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Dynamic localization in continuous ac electric fields
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We present a detailed examination of the properties of ac electric fields that result in the dynamic localiza-
tion of electrons in periodic potentials. Although exact dynamic localization can only occur if the ac electric
fields are discontinuous at all changes in sign, we show that it is surprisingly tolerant to smoothing these
discontinuities. We also show that within the nearest-neighbor tight-binding limit, all symmetric ac electric
fields are guaranteed to exhibit dynamic localization for some field amplitude provided that the vector potential
and electric field are never zero simultaneously. Finally, we derive an area theorem for symmetric electric fields
with only two zeros per period.
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. INTRODUCTION superlattice®* More recently, equivalent phenomena were
observed in trapped atomic systém¥ and using light
In recent decades, the study of electrons in a periodipropagating in fiber Bragg gratintfsand coupled optical
potential in the presence of ac and dc electric fields has awaveguides®°However, the experimental evidence for DL
tracted consistent attention. This system was discussed forig less persuasive. Perhaps the strongest evidence is found in
dc field many years ago by Blotland Wannief. This early  the reduction in the dc current in biased doped superlattices
work examined the existence of localized stationary states—when a THz field of the correct amplitude and frequency is
the Wannier-Stark laddéWSL)—and their dynamic analog, applied? A key difficulty in electronic systems is obtaining
Bloch oscillationgBO’s). More recently, in combined ac and direct evidence of the localization when there is no dc field.

dc fields, such effects as multiphoton absorpfiahsolute One of the most promising systems in which to observe
negative conductandefractional WSL's® and dynamic lo- DL is a periodic array of coupled waveguides. The array
calization(DL) were predicted. plays the role that quantum wells play in a superlattice,

In this paper we investigate the electric fields that lead tovhereas a thermal gradieffta gradient in the structural pa-
DL. DL refers to the phenomenon whereby the application ofameters of the guides,or a waveguide curvatut®play the
a periodic purely ac field results in the periodic localizationrole of the electric field. Once the required waveguide struc-
of an initially localized wave packet. This effect was initially ture has been fabricated, the experiments are fairly
addressed by a number of auth®r§ who found that in a  straightforward:®'® dynamic localization is observed as a
one-band, nearest-neighbor tight-bindiMNTB) model, DL return of the optical intensity to the guide into which the
occurs when a sinusoidal field with the correct amplitude idight beam was initially injected. An attractive feature of this
applied. We refer to DL in the NNTB limit agpproximate  optical system is that the time variable in the electronic sys-
dynamic localizatiofADL ). It has also been found that ADL tems maps onto a spatial variable; these are therefore
arises for triangular waveshowever, the general properties continuous-wave experiments, in which BO’s take the form
of the fields that lead to ADL are not known. of the light snaking back and forth upon propagation. Any

In some cases, DL arises in a one-band model beyond th&c field” can, in principle, be constructed, for example, by
NNTB approximation, i.e., for an arbitrary band dispersion.a suitable variation of waveguide curvature with propagation
We refer to this type of dynamic localization, which occurs distancé® The curved-waveguide optical syst&i®°is prob-
not just in the NNTB limit, asexact dynamic localization ably the most promising system for achieving nearly discon-
(EDL). A number of author®~*?have shown that EDL can tinuous “fields,” as the discontinuities are obtained simply
occur for periodic square-wave ac fields. In a recent L¥tter via an abrupt change in the waveguide curvature.
we derived the conditions for an ac electric field to achieve In this paper we investigate the effect on EDL of smooth-
EDL and showed how such fields may be constructed. Ang field discontinuities. We also examine the nature of the
central result of that work is thaDL can only occur for fields that lead to ADL in systems where the NNTB limit is
fields with discontinuities that occur whenever the electrica good approximation. It has been establighétithat the
field changes sigrDue to the requirement of discontinuities, effect of coupling to higher bands on DL is small for modest
it is not possible to obtain these fieldgactlyin experiment. fields and sufficiently large energy gaps between the bands;
It is thus important to quantify just how much smoothing of we thus use a one-band model, where the band dispersion is
the discontinuities can be tolerated if good dynamic localizaarbitrary. We present the theory in the language of electrons
tion is to be achieved. in a periodic potential. However, as mentioned, there are

The WSL and BO were experimentally observed via pho-optical and atomic systems for which the mathematical treat-
toinjection of electron-hole pairs in biased semiconductoment is essentially identical.
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The paper is organized as follows. In Sec. Il, we summayield DL in the NNTB limit.2%*2?4|n Sec. V we show that a

rize the theory of EDL? and discuss it in the context of this

similar condition for ADL exists for almost any symmetric ac

work. In Sec. lll we examine the effects of smoothing thefield.

discontinuities in fields that yield EDL. In Sec. IV we quan-

The condition for EDL can be expressed somewhat differ-

tify the dependence of the electron localization on smoothently by defining
ing. In Sec. V we examine which ac fields are guaranteed to

exhibit ADL. In Sec. VI, we develop an area theorem for
large-amplitude symmetric continuous fields. Section VII

contains our conclusions.

