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Method of calculations for electron transport in multiterminal quantum systems
based on real-space lattice models
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A formalism for the calculations of electron transport in multiterminal quantum systems is presented. The
systems are described by tight-binding Hamiltonians. It is shown that by exploiting real-space Green’s func-
tions, a problem of the electron transport in a multiterminal system can be reformulated into a problem of the
electron transport in an effective two-terminal system and can then be treated using a standard two-terminal
method. Applications of the formalism to a three-terminal system, containing a quantum-confined, T-shaped
structure, and a four-terminal system, containing a quantum-confined, cross-bar structure, are also presented. It
is found that the transmission and reflection probabilities of the two multiterminal quantum systems show
complex spectra. The results are explained in terms of the localization properties of the confined states in the
systems.
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[. INTRODUCTION tering region. The method treats the energy-dependent scat-
tering matrix at multiterminal junctions exactly. We will
The Landauer-Bitiker formulas™ play an essential role show that in general a problem of electron transport in a
in the study of electric properties of small systems where thénultiterminal system can be reformulated into a problem of
size of structures is small, compared to the coherence Iengtmed electrt?]n trzns?orttlré an _effect|tve tg/vo—tgrnrmal tﬁy(Sjtem,
For two-terminal electronic devices, it has been shiown ~ 2Nd can hen be treated using a two-terminal method. Al-
. . though in this work the formulation will be presented only
that the conductance of the devices, under the assumption f

. r three- and four-terminal systems, it can easily be gener-
2 1
spin degeneracy, can be expresse@Gas(2e“/h)7, wheree  jized to any other multiterminal system. The formulation

is the electron chargeh the Planck’s constant, an@i the  can be applied to systems which contain, e.g., disorder
transmission probability of the devices. Various methodsand/or quantum confinement, such as quantum dots defined
have been developed for numerical calculations of the transsy surrounding tunneling junctions. Disorder and quantum
mission probabilityZ, which include, e.g., mode-matching confinement have mostly been disregarded in previous cal-
method§8~® and recursive Green’s function technigife?? culations for multiterminal systems. The formulation can
The electric properties of a multiterminal system can bealso be generalized to include electron-electron interaction in
analyzed in terms of various transmission probabilities bemuch a similar way as we did in Ref. 38.
tween terminals using the "Biker formula®?® Due to the Examples of the calculations based on the present formu-
structure complexity in comparison with a two-terminal sys-lation will also be given. These examples not only serve as a
tem, the calculations for the transmission probabilities havélemonstration of the method, but they are also interesting
mainly been carried out for relatively simple multiterminal from & physics point of view, in particular, those calculations

system£4-33As an example, Bitiker et al?* derived a scat- I which multiterminal quantum-confined systems are
tering matrix for a three-terminal junction consisting of ho- treated. It will be shown that the transmission and reflection
mogeneous wires, using a unitary condition and the assumFSz_oefﬁcients of multiterminal quantum-dot systems exhibit

tion that the scattering matrix is real. This scattering matrixComplex structures. |t will also b? shown that these compk_ax
ectra can well be interpreted in terms of the local density

has an advantage that it can describe various three-terming tat f th ¢ lculated within th ‘
junctions by changing a single coupling parameter, and it hag' States ol the systems, calcuiated within the same rar’ne
been widely used*~3’A disadvantage of this formulation is work of the tight-binding models by a real-space Green's

that the scattering matrix is energy independent and the coJl—mCt'on method (i.e., the Lanczos-Haydock recursion

39,40 P el
pling parameter has to be determined from phenomenologmethod' Furthermore, it will be shown that the transmis

cal arguments. ItoR derived an energy-dependent scatterings'ion and reflection spectra of the multi-terminal systems de-
matrix for three-terminal junctions, and showed that his scatpend strongly on the position where other leads are attached

tering matrix is an energy-dependent extension of the phet-o an otherwise two-terminal system. This significant result

nomenological scattering matrix introduced byter et al. means that by sweeping cantact position of a lead, one can in
However, the formulation is again made only for junctions principle map out the wavefunction of quantum states in con-
built from’ homogeneous wires fined structure by measuring transmissions.

In this paper, we present a general method to calculate
various transmission and reflection coefficients and the local
density of states for multiterminal systems based on tight- In this section, a formulation for the calculation of trans-
binding models with fluctuating on-site energies in the scatmission and reflection probabilities of multiterminal systems

1. FORMALISM AND APPLICATIONS
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will be presented. Tight-binding models are exploited in thethe leads can be found frodw = JE/ k= 2at sinka).*® In
formulation. Without a loss of generality, the formulation in this work, we shall take as the unit of lengtht as the unit
this work will only be carried out for systems with a single of energy, andJ,=0.
channel in each of the leads. This is because, using the con- The eigensolutions of the Hamiltonian can be obtained by
cept of eigenchannels, it has been shown that a multiplesolving
channel scattering problem can be decomposed into a set of
uncoupled single-channel problefts'? In addition, single- R )
channel lead models have been widely and successfully used Hy =Ey, @)
in the study of various two-terminal systeiffisr some recent
examples, see Refs. 38 and 42347 where

We will begin in Sec. Il A with an outline of the method
of calculation for two-terminal systems based on a transfer- w
matrix scheme. In principle, this formulation is quite elemen- o= z c.al. 3)
tary, but we prefer to present it briefly here because we be- n=—o
lieve it to be useful to general readers. In Secs. Il B and Il C,
we will show how a problem of the electron transport in i glementary to show that the expansion coefficiefs,
multiterminal systems can be treated by converting it into an, Eq. (3) satisfy the equation
effective two-terminal problem. In these two subsections we
will give the formulation only for three- and four-terminal
systems, but the generalization to other multiterminal sys- (E—epcptty_1Choq1tt,Che1=0, (4)
tems will be straightforward. We will also present examples
of calculations after the formulation in each subsection. wheret,=(n+1|H|n)=t, except forn=Ng and — N, -1,

for which t,=vg anduv_, respectively. The above equation
A. Two-terminal system can be written as a matrix equation,

