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Method of calculations for electron transport in multiterminal quantum systems
based on real-space lattice models
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A formalism for the calculations of electron transport in multiterminal quantum systems is presented. The
systems are described by tight-binding Hamiltonians. It is shown that by exploiting real-space Green’s func-
tions, a problem of the electron transport in a multiterminal system can be reformulated into a problem of the
electron transport in an effective two-terminal system and can then be treated using a standard two-terminal
method. Applications of the formalism to a three-terminal system, containing a quantum-confined, T-shaped
structure, and a four-terminal system, containing a quantum-confined, cross-bar structure, are also presented. It
is found that the transmission and reflection probabilities of the two multiterminal quantum systems show
complex spectra. The results are explained in terms of the localization properties of the confined states in the
systems.
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I. INTRODUCTION

The Landauer-Bu¨ttiker formulas1–4 play an essential role
in the study of electric properties of small systems where
size of structures is small, compared to the coherence len
For two-terminal electronic devices, it has been shown1–3,5

that the conductance of the devices, under the assumptio
spin degeneracy, can be expressed asG5(2e2/h)T, wheree
is the electron charge,h the Planck’s constant, andT the
transmission probability of the devices. Various metho
have been developed for numerical calculations of the tra
mission probabilityT, which include, e.g., mode-matchin
methods6–16 and recursive Green’s function technique.17–22

The electric properties of a multiterminal system can
analyzed in terms of various transmission probabilities
tween terminals using the Bu¨ttiker formula.4,23 Due to the
structure complexity in comparison with a two-terminal sy
tem, the calculations for the transmission probabilities h
mainly been carried out for relatively simple multitermin
systems.24–33As an example, Bu¨ttiker et al.24 derived a scat-
tering matrix for a three-terminal junction consisting of h
mogeneous wires, using a unitary condition and the assu
tion that the scattering matrix is real. This scattering ma
has an advantage that it can describe various three-term
junctions by changing a single coupling parameter, and it
been widely used.34–37A disadvantage of this formulation i
that the scattering matrix is energy independent and the
pling parameter has to be determined from phenomenol
cal arguments. Itoh32 derived an energy-dependent scatter
matrix for three-terminal junctions, and showed that his sc
tering matrix is an energy-dependent extension of the p
nomenological scattering matrix introduced by Bu¨ttiker et al.
However, the formulation is again made only for junctio
built from homogeneous wires.

In this paper, we present a general method to calcu
various transmission and reflection coefficients and the lo
density of states for multiterminal systems based on tig
binding models with fluctuating on-site energies in the sc
0163-1829/2002/66~16!/165305~11!/$20.00 66 1653
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tering region. The method treats the energy-dependent s
tering matrix at multiterminal junctions exactly. We wi
show that in general a problem of electron transport in
multiterminal system can be reformulated into a problem
the electron transport in an effective two-terminal syste
and can then be treated using a two-terminal method.
though in this work the formulation will be presented on
for three- and four-terminal systems, it can easily be gen
alized to any other multiterminal system. The formulati
can be applied to systems which contain, e.g., disor
and/or quantum confinement, such as quantum dots defi
by surrounding tunneling junctions. Disorder and quant
confinement have mostly been disregarded in previous
culations for multiterminal systems. The formulation c
also be generalized to include electron-electron interactio
much a similar way as we did in Ref. 38.

Examples of the calculations based on the present for
lation will also be given. These examples not only serve a
demonstration of the method, but they are also interes
from a physics point of view, in particular, those calculatio
in which multiterminal quantum-confined systems a
treated. It will be shown that the transmission and reflect
coefficients of multiterminal quantum-dot systems exhi
complex structures. It will also be shown that these comp
spectra can well be interpreted in terms of the local den
of states of the systems, calculated within the same fra
work of the tight-binding models by a real-space Gree
function method ~i.e., the Lanczos-Haydock recursio
method!.39,40Furthermore, it will be shown that the transmi
sion and reflection spectra of the multi-terminal systems
pend strongly on the position where other leads are attac
to an otherwise two-terminal system. This significant res
means that by sweeping contact position of a lead, one ca
principle map out the wavefunction of quantum states in c
fined structure by measuring transmissions.

II. FORMALISM AND APPLICATIONS

In this section, a formulation for the calculation of tran
mission and reflection probabilities of multiterminal system
©2002 The American Physical Society05-1
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will be presented. Tight-binding models are exploited in t
formulation. Without a loss of generality, the formulation
this work will only be carried out for systems with a sing
channel in each of the leads. This is because, using the
cept of eigenchannels, it has been shown that a multi
channel scattering problem can be decomposed into a s
uncoupled single-channel problems.41,42 In addition, single-
channel lead models have been widely and successfully
in the study of various two-terminal systems~for some recent
examples, see Refs. 38 and 42–47!.

We will begin in Sec. II A with an outline of the metho
of calculation for two-terminal systems based on a trans
matrix scheme. In principle, this formulation is quite eleme
tary, but we prefer to present it briefly here because we
lieve it to be useful to general readers. In Secs. II B and II
we will show how a problem of the electron transport
multiterminal systems can be treated by converting it into
effective two-terminal problem. In these two subsections
will give the formulation only for three- and four-termina
systems, but the generalization to other multiterminal s
tems will be straightforward. We will also present examp
of calculations after the formulation in each subsection.

