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Dynamic localization in continuous ac electric fields
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We present a detailed examination of the properties of ac electric fields that result in the dynamic localiza-
tion of electrons in periodic potentials. Although exact dynamic localization can only occur if the ac electric
fields are discontinuous at all changes in sign, we show that it is surprisingly tolerant to smoothing these
discontinuities. We also show that within the nearest-neighbor tight-binding limit, all symmetric ac electric
fields are guaranteed to exhibit dynamic localization for some field amplitude provided that the vector potential
and electric field are never zero simultaneously. Finally, we derive an area theorem for symmetric electric fields
with only two zeros per period.

DOI: 10.1103/PhysRevB.66.165313 PACS number~s!: 73.21.Cd, 73.23.Ad, 42.82.Et
d
a

fo

s—
,
d

t
o

on
ly

i

L
s

t
n
rs

er
v
.

tri
s,

of
za

o
to

re

L
nd in
ices
is

g
ld.
rve
ay
ce,
-

uc-
irly
a
e
is
ys-
fore
rm
ny
y
ion

on-
ly

th-
the
is

st
nds;
on is
ons
are
at-
I. INTRODUCTION

In recent decades, the study of electrons in a perio
potential in the presence of ac and dc electric fields has
tracted consistent attention. This system was discussed
dc field many years ago by Bloch1 and Wannier.2 This early
work examined the existence of localized stationary state
the Wannier-Stark ladder~WSL!—and their dynamic analog
Bloch oscillations~BO’s!. More recently, in combined ac an
dc fields, such effects as multiphoton absorption,3 absolute
negative conductance,4 fractional WSL’s,5 and dynamic lo-
calization ~DL! were predicted.

In this paper we investigate the electric fields that lead
DL. DL refers to the phenomenon whereby the application
a periodic purely ac field results in the periodic localizati
of an initially localized wave packet. This effect was initial
addressed by a number of authors,6–8 who found that in a
one-band, nearest-neighbor tight-binding~NNTB! model, DL
occurs when a sinusoidal field with the correct amplitude
applied. We refer to DL in the NNTB limit asapproximate
dynamic localization~ADL !. It has also been found that AD
arises for triangular waves;9 however, the general propertie
of the fields that lead to ADL are not known.

In some cases, DL arises in a one-band model beyond
NNTB approximation, i.e., for an arbitrary band dispersio
We refer to this type of dynamic localization, which occu
not just in the NNTB limit, asexact dynamic localization
~EDL!. A number of authors10–12 have shown that EDL can
occur for periodic square-wave ac fields. In a recent Lett12

we derived the conditions for an ac electric field to achie
EDL and showed how such fields may be constructed
central result of that work is thatEDL can only occur for
fields with discontinuities that occur whenever the elec
field changes sign. Due to the requirement of discontinuitie
it is not possible to obtain these fieldsexactlyin experiment.
It is thus important to quantify just how much smoothing
the discontinuities can be tolerated if good dynamic locali
tion is to be achieved.

The WSL and BO were experimentally observed via ph
toinjection of electron-hole pairs in biased semiconduc
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superlattices.13,14 More recently, equivalent phenomena we
observed in trapped atomic systems15,16 and using light
propagating in fiber Bragg gratings17 and coupled optical
waveguides.18,19However, the experimental evidence for D
is less persuasive. Perhaps the strongest evidence is fou
the reduction in the dc current in biased doped superlatt
when a THz field of the correct amplitude and frequency
applied.4 A key difficulty in electronic systems is obtainin
direct evidence of the localization when there is no dc fie

One of the most promising systems in which to obse
DL is a periodic array of coupled waveguides. The arr
plays the role that quantum wells play in a superlatti
whereas a thermal gradient,18 a gradient in the structural pa
rameters of the guides,19 or a waveguide curvature20 play the
role of the electric field. Once the required waveguide str
ture has been fabricated, the experiments are fa
straightforward;18,19 dynamic localization is observed as
return of the optical intensity to the guide into which th
light beam was initially injected. An attractive feature of th
optical system is that the time variable in the electronic s
tems maps onto a spatial variable; these are there
continuous-wave experiments, in which BO’s take the fo
of the light snaking back and forth upon propagation. A
‘‘ac field’’ can, in principle, be constructed, for example, b
a suitable variation of waveguide curvature with propagat
distance.20 The curved-waveguide optical system18,19is prob-
ably the most promising system for achieving nearly disc
tinuous ‘‘fields,’’ as the discontinuities are obtained simp
via an abrupt change in the waveguide curvature.

In this paper we investigate the effect on EDL of smoo
ing field discontinuities. We also examine the nature of
fields that lead to ADL in systems where the NNTB limit
a good approximation. It has been established21,22 that the
effect of coupling to higher bands on DL is small for mode
fields and sufficiently large energy gaps between the ba
we thus use a one-band model, where the band dispersi
arbitrary. We present the theory in the language of electr
in a periodic potential. However, as mentioned, there
optical and atomic systems for which the mathematical tre
ment is essentially identical.
©2002 The American Physical Society13-1
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The paper is organized as follows. In Sec. II, we summ
rize the theory of EDL,12 and discuss it in the context of thi
work. In Sec. III we examine the effects of smoothing t
discontinuities in fields that yield EDL. In Sec. IV we qua
tify the dependence of the electron localization on smoo
ing. In Sec. V we examine which ac fields are guarantee
exhibit ADL. In Sec. VI, we develop an area theorem f
large-amplitude symmetric continuous fields. Section V
contains our conclusions.

