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Consequences of local gauge symmetry in empirical tight-binding theory
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A method for incorporating electromagnetic fields into empirical tight-binding theory is derived from the
principle of local gauge symmetry. Gauge invariance is shown to be incompatible with empirical tight-binding
theory unless a representation exists in which the coordinate operator is diagonal. The present approach takes
this basis as fundamental and uses group theory to construct symmetrized linear combinations of discrete
coordinate eigenkets. This produces orthogonal atomiclike “orbitals” that may be used as a tight-binding basis.
The coordinate matrix in the latter basis includes intra-atomic matrix elements between different orbitals on the
same atom. Lattice gauge theory is then used to define discrete electromagnetic fields and their interaction with
electrons. Local gauge symmetry is shown to impose strong restrictions limiting the range of the Hamiltonian
in the coordinate basis. The theory is applied to the semiconductors Ge and Si, for which it is shown that a
basis of 15 orbitals per atom provides a satisfactory description of the valence bands and the lowest conduction
bands. Calculations of the dielectric function demonstrate that this model yields an accurate joint density of
states, but underestimates the oscillator strength by about 20% in comparison to a nonlocal empirical pseudo-
potential calculation.
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I. INTRODUCTION eliminating these extra fitting parameters. One possibility is
to define a kinematic momentum operategual to massn
Tight-binding theory was originally proposed as ah times velocity by

initio technique for calculating the electronic properties of
crystalline solids from atomic wave functiohsHowever, p= m[x H] (1.2
first-principles calculations based on a linear combination of iR '
atomic orbitals(LCAO) are computationally very demand-
ing, and the tight-binding approach met with relatively little
success until Slater and Koster suggested that it be used as

wherex is the coordinate of the electron akidis the Hamil-

tonian. In a sense this merely trades one problem for another,

interpolation schem®jn which the Hamiltonian matrix ele- &fce the coordinate matrix elements are ;till unknown, and
the number of these allowed by symmetry is no less than the

ments are fitted to experimental data or to band structure : o -
computed by other methods. This made it possible to de|_§umber of momentum matrix elements. However, it is physi

scribe atomic-level physics in a basis of minimal size Iead—Cally reasonable.to simplify the coordinate matrix by setting
. . . o . ' all nonlocal matrix elements to zero:

ing to wide-ranging applications in many areas of

condensed-matter physits® With modern computer capa- (aXi|X| @' Xi1) = 8ii1[ BaarXi + X (1)]. (1.2
bilities, first-principles electronic-structure calculations are “ “

now commonplace, andb initio tight-binding theories are Here |a,x;) is the ket vector for an orthogonalized atomic
flourishing®~2° Yet even today, the empirical thedrpre-  orbital (Lowdin orbital'®*) of type a located at positior; .

dominates(even for the fitting of first-principles calcula- The parameteg,, is an intra-atomic matrix element, cou-

tions) because it is simple and physically intuitive. pling orbitalse anda’ on the same atom.
The formalism of Slater and Kosteis incomplete, how- The simplest choice of all is to set
ever, in that it contains no prescription for coupling the elec-
tronic system to external electromagnetic fieldsaminitio Xaar=0; (1.3

theo,”_esﬁ'_lo one can use minimal couplingvith suitable j, this model, there are no fitting parameters beyond those
modifications for nonlocal potentidf$ and calculate directly found in the Hamiltoniar:#18-2%A closely related approach
the necessary matrix elements of the momentum or veloCitys the Peierls substitutin;27‘3l in which the zero-field
operator. In the empirical theory, these matrix elements capysmiltonian matrix(a,x/|H|a’,x.) for a particle of charge
simply be treated as extra fitting parametérs’ determined 4 ig replaced by o o
by fitting the dielectric function (and thus oscillator

strength$ to experimental or first-principles spectra. How- ie x
ever, even with the full use of symmetry restrictions, the (a,XiIHIa’,XiOeXp(%f A-dx|+ed(X) i S par
number of additional parameters can be undesirably large; X

for example, Chang and Asprtéave proposed asp®d? 14
model for GaAs with 13 Hamiltonian parameters and 17 in-in the presence of a vector potentfalnd scalar potentiap.
dependent momentum parameters. If the path of integration in Eq(1.4) is chosen to be a

It is therefore clearly desirable to find ways of reducing orstraight line!*?¢3°then the linear term in the Taylor-series
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expansion of this equation is the same asAhe coupling ~ suggested using lattice gauge techniques in empirical tight-
obtained from Eqgs(1.1)—(1.3).2 binding theory. However, their proposal, like most applica-

The total elimination of extra fitting parameters makestions of lattice gauge theory, is based on a simple cubic lat-
this model an attractive one. However, by eliminating thetice. As shown below, the simple cubic lattice is unsuitable
intra-atomic matrix elements,,., one obtains a tight- fOr Ppractical tight-binding models because it can only
binding model that is not valid in the tight-binding limit of a_chleve sufficient accuracy with an unreasonably large basis
isolated atoms. Thus, although the model should provide &-€-, @ very small lattice constanihus, the development of
reasonable description of interatomic transitions between exefficient tight-binding models requires the consideration of
tended states, one has less confidence in its ability to dénore general geometries. 5355 _
scribe localized states, which may be important at surfaces or Christ, Friedberg, and Le&™ have developed a lattice
interfaces. Many authors have therefore suggested augmerd@uge theory forandom lattices, which(with some slight
ing the zero-parameter model by including a small number offodifications is sufficiently general for the present pur-
intra-atomic matrix elemen&-3%It has been shown for po- P0ses. However, the complete formal machinery of quantum
rous Si that, although the intra-atomic matrix elements ar€hromodynamics is somewhat cumbersome when one is
small in magnitudéin a Bloch-function bas, theinterfer- dealing only with simple electromagnetism. Thus, for rea-
ence between these terms and the interatomic matrix eleSOns of clarity, the author has chosen to present the theory in
ments contributes 25% of the total absorpfidihus, it ap-  t€rms of a simple but elegant approach used by D‘ﬁ'adter.
pears that a quantitative treatment of nanostructures may nétPreliminary discussion of topology.e., how an electron is
be possibldin general without the inclusion of intra-atomic Permitted to move from one lattice site to anothier Sec.
matrix elements. lll, Sec. IV presents an adaptation of Dirac’s analf/sis the