II. EXACT DYNAMIC LOCALIZATION

fly)= 2 Sp,e™, (2.6
p=—

where —7<y<m. But if S,=0 for all p#0, thenf(y)

=1 for — w#<<y<r. This condition for EDL can be shown to

be equivalent to requiring thiat

We consider an electron in a one-dimensional periodic

potential of periodd, in an external purely ac electric field

E(t) of period 7. Using a one-band model, we expand the
electronic wave function in the basis of the Wannier func-

tions |a,) as |¥(t))=2,B,(t)|a,).*® Using this in the

Schralinger equation, we find for the expansion coefficients

after ¢ periods of the ac fiefd
By(€r)=e w0l eI A (€7)B(0), (2.1)
m

wheref is a positive integer,

ed [t
y(t)=—f E(t")dt’ (2.2
hJo
is the dimensionless vector potential, and
1 (= tre_, i
=— i —i px
An(€7) 27_J_deexp{lmx |§O S.e }
(2.3

1 T

- =5 2.7
m.} |7(tjm)| 2m
where thet;,, are defined by the equation
Y(tjm) =Yjm—27m, (2.9

where m is an integer and €t;,<7. As discussed
previously'? this can be used to construct fields that yield
EDL. Because the left-hand side of E@.7) diverges if
'y(tjm)zo, one key result is thainly electric fields that are
discontinuous every time they change sign can yield EDL
We refer to these asssential discontinuities

We now consider the area undg(t) between neighbor-
ing essential discontinuities at timgsandt; , ;:

]
A=f E(t")dt’. (2.9

t
Becausey(t) is the dimensionless area under the electric
field curve and essential discontinuities yt) only occur
when y(t;) = 27n,'? we obtain the following area theorem:

wheres _,, are the Fourier coefficients of the band dispersionif EDL is to occur, then the area between essential disconti-

and

1 .,
Sp= —f e PYdy, (2.4)
TJo
It can be showtt that the condition for EDL for an arbitrary
band structure reduces &=0, for p#0. Thus,EDL only
occurs if $=0 for all p#0."
In some situationge,|<|e4| for all |p|>1 and it may be

nuities must satisfy the condition

2mh
ed n

= (2.10
wheren is an integer.

It is clear that any purely ac field that yields EDL must
have at least two discontinuities: one at each sign change of
the field. As we wish to minimize the number of discontinui-
ties, henceforth we only consider fields with two discontinui-

sufficient to use the NNTB approximation for the band struc-jes. There are many such field types yielding EDL: for

ture. Under these conditions, we only requie=0. For

example'?

instance, the ac field considered most often in discussions of

DL is sinusoidal:E(t) = Egsin(wt), wherew=2x/7 and 7 is
the period. For this field,
2

Jo( p— 29

|Sp|:

whereQ=edE, /. For exact dynamic localization, we re-
quire thatS,=0 for all p, but this is impossible for anf/w.

E(t)=&[(1—-b)?+8bt/7]" 2 for 0<t<7/2,
(2.12)
where
= 4mnh 21
n: edT L] ( . 2

E(t+ 7/2)= —E(t), nis a positive integer, anib|<1. This

The usual argument now is to assume the NNTB approximalast condition ensures that the field does not diverge. When

tion for the band structure; the conditi® =0 then reduces

to the usual condition for dynamic localization in a sinu-

soidal field: Jo(Q2/w)=0. Thus a sinusoidal field can only

b=0, this corresponds to a square wave that is symmetric
aboutt = 7/4, with mifE]=maxE]=¢,, . The fields given by
Eq. (2.11 are shown in Fig. 1 fon=1 and differento val-
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FIG. 1. Then=1 family of electric fields from Eq(2.11) that
yield EDL. Different curves correspond to differeintas indicated
in the legend.

FIG. 2. Smoothedh=1 symmetric square wave from E®.1).
The smoothing function ig(t) = sin(at/2).

To calculate theS, we determiney(t) using Eqgs.(2.2)

ues. The area under the curve between discontinuities is ingnd (3.1). Then, using Eq(2.4) we find after some work
dependent ob, but the size of the discontinuity increases

monotonically with|b|. In fact, it can be shown that all fields
leading to EDL have at least one discontinuity with a mag- |Spl =4a
nitude that is greater than or equal to that of thel sym-
metric square wav&

flcos(pﬂ {a[J(1)—J(t)— 1]+ 1/4})dt
0

4
+ pTrsir{ pQ 7(1/4— a)]‘ , (3.2
Ill. EFFECT OF FIELD SMOOTHING ON EDL whereQ=ed/# and

As discussed in Sec. I, a necessary condition for EDL is
that the applied electric field have discontinuities. However, 100= ij(y)dy
in experiments the field cannot be made truly discontinuous, 0 '
and it is thus of interest to study the effect of smoothing the
discontinuities, thereby making the field continuous. Here we We now take£=¢;, and henceQ) =4, deferring the
study this issue for the field given by E(.11) for n=1. more general case for the moment. As we shall see, this is a
Then=1 square-wave case is the most important, as the sugood approximation i is not too large. The expression for
of the magnitudes of the discontinuities is smallest of all|S,| then reduces to
fields with period 7. We obtain analytic results for this
square-wave field(=0) and present numerical results for
the fields withb#0.

Consider then=1 symmetric square-wave electric field.
To describe the smoothing of the discontinuities we intro-
duce a functionj(t) with j(0)=0 andj(1)=1. We scale
j(t) to span the discontinuities of the field as shown in Fig.