As for calculation, we represent the system in a tight-
binding picture. The two ideal wires are placed horizontally i1 c,
on the left- and right-hand sides of an inhomogeneous sys- [ }zM(n,E) } 5)
tem. These two ideal leads span lattice sites, ..., Cn Cn-1
—(N_+2),—(N_+1) and sitesNg+1Ng+2,... =, re-
spectively. The inhomogeneous system spans lattice siteghere the matriM(n,E), defined by
-N_,...,—1,0,1,2... Ngs—1Ngr. The Hamiltonian of
the system is given by

E-ey tho1
N Ng—1 M(n,E)= o, ot , (6)
H= > &, ala, — > t(a, ,a,+H.c) 1 0
n=—N_ n=—N_
+ > g ala,- > t@,,a,+Hc) is the transfer mgtnx, which links the expansion coefficient
n=-(N_+1) n<=-(N_+2) vector (€,.1,C,) to the expansion coefficient vector
(Cn ). . .
2 R ala,— 2 t(a;HanJr H.c) In a single ideal lead, the eigenfunctions are of the forms
=Ngr =Ngr {exp(xikna)}, where the terms with a positivehegative

sign represent the rightleft-) going waves. In terms of these
eigenfunctions, the solutions of the presently studied system
(1) in the two lead regions can be written as

t
—vL(a_NL_la_NLJr H-C-)_UR(aNRaNR+1+ H.c.).

In the above equatiory,, with — N, <n=<Ng, are the on-
site energies in the inhomogeneous regignande are the
on-site energies in the left- and the right-hand-side leads,
respectively, and is the hopping integral which can be re-

lated to the lattice constaatand the electron effective mass . R
m* via t=#%2m*a2.%8 One can then writes,= &, =U, It can be shown that the coefficier&& andBR are related to

+2t for n=—N, 1, e,=sg=Ugy+2t for n=Ng+1, and the coefficientA- andB* via the equatiof?

=Ug+U,+2t for =N =<n=<Ng, whereUy is the local
potentlal andU,, is the shift of the potential in the inhomo-
geneous region due to, e.g., impurities, a gate voltage ap-
plied, or electron-electron interaction. In the present lattice
model, the energy dispersion relation in the ideal leads reads
E(K)=Uy+2t[1—coska)], while the electron velocity in  where the transfer matriX(E) is given by

L A
ALelk na BLe—lk na, —OO<I’I$—(N|_+1)

(7)

Ch=

iKkR _ikR
ARelk nay BRe ik na Ng+l<n<o.

AR AL
BR}:T(E)[BL}’ 8
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e ikR(Ng+1)a 0 (a)
T(E)=
(E) 0 eikR(NR+1)a v, vg
ikR “ikRa]—1 —(N_+1)
glk'a gik7a L —N, -1 0 1 2 N1 N,
II ™MnE) g "o
1 1 n=Nr+1
ikt
y 1 1 e ik-(N_+1)a 0 (b) (C)
e-ikla  gikta 0 ek- (N +1)a |’
©) FIG. 1. Lattice model for the two-terminal, quantum-confined
In the calculations, it is convenient to introduce a scatteringystem:(@a) the confined portion of the system with couplings to two
matrix S(E), and to rewrite Eq(8) as semi-infinite leads described by parametgrsandvg, and(b) and
(c) the two leads.
AR At
BL =S(E) BRI’ (10 1(a). In the calculations, the on-site energies at all the lattice

sites ¢, eg and g,, with n=—N_,—N_ +1,... Ny
—1Ng, are assumed to have a value ¢f Zhe parameters
of the couplings between the confined part and the two semi-

It is straightforward to show that the scattering ma®pE)
is related to the transfer matrik(E) via

EV =T (E) =T AE T E)Tor(E infinite leads are assumed to be=vg= 0.5 in the symmet-
Su(B)=Tu(B) =Tl B) Tz (B)T(E), ric structure, while in the asymmetric structure the param-
E)=T,,(E)T;A(E). eters of the couplings are assumed tovhe=0.7% andvg
SiAB)=T1AE) T2, (E) =0.5. Figures 2a) and Zb) show the results of the calcu-
S,(E)= — T, HE)To(E) lation for the symmetric system, while Figs(c? and 2d)
! = S show the results for the asymmetric system. It is seen that the
Szz(E)=T2_21(E)- (11) transmission probability of the symmetric system exhibits

ten resonant peaks with the height of the unit. As a conse-
A unique solution of Eq(2) can only be obtained after we quence, the reflection probability of the system exhibits ten
impose a boundary condition on the electron stateof the  dips with zero reflections occurring at the same energy posi-
system. Here we are interested in such states that may carry

the electric current through the inhomogeneous region from 1
the left to the right. Thus the boundary condition, which is _ {b)
imposed on the statg’, is 8 0.8 §°'8
] . E 0.6 £0.6
— — (o]
Al=1 andBR=0. (12) 204 Lo4
Inserting this boundary condition into E(LO), we immedi- =02 o2
ately obtain oY (@) 0
0o 1 2 3 4 0 1 2 3 4
AR=S1(E), Energy (t) Energy (t)
1 1
B-=S,,(E). 13  sos 0.8
The reflectanc&® and the transmission probabilifyare then 206 506
obtained from 504 504
g T
R:|BL|2, =0.2 (C) o2 (d)
0 0
o 1 2 3 4 0 1 2 3 4
7= (0" ARZ=1-R, (14 Energy (1) Energy (1)