II. EXACT DYNAMIC LOCALIZATION

We consider an electron in a one-dimensional perio
potential of periodd, in an external purely ac electric fiel
E(t) of period t. Using a one-band model, we expand t
electronic wave function in the basis of the Wannier fun
tions uan& as uc(t)&5(nBn(t)uan&.

10 Using this in the
Schrödinger equation, we find for the expansion coefficie
after , periods of the ac field12

Bn~,t!5e2 i«0,t/\e2 ig(t)(
m

An2m~,t!Bm~0!, ~2.1!

where, is a positive integer,

g~ t !5
ed

\ E
0

t

E~ t8!dt8 ~2.2!

is the dimensionless vector potential, and

Am~,t![
1

2pE2p

p

dx expF imx2 i (
pÞ0

,t«2p

\
SpeipxG ,

~2.3!

where«2p are the Fourier coefficients of the band dispers
and

Sp[
1

tE0

t

e2 ipg(t8)dt8. ~2.4!

It can be shown12 that the condition for EDL for an arbitrary
band structure reduces toSp50, for pÞ0. Thus,EDL only
occurs if Sp50 for all pÞ0.12

In some situations,u«pu!u«1u for all upu.1 and it may be
sufficient to use the NNTB approximation for the band stru
ture. Under these conditions, we only requireS150. For
instance, the ac field considered most often in discussion
DL is sinusoidal:E(t)5E0sin(vt), wherev[2p/t andt is
the period. For this field,

uSpu5UJ0S p
V

v D U, ~2.5!

whereV[edE0 /\. For exact dynamic localization, we re
quire thatSp50 for all p, but this is impossible for anyV/v.
The usual argument now is to assume the NNTB approxi
tion for the band structure; the conditionS150 then reduces
to the usual condition for dynamic localization in a sin
soidal field:J0(V/v)50. Thus a sinusoidal field can onl
16531
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yield DL in the NNTB limit.12,23,24In Sec. V we show that a
similar condition for ADL exists for almost any symmetric a
field.

The condition for EDL can be expressed somewhat diff
ently by defining

f ~y![ (
p52`

`

Speipy, ~2.6!

where 2p,y,p. But if Sp50 for all pÞ0, then f (y)
51 for 2p,y,p. This condition for EDL can be shown to
be equivalent to requiring that12

(
m, j

1

uġ~ t jm!u
5

t

2p
, ~2.7!

where thet jm are defined by the equation

g~ t jm!5yjm22pm, ~2.8!

where m is an integer and 0,t jm,t. As discussed
previously,12 this can be used to construct fields that yie
EDL. Because the left-hand side of Eq.~2.7! diverges if
ġ(t jm)50, one key result is thatonly electric fields that are
discontinuous every time they change sign can yield ED.12

We refer to these asessential discontinuities.
We now consider the area underE(t) between neighbor-

ing essential discontinuities at timest i and t i 11:

A5E
t i

t i 11
E~ t8!dt8. ~2.9!

Becauseg(t) is the dimensionless area under the elec
field curve and essential discontinuities ing(t) only occur
wheng(t i)52pn,12 we obtain the following area theorem
if EDL is to occur, then the area between essential disco
nuities must satisfy the condition

A5
2p\

ed
n, ~2.10!

wheren is an integer.
It is clear that any purely ac field that yields EDL mu

have at least two discontinuities: one at each sign chang
the field. As we wish to minimize the number of discontinu
ties, henceforth we only consider fields with two discontin
ties. There are many such field types yielding EDL: f
example,12

E~ t !5En@~12b!218bt/t#21/2 for 0,t,t/2,
~2.11!

where

En[
4pn\

edt
, ~2.12!

E(t1t/2)52E(t), n is a positive integer, andubu,1. This
last condition ensures that the field does not diverge. W
b50, this corresponds to a square wave that is symme
aboutt5t/4, with min@E#5max@E#5En . The fields given by
Eq. ~2.11! are shown in Fig. 1 forn51 and differentb val-
3-2
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ues. The area under the curve between discontinuities is
dependent ofb, but the size of the discontinuity increas
monotonically withubu. In fact, it can be shown that all field
leading to EDL have at least one discontinuity with a ma
nitude that is greater than or equal to that of then51 sym-
metric square wave.12

III. EFFECT OF FIELD SMOOTHING ON EDL

As discussed in Sec. II, a necessary condition for EDL
that the applied electric field have discontinuities. Howev
in experiments the field cannot be made truly discontinuo
and it is thus of interest to study the effect of smoothing
discontinuities, thereby making the field continuous. Here
study this issue for the field given by Eq.~2.11! for n51.
Then51 square-wave case is the most important, as the
of the magnitudes of the discontinuities is smallest of
fields with period t. We obtain analytic results for thi
square-wave field (b50) and present numerical results f
the fields withbÞ0.