A. Two-terminal system

As for calculation, we represent the system in a tig
binding picture. The two ideal wires are placed horizonta
on the left- and right-hand sides of an inhomogeneous
tem. These two ideal leads span lattice sites2`, . . . ,
2(NL12),2(NL11) and sitesNR11,NR12, . . . ,̀ , re-
spectively. The inhomogeneous system spans lattice
2NL , . . . ,21,0,1,2, . . . ,NR21,NR . The Hamiltonian of
the system is given by

H5 (
n52NL

NR

«n an
†an 2 (

n52NL

NR21

t~an11
† an1H.c.!

1 (
n<2(NL11)

«L an
†an2 (

n<2(NL12)
t~an11

† an1H.c.!

1 (
n>NR11

«R an
†an2 (

n>NR11
t~an11

† an1H.c.!

2vL~a2NL21
† a2NL

1H.c.!2vR~aNR

† aNR111H.c.!.

~1!

In the above equation,«n , with 2NL<n<NR , are the on-
site energies in the inhomogeneous region,«L and«R are the
on-site energies in the left- and the right-hand-side lea
respectively, andt is the hopping integral which can be re
lated to the lattice constanta and the electron effective mas
m* via t5\2/2m* a2.48 One can then write«n5«L5U0
12t for n<2NL21, «n5«R5U012t for n>NR11, and
«n5U01Un12t for 2NL<n<NR , whereU0 is the local
potential andUn is the shift of the potential in the inhomo
geneous region due to, e.g., impurities, a gate voltage
plied, or electron-electron interaction. In the present latt
model, the energy dispersion relation in the ideal leads re
E(k)5U012t@12cos(ka)#, while the electron velocityv in
16530
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the leads can be found from\v5]E/]k52at sin(ka).48 In
this work, we shall takea as the unit of length,t as the unit
of energy, andU050.

The eigensolutions of the Hamiltonian can be obtained
solving

Hc†5Ec†, ~2!

where

c†5 (
n52`

`

cnan
† . ~3!

It is elementary to show that the expansion coefficients,$cn%,
in Eq. ~3! satisfy the equation

~E2«n!cn1tn21cn211tncn1150, ~4!

wheretn5^n11uHun&5t, except forn5NR and2NL21,
for which tn5vR andvL , respectively. The above equatio
can be written as a matrix equation,

Fcn11

cn
G5M ~n,E!F cn

cn21
G , ~5!

where the matrixM (n,E), defined by

M ~n,E!5F 2
E2«n

tn
2

tn21

tn

1 0
G , ~6!

is the transfer matrix, which links the expansion coefficie
vector (cn11 ,cn)T to the expansion coefficient vecto
(cn ,cn21)T.

In a single ideal lead, the eigenfunctions are of the for
$exp(6ikna)%, where the terms with a positive~negative!
sign represent the right-~left-! going waves. In terms of thes
eigenfunctions, the solutions of the presently studied sys
in the two lead regions can be written as

cn5H ALeikLna1BLe2 ikLna, 2`,n<2~NL11!

AReikRna1BRe2 ikRna, NR11<n,`.
~7!

It can be shown that the coefficientsAR andBR are related to
the coefficientsAL andBL via the equation49

FAR

BRG5T~E!FAL

BLG , ~8!

where the transfer matrixT(E) is given by
5-2
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T~E!5Fe2 ikR(NR11)a 0

0 eikR(NR11)aG
3FeikRa e2 ikRa

1 1
G21

)
n5NR11

2(NL11)

M ~n,E!

3F 1 1

e2 ikLa eikLaGFe2 ikL(NL11)a 0

0 eikL(NL11)aG .

~9!

In the calculations, it is convenient to introduce a scatter
matrix S(E), and to rewrite Eq.~8! as

FAR

BLG5S~E!FAL

BRG . ~10!

It is straightforward to show that the scattering matrixS(E)
is related to the transfer matrixT(E) via

S11~E!5T11~E!2T12~E!T22
21~E!T21~E!,

S12~E!5T12~E!T22
21~E!,

S21~E!52T22
21~E!T21~E!,

S22~E!5T22
21~E!. ~11!

A unique solution of Eq.~2! can only be obtained after w
impose a boundary condition on the electron statec† of the
system. Here we are interested in such states that may c
the electric current through the inhomogeneous region fr
the left to the right. Thus the boundary condition, which
imposed on the statec†, is

AL51 andBR50. ~12!

Inserting this boundary condition into Eq.~10!, we immedi-
ately obtain

AR5S11~E!,

BL5S21~E!. ~13!

The reflectanceR and the transmission probabilityT are then
obtained from

R5uBLu2,

T5~vR/vL!uARu2512R, ~14!

where vR and vL are the electron velocity in the left- an
right-hand-side leads, respectively. In the next two subs
tions, we shall present the procedures of generalization o
above formalism to multiterminal systems. Here, in the f
lowing, we show examples of calculations for two-termin
systems based on the present formalism.