wherevR and o' are the electron velocity in the left- and
right-hand-side leads, respectively. In the next two subseq—elr
tions, we shall present the procedures of generalization of thgf
abo_ve formalism to multiterminal systems. Here, in the_fol-is modeled by a wire spanning ten lattice sit@s.and(b) show the
lowing, we show examples of calculations for two-terminal regits of calculation for the symmetric system with the parameters
systems based on the present formalism. of the couplings, between the confined part and the leads, being
Figure 2 shows the calculations for the transmission an@ssumed to be, =0.5 andvg=0.5. (c) and(d) show the results
reflection probabilities of symmetric and asymmetric double-of the calculation for the asymmetric system with the parameters of
barrier structures. In each structure, the confined part is modhe couplings being assumed toe=0.7% andvz=0.5. All the
eled by a piece of wire spanning ten lattice sites, as for then-site energies are assumed in the calculations to have a value of
case ofN =5 andNg=4 in the schematic shown in Fig. 2t.

FIG. 2. Transmission and reflection probabilities of the two-
minal, quantum-confined system as shown in Fig. 1, calculated as
unction of the electron energy. The confined part in each structure
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Yy lead as well as the coupling between them have to be in-
(0,N) cluded. To be precise, we write the Hamiltonian of the three-
terminal system as
¢ (0, N,—1) NR Np—1
H= E €no aﬁ,oan,o - 2 t(ag-#l,oan,o"_H-C-)
M (0’2) n:—NL n:—NL
Ny Ny—1
(0,1) + 21 €on ag,nao,n - EO t(ag,n-f—lao,n"" H.c)
n= n=
UL r
(=N;,0)  (-1,0) (0,0) (1,0) (2,0) (N, 0) + 2 s al@nem > @b @netHe)
ns—(N_+1) n=—(N_+2)

FIG. 3. Lattice model for the three-terminal, quantum-confined
system. Here only the confined portion of the system with couplings  +
to three leads described by parameters vy, andvy is given. n
The three leads are defined similarly as in Fig. 1.

T t
> er an ofno~ > t(an, 102,01t H.C)
N+ 1 n=Nrg+1

v

T T
+ 2 €y Qgpdon— E t(ao,n+1a0,n+H-C-)
n=Ny+1

. . . =N 1

tions as the transmission peaks. These results are consistent =Rt

with the fact the confined part in the system is modeled by —vL(aiNL,lyOa,NL'OJr H-C-)_UR(aLR,oaNRH,o‘F H.c)
ten lattice sites, and thus the system has ten resonant states ;

localized in between the two tunneling junctions. The ten  —vu(@on,aony+1HH.C). (15

transmission peaks and the ten corresponding reflection dips The scattering properties of the inhomogeneous system
are also seen in the calculation for the asymmetric structur@re described by the transmission probabilitigs defined
[see Figs. &) and 2d)]. However, all the transmission peaks as the probabilities for electrons incident in lgad be trans-

are lowered in their peak values and the reflection dips bemitted into leadi, and the reflection probabilitieR;; , de-
come shallower, when compared with the result shown irfined as the probabilities for incident electrons from le&al

Fig. 2a), as expected for the asymmetric double-barrier sysbe reflected back into lead Let us first consider the calcu-
tem. It is also seen in Figs(® and 2d) that the transmis- lations for the transmissiorig; . It is important to notice that
sion peaks and the reflection dips are broadened in the@ithough each transmission is related to the process of elec-
widths. This is due to the fact that the tunneling parameter offon transport passing only through two leads, the probability
v, has been increased from 08 0.73 in the asymmetric Or this process to take place is influenced by the presence of

structure, and thus the resonant states becomes less localiZgPling of the system to the third lead. Here we present a
in the region between the two tunneling junctions ormulation for an exact treatment of the problem based on

the Hamiltonian given in Eq15).

To illustrate the formulation clearly, we take the calcula-
tion for the transmissioff,; as an example. Recall th@; is
defined as the probability for electrons incident from lead 1

Now we present the formulation for the calculation of (i.e., the left-hand-side leado be transmitted into lead 2
electron transport in three-terminal systems. Let us considdi.e., the right-hand-side leadLet us first consider the case
a three-terminal system constructed by attaching three peof Ny=0. In this case a vertical perfect lead is coupled to
fect leads to a T-shaped inhomogeneous region as shown the site (0,0) of a horizontal inhomogeneous wire. As we did
Fig. 3. In the following, we will label the left-hand-side lead in the formulation for a two-terminal system, we expand the
as lead 1, the right-hand-side lead as lead 2, and the middiEgensolutions of the three-terminal system as
vertical upper-side lead as lead 3. The couplings of the inho- " "
mogeneous region to the left-hand-side and right-hand-side f_ + +
leads are again given hy, andvg, while the couplings of v _n;m Cn.o@no " nZ‘l Condon - (16
the inhomogeneous region to the vertical upper-side lead are . . L - .
given byvug Since herge the system is moorl)ged by a latticelNserting this equation into the Sclidioger equation of the
that extends into two dimensions, it is natural for us to use gystem[Eq. (19] gives

B. Three-terminal system

double-integeri(j) scheme to label the lattice sites of the (E—&_10C_1¢+tC_ogt1Ce=0,
system. In this work, we assign index (0,0) to the cross site.