Consider then51 symmetric square-wave electric fiel
To describe the smoothing of the discontinuities we int
duce a functionj (t) with j (0)50 and j (1)51. We scale
j (t) to span the discontinuities of the field as shown in F
2. Parametera measures the degree of smoothing, where
<a<1/4; note that whena51/4 there is no constant-fiel
section and that whena50 the original square wave is re
covered. According to Fig. 2, between 0 andat the original
function is replaced byj (t), suitably rescaled, and the oth
discontinuities are smoothed similarly. The fieldE(t) thus
becomes

E~ t !55
Ej S t

at D , 0<t<at,

E, at<t<
t

2
2at,

Ej S t22t

2at D ,
t

2
2at<t<

t

2
,

~3.1!

whereE(t1t/2)52E(t) andEÞEn in general.

FIG. 1. Then51 family of electric fields from Eq.~2.11! that
yield EDL. Different curves correspond to differentb as indicated
in the legend.
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To calculate theSp we determineg(t) using Eqs.~2.2!
and ~3.1!. Then, using Eq.~2.4! we find after some work

uSpu54aU E
0

1

cos„pVt$a@J~1!2J~ t !21#11/4%…dt

1
4

pVt
sin@pVt~1/42a!#U, ~3.2!

whereV[edE/\ and

J~x![E
0

x

j ~y!dy. ~3.3!

We now takeE5E1, and henceVt54p, deferring the
more general case for the moment. As we shall see, this
good approximation ifa is not too large. The expression fo
uSpu then reduces to

uSpu5U 1

pp
sin~4ppa!

24aE
0

1

cos$4pap@J~1!212J~ t !#%dtU. ~3.4!

This expression is easy to evaluate for a givenj (t) but it is
difficult to draw general conclusions from it. Since we a
interested in smalla, we Taylor expand the right-hand side o
Eq. ~3.4!. It is straightforward to see that this series on
contains odd powers ofa and that the lowest-order term is o
ordera3. Since the next term is of ordera5, this leads only
to a small correction to the leading contribution. To lowe
order, then, we obtain

uSpu532p2p2a3I , ~3.5!

where

I[U E
0

1

@J~1!212J~ t !#2dt2
1

3U. ~3.6!

This result is remarkable and shows that for modestp and for
modest values ofa, theuSpu remain very small. For example
for a smoothed square wave in which each smoothed dis

FIG. 2. Smoothedn51 symmetric square wave from Eq.~3.1!.
The smoothing function isj (t)5sin(pt/2).
3-3
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tinuity takes 20% of the ac periodt, a50.05, so thatuSpu
.0.04p2I , with, as we discuss shortly,I typically around
0.1. Of course thea3 dependence causes theuSpu to decrease
quickly with decreasinga. It can be shown that the first term
in Eq. ~3.6! is never smaller than the second; equality occ
for j (t)51 as required, since in this limit the perfect squa
wave is obtained.

Though Eq.~3.2! is general, subsequently we tookVt
54p for simplicity. This corresponds to settingE5E1, so
the field amplitude is not adjusted when the square wav
smoothed. Here we drop this restriction and takeVt
52(2p1«), where«!1. This means that the electric fiel
amplitude is adjusted toE5E1@11«/(2p)#. Taking «!1,
uSpu can be expanded in powers of« and a, to obtain an
expression of the form

uSp~a,«!u532p2p2Ia31«/2p1C«21Da2«1Ga51•••,
~3.7!

whereC, D, andG are expansion coefficients, and there is
term in «a. SettingSp50, we see that to lowest order«
5264p3p2Ia3. We draw two conclusions from this. Firs
the C, D, andG terms in Eq.~3.7! are of ordera5 or higher.
Sincea!1, we drop these terms and only include the fi
two. Second, since the first term has ap dependence, we ma
chooseE to change the values of theuSpu, but we can only
set Sp50 for a single p. The natural choice is«
5264p3Ia3, for which S150 and

uSpu532p2~p221!a3I . ~3.8!

Although all uSpu become somewhat smaller, onlyS150.
The conclusion that smoothing of the field destroys EDL
of course consistent with the general EDL results.12

Thus, for smalla, the deviation of the field amplitude
from the EDL valueE5E1 for which S150 is very small.
Thus, if the smoothing is not too drastic, one can simply
the amplitude specified by the EDL results. This, of cour
is not true for strong smoothing, as is discussed in Sec.

TheSp can be evaluated analytically for anyj (t) that is a
polynomial in t. For example, forj (t)5tn, we find

I 5
1

~n11!2 S n21
2n

n12
1

1

2n13
2

~n11!2

3 D . ~3.9!

Thus, forn→0, I 50 as expected, whereas whenn→`, we
have I 52/3; for n51, I 52/15. It is easy to construct od
polynomials j m(t) of degreem such that the first (m21)/2
derivatives of the electric field are zero and thus continu
at t51; we use such polynomials in Sec. VI. For examp
for m55,

j 5~ t ![
15

8
t2

5

4
t31

3

8
t5, ~3.10!

we havej 58(1)5 j 59(1)50 andI 550/1287.0.039.
The results ofSp calculations are given in Fig. 3 for two

smoothing function j (t)[ j 1(t)5t and j (t)5 j sin(t)
[sin(pt/2). Results are given for both the series expans
and the numerical evaluation of Eq.~2.4!. There is clearly
16531
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excellent agreement for smalla, but for a*0.1 the power
series result is somewhat inaccurate, as expected. Forj sin(t),
we find thatI .0.0586 and thusSp is smaller than forj 1(t).
It can be shown that this is associated with the fact that
the sine function, the first derivative of the field is contin
ous. This is also consistent with the even smaller valueI
found for j 5(t).