The main difficulty with such model&2%is that they are  Case of a discrete lattice. The outcome is a gauge-invariant
not gauge invariarit: As shown by the examples in Refs. 11 formulation of electromagnetism in empirical tight-binding
and 40, lack of gauge invariance can lead to gross qualitativi'€ory- L .
errors in the predicted values of physical quantities. Thus, Although the theory derived in this way has many simi-
there are significant problems with both approaches consid@r,'“es with conventional tight-binding theory, there are sig-
ered above. The models witk,,,=0 are gauge invariant nificant differences as well. Not all tight-binding models can
but they cannot describe intra-atomic transitions. The model8€ made gauge invariartthis is possible only if the basis

with X, #0 can describe intra-atomic transitions, but theycan be constructed from symmetrized coordinate eigenkets.
are not gauge invariant. In addition, local gauge symmetry imposes strong restric-

The purpose of this paper is to demonstrate a techniqu@ons on the Hamlltonlan matrix, which have.the'effe.ct_ of
for constructing tight-binding models that are gauge invari-Sharply reducing the number of allowed Hamiltonian fitting
ant and provide a full description of intra-atomic transitions.Parameters. Finally, unlike previous empirical tight-binding
This is achieved by treating empirical tight-binding theory th€ories, the present approach provides an exlicicrete
not as an approximation derived from the Sainger equa- Wave function for the electron. _ _
tion, but as a fundamental quantum-mechanical system in its | "€ formalism derived here is applied to two semiconduc-
own right. This theory is required to satisfy all of the basic {0rs With the diamond structurése and Siin Sec. V. For
principles of quantum mechanics, the most important of1€S€ systems, a basis of 15 orbitals per atom is shown to
which (in the present contexts the principle of local gauge provide a satisfactory fit to the valence bands and the lowest
symmetry*1~4° The essence of this principle is the conceptCO”qUCt'O” bandgup to about 5 eV above the valence—ba_nd
that electromagnetism in quantum mechanics is the gaugénaxmun). These results are comparable to those obtained

invariant manifestation of a nonintegrablé.e., path- from a ten-orbital basis proposed recently in Ref. 57. The
dependentphase factof?% basis used here is 50% larger, but their mddeannot be

As will be shown in Sec. Il below, the reason why exist- made gauge invariant if intra-atomic coupling is incl_uded.
ing models with intra-atomic couplifg8are not gauge in- Thus_, it appears that some trade-offs are necessary if gauge
variant is that the coordinatesy, andz do not commutd! ~ invariance is to be achieved.

Gauge invariance requires commuting coordinates, the exis-

tence of which implies the existence of a basis of coordinate Il. COORDINATE MATRICES AND THE COORDINATE
eigenkets. Since empirical tight-binding theory deals with REPRESENTATION

finite vector spaces, the coordinate basis is necessarily dis- As mentioned above, the intra-atomic coupling used in
crete. Hence, the most general gauge-invariant finite vectorxi tina tiaht-bindin m,d #2-38 |oads t lack of

space is a set of discrete coordinate eigenkets. This basig > N9 e’ggl Inding mode cads 0 a aac of gauge
may be transformed to a tight-binding basis by constructin nvarlalnc t Th|s| mtﬁ_y be seen fro‘:n a s:‘mm tmodel frc])r .
“orbitals” from symmetrized combinations of coordinate thstlr;ae atom. in d'ls tcase,tvye lnow trom a?-m';tg é/sms
eigenkets(using well-known techniques for symmetrizing at there are coordinate matrix elements couplingstaa

plane wave¥ 9. p orbitals:

The concept of gauge symmetry on a discrete lattice is slx (s —(slzlpV=c 21
not new, having appeared many years ago as a technique (slxlp=(slylpy)=(slzlpz)=c, @
for imposing a momentum cutoff in quantum chromo- wherecis real. In the basi§|s),|py),|py).|p,)}, the matrices
dynamics*®4°=52 Governale and Ungareifi have recently representing andy are therefore
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0 0 0O 0 0 0O 0 0b O 0 b 0O
But this implies thatx andy do not commute: This yields
0O 0 0 O 0 0 0 0
0 0 c2o 0 0 «¢*-b?> o0
Xy—yX= 0 -2 0 0 #0. (2.3 Xy—yXx= 0 b2_c2 0 ol (2.8
0 0 0 O 0 0 0 0

This means that the coordinate representataamsisting of  which is equal to zero ib=*c.

simultaneous eigenkets &f y, andz) does not exist. Even  Settingb=c would imply that thep andd orbitals have
more important, it means that the theory cannot be gaugequal weight in thel;5 states. This is not as absurd as it
invariant. In a gauge transformation, the vector and scalagounds; Boguslawski and Gorcz§®aave shown using first-

potentials transform as principles pseudopotential calculations that for the states
A at the top of the valence band in GaAs, the probability of

A—A+VA, dod— 1 ‘?_, (2.4) finding an electron in a catiod orbital isgreaterthan that of

c Jt finding it in a cationp orbital. (In AlAs, the probability ratio

is greater than %9 Thus, it is not unreasonable to assume
thatb andc have comparable magnitudes.
If one setsb=c, then the coordinate operators have si-
, (2.5  multaneous eigenkets’,y’,z’), which are given by

and the state kety) transforms as

|y — Ul ), Uzex;{%

where A is an arbitrary function ok=(x,y,z) andt. If a lccc)= }(|1"1>+|I‘§5>+|F31’5>+|I‘§5)),
theory is gauge invariant, all physically measurable quanti- 2

ties must be independent of such transformations. But the

expectation valugx) is a measurable quantity, and under a lccc)= }(|F Y+ T —|TYe) — [ TZa)
gauge transformation one has 2° 1 ! ! 1