The inhomogeneous region spans horizontal lattice sites (E—&10Cy 0t tCoottC0=0,
(=Ng,0), (=N_+1,0),...,(Nk—1,0, (Ng,0) and vertical

lattice sites (0,1), (0,2)...,(ONy), while the three perfect (E—&00)CoptvyCost1C 10t1tC10=0,

leads span siten(0) with n<— (N +1), sites ,0) with
n=Ngr+1, and sites (&) with n=Ny+1, respectively.
The Hamiltonian of the system can be written in a form tco1+ (E—£02)CoottCo3=0,

similar to that in Eq.(1). However, the terms that describe ' o ’

the vertical inhomogeneous region and the middle vertical ... . (17

vyCoot (E—&01)Coa111Co=0,
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Similarly as for the left-hand-side and right-hand-side perfect t2
leads[cf. Eq. (7)], the solution in the middle vertical lead &g =

(i.e., lead 3 can be written as t?
E_Soyl— t2
Con=AVelkna+ BUe- ka8 N +1<n<e. (18 E—eq0 :
Note that we have written E18) in its very general form. t2

However, here we will continue to consider the caseNgf
=0. In the calculation for the transmissi@p,, the bound-
ary condition imposed on the solution in lead 3B8=0.
Using this boundary condition, we can eliminate all the co-
efficients,{cq,}, in EQ.(17) and are able to write

E-con,-3V(E) " @3

where the self-energ®"(E)=v2GY(E) and the Green's
functionGY(E) are defined exactly in the same way as in the
case ofNy=0, i.e., by Eqs(20) and(21), respectively.

As we mentioned before, the equation system shown in
Eqg. (19) does not contain any of the expansion coefficients,
{con}, associated with the lattice sites in the vertical portion
of the three-terminal system. Thus the formula derived in
Sec. Il A for the transmission of a two-terminal system can
be immediately applied to the calculation of the transmission
"""""""" ) (19 7,1 based on the effective two-terminal equation sysfieen,

Eq. (19)]. The procedure is briefly outlined as follows. We
rewrite Eq.(19) as

(E—e_10C 10ttC_20T1tCo0=0,
(E - 81’0) C1’0+ tC0’0+ tCZ,O: 0,

[E— (00t &g 1Coo+tC 10t tC1 =0,

whereeg o=3Y(E) in the case oNy=0, and

2Y(E)=v{GY(E) (20
. . . . Ch+10| ~ Cno
is the self-energy due to the coupling of the horizontal inho- =M(n,E) , (29
mogeneous wire to the semi-infinite perfect lead 3, and n,0 Cn-10
GY(E), which satisfies
where the transfer matriM(n,E), is now given by

GY(E)=[E-ey—t’GY(E)] ™, (21)
is the Green’s function at the first sifee., site (0,1) in the E-E, th_q
present cageof the lead. By solving for the Green'’s function ~ N B 2
GY(E) from the recursive expression of E(21), one ob- M(n,E)= n ol (29)
tains 1 0

GU(E)=i{(E—su)—i[4t2—(E—8U)2]l/2}. (22) Iq the abgve equatiquE0=soyo+sg'0 [recall thats(‘){O is
2t? given byeg (=3"(E), i.e., Eq.(20), for Ny=0, and by Eq.
(23 for Ny=1], andE,=s,, for n#0. t, is defined in the

It is worth pointing out that using the energy dispersion re-come way as in Eq6), i.e. t,=t, except forn=Ng and

lation of the lead, the Green’s functic®V(E) can also be TN . o .
written asGY(E) = —t - texp(kUa), N_—1, for whicht,=vg andv, , respectively. The trans-

It is seen from Eq(19) that the calculation for the trans- fer matrix, T(E), is obtained by replacing all the matrices

mission, 73, of the three-terminal system has now been sucM(n.E) in Eq. (9) with M(n,E). Finally, the transmission
cessfully converted to a calculation for the transmission of arf21 IS calculated from

effective two-terminal system. It is also seen that the effect

of the coupling of the horizontal inhomogeneous wire to the To= (uRlut E)[2 26
semi-infinite perfect lead 3 has now been included in the 2= (WHoD)|Su(B)I% (26)

effective on-site energy o+ sgo through the self-energy ) ) ] .
SY(E). ’ where the scattering matri¥(E) is defined in the same way

The above result§i.e., Egs.(19), (20), and (21)] have @S in Eq..(lo) and can simply t_)e calculated from the matrix
been derived for the case df,=0. It can be shown that T(E) using the relation given in E11). _
these results can be generalized to the casé of 0. Since A very similar formulation can be made for the transmis-
this derivation follows a rather similar procedure as for theSion, 71, which is defined as the probability for incident
case ofN,=0, here we only write down the results. In the €lectrons from lead Ii.e., the left-hand-side leado be
case ofN, =1, the same equation system as shown in Eq'_[ransmltted to lead BIh(_e middle vertical Iea)q The changes
(19) has been obtained after eliminating all the expansiorfhat need to be rrJade in an actual calculation are as follows.
coefficients{co,}. However, instead of Eq20), egqin the  First, Eg=go0t & (E) in the matrixM(0,E) needs to be
effective on-site energyo o+ 85{0, is now given by replaced byEq=¢q ot g&O(E) with
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t2 (E_8_Z’O)C_2’0+tc_3’0+tc_1’0: 0,
80,02 t2 L
Ee1o — e , (32)
E—eo0 - where the effective on-site ene@m at site (0,0) is given
. by
t2
E_SN O_ER(E) (27) 80’0280‘0"' Sg’0+850. (33)
Rv
Further successively eliminating coefficients, o, with n
where =0,—-1,--,—N_ in Eq. (32) gives
_.2 ~
3R(E)=vrGR(E) (28 [E—e_(n +1)0lC— (N +1).0TtC- (N +2)0=0, (34
is the self-energy due to the presence of the right-hand-sidgere
lead, and
GR(E)=[E—er—t?GR(E)]? (29  F-tNurDo
is the Green’s function at the first sifee., site (Ng+1,0)] =g,
of the right-hand-side lead. Secorﬁ,,,:sn,o in the matrix )
M(n,E) needs to be replaced bi,=eq, for all n>0. n UL
Third, recalculate the transfer matrix(E), after all these t2
replacements are made, and the scattering m&(i) from E—e N0~ 2
Eq. (11). Finally, calculate the transmissidf, from E—e_(n,-1)0" .
Ta1=(w"Iv")[Su(E)[%, (30) t2
wherevV is the electron velocity in the upper-side lead. t2
We shall now present the formulation for the calculation E-e_10-—=.
of the reflectanceR; of the three-terminal system. Here, ~€o0
three different, but equivalent, ways of formulation of the (35)