Figure 4 gives numerical results for the fields of E
~2.11! with bÞ0. As a decreases, theSp initially decrease as
a3, consistent with Eq.~3.5!. However, for smalla all Sp

have the same modulus, which decreases linearly witha.
This behavior appears to be typical whenbÞ0. As b→0,
the value ofa where the crossover occurs becomes incre
ingly smaller as does the value ofuSpu. We thus conclude
that the square wave (b50) has advantages over all oth
members of family~2.11! in their behavior under smoothing
This is not surprising since, as discussed in connection w
Fig. 1, the discontinuities are smallest for the square wa

FIG. 3. uSpu vs a for the smoothedn51 square wave. Analytic
result for j (t)5t are given by solid circles (p51) and by solid
triangles (p52); associated numerical results from Eq.~2.4! are
given by short-dashed (p51) and long-dashed (p52) curves. Ana-
lytic result for j (t)5sin(pt/2) are given by open circles (p51) and
open triangles for (p52); associated numerical results are given
the solid (p51) and dotted (p52) curves.

FIG. 4. uSpu vs a for the smoothed field in Eq.~2.11! with n
51 and b50.39 and smoothing functionj (t)5sin(pt/2). Thick
lines are forp51 ~solid line!, p52 ~dotted line!, p53 ~short-
dashed line!, andp54 ~long-dashed line!. Thin lines are reference
curves:y(a)50.005a andy(a)55a3.
3-4
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IV. LIMITS ON ACCEPTABLE SMOOTHING

Now that we have the dependence of theSp on the degree
of smoothing, we determine the dependence of the elec
localization on theSp . We use this to determine the degr
to which we may depart from the ideal discontinuous fie
before DL is effectively destroyed.

For simplicity and without loss of generality, we take th
initial condition Bn(0)5dn,0 , so the electron is initially in
one Wannier state. Then, at timet, the probability of the
electron being in thenth Wannier state isPn(t)5uAn(t)u2
@see Eq.~2.3!#. We use this to determine the probability
the electron being in a state other thann50 at timet5,t.
Considering only fields that nearly yield EDL, we know th
ut«2pSp /\u!1. A first-order expansion of Eq.~2.3! in this
small quantity then gives

Am~,t!.dm,02 i (
p.0

,t«p

\
$Spdm,2p1Sp* dm,p%, ~4.1!

where we have used the fact that«p is real and«p5«2p . If
we defineP(nÞ0) to be the probability of finding the elec
tron not in then50 Wannier state at timet5,t, we obtain

P~nÞ0!.2(
p.0

F«p,t

\ G2

uSpu2. ~4.2!

This can be used to determine theSp to achieve a specified
degree of DL. In fact, if our field is a smoothed square wa
with amplitude such thatS150 @Eq. ~3.8!#, then Eq.~4.2!
gives

P~nÞ0!.2(
p.1

F«p,t

\
32p2I ~p221!a3G2

. ~4.3!

From this, we can determine the acceptable limits on
smoothing parametera for any band structure and evolutio
time ,t. As an example, we consider a GaAs/Ga0.7Al0.3As
superlattice with a well width of 8.5 nm, a barrier width
1.5 nm, a conduction-band offset of 400 meV, and an e
tron mass of 0.067 free electron masses.12 For this superlat-
tice, the first three band-dispersion Fourier coefficients
«1.25.75 meV,«2.0.54 meV, and«3.0.083 meV. Be-
causeu(p11)2«p11u/up2«pu!1, only the first few terms in
Eqs.~4.2! and~4.3! are important. This inequality holds gen
erally for symmetric superlattices. Requiring that there be
most a 10% probability of finding the electron outside
initial state after 5 ps—which is considerably longer than
usual dephasing time—we obtain the requirementuS2u
,0.056. Though this might seem rather stringent, forj sin(t),
this corresponds toa,0.1. This represents a large degree
smoothing, as up to 40% of the period may be taken up
the rise and fall of the field. In contrast, for a pure sine wa
whenS150, uS2u50.238, and hence for the same structu
we find P(nÞ0).1.9. Clearly the probability is now so
large that expression~4.2! breaks down. The poor perfor
mance of the sine field was demonstrated numerically in F
1 of Dignam and de Sterke.12
16531
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V. DL IN THE NNTB APPROXIMATION: ADL

We noted in Sec. II thatcontinuousac fields cannot yield
EDL. However, such fields can yield localization in th
NNTB approximation~ADL !; the sinusoidal field from Sec
II is an example. Here we examine the types of fields
which ADL occurs and derive the general properties of co
tinuous ac electric fields that yield ADL.

We write the field asE(t)5E0g(t), whereE(t) has pe-
riod t andE0 is the field amplitude. Thus from Eq.~2.2! we
haveg(t)5Vh(t/t), whereV[edE0 /\ and

h~x![E
0

x

g~tx8!dx8. ~5.1!