Figure 2 shows the calculations for the transmission
reflection probabilities of symmetric and asymmetric doub
barrier structures. In each structure, the confined part is m
eled by a piece of wire spanning ten lattice sites, as for
case ofNL55 and NR54 in the schematic shown in Fig
16530
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1~a!. In the calculations, the on-site energies at all the latt
sites «L , «R and «n , with n52NL ,2NL11, . . . ,NR
21,NR , are assumed to have a value of 2t. The parameters
of the couplings between the confined part and the two se
infinite leads are assumed to bevL5vR50.5t in the symmet-
ric structure, while in the asymmetric structure the para
eters of the couplings are assumed to bevL50.75t and vR
50.5t. Figures 2~a! and 2~b! show the results of the calcu
lation for the symmetric system, while Figs. 2~c! and 2~d!
show the results for the asymmetric system. It is seen tha
transmission probability of the symmetric system exhib
ten resonant peaks with the height of the unit. As a con
quence, the reflection probability of the system exhibits
dips with zero reflections occurring at the same energy p

FIG. 1. Lattice model for the two-terminal, quantum-confin
system:~a! the confined portion of the system with couplings to tw
semi-infinite leads described by parametersvL andvR , and~b! and
~c! the two leads.

FIG. 2. Transmission and reflection probabilities of the tw
terminal, quantum-confined system as shown in Fig. 1, calculate
a function of the electron energy. The confined part in each struc
is modeled by a wire spanning ten lattice sites.~a! and~b! show the
results of calculation for the symmetric system with the parame
of the couplings, between the confined part and the leads, b
assumed to bevL50.5t andvR50.5t. ~c! and ~d! show the results
of the calculation for the asymmetric system with the parameter
the couplings being assumed to bevL50.75t andvR50.5t. All the
on-site energies are assumed in the calculations to have a val
2t.
5-3
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H. Q. XU PHYSICAL REVIEW B 66, 165305 ~2002!
tions as the transmission peaks. These results are cons
with the fact the confined part in the system is modeled
ten lattice sites, and thus the system has ten resonant s
localized in between the two tunneling junctions. The t
transmission peaks and the ten corresponding reflection
are also seen in the calculation for the asymmetric struc
@see Figs. 2~c! and 2~d!#. However, all the transmission peak
are lowered in their peak values and the reflection dips
come shallower, when compared with the result shown
Fig. 2~a!, as expected for the asymmetric double-barrier s
tem. It is also seen in Figs. 2~c! and 2~d! that the transmis-
sion peaks and the reflection dips are broadened in t
widths. This is due to the fact that the tunneling paramete
vL has been increased from 0.5t to 0.75t in the asymmetric
structure, and thus the resonant states becomes less loca
in the region between the two tunneling junctions.

B. Three-terminal system

Now we present the formulation for the calculation
electron transport in three-terminal systems. Let us cons
a three-terminal system constructed by attaching three
fect leads to a T-shaped inhomogeneous region as show
Fig. 3. In the following, we will label the left-hand-side lea
as lead 1, the right-hand-side lead as lead 2, and the mi
vertical upper-side lead as lead 3. The couplings of the in
mogeneous region to the left-hand-side and right-hand-
leads are again given byvL andvR , while the couplings of
the inhomogeneous region to the vertical upper-side lead
given byvU . Since here the system is modeled by a latt
that extends into two dimensions, it is natural for us to us
double-integer (i , j ) scheme to label the lattice sites of th
system. In this work, we assign index (0,0) to the cross s
The inhomogeneous region spans horizontal lattice s
(2NL,0), (2NL11,0), . . . ,(NR21,0, (NR,0) and vertical
lattice sites (0,1), (0,2),. . . ,(0,NU), while the three perfec
leads span sites (n,0) with n<2(NL11), sites (n,0) with
n>NR11, and sites (0,n) with n>NU11, respectively.
The Hamiltonian of the system can be written in a fo
similar to that in Eq.~1!. However, the terms that describ
the vertical inhomogeneous region and the middle vert

FIG. 3. Lattice model for the three-terminal, quantum-confin
system. Here only the confined portion of the system with coupli
to three leads described by parametersvL , vR , and vU is given.
The three leads are defined similarly as in Fig. 1.
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lead as well as the coupling between them have to be
cluded. To be precise, we write the Hamiltonian of the thr
terminal system as

H5 (
n52NL

NR

«n,0 an,0
† an,0 2 (

n52NL

NR21

t~an11,0
† an,01H.c.!

1 (
n51

NU

«0,n a0,n
† a0,n 2 (

n50

NU21

t~a0,n11
† a0,n1H.c.!

1 (
n<2(NL11)

«L an,0
† an,02 (

n<2(NL12)
t~an11,0

† an,01H.c.!

1 (
n>NR11

«R an,0
† an,02 (

n>NR11
t~an11,0

† an,01H.c.!

1 (
n>NU11

«U a0,n
† a0,n2 (

n>NU11
t~a0,n11

† a0,n1H.c.!

2vL~a2NL21,0
† a2NL,01H.c.!2vR~aNR,0

† aNR11,01H.c.!

2vU~a0,NU

† a0,NU111H.c.!. ~15!

The scattering properties of the inhomogeneous sys
are described by the transmission probabilitiesTi j , defined
as the probabilities for electrons incident in leadj to be trans-
mitted into leadi, and the reflection probabilitiesRi i , de-
fined as the probabilities for incident electrons from leadi to
be reflected back into leadi. Let us first consider the calcu
lations for the transmissionsTi j . It is important to notice that
although each transmission is related to the process of e
tron transport passing only through two leads, the probab
for this process to take place is influenced by the presenc
coupling of the system to the third lead. Here we presen
formulation for an exact treatment of the problem based
the Hamiltonian given in Eq.~15!.