problem are described. In the first two ways, the calculatior]]_

for Rq4 is carried out at the same time when the calculation hus an equatipriji.e., Eq. (34)] \.Nhich contains only the
for the transmissiory,, or 73, is performed. This follows a expansion coefficients at the lattice sifes(N, +1),0] and

procedure which is rather similar to the calculation of thel ~(NL+2),0] of the left-hand-side perfect lead has been
reflectanceR for a two-terminal system. For example, in the obtained. The coefficients at lattice sites of the left-hand-side

case when the transmissi@p, is calculated, after replacing perfect lead can be generally written as

a!l matricesM(n,E) in Eq. (9) by the matricesl\N/I(n,E) cn O:ALeikLna+ BLe—ikLna, —w<n=—(N_+1).
given by Eq.(25), we calculate both the submatricBg and ’ (36)
S,; using Eq.(11). The transmission probability,, is related o ) ) _ ) _
to the submatrixs;; via Eq.(26), while the reflectanc®,,is ~ BY combining this equation with Eq34), we readily obtain
given by

~ L
E_S,(NL+1)Y0+te ik-a

ikt
R11=Su(E)|?. (31) B-=— e 2kE(NLThapl (37

In the case wherv;; is calculated, the same procedure is

implemented, except th?ﬂo=soo+sgoneeds to be replaced Thus a simple relation for the amplitude of the reflected

= _ R = ' = wave Bt, with the amplitude of the incoming waw', is
tiysEo?oioéolTﬁ&"land En=2n0 needs to be replaced B opapished. Using the boundary condition for the problem,
—<0n =4

. . Al=1, and an equation similar to the formula shown in the
A third way of the calculation of the reflectan@g,; ex- Co : : ;
ploits a very different procedure. In this third way, the reflec-flrSt line of Eq.(14), we immediately obtain

~ L
E_S,(NL+1)Y0+telk a

tanceRq; can be calculated directly from a simple formula, E_% “iklal 2
. . . . . 8—(N +1)‘0+te

which is to be derived below, with no need for computing the Roi= L (38)

scattering matrix3(E). The derivation of the formula may 1 E-% (v 1) ek a

start from Eq.(19). By eliminating all the coefficients;,, o, L

with n=1 in this equation, one obtains We emphasize again that this simple formula for the calcu-
lation of the reflectanc®, has been derived in a procedure

(E—Eo,o)Co,oHC—l,o: 0, which is very different from the procedure exploited in the
first two ways, and is also different from the procedure used
(E—e_10C_10ttC_opttCoo=0, in the derivation for the transmissiofs; and 75 .
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o
% 1 2 3 4 % 1 2 3 4 l W 0
0 1 2 3 4 0 1 2 3 4
Energy (1) ; Energy (1) Energy (t) Energy (t)
Sos (e) T32’ T23 @08 (f) Rss FIG. 5. Partial density of statd®DOS calculated for the same
2 0.6 S 0.6 three-terminal, quantum-confined system as in Fig(aB.PDOS
I B obtained by summing up the local densities of states on the five
% 04 % 04 lattice sites of left-hand-side portion of the quantum-confined,
=02 o2 T-shaped wire(b) PDOS on the four lattice sites of right-hand-side
0 0 portion of the quantum-confined, T-shaped wif@. PDOS on the
0 1 2 3 4 0 1 2 3 4 three lattice sites of upper-side portion of the quantum-confined,
Energy (t) Energy (1) T-shaped wire(d) PDOS obtained by summing up the local densi-

) o . ties of states on all the 13 lattice sites of the quantum-confined,
FIG. 4. Various transmission and reflection probabilities of theT_ghaped wire.