(x)—(UTxU), (2.6)

whereUxU=#x if A depends ory or z. Hence, no theory
can be gauge invariant ¥, y, andz do not commute. ]
Is there any way of achieving gauge invariance without lccey= §(|F1>—|F§5>—|F{5>+|F§5)). (2.9
settingc=07? Perhaps thep® basis is too small, and the
situation might be improved by including more orbitals Note that the coordinate eigenvalues are located at the cor-
(d,f,...,). However, one soon finds that for afipitt  ners of a tetrahedron. In fact, the linear combinations given
LCAO basis, the lack of gauge invariance persists. This folin Eq. (2.9) are identical to the hybrid bond orbitals used in
lows directly from the Wigner-Eckart theorem—sincés a  analytical tight-binding theoriet? although these are not or-
vector operator, it couples states with angular momertton  dinarily interpreted as exact coordinate eigenkets because the
those withl =1. Hence, any finite truncation of the basis " . states are assumed to be pprerbitals.
results in noncommuting coordinates. The procedure outlined above is rather clumsy; one sim-
Another possibility is to keep the sanmp® basis, but ply modifies the coordinate matrices by trial and error in an
modify the coordinate matrix. The physical justification for attempt to make them commute. One cannot predict in ad-
doing so is the fact that the orbitals used in empirical tight-vance whether the attempt will succeed, and in general it will

binding theory are not atomic orbitals, they an¢hogonal-  not. However, the unitary transformatig@.9) may be in-
ized atomic orbitalst® Therefore, they do not have the full verted to obtain

rotational symmetry of atomic orbitals; they have only the
site symmetry of the crystal structure. For example, the at-
oms in a diamond crystal have site symmetry.®® There-
fore, the orbital that was denotépl,) above should really be

written as|T'%.), since it belongs to thE < representation of 1 — —— —
T,.5 s g 15 1P M9 =5 (lece)+|cce) —[ece) —[ecc)),

— 1
[o00) = 5 (IT) =T+ [T =T,

IT'y)= %(lccc)+|cc_c;)+|€c€)+|gc>),

However, thed orbital |d,,) also transforms a$l'fs).
Thus, in theT4 group, the matrix elemert=(I'}y|T'{s) is yy_ 1 IR P U potp il o
allowed, and the coordinate matrices?2) become s 2(|CCC> |ece)+[cec)—[ecc)),
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1 o atom—although, in any real atom, the matrix elemégat$2

M9 = 5(lcca—[cce)—|cccy+[ece)), (210 would not be numerically equal. This equality occurs be-

cause the basis ket2.11) are degenerate eigenkets of the

which immediately suggests a more fruitful approach. Theradial coordinater = \/x>+y?+2z2. To break the numerical
linear combinations given in Eq2.10 are just what one equality, one would need to use basis functions with a linear
would obtain by starting with a single coordinate eigenketcombination of different radii.
(say|ccc)) and using the symmetry operations of the tetra- The above procedure may, of course, be applied to coor-
hedral groupl 4 to construct “symmetrized” orbitafé*that  dinate eigenkets other thdecc). Below is a list of the
transform according to the irreducible representations ofepresentations obtained by applying the symmetry opera-

Ty tions of O, to several different “generator” eigenkets:
Thus, in this alternative approach, the coordinate basis is

taken as fundamental, and the tight-binding basis is merely a |000)—T';—s,

secondary alternative that is useful for reasons of symmetry.

Since the existence of a coordinate representation is neces- 11000 —T';+ T 5+ 1,5 p3d?,

sary for gauge invariance, no tight-binding basis can be

made gauge invariant if it cannot be represented in terms of 1110 T, + T ys+ [ pg + Ty stp3dBeL,

symmetrized coordinate eigenkéfsHence, this symmetri-
zation procedure provides us with all possible gauge-
invarian?tight-bindir?g models. P s 110 =Ty + o+ Tyt Fog + Tos—s'pd®f
The orbitals in Eq(2.10 are useful as a starting point, but (213
they cannot be interpreted as atomic orbitals because they ¢gpjicit basis functions for these representations are given in
not have inversion symmetry. To obtain more atomiclike or-Appendix A.
bitals, one can apply the symmetry operations of the cubic " \yjth these results, one can now construct a gauge-
group Oy, to the basis kefccc), which yields the orbitals  jnvariant tight-binding model simply by putting a séar
L more than one sgtof these “orbitals” on each atom in a
IR — crystal or molecule. In such a model, the coordinate opera-
2= |s)—ﬁ(|ccc>+ |cce)+[ece)+|eec) torsx, y, andz commute by construction. However, one is no
longer permitted to choose orbitals arbitrarily. The choices
+|cce) +|cce) +|cce) +|cca)), are limited to takingall of the orbitals in a set or takingone
of them. As an example, one cannot discardftiebitals in

1 L the basis generated B¥10) without destroying the gauge
[T, )=1|fyy»=——=(lcccy+|ccc)+|cce)+|ccc) invariance of the theory.

V8 This approach yields a tight-binding model with orthogo-
nal orbitals. Another approach is to define a grid of coordi-
nates, some points of which are not uniquely associated with
individual atoms. One may still construct symmetrized orbit-
als in this case, but the orbitals are not orthogonal. This
makes the tight-binding approach more difficult; however,
one can simplify the theory by choosing a Bravais lattice for
—Jcce)+[cce)+|cee) —|cce)), the coordinate grid, in which case the model may be viewed

as a discrete pseudopotential model. Applications of both the

—|cee)—[cee) —|cee) —[eeq),

1 e
|Fis>=Ipz>=ﬁ(|000>—|CCC>—|CCC>+|CCC>

1 L pseudopotential and tight-binding approaches are considered
D55 ) =dyy) = ﬁ(lccc)—|ccc)—|ccc)+|ccc) below in Sec. V.
+[cce)—[cec)—|cce) +|ccd).  (2.11) Ill. TOPOLOGY OF THE LATTICE

Here two different labels are used: the representations of AS we have seen, the most general gauge-invariant tight-
04, and the conventional atomic orbital notation. Otherbinding basis consists of a set of discrete coordinate eigen-
orbitals not given here may be obtained from cyclic permuketsv which will be referred to as a lattice. Such a lattice is
tations ofx, y, andz Note that theT orbital [I'Z) in Eq. generally not periodic. In order to apply the principle of local

210 is th D +d.)). wh ther gauge symmetry to such a system, one must be able to cal-
gfbig' I|S1“ >eissjetllr;te(fl\s/§()1é|—5)>(ﬂolzf> z|>)xy>) Whereas M€la  cijate the change in phase that occurs along any specified
1 xyz/ )

path in coordinate spadé®* Thus, the first step is to define
what is meant by a “path” in a discrete coordinate system.
In general, a path is just an ordered sequence of points. In
_ _ _ a continuous coordinate system, neighboring points in the
(sXIpu) = (Pulyldiy) = (o2l =c, (212 sequence must be separated by an infinitesimal distance. This
plus others given by cyclic permutations. The selection ruleslefines theopologyof the system, in which points are linked
for x are thus the same as those in a spherically symmetritogether only if they are adjacent in coordinate space. It is