To illustrate the formulation clearly, we take the calcul
tion for the transmissionT21 as an example. Recall thatT21 is
defined as the probability for electrons incident from lead
~i.e., the left-hand-side lead! to be transmitted into lead 2
~i.e., the right-hand-side lead!. Let us first consider the cas
of NU50. In this case a vertical perfect lead is coupled
the site (0,0) of a horizontal inhomogeneous wire. As we
in the formulation for a two-terminal system, we expand t
eigensolutions of the three-terminal system as

c†5 (
n52`

`

cn,0an,0
† 1 (

n51

`

c0,na0,n
† . ~16!

Inserting this equation into the Schro¨dinger equation of the
system@Eq. ~15!# gives

~E2«21,0!c21,01tc22,01tc0,050,

~E2«1,0!c1,01tc0,01tc2,050,

~E2«0,0!c0,01vUc0,11tc21,01tc1,050,

vUc0,01~E2«0,1!c0,11tc0,250,

tc0,11~E2«0,2!c0,21tc0,350,

••••••••••••. ~17!

s

5-4
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Similarly as for the left-hand-side and right-hand-side perf
leads@cf. Eq. ~7!#, the solution in the middle vertical lea
~i.e., lead 3! can be written as

c0,n5AUeikUna1BUe2 ikUna, NU11<n,`. ~18!

Note that we have written Eq.~18! in its very general form.
However, here we will continue to consider the case ofNU
50. In the calculation for the transmissionT21, the bound-
ary condition imposed on the solution in lead 3 isBU50.
Using this boundary condition, we can eliminate all the c
efficients,$c0,n%, in Eq. ~17! and are able to write

~E2«21,0!c21,01tc22,01tc0,050,

~E2«1,0!c1,01tc0,01tc2,050,

@E2~«0,01«0,0
U !#c0,01tc21,01tc1,050,

••••••••••••, ~19!

where«0,0
U 5SU(E) in the case ofNU50, and

SU~E!5vU
2 GU~E! ~20!

is the self-energy due to the coupling of the horizontal inh
mogeneous wire to the semi-infinite perfect lead 3, a
GU(E), which satisfies

GU~E!5@E2«U2t2GU~E!#21, ~21!

is the Green’s function at the first site@i.e., site (0,1) in the
present case# of the lead. By solving for the Green’s functio
GU(E) from the recursive expression of Eq.~21!, one ob-
tains

GU~E!5
1

2t2
$~E2«U!2 i @4t22~E2«U!2#1/2%. ~22!

It is worth pointing out that using the energy dispersion
lation of the lead, the Green’s functionGU(E) can also be
written asGU(E)52t21exp(ikUa).

It is seen from Eq.~19! that the calculation for the trans
mission,T21, of the three-terminal system has now been s
cessfully converted to a calculation for the transmission of
effective two-terminal system. It is also seen that the eff
of the coupling of the horizontal inhomogeneous wire to
semi-infinite perfect lead 3 has now been included in
effective on-site energy«0,01«0,0

U through the self-energy
SU(E).

The above results@i.e., Eqs.~19!, ~20!, and ~21!# have
been derived for the case ofNU50. It can be shown tha
these results can be generalized to the case ofNUÞ0. Since
this derivation follows a rather similar procedure as for t
case ofNU50, here we only write down the results. In th
case ofNU>1, the same equation system as shown in
~19! has been obtained after eliminating all the expans
coefficients,$c0,n%. However, instead of Eq.~20!, «0,0

U in the
effective on-site energy,«0,01«0,0

U , is now given by
16530
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«0,0
U 5

t2

E2«0,12
t2

E2«0,22
t2

�

t2

E2«0,NU
2SU~E!

, ~23!

where the self-energySU(E)5vU
2 GU(E) and the Green’s

functionGU(E) are defined exactly in the same way as in t
case ofNU50, i.e., by Eqs.~20! and ~21!, respectively.

As we mentioned before, the equation system shown
Eq. ~19! does not contain any of the expansion coefficien
$c0,n%, associated with the lattice sites in the vertical porti
of the three-terminal system. Thus the formula derived
Sec. II A for the transmission of a two-terminal system c
be immediately applied to the calculation of the transmiss
T21 based on the effective two-terminal equation system@i.e.,
Eq. ~19!#. The procedure is briefly outlined as follows. W
rewrite Eq.~19! as

Fcn11,0

cn,0
G5M̃~n,E!F cn,0

cn21,0
G , ~24!

where the transfer matrix,M̃(n,E), is now given by

M̃~n,E!5F 2
E2Ẽn

tn
2

tn21

tn

1 0
G . ~25!

In the above equation,Ẽ05«0,01«0,0
U @recall that «0,0

U is
given by«0,0

U 5SU(E), i.e., Eq.~20!, for NU50, and by Eq.

~23! for NU>1], andẼn5«n,0 for nÞ0. tn is defined in the
same way as in Eq.~6!, i.e., tn5t, except forn5NR and
2NL21, for which tn5vR andvL , respectively. The trans
fer matrix, T(E), is obtained by replacing all the matrice
M (n,E) in Eq. ~9! with M̃(n,E). Finally, the transmission
T21 is calculated from

T215~vR/vL!uS11~E!u2, ~26!

where the scattering matrixS(E) is defined in the same wa
as in Eq.~10! and can simply be calculated from the matr
T(E) using the relation given in Eq.~11!.

A very similar formulation can be made for the transm
sion, T31, which is defined as the probability for inciden
electrons from lead 1~i.e., the left-hand-side lead! to be
transmitted to lead 3~the middle vertical lead!. The changes
that need to be made in an actual calculation are as follo
First, Ẽ05«0,01«0,0

U (E) in the matrix M̃(0,E) needs to be

replaced byẼ05«0,01«0,0
R (E) with
5-5
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«0,0
R 5

t2

E2«1,02
t2

E2«2,02
t2

�

t2

E2«NR,02SR~E!