We chooseg(t) and E0 such thatuh(x)u<1 for all x, with
max@uhu#51. Using these definitions, we obtain

S15E
0

1

e2 iVh(x)dx. ~5.2!

We now determine the electric fields that guarantee t
S150 for some amplitudeV. EvaluatingS1 exactly requires
knowledge of the precise functional form ofh(x). However,
using the method of stationary phases,25 we can study the
general properties ofS1 and in many cases obtain an exce
lent approximation for it. The details of the application
this method of evaluatingS1 are given in the Appendix and
we just summarize the results here.

Let us assume thath8(x)50 for x5$x,%, where ,
51, . . . ,N and 0,x,<1, and letn, be the order of the
lowest-order nonzero derivative ofh at x5x, . Now, classify
the zeros according to whether the (n,)th derivative
h(n,)(x,) is positive or negative. This derivative is positive
the pointsx,

. (,51, . . . ,N1) and negative at the pointsx,
,

(,5N111, . . . ,N). We then obtain the asymptotic expa
sion

S1;H (
,51

N1 2GS 1

n,
Dexp@2 iVh~x,

.!#Rn,
~eip/2n,!

n,uVh(n,)~x,
.!u1/n,

1 (
,5N111

N 2GS 1

n,
Dexp@2 iVh~x,

,!#Rn,
~e2 ip/2n,!

n,uVh(n,)~x,
,!u1/n,

J ,

~5.3!

whereG(x) is the gamma function and

Rn,
~z![H z if n, is even,

Re~z! if n, is odd.
~5.4!

Attaining the conditionS150 for someV for a general
function h(x) is difficult since the real and imaginary par
of S1 must vanish simultaneously using only one degree
freedom (V). Thus, let us restrict ourselves to function
F(t) for which S1 is purely real~or can be made real! for all
V. It is easily shown thatS1 is real if E(t) is symmetric
about some timet0, i.e. E(t01t)5E(t02t); we refer to
3-5
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these assymmetric fields. The sine field is an example, wit
t05tx05t/4. For these symmetric fields, we haveg(t0
1t)5g(t0)2g(t02t), and thus using the periodicity o
g(t), for every maximum inh(x) at x,

. there is a corre-
sponding minimum atx,

,5mod@2x02x,
.,1# with h(x,

.)
5h(x0)2h(x,

,). Using periodicity, we are free to choos
t050, and sinceE(t) is the physical field, we can choos
g(t) such thatg(t0)50. Then,h(x,

.)52h(x,
,), and we

obtain for a general symmetric field

S1;2A2pReH (
,51

N/2 Rn,
~eip/2n,!

n,uVh(n,)~x,
.!u1/n,

exp@2 iVh~x,
.!#J .

~5.5!

Using this result, we now show that for most symmet
fields we find S150 for someV. Equation ~5.5! can be
written as

S1;(
$n,%

1

V1/n,
Gn,

~V!, ~5.6!

where the sum is over the zeros with different derivat
orders (n,) and

Gm~V![ (
,51

2Nm

C,
mexp@2 iVv,

m#, ~5.7!

wherev,
m5h(x,

m,.) with x,
m,. being the position of theNm

maxima for which the first nonzero derivative ofh(x) is
orderm and

C,
m[

A2pRm~e2 ip/2m!

muh(m)~x,
.!u1/m

for 1<,<Nm , ~5.8!

with C,1N1

m 5C,
m* . The C,

m are bounded complex coeffi

cients and21<v,
m<1.

From the mean-value theorem of almost perio
functions,26 the mean value ofGm(V) is given simply by
M @Gm#52 Re$C0

m%, whereC0
m is the coefficient of the ex-

ponential with frequencyv0
m50 ~if this exists! and the mean

is defined by

M @Gm#[ lim
T→`

1

TEq

q1T

Gm~V!dV, ~5.9!

which is independent ofq.26 Thus for functionsGm(V) for
which C0

m50 @g(tx,
m,.)Þ0# for all m, we have that

M @Gm#50. In addition, from Parceval’s theorem for almo
periodic functions,26 we know that

M @ uGmu2#52(
,51

Nm

uC,
mu2.0. ~5.10!

Furthermore, sinceGm(V)<2(,51
N1uC,u, we know that

the Gm(V) are bounded. Now, because the mean value@Eq.
~5.9!# is independent ofq, we see from Eq.~5.6! that for
large V, only the Gm with the largestm ~denoted bym8)
contributes significantly toS1. Thus, for largeV,
16531
S1;
1

V1/m8
Gm8~V!. ~5.11!

We know thatM @Gm8#50 and M@ uGm8u
2#.0. This can

only be true ifGm8(V) is positive over some ranges ofV
and negative over others. SinceGm8(V) is continuous,
Gm8(V)50 for someV.0. From Eq.~5.11! we therefore
also know thatS150 for someV.0. Thus, we have the
central result of this section:For any continuous symmetri
ac field, ADL occurs for at least one value of the field a
plitude E0 as long as the vector potentialg is nonzero when-
ever the electric field is zero.