In the basis(2.11), the nonzero coordinate matrix ele-
ments are
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desirable to define the topology of the discrete lattice in a

similar way. [y =2 cilx), (4.1
One way to do this is to construct a Voronoi polyhedron '

around each site in the lattiG&A Voronoi polyhedron is just where|x;) is a coordinate eigenket, which is assumed to be

the region in space closest to that pdihif the lattice is a normalized such that

Bravais lattice, the polyhedron is the same as a Wigner-Seitz

cell. In mathematical terms, the Voronoi polyhedran for <Xi|Xj>=5ij . 4.2

sitex; is the set of pointx such thafx—x;|<|x—x;| for all

j#1. The topology is then defined by the following rule: If

Q; and(}; share a surface with aré&j >0, the sitesx; and . 12 o

X; are IinIJ<ed together; otherwise, ﬁjey are not. gﬁbazll;g?z Of, ;?; fic\)/renr]]Kb"/""b )%, where the probability
In some cases, it may happen that two Voronoi polyhedra P 4 9 y

share only a point or a line, in which caSg=0. The link-

ing algorithm presented in Ref. 53 does not consider this (¢|¢’)=Z ciel. 4.3

possibility (because Ref. 53 deals only with random lattices, :

for which the probability of such an event is zgréor cer-  The probability is obviously well defined even when the
tain gfpllcatlons, it is useful to include Imks_ between suchgyerall phase of#) has no definite value. This degree of
sites,” but we shall see below that these links should b&reedom is referred to as global gauge symmetry.

excluded in the present situation. Thus, only adjacent sites The existence of global gauge symmetry raises the ques-
whose Voronoi polyhedra share a surface W8>0 are  tjon of whether it is necessary for the local probability am-

linked. _ _ o ) plitude ¢; to have a definite phase. In other words, suppose
A path in the discrete lattice is then just an ordered seye write

guence of linked points, and a closed path is one whose first

and last points are the same. By definition, every edge of a ci=b;e'?i, (4.4
Voronoi polyhedron is equidistant from three or more lattice . . o )

sites, all of which lie in a plane perpendicular to the givenWhere the phase dj; is well defined(to within an integer
edge. These sites are closer to this edge than any other sit&ultiple of 2), but g; is a nonintegrable function—that is,
The links between these sites form a closed path, and thi@€ change irB; around a closed path can take on any value.
area bordered by the links is called a “plaquette.” There is aln this case one can see théb|y')|? is well definedonly if
one-to-one relationship between the plaquettes and the edg¥® change ing; around any closed path is tisamefor all

of the Voronoi polyhedra. states|¢) and |¢') (to within an integer multiple of 2,

The plaquettes partition all of coordinate space into nonWhich is absorbed into the definition @f). But anything
overlapping volumes calle¢Delaunay cells. Each cell is that is the same for all states can be viewed as a physically
uniquely associated with one corner of a Voronoi polyhe-real part of the dynamical system. Since the present system
dron. The partitioning of space into cells is referred to as &onsists only of a single point particle, these nonintegrable
Delaunay tessellatioft. phases must represent a field of force acting on the particle.

A general algorithm for calculating the geometry of The principle of local gauge symmetry is therefore de-
Voronoi polyhedra, links, plaquettes, and cells is presented ifined by the following two postulate:(i) The physical pre-

Appendix B. The expressions derived there will be of use indictions of the theory must be unambiguotis) The phase
what follows. of ¢; at any point in space and time need not be well defined;

only thechangein phase betweelinked points must be defi-
nite. As shown above, these postulates entail that the change
IV. LOCAL GAUGE SYMMETRY ON AN ARBITRARY in B; around any closed path must be the same for all states.
DISCRETE LATTICE According to postulatéii), this change is fixed for any path
by the change irB; between two linked points in space,

Dirac’s starting poirff® is the fact that physical predictions in
quantum mechanics are ultimately expressed in terms of

Christ, Friedberg, and L&&>° have developed a theory
of local gauge symmetry on a random lattice. This section

presents a modified version of their theory, with special em- «ij=pi=p;  (ilinkedtoj), (4.5
phasis on the implications of the principle of local gaugeand in time,

symmetry for tight-binding theory. The presentation follows

Dirac's approactf? in which the existence of electromag- dg; .

netic fields is “derived” as a straightforward consequence of Aj TR (4.6

a degree of freedorfnonintegrable phasgpossessed by any
quantum-mechanical system that can be represented in a cgince g; is nonintegrablex;; and \; are independenvari-
ordinate basis. ables. These two quantities are the fundamental dynamical
variables that arise from the principle of local gauge symme-
try. It will now be shown that;; and\; can be interpreted as
potentialsfor the electromagnetic field.

In a discrete coordinate basis, any ket vector may be ex- One possible closed path involves a space displacement
pressed as dij=X;—x; and an infinitesimal time displacemedt, fol-

A. Electromagnetism is a nonintegrable phase
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lowed byd;; and—dt. The change in phase around this path(8m) * J(E*~B?)d*x; the only apparent difference is an

can be used to defingentatively an electric-field variable
NN Kji
d“ '

whered;; =|d;;|. If the indexl is used to label the links, one
may write this in the simpler form

n e

(4.79

h AN — K
e d

E = (4.7b

HereE, is interpreted as the component of the electric field

in the directiond,; =d;; ; the components perpendiculardp
are not defined. Equatiof®.7) takes a familiar form if ex-
pressed in terms of the potentials

B hc K| 48
bi g)\i, =T a (4.8
since then
Ad, 1A
=T4 o “9

Here the notatio@A, /4t indicates thad, is to be held con-
stant during the differentiation.

Another type of closed path is an elementary plagugtte
constructed from links in coordinate spacesee Sec. Il and

extra factor of 3. This factor cancels the factor in the
definition of ), and(}, thus leading to the correct Maxwell
equations below. It appears in E@.13 because the stan-
dard Lagrangian is expressed in terms Bf=E;+E;
+E2, whereasE? includes only the component & in the
direction ofd, .

The electronic term in the Lagrangian, which includes the
field-particle coupling, is

i% o
Le:72i (ci*ci—ci*ci)—iEJ CFHjiC (4.143

i% o -
:?Z (bi*bi—bi*bi)—izj b¥Hyb; . (4.14h

Here Hj;=(x|H|x;) is the Hamiltonian in the absence of
electromagnetic fields, while

Hij:Hijeii(ﬂii'BJ)‘FﬁBiaij. (415)

The first expressiofd.144 for L, has exactly the same form
as the Lagrangian in the case of no electromagnetic fields.
This expresses the fundamental physical content of the prin-
ciple of local gauge symmetry—that the influence of the field
upon the particle can be expresseutirely in terms of the
nonintegrable phase of the probability amplituge- b;e'#i.