2. Parameten measures the degree of smoothing, where 0! NiS €Xpression is easy to evaluate for a giyt) but it is
<a=1/4: note that whera=1/4 there is no constant-fielg difficult to draw general conclusions from it. Since we are

section and that whea=0 the original square wave is re- interested in smakl, we Taylor expand the right-hand side of

covered. According to Fig. 2, between 0 amd the original Eq. (3.4). It is straightforward to see that this series_only
function is replaced by(t), suitably rescaled, and the other contains odd powers @ and that the lowest-order term is of

discontinuities are smoothed similarly. The fiedqt) thus ordera’. Since th_e next term is qf order’, _th|s_ leads only
to a small correction to the leading contribution. To lowest

(3.3

1
|So| = ‘p—wsm(m-rpa)

—4af1cos{4wap[\](1)—1—J(t)]}dt . (3.9
0

becomes order, then, we obtain
( t - 21243
gl ). O<t<ar, |Sy| =32m°p?a’l, (3.5
ar
where
r
E(t)=4¢ & arstgz—ar, (3.1 1 1
'Ef [J(1)—1—J(t)]%dt— =|. (3.6)
0 3
T2t T T
&j , moarsts o, . .
\ 2ar 2 2 This result is remarkable and shows that for moghestd for
modest values od, the|S;| remain very small. For example,
whereE(t+ 7/2)= —E(t) and&# &, in general. for a smoothed square wave in which each smoothed discon-
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tinuity takes 20% of the ac period, a=0.05, so tha{S,| 10° g ————
=0.040%1, with, as we discuss shortly, typically around F &//ﬁ_;.:w
0.1. Of course tha® dependence causes {8 to decrease 10" . /_‘_A:::':" .
quickly with decreasing. It can be shown that the first term , £ . /,:..-;;‘l'" 3
in Eq. (3.6) is never smaller than the second; equality occurs _OF A E
for j(t)=1 as required, since in this limit the perfect square o . f _ /2;.::‘2* ]
wave is obtained. 0F ol 3
Though Eq.(3.2) is general, subsequently we todkr 10% ;:.‘;if" ]
=44 for simplicity. This corresponds to setting=¢&;, so F
the field amplitude is not adjusted when the square wave is 10° e .
smoothed. Here we drop this restriction and taRer 0.01 a 0.1 0.25
=2(2m+¢), wheree<1. This means that the electric field
amplitude is adjusted t6=E&,[1+¢/(2m)]. Taking e<1, FIG. 3.|S,| vs a for the smoothech=1 square wave. Analytic
IS,/ can be expanded in powers efanda, to obtain an result forj(t)=t are given by solid circlesp=1) and by solid
expression of the form triangles ©=2); associated numerical results from Eg.4) are
given by short-dashegE& 1) and long-dashedp= 2) curves. Ana-
|Sp(a,e)|=32m?p?la’+e/2m+ Ce?+Da’e+Ga+ - - -, lytic result for j (t) =sin(nt/2) are given by open circlepE 1) and

3.7 open triangles forg=2); associated numerical results are given by

. . . the solid p=1) and dotted |§j=2) curves.
whereC, D, andG are expansion coefficients, and there is no

term in ea. SettingS;=0, we see that to lowest order

= —64m°p?las. We draw two conclusions from this. First,

the C, D, andG terms in Eq(3.7) are of ordera® or higher. excellent agreement for smad| but for a=0.1 the power
Sincea<1, we drop these terms and only include the firstSeries result is somewhat inaccurate, as expected;sga),
two. Second, since the first term hap dependence, we may We find thatl =0.0586 and thus, is smaller than fojj,(t).
choose€ to change the values of tH&,|, but we can only It can be shown that this is associated with the fact that for
set S,=0 for a single p. The natural choice ise  the sine function, the first derivative of the field is continu-

=—647°la3, for whichS;=0 and ous. This is also consistent with the even smaller valuk of
found forjs(t).
|Spl=327%(p*—1)a°l. (3.9 Figure 4 gives numerical results for the fields of Eq.

Although all ISpl become somewhat smaller, on=0. (2.11) with b#0. Asa decreases, thg, initially decrease as

3 . .
The conclusion that smoothing of the field destroys EDL is2 + consistent with Eq(3.5. However, for smalla all S,
of course consistent with the general EDL restits. have the same modulus, which decreases linearly with

Thus, for smalla, the deviation of the field amplitude 'NiS behavior appears to be typical wher0. As b—0,
from the EDL valueE=¢&, for which S;=0 is very small. f[he value ofa where the crossover occurs becomes increas-
Thus, if the smoothing is not too drastic, one can simply usdngly smaller as does the value {8,. We thus conclude
the amplitude specified by the EDL results. This, of coursethat the square waveb0) has advantages over all other
is not true for strong smoothing, as is discussed in Sec. VImembers of family2.11) in their behavior under smoothing.

The S, can be evaluated analytically for apft) thatis a  This is not surprising since, as discussed in connection with

polynomial int. For example, foij (t)=t”, we find Fig. 1, the discontinuities are smallest for the square wave.
1 2v 1 v+1)2 0
| = v+ + —( ) (3.9 10" g
(V+1)2 v+2 2v+3 3 F
107 k
Thus, forvr—0, | =0 as expected, whereas wher> o, we 102 ;
havel =2/3; for v=1, 1 =2/15. It is easy to construct odd
polynomialsj,(t) of degreem such that the firstro—1)/2 o 10° &
derivatives of the electric field are zero and thus continuous o, F
att=1; we use such polynomials in Sec. VI. For example, 10 F
for m=5, 10° k
i 15 5 3 10'6: ro TP EEETAT IR -
js()=gt= 7+ t% (3.10 10* 10° 107 10"
8 4 8 a
we havejs(1)=jg(1)=0 andl=50/12870.039. FIG. 4. |S,| vs a for the smoothed field in Eq2.11) with n

The results of5; calculations are given in Fig. 3 for two —1 andb=0.39 and smoothing functioj(t) =sin(at/2). Thick
smoothing function j(t)=j.(t)=t and j(t)=jsnt) lines are forp=1 (solid line), p=2 (dotted ling, p=3 (short-
=sin(wt/2). Results are given for both the series expansioriashed ling andp=4 (long-dashed line Thin lines are reference
and the numerical evaluation of ER.4). There is clearly curves:y(a)=0.00% andy(a)=5a°.
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IV. LIMITS ON ACCEPTABLE SMOOTHING V. DL IN THE NNTB APPROXIMATION: ADL

We noted in Sec. Il thatontinuousac fields cannot yield
EDL. However, such fields can yield localization in the
NNTB approximation(ADL ); the sinusoidal field from Sec.