To demonstrate the differences in the likelihood of findi
amplitudes that yield ADL for various symmetric and asym
metric electric fields, we considerS1 for the four fields
shown in Fig. 5. One of the fields is symmetric, another
almost symmetric, a third is symmetric but has one of
C0

2Þ0, and a fourth has no symmetry.
In Fig. 6~a! we plot S1 and the asymptotic expansion fo

S1 versusV for the symmetric field. Note that for a symme
ric field there are many field amplitudes that yield ADL.

FIG. 5. Functionh(x) for four different fields: symmetric~solid
line!, almost-symmetric~dotted line!, symmetric withC0

2Þ0 ~short-
dashed line!, and asymmetric~long-dashed line!. Inset shows the
associated electric fields.

FIG. 6. Dependence ofS1 on V for the fields in Fig. 5:~a! S1

for the symmetric field using the exact evaluation~solid line! and
the asymptotic expansion~dot-dashed line!; ~b! uS1u for the sym-
metric~solid line! and almost symmetric~dotted line! fields;~c! uS1u
for the asymmetric~solid line! and symmetric field withC0

2Þ0
~dotted line!.
3-6
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addition, these amplitudes do not generally have to be m
larger thanE1. The asymptotic expansion gives good es
mates for the zero crossings, onceV*20. The agreement is
even better for functions that are less steep such as the
wave. In Sec. VI, we discuss the reason for this.

In Fig. 6~b!, we plot uS1u for the symmetric and almost
symmetric fields. Note that the slight asymmetry has a mi
effect for smallV: though theuSpu no longer go exactly to
zero, their minima occur at essentially the sameV as the
zeros of the symmetric field and for the first three minim
uS1u,0.024. Using Eq.~4.2! we see that for a system with
bandwidth of 10 meV, within NNTB, we only requireuS1u
,0.037 to have a 90% of finding the electron in its initi
state after 5 ps.27 However, the asymmetry has a significa
effect for largeV, reducing greatly the number ofV for
which uS1u,0.037. Thus, having a small deviation from
symmetric field does not greatly affect the ADL for low
amplitude fields~small n), but this is not true for large-
amplitude fields.

Finally, in Fig. 6~c!, We plot uS1u for the asymmetric field
and the field for whichC0

2Þ0. For both fields,uS1u never
drops below 0.04 for theV plotted. The first asymmetric
field curve demonstrates the importance of the symmetr
the field. The results for theC0

2Þ0 field demonstrates th
importance of the condition that theg not vanish when the
field does.

VI. AREA THEOREM FOR SYMMETRIC FIELDS
WITH TWO ZEROS

We now consider an important class of electric field
those that are symmetric and that have only two sign chan
per period. An example isE(t)5E1sin(vt), discussed in Sec
II. We can now say much more about which of these fie
lead to ADL, and we can derive an approximate area theo
for ADL. This area theorem is very powerful in that, unlik
the area condition for EDL, there are no other conditions
the field.

Let us take the zeros of the ac field to occur at timest1
and t2 where g(t1).0 and of courseg(t2)52g(t1). Let
the order of the first nonzero derivative ofg(t) at the zero
crossings ben1. From Eq.~5.5!, we see that to haveS150
and for large field amplitude we require

FIG. 7. Area deviationDn vs a for the smoothed symmetric
square wave withj (t)5 j 5(t). Different curves correspond to dif
ferentn as indicated.
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Re$exp@2 ig~ t1!#Rm1
~eip/2n1!%50, ~6.1!

which yields

g~ t1!5pFn2
1

2
1

dn1

2n1
G , ~6.2!

wheren is a positive integer and

dm[H 1 if m is even,

0 if m is odd.
~6.3!

Defining the area between consecutive zeros as

An[U E
tx

ty
E~ t !dtU, ~6.4!

we find from Eq.~6.2! that for largeV

An;An~`![Fn2
1

2
1

dn1

2n1
G2p\/ed. ~6.5!

We thus obtain the area theorem for large-amplitude cont
ous ac fields that have only two zeros:In the limit of large
field amplitude, DL only occurs if the area under the tot
field curve between zeros is given by Eq. (6.5).

This area theorem differs from the area theorem for ED
Eq. ~2.10!, in two important ways. First, the present ar
theorem does not require additional stringent constraints
the functional form ofE(t), as is the case for EDL, the onl
constraint being that it be symmetric and have two zer
Second, the area between zeros that leads to ADL is diffe
from the area of 2pn\/ed between discontinuities to
achieve EDL. The difference between the ADL and ED
areas is smallest whenn152, for which An(`)5@n
2 1

4 #2p\/ed.
The validity of ADL area theorem~6.5! is easily seen for

sinusoidal fields, for which, according to Eq.~2.5!, ADL oc-
curs whenV/v is a root of the zeroth-order Bessel functio
For largeV these zeros are given byV/v5(n2 1

4 )p, which
gives an area between zero crossings of 2p(n2 1

4 ); this is
precisely our area theorem for ADL for the sine function~for
which n152).

We now turn to reconciling the EDL and ADL area the
rems. To do so, we define the area difference between
exact result and asymptotic ADL result:

Dn[
ed

2p\
@An2An~`!#. ~6.6!