,

~27!

where

SR~E!5vR
2GR~E! ~28!

is the self-energy due to the presence of the right-hand-
lead, and

GR~E!5@E2«R2t2GR~E!#21 ~29!

is the Green’s function at the first site@i.e., site (NR11,0)]
of the right-hand-side lead. Second,Ẽn5«n,0 in the matrix
M̃(n,E) needs to be replaced byẼn5«0,n for all n.0.
Third, recalculate the transfer matrixT(E), after all these
replacements are made, and the scattering matrixS(E) from
Eq. ~11!. Finally, calculate the transmissionT31 from

T315~vU/vL!uS11~E!u2, ~30!

wherevU is the electron velocity in the upper-side lead.
We shall now present the formulation for the calculati

of the reflectanceR11 of the three-terminal system. Her
three different, but equivalent, ways of formulation of t
problem are described. In the first two ways, the calculat
for R11 is carried out at the same time when the calculat
for the transmissionT21 or T31 is performed. This follows a
procedure which is rather similar to the calculation of t
reflectanceR for a two-terminal system. For example, in th
case when the transmissionT21 is calculated, after replacing
all matricesM(n,E) in Eq. ~9! by the matricesM̃(n,E)
given by Eq.~25!, we calculate both the submatricesS11 and
S21 using Eq.~11!. The transmission probabilityT21 is related
to the submatrixS11 via Eq.~26!, while the reflectanceR11 is
given by

R115uS21~E!u2. ~31!

In the case whenT31 is calculated, the same procedure
implemented, except thatẼ05«0,01«0,0

U needs to be replace

by Ẽ05«0,01«0,0
R and Ẽn5«n,0 needs to be replaced byẼn

5«0,n for all n>1.
A third way of the calculation of the reflectanceR11 ex-

ploits a very different procedure. In this third way, the refle
tanceR11 can be calculated directly from a simple formul
which is to be derived below, with no need for computing t
scattering matrixS(E). The derivation of the formula may
start from Eq.~19!. By eliminating all the coefficients,cn,0 ,
with n>1 in this equation, one obtains

~E2 «̃0,0!c0,01tc21,050,

~E2«21,0!c21,01tc22,01tc0,050,
16530
de
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-

~E2«22,0!c22,01tc23,01tc21,050,

••••••••••••, ~32!

where the effective on-site energy«̃0,0 at site (0,0) is given
by

«̃0,05«0,01«0,0
U 1«0,0

R . ~33!

Further successively eliminating coefficients,cn,0 , with n
50,21,•••,2NL in Eq. ~32! gives

@E2 «̃2(NL11),0#c2(NL11),01tc2(NL12),050, ~34!

where

«̃2(NL11),0

5«L

1
vL

2

E2«2NL,02
t2

E2«2(NL21),02
t2

�

t2

E2«21,02
t2

E2 «̃0,0

.

~35!

Thus an equation@i.e., Eq. ~34!# which contains only the
expansion coefficients at the lattice sites@2(NL11),0# and
@2(NL12),0# of the left-hand-side perfect lead has be
obtained. The coefficients at lattice sites of the left-hand-s
perfect lead can be generally written as

cn,05ALeikLna1BLe2 ikLna, 2`,n<2~NL11!.
~36!

By combining this equation with Eq.~34!, we readily obtain

BL52
E2 «̃2(NL11),01te2 ikLa

E2 «̃2(NL11),01teikLa
e22ikL(NL11)aAL. ~37!

Thus a simple relation for the amplitude of the reflect
wave BL, with the amplitude of the incoming waveAL, is
established. Using the boundary condition for the proble
AL51, and an equation similar to the formula shown in t
first line of Eq.~14!, we immediately obtain

R115UE2 «̃2(NL11),01te2 ikLa

E2 «̃2(NL11),01teikLa U2

. ~38!

We emphasize again that this simple formula for the cal
lation of the reflectanceR11 has been derived in a procedu
which is very different from the procedure exploited in th
first two ways, and is also different from the procedure us
in the derivation for the transmissionsT21 andT31.
5-6
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METHOD OF CALCULATIONS FOR ELECTRON . . . PHYSICAL REVIEW B 66, 165305 ~2002!
So far, we have discussed only the formulations for
transmission probabilitiesT21 andT31 and the reflectanceR11
of the three-terminal system. The formulations for the ot
scattering parameters~i.e., the transmission probabilitiesT12
andT32 and the reflectanceR22, as well as the transmissio
probabilities T13 and T23 and the reflectanceR33) of the
three-terminal system can be carried out similarly. Fina
we would like to note that three of the six transmissions m
also be obtained from the remaining three transmission
they are known, using the time-reversal symmetryTi j 5Tj i in
the absence of a magnetic field, and that the scattering
rameters satisfy the equationRi i 1( j (Þ i )Tj i 51 required by
the current conservation.