Appendix B. The change in phase around the perimeter of" the second expressid#.14b for L., all of the noninte-

the plaquette may be used to define the magnetic field

B 1 Ac

1
q S, € = K== > Ad,

Sq leq

(4.10

whereS; is the area of the plaquetisee Eq.(B24)]. Sum-
ming Eq. (4.10 over the(closed surface of a celkc leads
immediately to the “no monopoles” la®?

> ByS,=0. (4.1

gec
Likewise, summingz,d, around the perimeter of a plaquette
gives Faraday’s law:

1d

dgsq Eidi=— < 5; (BaSy)- (4.12

grable phases are collected together in the effective Hamil-

tonianﬁ”- . This is the usual approach in which the probabil-
ity amplitude b; has a well-defined phase, and the field
appears only in the Hamiltonian.

The Hamiltonian (4.15 appearing in the Lagrangian
(4.14bh depends upon the phase differengg- ;. This
phase difference is not well defined unless the ditasd |
are linked. But according to postulatie above, all physical
predictions of the theory must be unambiguous. Hence, the
principle of local gauge symmetry demands that

(4.1

Local gauge symmetry therefore imposes constraints not
found in conventional tight-binding models.

Note that the Lagrangialnis gauge invariant by construc-
tion. In other words, botlh; andL, are invariant under the
gauge(phase transformation

H;;=0 (i notlinked toj).

The other two Maxwell equations can be obtained from

the Lagrangial. =L+ L., whereL; is the electromagnetic-
field Lagrangian

1 1
— 2 _ 2
Li=g- EI; 3E7Q 5 §q) 3B20,. (413

Here(),=1Sd, is the volume of linkl, whereS = S;j is the

bi_,bie*iXi’
Ni—Nit X, (4.17)
Kij—= Kij t Xi— Xj»

wherey; is an arbitrary integrable function.

area of the surface shared by the Voronoi polyhedra for sites Given the above Lagrangian, the Euler-Lagrange equation

i andj (see Appendix B Likewise,qu%Sqdq is the vol-
ume of plaquettey, whered,, is the length of the Voronoi
polyhedron edge correspondinggoEquation(4.13 is just a
discrete version of the standard field Lagranffan

for \; or ¢, is just Gauss's law

; EI|S]|:477C]| , (418
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whereq;=eb*b; is the charge on site The corresponding Wwhich is the same as the kinematic momentum defined above

equation fork, is the Ampee-Maxwell equation in Eq. (1.1). The Hamiltonian(4.22 therefore clearly gives
g the correct first-ordeA - p coupling. We shall see below that
1 4 the dimensionless quanti
S B g (ES)=—h, (419 quanty
dges c dt c
m
~ _ _ 2
wherel| =1, =(2e/ﬁ)|m(bJ*Hjibi) is the current from sité Ajj _ﬁdii Pii= ﬁdiiHij (4.29
to sitej. Summing Eq.(4.19 over all links that contain a
given sitei yields the charge conservation & can be viewed as a geometric weight factor that gives the

correctA? coupling also.

q|+§j: i=0. (4.20 B. Geometric definition of momentum and kinetic energy
ThUS, we see thatl and K| can be given a Consistent inter- Up to thlS pOint, I|tt|e haS been Said abOUt the structure Of
pretation as discrete electromagnetic potentials, since th&e HamiltonianH;;. Within the bounds of the restriction
above equations are in full agreement with macrosctgc ~ (4.16, Hj; may be treated as an arbitrary fitting parameter.
|0ng_Wa\/e|ength e|ectromagnetism_ However, in some circumstances it may be desirable to re-
In some applications of Voronoi polyhedra, it is useful to duce the number of fitting parameters by using a theoretical
link sitesi andj whose polyhedra share only a line or point, formula for H;; that would reproduce the Scltfinger equa-
hence S=S;=0.%% For such links, the link volume,  tion in the limit of zero lattice spacing. _
=15,d, is zero, so the electric fielfl, does not contribute to Let us start by considering the momentum operator, which
the field Lagrangian(4.13, Gauss's law(4.18, or the  Will be defined in this section as the canonical momentum
Ampere-Maxwell equatior(4.19. The magnetic-field contri- P=—1AV. A discrete expression for the gradient operator
bution to Eq.(4.19 likewise vanishes, becau§=0. The ~may be obtained from the integral definition of the
current through such a link must therefore be zero, which cagradient®®
only be true, in general, if the Hamiltonian matrix element

Hj;j vanishes. Links witt5;=0 are consequently devoid of Vi(x)= lim if f(x)dS|, (4.26)

any physical significance, and there is no loss of generality if a—o QJao

one excludes them at the outset by linking only sites with

S.>0 y g onty where dS is a surface element pointing outward frofh.
i>0.

Now the limiting volume in a discrete lattice is the volume
Q; of the Voronoi polyhedron for sitg . On the surface;;
shared by(); and(};, the value off(x) may be taken to be

. _ 3[f(x;) +f(x;)]. Hence, the discrete gradient may be defined
ihbi=§j: Hijb; . (4.2)  as

Returning to the Lagrangial, the Euler-Lagrange equa-
tion for b’ is just the Schrdinger equation

Sinceb; is an ordinary probability amplitude with a well- Vf(xi)=i 2 E[f(xi)+f(xj)]sji (4.27)
defined phasel?hj must be the Hamiltonian in the presence 0 7 2
of electromagnetic fields. With the restricti¢h 16), one can

express Eq(4.15 as whereS;; = S;;d;; . Now since

Hij:Hijexq_iKij)‘Fﬁ)\iﬁij 2 Sji:J\&Q.dS:Oa (42&
= HijexplieA;d;; /ic) +ed;d; 422 he term involvingf (x;) drops out, leaving only
Note the strong similarity between this result and the Peierls 1
substitution (1.4). The main difference is that Eq4.22 Vi(x)= — F(X)S. 4.2
gives the Hamiltonian in the coordinate representation, not (%) 20, 2 0G)S;i - 4.29

the tight-binding representation.