In Fig. 7 we plot this area deviation as a functiona for the
symmetric square-wave function smoothed by the fifth-or
polynomial j 5(t) given by Eq.~3.10!. This field was chosen
because its derivatives are continuous up to second order
becausea can be used to vary the steepness of the field n
the zero crossings. Note that in all cases, asa becomes small,
the areas tend towards the EDL area (Dn51/4), whereas for
largea, the areas tend to the ADL area (Dn50). This is as
expected: for smalla we recover the square wave, where
3-7
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for large a we obtain a very smooth field. We note in pa
ticular that fora>0.2, all the areas exceptn51 are within
0.01 of the asymptotic value.

From the Appendix, we see that parameterQ, defined in
Eq. ~A9!, is a more natural parameter thana to measure the
steepness of the field near the zero crossings. For
smoothing function@such asj 5(t)], where the first deriva-
tives of g(t) that are nonzero whenE(t)50 are the second
and fourth (n152 andm154 in the language of the Appen
dix!, we have

Q5
uE-~0!u

uE8~0!u2

5E1t

3
. ~6.7!

ThusQ is a measure of the deviation from linear of the tim
dependence of the electric field at the zero crossings. In
8 we plot the area deviationDn as a function ofQ. We first
note that, remarkably, the points for differentn all fall onto
the same curve. For smallQ, Dn goes to zero linearly withQ
and we see that the asymptotic expansion result thatDn50 is
very accurate forQ,1 as expected.

WhenQ is large, we can use the results of Sec. III to g
an approximate result. As is seen in that section, ifa is not
too large, thenE.En . With this approximation, we have, fo
the j 5(t) function, Q.8/(9an). Furthermore, it is easily
seen from Eq.~3.1! that

An52atE~J~1!21!1Et/2. ~6.8!

Putting these results together we obtain

Dn.
1

4
2

10

9Q
, ~6.9!

which is shown as the dotted curve in Fig. 8. Note tha
captures the exact behavior quite well forQ.10. The failure
of Eq. ~6.9! whenQ is small demonstrates that the field am
plitude must deviate significantly from the EDL value ofE
5En when the productan is large.

We also plot in Fig. 8 the area deviationDn as a function
of Q for the symmetric square field with the smoothing fun

FIG. 8. Area deviationDn for the smoothed symmetric squa
wave vsQ. The symbols correspond to the results forj (t)5 j 5(t);
different symbols are for differentn as indicated in the legend. Th
solid curve is forj (t)5sin(pt/2). The dotted curve is the small-a
expansion~6.9! for j (t)5 j 5(t).
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tion j sin(t)[sin(pt/2). As can be seen, the behavior of th
curve is very similar to that of thej 5(t) smoothing function
in the limits of small and largeQ. For example, the maxi-
mum difference between the curves found forj 5(t) and
j sin(t) is less than 0.016. Thus, using, say, theDn(Q) curve
for the j 5(t) smoothing function would lead to at most a
error of 1.6% for the amplitude of field that gives ADL fo
the j sin(t) smoothing function.

For a pure sinusoidal fieldE(t)5E0 sin(vt), n152, m1
54, andQ520pv/6V. Now, ADL occurs for this function
whenV/v are the zeros of the zeroth-order Bessel functi
It is thus found thatQ!1 for field amplitudes associate
with the fourth zero or higher. This is why the asympto
expression for the location of the zeros is so good for
sinusoidal field as discussed earlier.

We finally note that the curve,Dn(Q), given in Fig. 8 is
essentially a universal curve for all functions withn152 and
m154 for which the fifth derivative of the electric field a
the zero crossings is small; this is why it works well f
square-wave fields with monotonic smoothing function
However, it is not a universal curve for all symmetric field
For example, because of their potentially larger fifth-ord
derivatives, electric fields that have multiple minima a
maxima do not in general yield ADL areas that are w
approximated by the solid line in Fig. 8. However, we fin
that the linear dependence ofDn(Q) for small Q in Fig. 8 is
universal for all symmetric electric fields withn152 and
m154.

VII. CONCLUSIONS

We have presented a detailed examination of the pro
ties of the electric fields that yield dynamic localization. W
began with a systematic discussion of ADL and EDL in p
riodic potentials in an applied periodic ac electric field. W
reiterated the recent results of Dignam and de Sterke,12 ac-
cording to which it is straightforward to find an indefinit
number of electric fields that yield EDL. All of these field
have the properties that~a! the electric field is discontinuou
when the field changes sign and that~b! the electric field area
between consecutive zero crossings is an integer multipl
2p\/ed.

We examined the tolerance of EDL to smoothing of t
electric field discontinuities. Localization arising from
square-wave ac electric fields was found to be surprisin
tolerant to smoothing, as indicated by Fig. 3. Other functio
leading to EDL, which have larger discontinuities, we
found to be less tolerant. We also found that even a squ
wave with very significant smoothing results in much bet
localization than a pure sine wave.

