensionless electron-lattice coupling con-ization vector is perpendicular to the magnetic field and the

stant. polarization vector is parallel to the magnetic field.
Converting to spherical coordinates we obtained the fol- In the first casewc= w¢,=0 and w.,= . and hybrid
lowing equation for DO phonons: frequencies are determined by the formulas
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FIG. 2. Partial absorption coefficients in the case of emission of FIG. 3. Partial ab i fficients in th f emissi f
DO phonons in the case of the transitiof0,00—|1,0,0). & - . Fartial absorption Coetlicients In Ihe case ot emission o
_ _ _ 31 _ 3.1 DO phonons in the case of the transitiofis0,00—|2,0,0). &
=13, B=6.5x10" Oe, 0u=8x10%s1, 0,=3.7x108s ™1, Q, 3 1 3
—62¢10%s L andO.=3.4x 108 s L. =13,B=10° Oe, 0u=9x10%s !, 0,=51x108s*, Q,=3.2

' z X102 st andQ,=1.3x108 s 1,

wl,z=%[\/(ﬂx+ﬂy)2+w§i\/(Qx—ﬂy)2+w§], (21) 3_.)2 in t_he case of transitions from the _secono! state (
=2m,I=0) each of the doublet peak splits up into three
ones(Fig. 4), in the generic case of transitions from the state
w3=(),. (n’,m,I=0) each of the doublet peak splits up imé+1
The values ofy;, have a form ones. Thus we can determine the number of the resonance
level if we know the number of maxima in the neighborhood
3 wolAwy| sing of a pointAwg=0. The number of peaks is determined_by
|=_' om0 the the low number of the Laguerre polynomials. In particu-
V2 v: e+ (02— w?)? lar, if the low number of the Laguerre polynomials is equal
) to k then the number of maxima at the riglaft) of the point
X[ o) ’sife+ wiwfcode]V2 (22 Awo=0 is equal tok+1. It should be pointed that the ex-
Let us only examine transitions which originate from the POnential character O,f th? deper)dence of the partial coeffi-
stategn’,0,0) into |n,0,0) because the changes of the quan-CieNt on the numben’, m’, andl’ guarantees a sharp de-
tum numbersn | have no influences on the form of absorp- Cr€ase in partial absorption as the level number grows.
tion peaks. Let us consider the case when the polarization vector is
It should be noted that at the points where the frequencp@rallél to the magnetic field. In this case,=w,=0,
of the electromagnetic radiation satisfit®),=0 these co- @cy=@c, and hybrid frequencies are determined by the for-
efficients vanish. As seen from E@.8) within a small neigh- mulas
borhood of this point, the partial coefficients increase accord-
ing to a power law, and then fall off exponentially. Hence we
can only observe the resonance within a small neighborhood
of the point whereA wy=0, namely, in the frequency range
order of magnitude s !. This is small compared to the

1
01,37 5[Vt Q)%+ 0f (0~ Q)+ 0,

characteristic frequencies, ,w; ,wy (~10% s~ 1) in the sys- @2=1dy. (239
tem.
Below we consider only transitiongn’,0,0)—|n’ L °
+1,0,0. Itis clearly the transitiongn’,0,0)— |n’ +k,0,0), " al
where k=2,3,... do not differessentially from|n’,0,0) L
—|n"+1,0,0, and partial coefficients are equal in the case g .l
of the transitiongn’,0,0)—|n’—k,0,0) and|n’,0,0)—|n’ ‘é
+k,0,0). 2 51
In view of the complexity of the analytic formulas for the i
partial coefficient, a detailed description of the absorption § |
peaks requires numerical studies. In the case of transitions g
from the ground staten=m=1=0) the absorption coeffi- ~ 0 . . .
cients have two symmetrically positioned sharp pdakshe 0.9942 0.9952 09962 (107

left and right of the pointwithin a small neighborhood of
the point whereAw,=0, i.e., the partial absorption peaks  FiG. 4. Partial absorption coefficients in the case of emission of

have a doublet structur@ig. 2). DO phonons in the case of the transitiof%0,00—|3,0,0. ¢
In the case of transitions from the first state=(1,m,| =13, B=9x10* Oe, wy=7.5x10*s1, 0,=57x10%s %, Q,
=0) each of the doublet peak splits up into two oifely). =3.5x102s7 %, andQ,=2.3x 108 s 1.
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FIG. 5. Partial absorption coefficients in the case of emission of F|G. 6. Partial absorption coefficients in the case of emission of
DO phonons in the case of the transitiofs0,00—|1,0,0. & DO phonons in the case of the transitiof0,0)—|1,0,0. &
=13, B=5X10f Oe, wp=9x10°s™!, 0=2.847x10°s™%, Oy =13, 0,=9x10%s !, 0=2.84710%, 0,=5.1x10%s 1, O,
=3.2x108%s71, and(),=1.3X 1018571, =3.2x108s7 1, and,=1.3x 108 st
It is easy to show that transitions between the level with thd )(n'm’l’,nml) has n’+1 peaks symmetrically posi-
different n and | are forbidden, and the coordinatés(i  tioned (to the left and rightto the points wherel wy=0.

=1,3) are equal to zero. The functign has the form Note that the number of transitions from the statds equal
ton’+1. The absorption peaks in the hybrid-phonon reso-
l, wolAwg| . nance are due to the selection rules for the transitions in
Y2=—="\/— 5 sinésine. (24  second-order perturbation theory and the law of energy con-
V2 Us servation in such transitions. The width and the position of

In this case we have the same multiplet structure of th(;fhe resonance pe‘?"‘.s depend s_trongly on the magnetic _f|eld
. . L . and the characteristic frequencies of the parabolic confine-
resonance peaks as in the first one. It is interesting to note

) . . ment(Figs. 3—6 but on the whole the general nature of the
that iin the case. .Of the pure hybrid reso_nar(mth_out I'(*) vs the magnetic field or the characteristic frequencies is
phonon$ the transitions between the levels with the different

. e same as fof “(w) (Figs. 5 and b
BJtarzgtiErZé%rb'dden and we have only one resonance pea{p The frequency factoA(w) in the absorption coefficient

In conclusion, we have investigated theoretically thehaS singularities at the pointg(i=1,2,3). These singulari-

hybrid-phonon resonance of a three-dimensional anisotropigﬁs’ however, are gmmp:rc])rtant |nh§}ttu<gj|(fes .Of tTet' hy?”ﬂ;
guantum well in the presence of an arbitrarily directed magp onon resonance, since they are shitted far in refation to the

netic field and polarization vector. If we ignore optical pho- points whereAwQ=Q by the_ optical p_honon frequgncy, with
non dispersion, the partial absorption peaks have a delt he result they lie in the distant region of the wings of the
function singularity at the points wherkw,=0. Note that ybrid-phonon resonance lines. This is an analog of a cyclo-
the singularity of the partial absorption peaks is connecte fon resonance in the system which was studied by the au-

with singularities in the density of the initial and final states. hors in Ref. 21.
The interesting multiplate structure of peaks arises if one

takes into account the dispersion of optical phonons. That is,

at the points where the frequency of the electromagnetic ra- The present work was partially supported by the Russian

diation satisfy conditiond wy=0 the partial coeficients van- Foundation for Basic Research and INTAS grant for young

ish. Within a small neighborhood of this point scientists.
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