three-terminal, quantum-confined system as shown in Fig. 3, calcu-
lated as a function of the electron energy. The confined structure ighat the transmission and reflection probabilities show com-
modeled by a finite, T-shaped wire of 13 lattice sites. In the calcuplicated spectra characterized by various sharp peaks or dips,
lations, the structure parameters used Mje=5, Nr=4, andNy  except that the spectra are symmetric with respecE to
=3; the three coupling parameters are sebat 0.5, vg=0.8, =2t By carefully examining the energy positions of all the
andv=0.5; and all the on-site energies are assumed to have Peaks and dips, we can identify 11 resonant states of the
value of 2. In the notations off;; andR; for the transmission and v 1o This seems to be inconsistent with what one would
reflection probabilities),j=1 stands for the left-hand-side lead, oot for the system: the system has 13 localized states in
1,j=2 for the right-hand-side lead, an¢j=3 for the upper-side o confined region, as the region is modeled by a finite
lead. T-shaped wire spanning 13 lattice sites. To understand the
origin of this discrepancy, we have calculated the electronic
So far, we have discussed only the formulations for thestructure of the system and have plotted, in Fifd)5the
transmission probabilitie®,, and 73, and the reflectancR,;  partial density of stated®DOS obtained by summing up the
of the three-terminal system. The formulations for the othellocal densities of statesDOS'’s) on all the 13 lattice sites of
scattering parametefge., the transmission probabiliti€g,  the confined region(see, e.g., Ref. 40 for the method of
and7s, and the reflectanc®,,, as well as the transmission calculation. The calculation shows clearly that only 11 lo-
probabilities 7,53 and 7,3 and the reflectanc&;;) of the  calized states are observable in the energy range of the con-
three-terminal system can be carried out similarly. Finally,duction band of the perfect leafisee Fig. %d)]. Two other
we would like to note that three of the six transmissions mayocalized states are found to have energies staying outside of
also be obtained from the remaining three transmissions, ihe conduction band of the perfect leads: one is at an energy
they are known, using the time-reversal symméfjy-7;; in below and the other one is at an energy above the conduction
the absence of a magnetic field, and that the scattering p&and. Thus these two states cannot be seen as resonances in
rameters satisfy the equatid®y; +=;(.yZ;;=1 required by the transmission and reflection probabilities of the system.
the current conservation. Figure 4 also shows that not all the 11 localized states at
As an example of application of the formalism presentecdthe energies within the conduction band of the perfect leads
in this subsection, we show in Fig. 4 the calculations for theappear as resonances in every transmission or reflection
transmission and reflection probabilities of a three-terminalprobability of the system. This arises from the fact that the
guantum-confined system as shown in Fig. 3 with the strucil states do not have same localizations in the confined re-
ture parameters dii, =5, Ng=4, andNy=3 and the cou- gion [see Figs. &), 5(b), and %c)]. For example, by com-
pling parameters o =vg=vy=0.%. Again, in the calcu- parison of Figs. ) and Ja), we can find one-to-one corre-
lations, the on-site energies on all the lattice sites of thespondences between the sharp dips in the refleclpcand
system have been assumed to have a value oft2s seen the peaks in the PDOS obtained by summing up the LDOS's

165305-7



H. Q. XU PHYSICAL REVIEW B 66, 165305 (2002

v tem can also be viewed as an extension of the three-terminal
v system(Fig. 3) discussed in the previous subsection. The
(0, Ny,) parameters of coupling of the inhomogeneous region to the
left-hand-, right-hand-, upper-, and down-side leddbeled
¢ (0, Ny—1) as leads 1 through)4are denoted by, , vg, vy, andvp,
: respectively(see Fig. 6. We again use a double-integerj(
(0,1) scheme to label the lattice sites of the system and assign
v, (0,0) vy index (0,0) to the cross site. The inhomogeneous region now
------------ spans horizontal lattice  sites —(N_,0), (—N_
(=NN;,0) (1,0) (1,0) (2,0) (N, 0) +1,0),...,(Nrk—1,0), (Ng,0) and vertical lattice sites (O,
(0, 1) —Np), (0,—Np+1),...,(0~1), and (0,1),..,(0ONy
—1), (ONy), while the four perfect leads span sites@)
(0, -2) with n<—(N_+1), sites 0,0) withn=Ngr+ 1, sites (0y)
: with n=Ny+1, and sites (@) with n<—(Np+1), respec-
: (0, =N, +1) tively. The Hamiltonian of the system can be written as
-1 -1
(0, =Np) H=HT+ 3 eonabedon — 2 t(aby.1800+H.C)
vp n=—Np n=-Np
FIG. 6. Lattice model for the four-terminal, quantum-confined + > €p ag,nao,n_ > t(agyn+1aoyn+ H.c)
system. Here only the confined portion of the system with couplings n=-(Np+1) n=-(Np+2)
to four leads described by parameters v, vy, andvp is given.
The four leads are defingdpsimilarly[as i?\ Fi;. 1. P9 _UD(aa*NDaOfND’1+ H.c), (39

. L _ . whereH3T is the Hamiltonian of the three-terminal system
on the lattice sites in the left portion of the Conf'ned’discussed in Sec. Il B, and is given by E@5).

T'Shap.ed region. Thus the eIect_rons "‘C‘def‘t from the I_eft- The scattering problem of the four-terminal system is
hand-side dlead can bg _moreheas_n% cr(])upcljed_énto trc'; confinegyain described by various transmission probabilifigsnd
region and transmitted into the right-hand-side and/or Uppelrafieciion probabilitiesk;; , which are defined similarly as in
side lead, if there is a state, at the energy of the inciden

) TR . ec. II B for a three-terminal system. The derivations for
electron§, which has a Iargg localization in the left portion Ofthese scattering parametefs and R;; follow rather similar
the confined region. A similar one-to-one qurESpondence%ocedures as in the case for the three-terminal system.
can also k_)e e.stabllshed between the sharp d|ps_ of r.eflectan erefore, only a brief description of the formulation for the
R,, seen in Fig. 4) and the PDOS peaks seen in Figh)5

I b he sh di f reflectam . four-terminal system will be given.
as wel as between the sharp dips of reflectaRgeseen in We again consider the case of injection of electrons from