We also considered ADL—that is, DL in the NNTB
limit—and found a number of general results. First w
showed that all symmetric ac electric fields are guarantee
exhibit ADL for some value of the field amplitude as long
the vector potential and electric field are never zero simu
neously. This demonstrates that the earlier results show
that ADL can occur for sinusoidal fields23,24 and triangular
fields9 are not isolated cases, but can be considered exam
of a more general result.
3-8
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We also showed that for symmetric, large-amplitude el
tric fields with only two zeros per period, the area under
electric field curve between consecutive sign changes te
to 2p\(n21/4)/ed. Though the result is asymptotic—i.e
applies strictly only in the limit of large field strengths (n
→`)—it is in fact already remarkably accurate whenn is
small for many smooth functions, such as the commo
used sinusoidal field.23,24

We have ignored dephasing and coupling to higher ban
Although this is valid for many systems of interest, we pl
to investigate their effects on DL in future work. We ha
determined general trends and principles governing
rather than present an exhaustive examination of system
current interest. Although much of what is presented h
can be applied to any system, the details of the electric fi
are of course dependent on the method of generation an
system of interest. For such systems, one could use the
ciples outlined here to determine the general type of fi
that should yield EDL and then perform exact calculations
the Sp for the experimentally attainable field to optimize i
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APPENDIX: ASYMPTOTIC EXPANSION

Here we present some details of the asymptotic expan
of theSp . We begin with the definitiong(t)5Vh(t/t). Us-
ing this we obtain

S15E
0

1

e2 iVh(x)dx. ~A1!

We assume thath8(x)50 for x5$x,%, where,51, . . . ,N
and 0,x,<1. Now, we employ the method of stationa
phase25 by noting that for largeV, the only contributions to
the integral occur in small regions about the pointsx5x, .
Away from these, the phase in the integrand changes so
idly so as to average to zero. Thus, we expandh(x) about the
point x, as

h~x!5h~x,!1 (
n52

`
1

n!
h(n)~x,!~x2x,!n, ~A2!

where h(n)(x,) is the nth derivative of h evaluated atx
5x, . Thus, in the limit of largeV, S1 can now be approxi-
mated by

S1; (
,51

N

e2 iVh(x,)E
2`

`

expH 2 iV (
n52

`
h(n)~x,!

n!
~x2x,!nJ dx,

~A3!

where we have extended the integration over an infinite
terval by noting that the integrand only contributes whenx is
near thex, .

Let n, be the order of the lowest nonzero derivative oh
at x5x, . Now we classify the zeros according to wheth
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h(n,)(x,) is positive or negative. Assume that this derivati
is positive at the pointsx,

. (,51, . . . ,N1) and negative at
the points x,

, (,5N1 , . . . ,N). Then, performing the
integration,28 we obtain after some work the expressio
given by Eq.~5.3! in Sec. V. This can be rewritten in terms o
the electric field as

S1; (
,51

N1 2GS 1

n,
Dexp@2 ig~ t,

.!#Rn,
~eip/2n,!

n,@edtn,uE(n,21)~ t,
.!u/\#1/n,

1 (
,5N111

N 2GS 1

n,
Dexp@2 ig~ t,

,!#Rn,
~e2 ip/2n,!

n,@edtn,uE(n,21)~ t,
,!u/\#1/n,

,

~A4!

wheret,
.,,5tx,

.,, andE(n)(t) is thenth derivative of the
electric field with respect to time. In the usual case, where
second-order derivatives ofh(x) at the extrema are nonzero
this reduces to

S1;A2p

V H (
,51

N1 exp$ i @2Vh~x,
.!1p/4#%

Auh9~x,
.!u

1 (
,5N111

N exp$ i @2Vh~x,
,!2p/4#%

Auh9~x,
,!u J . ~A5!

It is useful to estimate the range of the validity of the
asymptotic results. Rather than pursue the general case
instead consider only symmetric electric fields with only tw
zeros per period. Letn1 be the order of the lowest nonzer
term in the expansion about the pointx1 and letm1 be the
order of the next lowest nonzero term. Thus, we can obta
somewhat better approximation toS1 than Eq. ~5.3! by
evaluating

S1;2 ReH e2 iVh(x1)E
2`

`

expF2 i
V

n1!
h(n1)~x1!~x2x1!n1

2 i
V

m1!
h(m1)~x1!~x2x1!m1G J dx. ~A6!

We now consider the parameter that characterizes whe
the second term in this expansion is necessary. The first t
in the expansion makes a significant contribution to the in
grand as long as

V

n1!
uh(n1)~x1!~x2x1!n1u,2ps, ~A7!

wheres is a factor that is on the order of 4–10. For larg
values of ux2x1u the integrand oscillates very rapidly an
makes negligible contributions. For the next term in the e
pansion to be negligible, we require that

uh(m1)~x1!un1! ux2x1um12n1

uh(n1)~x1!um1!
!1. ~A8!
3-9



n
cur-

is
e
d in

DOMACHUK, de STERKE, WAN, AND DIGNAM PHYSICAL REVIEW B66, 165313 ~2002!
Using Eq. ~A7! in Eq. ~A8!, and expressing the result i
electric field derivatives, we obtain the conditionQ!1,
where

Q[F20p\

ed G (m12n1)/n1 uE(m121)~ t1!/m1! u

uE(n121)~ t1!/n1! um1 /n1
, ~A9!
os

tte

tt.

, T
i

G.
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wheret15tx1 and we have chosens510. Thus, not surpris-
ingly, the asymptotic expression is good as long as the
vature of the electric field curve at the zero crossings
small. ParameterQ is useful as a variable to quantify th
deviation from the asymptotic expansion as is discusse
Sec. VI.
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