If | ;| <1 (i.e., if the field is weak or the lattice spacing is An alternative derivation of this result is given in H37) of

PV Ref. 55.
smal), the Hamiltonian(4.22) reduces to The canonical momentum operatprmay therefore be
e, e2A2 s ress. (423 defined a¥’
T e R 2 T o (Xilpl@)=—i2V(Xi|@) (4.303
Here a vector potential has been definequgAijaij, if
while the momentum operator is given by =30, 2 Xile)S;i - (4.300
m m Here the basis ketfX;)=Q. *3x;) are chosen to satisfy

Pij =17 di Hij =77 (= X)Hjj (424 . sfunction” normalization

165212-7
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8 gives the Laplacian
XilXp)=gq (4.3)

| 2 .
in contrast to the usual ketx;), which are normalized to v f(X)—(LILnO
unity [see Eq.(4.2)]. The normalization4.31) is used here
because it agreesn the limit Q,—0) with the 5-function  the discrete form of which is
normalization of continuous coordinate eigenkets, upon

EJ Vi ds (4.40
Q Jso (x)-dS}, '

which the definition(4.30a is based”’ | Vo= — S (—f(xl‘)_f(xi) S,. (441
Substituting| @) =|X;) in Eq. (4.30b then gives 0 5 dj;
ihS, An alternative derivation of this result is given in E42) of
(Xi|p|Xj>=m, (4.32  Ref. 55. The procedure used above in EGE30—(4.34
P25 then yields the kinetic-energy operator
which clearly satisfies
Ty =S5 P 5 Sk g
X ==5m il R A
2 (XilpIX)Q;=o0. (4.33 2M dy0;Q; 7 2méh T di
. which satisfiegcf. Eq. (4.33)]
Replacing|X;)= Q. ¥4x) in Eq. (4.32 then yields the de-

(xilplx;)= L] : (4.34  Note that fori #j, (x| T|x;) decreases continuously to zero
2V, whenS; —0. This ensures that the Hamiltonian is a continu-
ous function of the lattice coordinates, even as new links are
formed and old ones are broken.
Such continuity is also desirable when the Hamiltonian is
f determined empirically, especially for applicatiofssich as

should be referred to as “canonical,” because it does no{nolecular dynamics™ in which the atomic positions vary

satisfy the canonical commutation relations. In a continuoug\'lIth tlrr:e. I?r']s can .b.e ?T_rl"ev.(latd t_)y defining the nonlocal
coordinate basis, the canonical momentum satisfies elements ot the empirical Hamitonian as

Note that this matrix is Hermitian becauSg= —S; . If the
kets|x;) are used in Eq(4.30a above, a non-Hermitian ca-
nonical momentum is obtained.

There is some question as to whether this definitiop o

(XX pPIIX") =17 8o p8(X' =X"),  (4.39 <xi|H|xj>=—ﬁ—2ifn (i#]), (444

wherea and 8 are Cartesian components of the given vec-
tors. The corresponding equation in the discrete basis is  where the fitting parametdr; is a continuous, nonsingular
function of the lattice coordinates.

Note that the operatorp and T do not satisfy T
=p?/2m, because?, unlike p and T, couples sites that are
not linked. Howeverp andT are related by

ifdf S 435
20,0, '

(Xil[x*,pP1X})=

which obviously does not agree. Note, however, that

m
in == Ty 4.45
2 (XilxpPIX Q== 2 dff Sf=ih8,50, P =i % T (4.453
] ]
437 or
where Q) is the total volume, and the second equality is m
proved in Eq.(11) of Ref. 55. This agrees with the relation p= 7 [xTI. (4.450h

: Thus, any Hamiltonian of the forrd =T+ V(x), whereV is
’ a ABTIv"\A3yv’ A3y — . o .
J J (XX PPIX )X X" =1 500 (438 3 |ocal potential, satisfies E6L.1). Hence, for such a Hamil-
, ) ) . tonian, the canonical momentup* —iAV used in this sec-
in the continuous basis. Hence, E4.37) is as close as one ion agrees with the kinematic momentum defined earlier.
can come to a canonical commutation relation in a general Now let us examine the dimensionless factgy defined

; 168,69
dlscre'ge _ba5|§. o L above in Eq(4.29. If H=T+V, this becomes
A similar definition may be used for the kinetic-energy

operator Té}zs—hZVZ/Zm. The integral definition of the S0 30,
divergence, A= = , 4.4
'2V0,0, 2V0,0, 449
V-F(x)= lim if F(x)~ds}, (4.39  Wwhere();;= %S,—dij is the volume of the link between sités
a—o 2o andj (see Appendix B The factorA;; appears in theA?

165212-8
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term in the Hamiltoniar(4.23), which will be referred to as
H,. In a continuous coordinate basks; is given by

2

e
’ A 20! "
(X" [Hy|x") _2m02A (x")8(x" —x"), (4.47)

which means that it satisfies

2

e 20! 3y
szA(X)dX‘

f f <X' | H2|X">d3X/d3X”:

2m
(4.48
The corresponding equations for the discrete basis are
(Xi|HalX})= e m (4.49
2mc 2QQ;
and
eZ
IE] <Xi|H2|Xj>Qin:2mcz > % AZQ;;
e2
= §|) 3A20),.  (4.50

The second equality in Eq4.50 was obtained by noting
that a sum over andj covers each link twice. The only
apparent difference between E¢$.48 and(4.50 is a factor

of 3. This appears for the same reason that it does in the

Lagrangian(4.13—i.e., A% in Eq. (4.48 refers toAZ+A’

+A2, whereasA? in Eq. (4.50 refers only to the component

of A in the direction ofd, .

Therefore, Eqs4.48 and(4.50 are the same in the limit
of zero lattice spacing, and the factds; is simply a geo-
metric weight factor that provides the corréct coupling in
the Hamiltonian(4.23).

C. Spin

The theory presented thus far has been for a particle wit
spin zero. Particles with spia may be described using a
discrete version of the Dirac Hamiltonian for a free particle

H=ca-p+pB8mc, (4.5

where @ and B are Dirac’s 4<4 matrices. The momentum
operatorp can either be calculated from geometry or fitted to
experiment. In the presence of electromagnetic fields, the

Hamiltonian becomes

H=ca 7+ Bmc+ed, (4.52

where[cf. Eq. (4.22]

(4.53

ﬁiijijexp(—iKij).