Il is an example. Here we examine the types of fields for
Swhich ADL occurs and derive the general properties of con-
tinuous ac electric fields that yield ADL.

We write the field a€(t) =Eqg(t), whereE(t) has pe-
riod 7 andEj is the field amplitude. Thus from E.2) we
have y(t)=Qh(t/7), whereQQ=edE,/# and

Now that we have the dependence of 8yeon the degree
of smoothing, we determine the dependence of the electro
localization on theS,. We use this to determine the degree
to which we may depart from the ideal discontinuous field
before DL is effectively destroyed.

For simplicity and without loss of generality, we take the
initial condition B,(0)= 6,4, so the electron is initially in
one Wannier state. Then, at tiniethe probability of the
electron being in thenth Wannier state i$,(t)=|A,(t)|?
[see EQ.(2.3)]. We use this to determine the probability of X
the electron being in a state other than 0 at timet=¢r. h(X)EJ g(7x")dx’. (5.9
Considering only fields that nearly yield EDL, we know that 0
|76 _pSp/h|<1. Afirst-order expansion of Eq2.3) in this ~ We chooseg(t) and E, such thath(x)|<1 for all x, with

small quantity then gives max |h|]=1. Using these definitions, we obtain
) C1ep < 1 ianeg -
An(07)=8no—i X —1Sp0m - p+ St Ompl, (4.0 =] e X. (5.2)
T pso h ’ : 0
where we have used the fact thatis real andsp=¢_,. If We now determine the electric fields that guarantee that

we defineP(n+0) to be the probability of finding the elec- S1=0 for some amplitud€). EvaluatingS, exactly requires
tron not in then=0 Wannier state at time=¢ 7, we obtain knowledge of the precise functional form lofx). However,
using the method of stationary phagesye can study the

2 general properties db; and in many cases obtain an excel-

1Sl (4.2)  lent approximation for it. The details of the application of

this method of evaluating, are given in the Appendix and

we just summarize the results here.

Let us assume thah’(x)=0 for x={x,}, where ¢

,....N and 0<x,<1, and letn, be the order of the

lowest-order nonzero derivative bfat x=x,. Now, classify

the zeros according to whether then,Jth derivative

) h(")(x,) is positive or negative. This derivative is positive at

(4.3  the pointsx; (¢=1,...N;) and negative at the points"
(€=N;+1,...N). We then obtain the asymptotic expan-
sion
From this, we can determine the acceptable limits on the

smoothing parametex for any band structure and evolution

time € 7. As an example, we consider a GaAs)GalAs N

superlattice with a well width of 8.5 nm, a barrier width of Si1~ Z

1.5 nm, a conduction-band offset of 400 meV, and an elec- =t

tron mass of 0.067 free electron mas¥eBor this superlat-

gpl'T
h

P(n#0)=2>,
p>0

This can be used to determine tBg to achieve a specified
degree of DL. In fact, if our field is a smoothed square wave_
with amplitude such tha$,;=0 [Eq. (3.89)], then Eqg.(4.2
gives

¢
P(n%0)~2> {M32772I(p2—1)a3
p>1 h

1 _ .
2r(—) exd —iQh(x;)]R, (€ ™)
Ng 4

ne| QhMI(x; )| e

1 :
tice, the first three band-dispersion Fourier coefficients are N 21“(”—) exp[—iQh(x?)]Rne(e*'”’znf)
g1=—5.75 meV, e,=0.54 meV, and;=0.083 meV. Be- + 2 ¢ )
cause|(p+1)%e . 1|/|p%ep|<1, only the first few terms in €=Nj+1 ne|QhMO(x; ) [ne

Egs.(4.2) and(4.3) are important. This inequality holds gen-

erally for symmetric superlattices. Requiring that there be at

most a 10% probability of finding the electron outside itswhereI'(x) is the gamma function and
initial state after 5 ps—which is considerably longer than the ) )

usual dephasing time—we obtain the requireméss| |z if ng iseven,

<0.056. Though this might seem rather stringent,jfgft), Rne(z)= Rez) if n, isodd. 5.4
this corresponds ta<<0.1. This represents a large degree of

smoothing, as up to 40% of the period may be taken up by Attaining the conditionS,=0 for some(} for a general
the rise and fall of the field. In contrast, for a pure sine wavefunction h(x) is difficult since the real and imaginary parts
whenS,;=0, |S,|=0.238, and hence for the same structureof S; must vanish simultaneously using only one degree of
we find P(n#0)=1.9. Clearly the probability is now so freedom ()). Thus, let us restrict ourselves to functions
large that expressiod.2) breaks down. The poor perfor- F(t) for which S; is purely real(or can be made re@for all
mance of the sine field was demonstrated numerically in FigQ). It is easily shown tha,; is real if E(t) is symmetric

1 of Dignam and de Sterk@. about some timd,, i.e. E(tp+t)=E(ty—t); we refer to

(5.9
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these asymmetric fieldsThe sine field is an example, with ' T gymmetric
to=7Xo=7/4. For these symmetric fields, we havgt, 10FrA ~ |- Almost Symmetric 1
+1)=y(ty) — ¥(to—t), and thus using the periodicity of I __i;;n‘::q:fr’l‘:
¥(t), for every maximum inh(x) at x; there is a corre- 0.5
sponding minimum atx; =mod 2x,—x; ,1] with h(x;) -
=h(xo) —h(x;). Using periodicity, we are free to choose = 0.0 I
to=0, and sinceE(t) is the physical field, we can choose 05
¥(t) such thaty(t))=0. Then,h(x;)=—h(x;), and we Tz
obtain for a general symmetric field 4.0 P9

L |

sl~2ﬂRe{ O

N/2 R (eiTr/ZH[)
e exd —iQh(x;)] .