Fig. 4f) "?‘”d the PDOS peaks seen i_n Figc)ST_hus similar . the left, as an example. The eigensolutions of the four-
explanations can be made for the dips seen in the reﬂec“%rminal system can be written as

probabilitiesR,, and R;;. However, a peak in the transmis-

sion probability can be seen only when there exists a state, at o * -1
the energy of the incident electrons, with large localizations = > c,al o+ >, copabnt > Condpn. (40)
in both the portion of the confined region, connecting to the n=-e ©on=1 Ton=-= '

lead where the electrons are incident from, and in the portioR-,, boundary conditions in the present case are

of the confined region, connecting to the lead where the elec-

trons are transmitted into. For example, the transmission Aleiktnay pla-ikina  _cocn< — (N, +1)
probability T,; from the left-hand-side lead to the right- Cno l . '

hand-side lead does not show a peakEat2t, although ARgik™na, Nr+1lsn<o,

there is a state at this energy which has a large localization in (41)
the left portion of the confined regidsee Fig. $a)]. This is with AL.=1  and

because the state has a low PDOS on the right portion of the '
confined region[see Fig. ®)]. However, this state is AueikUna (Ny+1)sn<w
strongly localized in the upper portion of the confined region On:l ’

[see Fig. &)]. As a consequence, the transmission probabil-

ity T3, from the left-hand-side lead to the upper lead shows a , . . o
strong peak aE=2t [see Fig. 4c)]. We proceed first with our formulation for the transmission,

751, which is defined as the probability for electrons incident
from the left to be transmitted to the right. To derive a for-
mula for7;;, we need to reduce the Sckinger equation of
The four-terminal system considered in the formulation isthe four-terminal system with the Hamiltonian given in Eq.
constructed, as shown in Fig. 6, by attaching four perfect39) into the Schrdinger equation of an effective two-
leads to a cross-bar-shaped inhomogeneous region. The sysfrminal system. This is done by inserting the eigensolution

_ 42
BPe~k°na  —w<n<—(Ng+1). 42

C. Four-terminal system

165305-8



METHOD OF CALCULATIONS FOR ELECTRON.. .. PHYSICAL REVIEW B 66, 165305 (2002

expansion of Eq(40), under the boundary conditions of Egs. 1 1
(41) and (42), into the Schrdinger equation of the original  5os| (@ T, T, Sogf (0 Ta Tig
four-terminal system, and by eliminating all the coefficients, @ 0.6 a 06
Con, With n#0. The result is = E
‘ @ 0.4 @04
(E—e_19C_10ttC_sottCoo=0, S 0.2 S 0.2
0 0
(E_Sl‘o)C1’0+tCO’0+tC2’0: 0, 0 1 2 3 4 0 1 2 3 4
Energy (t) Energy (t)
[E_ (80’0+ 8U + SDO)]COV()"' tC_1’0+ tC]_’O: 0,
00" "0 Sos ©) Tor Tha 508 (d) Top Tog
[77] (5]
............ 206 906
’ e
with &5, given by Eq.(23) ande?, by S S
’ ’ = 0.2 = 02
t2 0 0
&0 = 0 1 2 3 4 0 1 2 3 4
0.0 t2 Energy (1) Energy (1)
E-go-1~ 2 ! ’
E—ey o t 508 ©) Typ Ty 508 M Ty Tay
' Bo6 B o6
t2 £ E
% 04 % 04
E_80,fND_2D(E) ' |:0.2 |:0.2
(44) 0 0
0 1 2 3 4 0 1 2 3 4
where Energy (1) Energy (t)
ED(E)zv%GD(E) (45) FIG. 7. Various transmission probabilities of a four-terminal,

guantum-confined system as shown in Fig. 6, calculated as a func-
is the self-energy due to the presence of the down-side petion of the electron energy. Here the confined structure is modeled

fect lead, and by a finite, cross-bar-shaped wire. In the calculations, the structure
parameters used aMy =5, Ng=4, Ny=3, andNp=2; the four
GP(E)=[E—¢ep—t?GP(E)] ! (46)  coupling parameters are setwgt=0.5, vg=0.5, v,=0.5%, and
) . . . ) vp=0.%; and all the on-site energies are assumed to have a value
is the Green’s function at the first site of the down-side leadgf ot |n the notations off;, i,j=1 stands for the left-hand-side

Now, starting from the equation system shown in E), it |ead,i,j=2 for the right-hand-side lead,j=3 for the upper-side
becomes straightforward to calculate the transmission of th@ad, and,j=4 for the down-side lead.

four-terminal system7,,, by applying the formalism devel-
oped in Sec. Il A for a two-terminal systefalso see Sec.

Il and, in particular, Eq(26)]. Other scattering parameters of the four-terminal system

. . are the transmission probabilitieS;; with i=1,2,3,4, j
The transmissions of the four-terminal syste; and =2,3,4, andi #j, and the reflection probabilitiedy;; with

oL, 2.3, These parameers can be oiained n e same way
wing g u o ' as described above for the calculations of the transmissions
T3, is calculatedgg in Eq. (43) needs to be replaced by

A ) 7 Ty, T31, and7y, and the reflectanc® 4. Furthermore, after

8_50’ which is given b% Eq(27). Wh"ﬁ when the transmis- 5 sufficient number of scattering parameters of the four-
sion7, is calculatedg g (instead ofeq o) in Eq. (43) needs  terminal system are obtained, the remaining scattering pa-
to be replaced by . rameters can also be obtained using the time-reversal sym-