A nonrelativistic Hamiltonian may be obtained by applying a

Foldy-Wouthuysen transformati6h’® to Eq. (4.52, which
yields

PHYSICAL REVIEW B6, 165212 (2002

1

Mo 2m

1
(o ﬂ)z—m((r- m*+ed

————[o - m (o mep]+itho m)], (454
8m?c?

where o is the Pauli spin matrix, and all terms of order
(v/c)* have been included. This Hamiltonian couples sites
that are not linked, but there is no ambiguity because the
Dirac equation is taken as fundamental.

If we assume for simplicity that the lattice coordinates do
not depend on time, then

(4.5

([0 medl+ito m)=—a @V,

where

Vij=e(¢i— ¢)) —fir;=—eE;d; (4.56
is the difference in potential energy of siteandj due to the

electric field. The last term in E@4.54) therefore consists of
the Darwin term

1
Hﬁ T ; (Vii+ Vi) mi- i (4.57

“amic
plus the spin-orbit coupling

SO_
Hij 8m2c2

where the identity

Ek (Vii+ Vi) o (my X ), (4.58

(o-a)(o-b)=a-b+io-(axh)

(4.59

has been used. Now the main contribution to spin-orbit cou-
pling comes from the atomic cores, where the potential en-
ergy and wave function vary rapidly. However, in any basis
of reasonable size, the lattice imposes a wavelength cutoff
that eliminates such rapid variations. The potengalmust
therefore be viewed as a pseudopotential, not a true atomic
Hotential. Hence, for practical purposef, in the spin-orbit
Hamiltonian (4.58 should be treated as a fitting parameter

.that is independent of the value used for the fgtterm in

(4.59.

The first two terms in the Hamiltoniaf#.54) are kinetic-
energy terms, which may be rewritten using

(a-w>ﬁ=2k[mk-wk;+io-(mkxﬂk,->], (4.60

in which the second term describes the intrinsic magnetic
dipole moment of the particle. For a general lattice, this term
is not zero even when there is no electromagnetic field, be-
cause different components of the momentum operator do
not commute(i.e., pXp#0). This follows from the fact that
there is generally no more than one iténked to bothi and
j, and for thati andj, p; X py; is generally not zero.

However, if the lattice is a Bravais lattice, therxp is
always zero. This follows from the fact that every site in a
Bravais lattice is identical, so for a given nonzgrgX py;,

165212-9
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there is always another site with pi,,=py; andpm;=pik,  Qy=nwy, wheren is an integer, and the volume of a primi-
hence pjX py;+ Pim X Pm;=0. Clearly one also hasl  tive cell in G space is0} = (27)%/ Q.

X dyj+dim X dm;=0, so the sites, k, |, andm lie in a single Periodic boundary conditions may then be implemented
plane. Ifi is not linked toj andk is not linked tom, theni, k,  gyer an even larger Bravais lattice whose sites are denoted
j, andm form a single plaquett, which has the shape of a | \yhereL < {R}. The corresponding reciprocal lattice
rectangle. Otherwise, they form two triangular plaquettes. \gactors are denotek, wherek - L =2aXinteger. The volume
_Ifthe momentum operator is given by Ed.34), then the e which periodic boundary conditions are appliedis
intrinsic magnetic dipole term in the Hamiltoni&4.54) for =NQ,, whereN is an integer, and the volume of a primitive

such a Bravais lattice is cell in k space is)* = (2)%/Q). Note that according to the
above definitionsG e{k} andge{G}.

Coordinate eigenkets in this system are denotgdvhere
|x+L)=|x) due to the periodic boundary conditions. The or-
thogonality and closure relations in this basis are therefore

mag_ _

Q2
i(—gksk‘sq By, (4.61)

8mcl d;dy; 07

where the weak-field approximatidnij|<1 has been used,
and the _direction 0B, is that of§;. If the _sitesi, k, j, andm <x|x’>=2 S i s (5.1)
form a single rectangular plaquette, tHgis the area of that C '
plaquette; otherwise, it is the combined area of the two tri-
angles(in which caseB,, is the average magnetic field of the
two plaquettes ! le ) {x|=1. 52
As an example, consider a simple cubic lattice with lattice ) o - ]

constanta, for which S, =S, =S,=a?, dy=d, =a, and N & system with periodic boundary conditions, the coordi-
Q. =a3. In this case, the fact(J)r inqparentheses i:w @p1) is nate operator is not well defined; only periodic functions of
ur|1ity and H™9 couples sites on opposite corners of eachthe coordinate are permitted. Therefore, the definition of the

’ " kinematic momentum must be slightly modified. Instead of

plaguette(with d;; = J2a). By comparison, the dipole term Eq. (1.1), one has

in the continuum Hamiltonian is given by

m
1 1 eh (X|p|x"y= = (x=x")}X|H|x") if xe Q andx' e Q, (5.3
R 2 __ (p— 2_ _— o h
Zm[a (p—eAlc)] 2m(p eAlc) >mc” B. I

(4.62  with (x|p[x")=(x+L|p|x"+L") otherwise.

) . o o Another useful representation is the crystal momentum
The numerical factor in front of this dipole coupling is four yepresentation

times larger than that in E@4.61). This occurs because Eq.
(4.61) couples each siteto four other siteg. 1 ,
[ky=— > e*x), (5.9

NXEQ
V. APPLICATION TO TETRAHEDRAL \/_
SEMICONDUCTORS where N'=nN=Q/w,. The corresponding orthogonality and

. . . . ] closure relations are
This section considers several different methods of imple-

menting the theory developed in Sec. IV. Spin is neglected in

all of the applications that follow. <k|k,>:% Sk—k',g» (5.9
A. Discrete pseudopotential method
. o > [k)(kl=1. (5.6
The simplest geometry occurs when the lattice sifewe ke ol

chosen to lie on a Bravais lattice. One possible approach in ) o ]
this case is to use the geometric expresgiéd2 for the In t_he crystal momentum representation, a periodic Hamil-
kinetic energyT, and assume that the potential enekgys  tonian(x/H|x")=(x+RH[x"+R) couples only those states
local. This approach will be referred to as the discretethat differ by a reciprocal lattice vects:
pseudopotential method.

If x lies on a Br.avais Iattjcéthe sub;cripti is omitted <k’|H|k>=Z S ki a(k+G|H[K), (5.7
here, one may define a reciprocal lattice as the set of all G
vectorsg such thag-x=2wXinteger. The volume of a primi-
tive cell in the direct lattice is denoted,, while that of a
primitive cell in the reciprocal lattice i®% = (2)% w. 1 . , .