As an example of application of the formalism presen
in this subsection, we show in Fig. 4 the calculations for
transmission and reflection probabilities of a three-termin
quantum-confined system as shown in Fig. 3 with the str
ture parameters ofNL55, NR54, andNU53 and the cou-
pling parameters ofvL5vR5vU50.5t. Again, in the calcu-
lations, the on-site energies on all the lattice sites of
system have been assumed to have a value of 2t. It is seen

FIG. 4. Various transmission and reflection probabilities of
three-terminal, quantum-confined system as shown in Fig. 3, ca
lated as a function of the electron energy. The confined structu
modeled by a finite, T-shaped wire of 13 lattice sites. In the ca
lations, the structure parameters used areNL55, NR54, andNU

53; the three coupling parameters are set atvL50.5t, vR50.5t,
and vU50.5t; and all the on-site energies are assumed to hav
value of 2t. In the notations ofTi j andRii for the transmission and
reflection probabilities,i , j 51 stands for the left-hand-side lea
i , j 52 for the right-hand-side lead, andi , j 53 for the upper-side
lead.
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that the transmission and reflection probabilities show co
plicated spectra characterized by various sharp peaks or
except that the spectra are symmetric with respect toE
52t. By carefully examining the energy positions of all th
peaks and dips, we can identify 11 resonant states of
system. This seems to be inconsistent with what one wo
expect for the system: the system has 13 localized state
the confined region, as the region is modeled by a fin
T-shaped wire spanning 13 lattice sites. To understand
origin of this discrepancy, we have calculated the electro
structure of the system and have plotted, in Fig. 5~d!, the
partial density of states~PDOS! obtained by summing up the
local densities of states~LDOS’s! on all the 13 lattice sites o
the confined region~see, e.g., Ref. 40 for the method o
calculation!. The calculation shows clearly that only 11 lo
calized states are observable in the energy range of the
duction band of the perfect leads@see Fig. 5~d!#. Two other
localized states are found to have energies staying outsid
the conduction band of the perfect leads: one is at an en
below and the other one is at an energy above the conduc
band. Thus these two states cannot be seen as resonan
the transmission and reflection probabilities of the system

Figure 4 also shows that not all the 11 localized state
the energies within the conduction band of the perfect le
appear as resonances in every transmission or reflec
probability of the system. This arises from the fact that t
11 states do not have same localizations in the confined
gion @see Figs. 5~a!, 5~b!, and 5~c!#. For example, by com-
parison of Figs. 4~b! and 5~a!, we can find one-to-one corre
spondences between the sharp dips in the reflectanceR11 and
the peaks in the PDOS obtained by summing up the LDO

u-
is
-

a

FIG. 5. Partial density of states~PDOS! calculated for the same
three-terminal, quantum-confined system as in Fig. 3.~a! PDOS
obtained by summing up the local densities of states on the
lattice sites of left-hand-side portion of the quantum-confin
T-shaped wire.~b! PDOS on the four lattice sites of right-hand-sid
portion of the quantum-confined, T-shaped wire.~c! PDOS on the
three lattice sites of upper-side portion of the quantum-confin
T-shaped wire.~d! PDOS obtained by summing up the local den
ties of states on all the 13 lattice sites of the quantum-confin
T-shaped wire.
5-7
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H. Q. XU PHYSICAL REVIEW B 66, 165305 ~2002!
on the lattice sites in the left portion of the confine
T-shaped region. Thus the electrons incident from the l
hand-side lead can be more easily coupled into the confi
region and transmitted into the right-hand-side and/or upp
side lead, if there is a state, at the energy of the incid
electrons, which has a large localization in the left portion
the confined region. A similar one-to-one corresponden
can also be established between the sharp dips of reflect
R22 seen in Fig. 4~d! and the PDOS peaks seen in Fig. 5~b!,
as well as between the sharp dips of reflectanceR33 seen in
Fig. 4~f! and the PDOS peaks seen in Fig. 5~c!. Thus similar
explanations can be made for the dips seen in the reflec
probabilitiesR22 andR33. However, a peak in the transmis
sion probability can be seen only when there exists a stat
the energy of the incident electrons, with large localizatio
in both the portion of the confined region, connecting to
lead where the electrons are incident from, and in the por
of the confined region, connecting to the lead where the e
trons are transmitted into. For example, the transmiss
probability T21 from the left-hand-side lead to the righ
hand-side lead does not show a peak atE52t, although
there is a state at this energy which has a large localizatio
the left portion of the confined region@see Fig. 5~a!#. This is
because the state has a low PDOS on the right portion o
confined region @see Fig. 5~b!#. However, this state is
strongly localized in the upper portion of the confined reg
@see Fig. 5~c!#. As a consequence, the transmission proba
ity T31 from the left-hand-side lead to the upper lead show
strong peak atE52t @see Fig. 4~c!#.

C. Four-terminal system

The four-terminal system considered in the formulation
constructed, as shown in Fig. 6, by attaching four perf
leads to a cross-bar-shaped inhomogeneous region. The

FIG. 6. Lattice model for the four-terminal, quantum-confin
system. Here only the confined portion of the system with coupli
to four leads described by parametersvL , vR , vU , andvD is given.
The four leads are defined similarly as in Fig. 1.
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tem can also be viewed as an extension of the three-term
system~Fig. 3! discussed in the previous subsection. T
parameters of coupling of the inhomogeneous region to
left-hand-, right-hand-, upper-, and down-side leads~labeled
as leads 1 through 4! are denoted byvL , vR , vU , andvD ,
respectively~see Fig. 6!. We again use a double-integer (i , j )
scheme to label the lattice sites of the system and as
index (0,0) to the cross site. The inhomogeneous region n
spans horizontal lattice sites (2NL,0), (2NL
11,0), . . . ,(NR21,0), (NR,0) and vertical lattice sites (0
2ND), (0,2ND11), . . . ,(0,21), and (0,1),. . . ,(0,NU
21), (0,NU), while the four perfect leads span sites (n,0)
with n<2(NL11), sites (n,0) with n>NR11, sites (0,n)
with n>NU11, and sites (0,n) with n<2(ND11), respec-
tively. The Hamiltonian of the system can be written as

H5H3T1 (
n52ND

21

«0,n a0,n
† a0,n 2 (

n52ND

21

t~a0,n11
† a0,n1H.c.!