Similar to the calculation for a three-terminal system, themetry, T7,;=1T; , in the case of the absence of magnetic field,
reflectance of the four-terminal systefRy;, can be calcu- and the current conservatioR;; +3nTi=1.
lated with various equivalent methods. It can be calculated at Again as an example of application of the present formal-
the same time the transmissi@py is calculated, by applying ism, we have calculated various transmission and reflection
the formalism developed in Sec. Il A for a two-terminal sys- probabilities of a four-terminal system, as shown in Fig. 6
tem. It can also be obtained at the tirfig or 7, is calcu-  with the structure parametef$, =5, Ng=4, Ny=3, and
lated. In addition, the reflectance of the four-terminal systemN, =2, the coupling parameters, =vg=vy=vp=0.%,

Ry1, can straightforwardly be calculated from E88) with  and the on-site energiest 2n all the lattice sites of the

E,(NLH),O given by Eq.(35) andEovo in Eq. (35) by system. The results of the calculation are presented in Figs. 7
and 8. As in the calculations for the three-terminal system,
Bo0=Eoot 800t 50t 80 (47)  the transmission and reflection probabilities of the four-

terminal system show various sharp peaks or dips. Overall,

instead of Eq(33). 13 resonant states can be identified from the spectra of the

165305-9



H. Q. XU PHYSICAL REVIEW B 66, 165305 (2002
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FIG. 8. Various reflection probabilities of the same four- E 50
terminal, quantum-confined system as in Fig. 7, as a function of the o 40 (e)
electron energy. B30
o
transmission and reflection probabilities. This result is con- o 2
sistent with the calculation for the PDOS, obtained by sum- 8 10
ming up the LDOS’s on all 15 lattice sites of the confined o,
W

region, shown in Fig. @), where 13 PDOS peaks corre- 0 1 2 3 4
sponding to 13 localized states of the system are clearly see Energy (t)
in the energy range of the conduction band of the perfect FIG. 9. Partial densitv of 2DO lculated for th
leads. Here we note that the confined, cross-bar-shaped sys- ~ > - lartua nfn:]'ty ?]f_snta(tf tsmca cu_natg or7t ensdage
tem considered in this subsection has 15 localized state®Y" SMinal, quantum-confined sysiem as in gs. 7 andas.

. . ."PDOS obtained by summing up the local densities of states on the
However, as in the three-terminal, T-shaped system studle{j o . . X
. . . five lattice sites of left-hand-side portion of the quantum-confined,
in Sec. Il B, two of these 15 states, which do not appear i

A rkross-bar-shaped wirg¢h) PDOS on the four lattice sites of right-
the calculated PDOS shown in Figiel are located at ener- hand-side portion of the quantum-confined, cross-bar-shaped wire.

gles be_low and above the energy band of the perfect leadﬁ:) PDOS on the three lattice sites of upper-side portion of the
respectively. Thus these two states cannot be seen as regmntum-confined, cross-bar-shaped widk PDOS on the two lat-
nances in the transmission and reflection probabilities of thgce sites of down-side portion of the quantum-confined, cross-bar-
four-terminal system. shaped wire(e) PDOS obtained by summing up the local densities
Figures 9a)—9(d) show that the 13 localized states of the of states on all 15 lattice sites of the quantum-confined, cross-bar-
system at energies within the conduction band of the perfe&haped wire.
leads are very different in their properties of localization. For
exampl_e, the state zEtz_ 2t is Iargely localized in the Ieft_— Il SUMMARY AND CONCLUSIONS
hand-side and upper-side portions of the quantum-confined,
cross-bar structure, and contains little contributions from the In this paper, we have presented a formalism for calcula-
orbitals on the lattice sites in the right-hand-side and downtions of various properties of electron transport in multiter-
side portions of the quantum-confined, cross-bar structureminal quantum systems. The systems were described by lat-
However, the states &=0.27 and 3.78 are seen to be tice models. By exploiting real-space Green’s functions, we
strongly localized on the left-hand-side portion of the have derived, for calculations of the transmission and reflec-
guantum-confined, cross-bar structure. tion probabilities of each multiterminal system, various ef-
The reflectance spectra of the four-terminal systemfective two-terminal systems. Thus the properties of electron
shown in Fig. 8, are seen to be very different from eachtransport can be studied based on a standard two-terminal
other. However, all the dips in the reflectance spectra can bmethod, such as the transfer-matrix or Green’s function
found to correspond to a peak in the PDOS’s shown in Figsmethod.
9(a)—9(d). These one-to-one correspondences between the The formalism has been applied to a three-terminal sys-
dips in the reflection probabilities and the peaks in thetem, containing a quantum-confined, T-shaped structure, and
PDOS'’s of the four-terminal system can be explained in thea four-terminal system, containing a quantum-confined,
same way as in Sec. Il B for the three-terminal system. Theross-bar structure. The calculations reveal that the two mul-
various transmission peaks seen in Fig. 7 can also be exiterminal systems show complex transmission and reflection
plained, as in the previous subsection, based on the localizapectra. This is in strong contrast to the calculation for a
tion properties of the 13 localized states of the four-terminatwo-terminal double-barrier structure in which the transmis-
system shown in Figs.(8—9(d). sion and reflection probabilities show regular resonant struc-
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tures. To understand the results of the calculations for théreat electron transport in multiterminal systems under finite
multiterminal systems, we have calculated partial densitiedias (i.e., in the nonlinear response regim&ome prelimi-

of states on the lattice sites of the confined regions. We haveary
found that the complexity of the transmission and reflectiorreported®®°0-51

results of such generalizations have been

and the detailed calculations will be pub-

spectra of the multiterminal systems arises from the fact thdished elsewhere.
the confined states in the systems are localized in different

parts of the confined regions and can contribute very differ-
ently to different transmission and reflection probabilities of

the systems.
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