(5.5 FIG. 5. Functiorh(x) for four different fields: symmetri¢solid
line), almost-symmetri¢dotted ling, symmetric withC(z)aﬁ 0 (short-

=1 nAQh(n{)

Using this result, we now show that for most symmetricdashed ling and asymmetri¢long-dashed ling Inset shows the
fields we findS;=0 for some(). Equation(5.5 can be associated electric fields.

written as

where the sum is over the zeros with different derivative
orders 6,) and

1
1 S~ —5—Gm (Q). (5.1
sl~{n(} Wen((m, (5.6) Qm
We know thatM[G,]=0 and M[|G,,|?]>0. This can
only be true ifG,, (Q) is positive over some ranges ©Of
and negative over others. Sindg,, ({2) is continuous,
2N, G (Q)=0 for someQ)>0. From Eq.(5.11) we therefore
Gn(Q)=2, Cllexd —iQof', (5.7  also know thatS;=0 for some{>0. Thus, we have the
=1 central result of this sectiorEor any continuous symmetric

wherewT'=h(x>) with x™~ being the position of thél,,  aC field, ADL occurs for at least one value of the field am-

maxima for
orderm and

m__

with CT+N =Cy™ . The C]' are bounded complex coeffi-

cients and— l<of'<1.

From the mean-value theorem of almost perlodlcS ve
the mean value oG,({2) is given simply by
M[G,]=2 R€Cq'}, whereC{' is the coefficient of the ex-
ponential with frequencyw{'= 0 (if this existy and the mean

functions?®

which the first nonzero derivative b{x) is plitude E, as long as the vector potentialis nonzero when-
ever the electric field is zero

To demonstrate the differences in the likelihood of finding

V2R, (€712 amplitudes that yield ADL for various symmetric and asym-
oS Tm for 1<¢<N,, (6.8 metric electric fields, we consideB; for the four fields

mlh™(x7)] shown in Fig. 5. One of the fields is symmetric, another is

almost symmetric, a third is symmetric but has one of the
Czaﬁo and a fourth has no symmetry.

n Fig. 6(a) we plotS; and the asymptotic expansion for
rsus() for the symmetric field. Note that for a symmet-
ric field there are many field amplitudes that yield ADL. In

1 ' 1 ' I ' I T ]
is defined by 03 §‘ A AAAA A (aM]
o 0.0 [ vy vAy A\ v e A VAR t
= [ 1o+t -0'? U B R I E
M[Gm]=T|L”:C$fq Gm(Q)dQ, (5.9 — ol . (b)
8 : Y ARVA AW Y 4 PRSTaY
which is independent of.2® Thus for functionsG,(Q) for 0.01
which CJ'=0 [y(7x}"")#0] for all m, we have that 1 P (©
M[G,,]=0. In addition, from Parceval’s theorem for almost w 0.1 YAV AOVASAVNAL
periodic function€® we know that Y Al
\ | \ | \ 1 \ 1 \
Nim 0 20 40 60 80 100
M[|Gpl?]= 22 cP?>0. (5.10 o

FIG. 6. Dependence d8, on Q) for the fields in Fig. 5(a) S,

Furthermore, since5,(2)=<23,_,"1/C/|, we know that for the symmetric field using the exact evaluati@olid line) and
the G,,({2) are bounded. Now, because the mean VBt the asymptotic expansiofot-dashed ling (b) |S,| for the sym-
(5.9] is independent of}, we see from Eq(5.6) that for  metric(solid line) and almost symmetrigdotted ling fields; (c) | S|
large Q, only the G,, with the largestm (denoted bym’) for the asymmetrigsolid line) and symmetric field withC3+0
contributes significantly t&,;. Thus, for large(, (dotted line.

165313-6



DYNAMIC LOCALIZATION IN CONTINUOUS ac ELECTRIC. .. PHYSICAL REVIEW B 66, 165313 (2002

025 pr——T——T 71— Re{ex —iy(ty)]Ry, (e'™*")}=0, (6.0
A\ 1
'\ —_— . .
020 |, '\ n=t 4 which yields
AN ---n=2 |
ORI S U N s n=5 | |
« _‘;‘ \ \\ ........ n=20 1 5“1 6.2
\ t)=mn—5+->—|, .
0.10 —ii‘ “ \\ _ 7( 1) w 2 2n1 ( )
N N 1 . o
0.05 (| N i wheren is a positive integer and
Y AN S - 3
\. N e meoee \\\ H H
0.00 L—i S e o et TR T 1 if m iseven,
000 005 010 015 020 025 = . . 6.3
a ™ | 0 if m isodd. ©3

FIG. 7. Area deviatiom\, vs a for the smoothed symmetric Defining the area between consecutive zeros as
square wave withj(t)=js(t). Different curves correspond to dif-

indi t
ferentn as indicated. A E‘ f yE(t)dt 6.4
addition, these amplitudes do not generally have to be much
larger than&;. The asymptotic expansion gives good esti-we find from Eq.(6.2) that for large)
mates for the zero crossings, on@e=20. The agreement is
even better for functions that are less steep such as the sine 1 5n1
wave. In Sec. VI, we discuss the reason for this. An~Ap(®)=|n—5+ 2n, 2wfiled. (6.5