1 (
n<2(ND11)

«D a0,n
† a0,n2 (

n<2(ND12)
t~a0,n11

† a0,n1H.c.!

2vD~a0,2ND

† a0,2ND211H.c.!, ~39!

whereH3T is the Hamiltonian of the three-terminal syste
discussed in Sec. II B, and is given by Eq.~15!.

The scattering problem of the four-terminal system
again described by various transmission probabilitiesTi j and
reflection probabilitiesRi i , which are defined similarly as in
Sec. II B for a three-terminal system. The derivations
these scattering parametersTi j andRi i follow rather similar
procedures as in the case for the three-terminal syst
Therefore, only a brief description of the formulation for th
four-terminal system will be given.

We again consider the case of injection of electrons fr
the left, as an example. The eigensolutions of the fo
terminal system can be written as

c†5 (
n52`

`

cn,0an,0
† 1 (

n51

`

c0,na0,n
† 1 (

n52`

21

c0,na0,n
† . ~40!

The boundary conditions in the present case are

cn,05H ALeikLna1BLe2 ikLna, 2`,n<2~NL11!

AReikRna, NR11<n,`,
~41!

with AL51, and

c0,n5H AUeikUna, ~NU11!<n,`

BDe2 ikDna, 2`,n<2~NR11!.
~42!

We proceed first with our formulation for the transmissio
T21, which is defined as the probability for electrons incide
from the left to be transmitted to the right. To derive a fo
mula forT21, we need to reduce the Schro¨dinger equation of
the four-terminal system with the Hamiltonian given in E
~39! into the Schro¨dinger equation of an effective two
terminal system. This is done by inserting the eigensolut

s

5-8
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METHOD OF CALCULATIONS FOR ELECTRON . . . PHYSICAL REVIEW B 66, 165305 ~2002!
expansion of Eq.~40!, under the boundary conditions of Eq
~41! and ~42!, into the Schro¨dinger equation of the origina
four-terminal system, and by eliminating all the coefficien
c0,n , with nÞ0. The result is

~E2«21,0!c21,01tc22,01tc0,050,

~E2«1,0!c1,01tc0,01tc2,050,

@E2~«0,01«0,0
U 1«0,0

D !#c0,01tc21,01tc1,050,

••••••••••••, ~43!

with «0,0
U given by Eq.~23! and«0,0

D by

«0,0
D 5

t2

E2«0,212
t2

E2«0,222
t2

�

t2

E2«0,2ND
2SD~E!

,

~44!

where

SD~E!5vD
2 GD~E! ~45!

is the self-energy due to the presence of the down-side
fect lead, and

GD~E!5@E2«D2t2GD~E!#21 ~46!

is the Green’s function at the first site of the down-side le
Now, starting from the equation system shown in Eq.~43!, it
becomes straightforward to calculate the transmission of
four-terminal system,T21, by applying the formalism devel
oped in Sec. II A for a two-terminal system@also see Sec
II B and, in particular, Eq.~26!#.

The transmissions of the four-terminal system,T31 and
T41, can be calculated in similar procedures. However,
following changes need to be made. When the transmis
T31 is calculated,«0,0

U in Eq. ~43! needs to be replaced b
«0,0

R , which is given by Eq.~27!. While when the transmis
sionT41 is calculated,«0,0

D ~instead of«0,0
U ) in Eq. ~43! needs

to be replaced by«0,0
R .

Similar to the calculation for a three-terminal system, t
reflectance of the four-terminal system,R11, can be calcu-
lated with various equivalent methods. It can be calculate
the same time the transmissionT21 is calculated, by applying
the formalism developed in Sec. II A for a two-terminal sy
tem. It can also be obtained at the timeT31 or T41 is calcu-
lated. In addition, the reflectance of the four-terminal syste
R11, can straightforwardly be calculated from Eq.~38! with
«̃2(NL11),0 given by Eq.~35! and «̃0,0 in Eq. ~35! by

«̃0,05«0,01«0,0
U 1«0,0

D 1«0,0
R ~47!

instead of Eq.~33!.
16530
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Other scattering parameters of the four-terminal syst
are the transmission probabilities,Ti j with i 51,2,3,4, j
52,3,4, andiÞ j , and the reflection probabilities,Ri i with
i 52,3,4. These parameters can be obtained in the same
as described above for the calculations of the transmiss
T21, T31, andT41 and the reflectanceR11. Furthermore, after
a sufficient number of scattering parameters of the fo
terminal system are obtained, the remaining scattering
rameters can also be obtained using the time-reversal s
metry,Ti j 5Tj i , in the case of the absence of magnetic fie
and the current conservation,Ri i 1( j (Þ i )Tj i 51.