In Fig. 6(b), we plot|S,| for the symmetric and almost-
symmetric fields. Note that the slight asymmetry has a minokVe thus obtain the area theorem for large-amplitude continu-
effect for smallQ): though the|S,| no longer go exactly to ous ac fields that have only two zerds:the limit of large
zero, their minima occur at essentially the safdeas the field amplitude, DL only occurs if the area under the total
zeros of the symmetric field and for the first three minimafield curve between zeros is given by Eq. (6.5)
|S;|<0.024. Using Eq(4.2) we see that for a system with a  This area theorem differs from the area theorem for EDL,
bandwidth of 10 meV, within NNTB, we only requiré,| Eqg. (2.10, in two important ways. First, the present area
<0.037 to have a 90% of finding the electron in its initial theorem does not require additional stringent constraints on
state after 5 p&’ However, the asymmetry has a significant the functional form ofE(t), as is the case for EDL, the only
effect for large(), reducing greatly the number & for  constraint being that it be symmetric and have two zeros.
which |S;|<0.037. Thus, having a small deviation from a Second, the area between zeros that leads to ADL is different
symmetric field does not greatly affect the ADL for low- from the area of Zn#/ed between discontinuities to
amplitude fields(small n), but this is not true for large- achieve EDL. The difference between the ADL and EDL

amplitude fields. areas is smallest whem;=2, for which A,(*)=[n
Finally, in Fig. 6c), We plot|S,| for the asymmetric field —]2«#/ed.
and the field for whichC3#0. For both fields|S,| never The validity of ADL area theoren6.5) is easily seen for

drops below 0.04 for thé) plotted. The first asymmetric- sinusoidal fields, for which, according to E@.5), ADL oc-
field curve demonstrates the importance of the symmetry ogurs when)/w is a root of the zeroth-order Bessel function.
the field. The results for th€3+0 field demonstrates the For large() these zeros are given B/ w=(n— 4)77 which
importance of the condition that the not vanish when the gives an area between zero crossings e{2—7); this is

field does. precisely our area theorem for ADL for the sine functior
which n;=2).
VI. AREA THEOREM FOR SYMMETRIC FIELDS We now turn to reconciling the EDL and ADL area theo-
WITH TWO ZEROS rems. To do so, we define the area difference between the

exact result and asymptotic ADL result:

We now consider an important class of electric fields:
those that are symmetric and that have only two sign changes e
per period. An example iE(t) = E;sin(wt), discussed in Sec. Ap= m[v‘ln_v‘ln("o)]- (6.6
[I. We can now say much more about which of these fields
lead to ADL, and we can derive an approximate area theorerin Fig. 7 we plot this area deviation as a functiarfor the
for ADL. This area theorem is very powerful in that, unlike symmetric square-wave function smoothed by the fifth-order
the area condition for EDL, there are no other conditions orpolynomialjs(t) given by Eq.(3.10. This field was chosen
the field. because its derivatives are continuous up to second order and

Let us take the zeros of the ac field to occur at tiies because can be used to vary the steepness of the field near
andt, where y(t;)>0 and of coursey(t,)=—vy(t;). Let the zero crossings. Note that in all casesa decomes small,
the order of the first nonzero derivative gft) at the zero the areas tend towards the EDL arég, € 1/4), whereas for
crossings ben;. From Eq.(5.5), we see that to havg; =0 large a, the areas tend to the ADL ared (=0). This is as
and for large field amplitude we require expected: for smalh we recover the square wave, whereas
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tion jg(t)=sin(mt/2). As can be seen, the behavior of this
curve is very similar to that of thgs(t) smoothing function
in the limits of small and larg®. For example, the maxi-
mum difference between the curves found fg(t) and
jsin(t) is less than 0.016. Thus, using, say, thg Q) curve
n=1 | 7 for the j5(t) smoothing function would lead to at most an
n=2 | 3 error of 1.6% for the amplitude of field that gives ADL for
n=5 | ] the j () smoothing function.
n=20 For a pure sinusoidal fiel&(t)=Egsin(wt), n;=2, m,
Ed T I =4, andQ=207w/6£). Now, ADL occurs for this function
0.1 1 10 100 whenQ/w are the zeros of the zeroth-order Bessel function.
Q It is thus found thatQ<1 for field amplitudes associated
with the fourth zero or higher. This is why the asymptotic

FIG. 8. Area deviation\,, for the smoothed symmetric square oynression for the location of the zeros is so good for the
wave vsQ. The symbols correspond to the results jfor) = j5(t); sinusoidal field as discussed earlier.

different symbols are for different as indicated in the legend. The We finally note that the curved ,(Q), given in Fig. 8 is

solid curve is forj(t) =sin(wt/2). The dotted curve is the smail- . . - L
expansion(6.9) for | (t)=j«(t). essentially a gnlversal_curve f_or a_\ll functions wrtb_— 2_and
m, =4 for which the fifth derivative of the electric field at

the zero crossings is small; this is why it works well for
square-wave fields with monotonic smoothing functions.
However, it is not a universal curve for all symmetric fields.
For example, because of their potentially larger fifth-order
derivatives, electric fields that have multiple minima and
axima do not in general yield ADL areas that are well
pproximated by the solid line in Fig. 8. However, we find

O pboanm

for large a we obtain a very smooth field. We note in par-
ticular that fora=0.2, all the areas except=1 are within
0.01 of the asymptotic value.