Again as an example of application of the present form
ism, we have calculated various transmission and reflec
probabilities of a four-terminal system, as shown in Fig.
with the structure parametersNL55, NR54, NU53, and
ND52, the coupling parametersvL5vR5vU5vD50.5t,
and the on-site energies 2t on all the lattice sites of the
system. The results of the calculation are presented in Fig
and 8. As in the calculations for the three-terminal syste
the transmission and reflection probabilities of the fo
terminal system show various sharp peaks or dips. Ove
13 resonant states can be identified from the spectra of

FIG. 7. Various transmission probabilities of a four-termin
quantum-confined system as shown in Fig. 6, calculated as a f
tion of the electron energy. Here the confined structure is mode
by a finite, cross-bar-shaped wire. In the calculations, the struc
parameters used areNL55, NR54, NU53, andND52; the four
coupling parameters are set atvL50.5t, vR50.5t, vU50.5t, and
vD50.5t; and all the on-site energies are assumed to have a v
of 2t. In the notations ofTi j , i , j 51 stands for the left-hand-sid
lead, i , j 52 for the right-hand-side lead,i , j 53 for the upper-side
lead, andi , j 54 for the down-side lead.
5-9
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H. Q. XU PHYSICAL REVIEW B 66, 165305 ~2002!
transmission and reflection probabilities. This result is c
sistent with the calculation for the PDOS, obtained by su
ming up the LDOS’s on all 15 lattice sites of the confin
region, shown in Fig. 9~e!, where 13 PDOS peaks corre
sponding to 13 localized states of the system are clearly s
in the energy range of the conduction band of the per
leads. Here we note that the confined, cross-bar-shaped
tem considered in this subsection has 15 localized sta
However, as in the three-terminal, T-shaped system stu
in Sec. II B, two of these 15 states, which do not appea
the calculated PDOS shown in Fig. 9~e!, are located at ener
gies below and above the energy band of the perfect le
respectively. Thus these two states cannot be seen as
nances in the transmission and reflection probabilities of
four-terminal system.

Figures 9~a!–9~d! show that the 13 localized states of th
system at energies within the conduction band of the per
leads are very different in their properties of localization. F
example, the state atE52t is largely localized in the left-
hand-side and upper-side portions of the quantum-confin
cross-bar structure, and contains little contributions from
orbitals on the lattice sites in the right-hand-side and dow
side portions of the quantum-confined, cross-bar struct
However, the states atE50.27t and 3.73t are seen to be
strongly localized on the left-hand-side portion of t
quantum-confined, cross-bar structure.

The reflectance spectra of the four-terminal syste
shown in Fig. 8, are seen to be very different from ea
other. However, all the dips in the reflectance spectra can
found to correspond to a peak in the PDOS’s shown in F
9~a!–9~d!. These one-to-one correspondences between
dips in the reflection probabilities and the peaks in
PDOS’s of the four-terminal system can be explained in
same way as in Sec. II B for the three-terminal system. T
various transmission peaks seen in Fig. 7 can also be
plained, as in the previous subsection, based on the loca
tion properties of the 13 localized states of the four-termi
system shown in Figs. 9~a!–9~d!.

FIG. 8. Various reflection probabilities of the same fou
terminal, quantum-confined system as in Fig. 7, as a function of
electron energy.
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III. SUMMARY AND CONCLUSIONS

In this paper, we have presented a formalism for calcu
tions of various properties of electron transport in multite
minal quantum systems. The systems were described by
tice models. By exploiting real-space Green’s functions,
have derived, for calculations of the transmission and refl
tion probabilities of each multiterminal system, various e
fective two-terminal systems. Thus the properties of elect
transport can be studied based on a standard two-term
method, such as the transfer-matrix or Green’s funct
method.

The formalism has been applied to a three-terminal s
tem, containing a quantum-confined, T-shaped structure,
a four-terminal system, containing a quantum-confin
cross-bar structure. The calculations reveal that the two m
titerminal systems show complex transmission and reflec
spectra. This is in strong contrast to the calculation fo
two-terminal double-barrier structure in which the transm
sion and reflection probabilities show regular resonant str

e

FIG. 9. Partial density of states~PDOS! calculated for the same
four-terminal, quantum-confined system as in Figs. 7 and 8.~a!
PDOS obtained by summing up the local densities of states on
five lattice sites of left-hand-side portion of the quantum-confin
cross-bar-shaped wire.~b! PDOS on the four lattice sites of right
hand-side portion of the quantum-confined, cross-bar-shaped w
~c! PDOS on the three lattice sites of upper-side portion of
quantum-confined, cross-bar-shaped wire.~d! PDOS on the two lat-
tice sites of down-side portion of the quantum-confined, cross-
shaped wire.~e! PDOS obtained by summing up the local densit
of states on all 15 lattice sites of the quantum-confined, cross-
shaped wire.
5-10
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METHOD OF CALCULATIONS FOR ELECTRON . . . PHYSICAL REVIEW B 66, 165305 ~2002!
tures. To understand the results of the calculations for
multiterminal systems, we have calculated partial densi
of states on the lattice sites of the confined regions. We h
found that the complexity of the transmission and reflect
spectra of the multiterminal systems arises from the fact
the confined states in the systems are localized in diffe
parts of the confined regions and can contribute very diff
ently to different transmission and reflection probabilities
the systems.

Our formalism can easily be generalized to treat vario
other multiterminal and/or complex systems. It can also
generalized to include electron-electron interactions and
-

-
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treat electron transport in multiterminal systems under fin
bias ~i.e., in the nonlinear response regime!. Some prelimi-
nary results of such generalizations have be
reported,38,50,51 and the detailed calculations will be pub
lished elsewhere.
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