From the Appendix, we see that parameferdefined in
Eq. (A9), is a more natural parameter thario measure the
steepness of the field near the zero crossings. For an

smoothing functior{such asjs(t)], where the first deriva- that the linear dependence &f(Q) for smallQ in Fig. 8 is

tives of y(t) that are nonzero wheB(t)=0 are the second . ) S o
and fourth fi,=2 andm, =4 in the language of the Appen- unlve4rsal for all symmetric electric fields with,=2 and
m;=4.

dix), we have

|E"(0)| 5& 7 VIl. CONCLUSIONS
Q="——"7 - (6.7)

|[E'(0)]? 3 We have presented a detailed examination of the proper-
ties of the electric fields that yield dynamic localization. We
began with a systematic discussion of ADL and EDL in pe-
Yiodic potentials in an applied periodic ac electric field. We
reiterated the recent results of Dignam and de StHlee;
cording to which it is straightforward to find an indefinite
! : . number of electric fields that yield EDL. All of these fields
and we see that the asymptotic expansion resuliXhatO is  paye the properties thé) the electric field is discontinuous
very accurate foQ<1 as expected. when the field changes sign and tkiatthe electric field area

WhenQ s large, we can use the results of Sec. Ill t0 getpeween consecutive zero crossings is an integer multiple of
an approximate result. As is seen in that sectiom i$ not 5 4,04

too large, thert=¢, . With this approximation, we have, for —\ye examined the tolerance of EDL to smoothing of the
the js(t) function, Q=8/(9an). Furthermore, it is easily glectric field discontinuities. Localization arising from

seen from Eq(3.1) that square-wave ac electric fields was found to be surprisingly
tolerant to smoothing, as indicated by Fig. 3. Other functions

ThusQ is a measure of the deviation from linear of the time
dependence of the electric field at the zero crossings. In Fi
8 we plot the area deviatiofr,, as a function ofQ. We first
note that, remarkably, the points for differamgll fall onto
the same curve. For sm&jl, A, goes to zero linearly witQ

An=2arE(J(1) = 1)+ &7/2. 6.8 leading to EDL, which have larger discontinuities, were
Putting these results together we obtain found to be less tolerant. We also found that even a square
wave with very significant smoothing results in much better
1 10 localization than a pure sine wave.
An=77 50" (6.9 We also considered ADL—that is, DL in the NNTB

limit—and found a number of general results. First we

which is shown as the dotted curve in Fig. 8. Note that itshowed that all symmetric ac electric fields are guaranteed to
captures the exact behavior quite well @r10. The failure  exhibit ADL for some value of the field amplitude as long as
of Eq. (6.9 whenQ is small demonstrates that the field am- the vector potential and electric field are never zero simulta-
plitude must deviate significantly from the EDL value &f neously. This demonstrates that the earlier results showing
=&, when the producan is large. that ADL can occur for sinusoidal fielt®?* and triangular

We also plot in Fig. 8 the area deviatidy, as a function  fields’ are not isolated cases, but can be considered examples
of Q for the symmetric square field with the smoothing func-of a more general result.
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We also showed that for symmetric, large-amplitude elech(")(x,) is positive or negative. Assume that this derivative
tric fields with only two zeros per period, the area under theis positive at the pointg; (¢=1,... N;) and negative at
electric field curve between consecutive sign changes tendie points x; (¢=Ny, ...,N). Then, performing the
to 27fi(n—1/4)/ed. Though the result is asymptotic—i.e., integration?® we obtain after some work the expression

applies strictly only in the limit of large field strengths ( given by Eq.(5.3) in Sec. V. This can be rewritten in terms of
—o)—it is in fact already remarkably accurate whens the electric field as

small for many smooth functions, such as the commonly
used sinusoidal fieléf?4 1 . o
We have ignored dephasing and coupling to higher bands. Ny Zr(n_g) expl —iy(ty) IR, (&™)
Although this is valid for many systems of interest, we plan  S;~ > Py n
to investigate their effects on DL in future work. We have =1 neLedr™ BN D) /A ]
determined general trends and principles governing DL 1
rather than present an exhaustive examination of systems of N ZF(—) exd —iy(t;)IR, (e~ 172)
current interest. Although much of what is presented here 4 2 Ne ‘
can be applied to any system, the details of the electric field =N +1 ne[edq-”qE(”(—l)(t?”/ﬁ]lm(
are of course dependent on the method of generation and the
system of interest. For such systems, one could use the prin- (A4)
ciples outlined here to determine the general type of fieldyheret; == 7x; '~ and E("(t) is thenth derivative of the
that should yield EDL and then perform exact calculations ofgjectric field with respect to time. In the usual case, where all
the S, for the experimentally attainable field to optimize it. second-order derivatives bfx) at the extrema are nonzero,
this reduces to
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APPENDIX: ASYMPTOTIC EXPANSION =N +1 N h"(x})]

Here we present some details of the asymptotic expansion
of the S,. We begin with the definitiory(t) = Qh(t/7). Us-
ing this we obtain

It is useful to estimate the range of the validity of these
asymptotic results. Rather than pursue the general case, we
instead consider only symmetric electric fields with only two

1 zeros per period. Let, be the order of the lowest nonzero

Sl=f e (g, (Al)  term in the expansion about the point and letm; be the

0 order of the next lowest nonzero term. Thus, we can obtain a
We assume that’(x)=0 for x={x,}, where¢=1,... N  somewhat better approximation t§, than Eqg.(5.3 by
and 0<x,<1. Now, we employ the method of stationary evaluating
phasé® by noting that for large), the only contributions to . Q
the integral occur in small re_glons_about the poixtsx, . S ~2 Re[ e—iQh(xl)f exp{ —j _Ih(nl)(xl)(x_xl)nl
Away from these, the phase in the integrand changes so rap- o Ny
idly so as to average to zero. Thus, we expha(x) about the

pointx, as —iih(ml)(xl)(x—xl)ml
m,!

} dx. (AB)

o1 . .
h(x)=h(x,)+ >, —h™(xe) (x=x,)", (A2)  We now consider the parameter that characterizes whether
n=2 M- the second term in this expansion is necessary. The first term
where h(™(x,) is the nth derivative ofh evaluated ax N the expansion makes a significant contribution to the inte-

=x,. Thus, in the limit of largeQ, S, can now be approxi- 9rand as long as

mated by .
—_|h(np) . ny| <
S ion) [ . h(”)(x{,) n,! [h"(x1) (x—x1)™|<27s, (A7)
S~ e 'fhxe J exp —iQ) X—x,)"tdx, ' .
1 ;::1 — =2 Nl ( o) wheres is a factor that is on the order of 4—10. For larger

(A3)  values of|x—x;| the integrand oscillates very rapidly and

where we have extended the integration over an infinite in_makes negligible contributions. For the next term in the ex-

terval by noting that the integrand only contributes wikes pansion to be negligible, we require that

near thex, . (my) _
. . 1y — m;—n
Let n, be the order of the lowest nonzero derivativehof [T Cxa) gt [x= %™ 1<1_ (A8)
at x=x,. Now we classify the zeros according to whether [h(")(x;)|m,!

165313-9



DOMACHUK, de STERKE, WAN, AND DIGNAM PHYSICAL REVIEW B66, 165313 (2002

Using Eg. (A7) in Eq. (A8), and expressing the result in wheret;= 7x; and we have choses¥ 10. Thus, not surpris-

electric field derivatives, we obtain the conditigp<<1, ingly, the asymptotic expression is good as long as the cur-
where vature of the electric field curve at the zero crossings is
(g =g/ (my=1) small. ParameteQ is useful as a variable to quantify the
_[20mA|fmm i BT D () /my | (A9) deviation from the asymptotic expansion as is discussed in
ed |[EM=D(t,)/n M /m’ Sec. VI
1F. Bloch, Z. Phys52, 555(1928. M. Ben Dahan, E. Peik, J. Reichel, Y. Castin, and C. Salomon,
2G.H. Wannier, Rev. Mod. Phy$3, 91 (1991). Phys. Rev. Lett76, 4508(1996.
3B.S. Monozon, J.L. Dunn, and C.A. Bates, Phys. Rev5® ''C.M. de Sterke, J.N. Bright, P.A. Krug, and T.E. Hammon, Phys.
17 097(1994. 1 Rev. E57, 2365(1998. _ .
4B.J. Keay, S. Zeuner, S.J. Allen, Jr., K.D. Maranowski, A.C. Gos- T- Pertsch, P. Dannberg, W. Elflein, A. Biex, and F. Lederer,
sard, U. Bhattacharya, and M.J.W. Rodwell, Phys. Rev. Z&t. Phys. Rev. Lett83, 4752(1999.
4102(1995. R. Morandotti, U. Peschel, J.S. Aitchison, H.S. Eisenberg, and Y.
W.-X. Yan, X.-G. Zhao, and H. Wang, J. Phys.: Condens. Matter, Silberberg, Phys. Rev. Let®3, 4756(1999.
10, L11 (1998 G. Lenz, |. Talanina, and C.M. de Sterke, Phys. Rev. [83t963
6y 1 ' (1999.
D.H. Dunlap and V.M. Kenkre, Phys. Rev. 8}, 3625(1986. 21 )
7M. Holthaus, Phys. Rev. Let69, 351 (1992. K(.lg)égse and M. Holthaus, J. Phys.: Condens. Maef193

8J. zak, Phys. Rev. Letf’1, 2623(1993.
9H.-F. Liu and X.-G. Zhao, Int. J. Mod. Phys. B4, 41 (2000.
10M.J. Zhu, X-G. Zhao, and Q. Niu, J. Phys.: Condens. Matfier

22\W.-X. Yan, X.-G. Zhao, and S.-Q. Bao, Physic&B2, 63 (1998.
23X -G. Zhao, J. Phys.: Condens. Mat&r2751(1994).
24M. Holthaus and D. Hone, Phys. Rev./3, 6499(1993.

u 4527(1999. . 25G.F. Carrier, M. Krook, and C.E. Pearsdfuynctions of a Com-
126' Lenz_, R. Parker, M. Wanke, and C.M. de Steflepublished plex Variable(McGraw-Hill, New York, 1966, Chap. 6.4.

M.M. Dignam and C.M. de Sterke, Phys. Rev. L&8 046806  26¢ cordueanuAlmost Periodic Functionsnterscience Tracts in
. (2002. Pure and Applied Mathematics, Vol. 22, edited by L. Bers, R.
E.E. Mendez, F. AgulliRueda, and J.M. Hong, Phys. Rev. Lett.  Courant, and J.J. Stokdinterscience Publishers, New York,

60, 2426(1988. 1968, Chap. 1.

143. Feldmann, K. Leo, J. Shah, D.A.B. Miller, J.E. Cunningham, T.2’We need not consider larger bandwidths than 10 meV, because the
Meier, G. von Plessen, A. Schulze, P. Thomas, and S. Schmitt- NNTB approximation is then not valid.

Rink, Phys. Rev. B46, 7252(1992. 28| s. Gradshteyn and I.M. RyshiRables of Integrals, Series, and
155 R. Wilkinson, C.F. Bharucha, K.W. Madison, Q. Niu, and M.G. Products, Corrected and Enlarged EditiofAcademic Press,
Raizen, Phys. Rev. Let?6, 4512(1996. New York, 1980, Eq. 3.712.

165313-10