In a crystal, the Hamiltonian will be poeriodic with respect <k+G|H|k>=ﬁ ZQ 2 e IO X iy [H[x) ek
to some larger Bravais lattice whose sites are denoted, by XEE X e
whereR e{x}. One may then define a corresponding recip- 58
rocal lattice as the set of all vectoiG such thatG-R The kinematic momentun.3) also satisfies Eq5.7). Its
=2mXinteger. The volume of a primitive cell iR space is matrix elements are related to thosetbby

where
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(k+G|p|k>=%Vk(k+G|H|k>. (5.9

On a Bravais lattice, the kinetic ener@.42 and canoni-
cal momentum4.34) are translationally invariant:

(XIT|X")=T(x=x"), (5.10

whereT(x+L)=T(x). The matrix elements of are there-
fore given by

<k|T|k’>=T(k>§ Sk—k'.g» (5.1
where
T(k)= EQ T(x)e kX, (5.12

For tetrahedral semiconductors with the diamond or zinc-
blende structure, it is convenient to use a cubic lattice for the
grid {x}. Expressions for the link distancely and surface

areasS;; are given in Appendix C for the simple cubic, body-
centered cubic, and face-centered cubic lattices. The result-

ing kinetic-energy operators given by E¢$.42 and(5.12
are

SC(k)— sm2 +sm2 % + |n2
T o= h? 61 k,a kya k,a
e R N e
o[ k@ ya [ k2
+ S|n2< > )+sm2 - +sir? 7)“
2h2 kya k,a
chc(k)=—2 3—co 2 co >

k,a k.a k.a kya
—CO 7 Cco T —CO 2 Cco >
(5.13

all of which reduce tdl (k) =%2k?/2m whenka<1. Herea

is the lattice constant of the grick}, which is some integer

fraction of the lattice constardty of the crystal latticg R}.

A canonical momentum operat@(k) corresponding to
Eq. (4.34 may be defined in a similar manner. This operator

is given by

p(k) =V, T(k), (5.14

which follows from Eq.(4.45. Note that this result is just a

special case of the kinematic moment@sno).
The matrix elements of a local periodic potentiA(x)
=V(x+R) are given by Eq(5.7), where

PHYSICAL REVIEW B6, 165212 (2002

1 A
(k+G|V|k):ﬁxEﬂ V(x)e 1 (5.19

is independent ok. It will be assumed here thaf is a
superposition of local atomic pseudopotentials:

Na

V()= > v (x—R-1,), (5.16
n=1 ReQ

wherev ,(x) =v ,(x+L) is the pseudopotential for atom,

whose position in the unit cell), is given by 7, . In this
case
1
(k+G|VIk) =1~ 21 v,(G)e 1C %, (5.17)
a u=
wherev ,(G) is the atomic form factor
Na —iG-x
0,(G)=— XZQ v,(x)e (5.18

and N, is the number of atoms in the unit cé&l,.

The main practical difficulty in implementing the discrete
pseudopotential method is th@tk) is not a good approxi-
mation to the continuum kinetic energy

h2k?

Teon(K)= (5.19

2m

unlesska<<1. This means that the lattice constanof the
grid {x} must be significantly smaller than the lattice con-
stantag of the crystal lattic§d R}. To obtain one grid point at
each atom in the diamond structura, must satisfy a
=ag/2l (for a bce grid or a=ag/4l (for sc and fcg, where

| is a positive integer. Numerical accuracy generally requires
I>1, as shown below.

The shapeof the Brillouin zone is also important. If the
shape of the Wigner-Seitz cell fesg is not congruent with
the shape of the Wigner-Seitz cell fér} , thenT(k) will
deviate fromT.,,{k) more rapidly in some directions than
others. This can lead to significant qualitative errors in the
kinetic energy. For example, in diamond, the lowest con-
tinuum eigenvalues df are T, (G)=%2G?/2m, whereG
=(000), (111), (200, and(220 (in units of 2m/ay). But
for a sc grid with a=3a, the value of T,((200)
=2#%/ma is actually lower than that of T{((111)
=3%2/ma?. The correct ratid on((200)) = 3 Teon((11D) is
only approached in the limit of very smalfa,, making the
sc grid a poor choice for diamond.

The natural choice for diamond is the fcc grid, since its
Brillouin zone has the same shape as that of diamond. In-
deed, one ha%;(((200)) = 5 T;((111) even for the maxi-
mum grid sizea=%ay. The only problem here is that
Ti((220) = 3T1((200)), which is not sufficiently close to
the correct ratio T on((220)) =2T,,{({(200)) to make a
=1a, a satisfactory choice for numerical calculations. The

next possibility isa=3a,, which yields Ty ((220)=(3
+ \/5/4)Tfm(<200>) =1.85T1((200).
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The basis kets in the tight-binding approach will be writ-
ten asla,R+ 7,), whereR is a lattice vector for the Bravais
lattice over which the Hamiltonian is periodic, amd is the
position of atomu within the primitive unit cellQ)y. These
quantities are defined exactly as they were in Sec. V A, the
vectorsL, G, andk are also defined in the same way. The
label « may refer to a coordinat&, within the atom, in
which case

Energy (eV)

la,R+7,)=|x,+R+7,) (5.20

is just a coordinate eigenket. Howevermay also be used
as a symmetry label for an atomic orbital that is a symme-
_10 b JS i trized linear combination of the ket5.20):

8t GaAs _

|a,R+TM>=Zﬂ Cpla)|xgtR+17,). (5.21

Wave vector k . ..
In either case, the basis is orthogonal,
FIG. 1. Energy band structure of GaAs calculated by the dis-
crete local pseudopotential method, using an fcc grid wvath P _
= %a,. Solid lines: fcc kinetic energy from E¢5.13. Dotted lines: (@Rt 7la" R +7,)= 5‘“/5ﬂl"; OR-R/ L
continuum kinetic energy from Eg5.19. (5.22

, and complete,
The energy band structure for GaAs calculated using an

fcc grid with a=3a, is given in Fig. 1. The fcc kinetic
energy obtained from Eq5.13 was multiplied by a constant > > REQ la.R+ 7, R+7,|=1. (523
factor 72(2+/2)/32=1.053 so that T;(k) matches T
Teon(k) at G=(111) and G=(200). The pseudopotential |n periodic systems, it is convenient to define the Bloch
form factors(5.18 for this calculation were taken from Ref. sumg
73. No attempt was made to fit the energy bands by modify-
ing the form factors; the purpose of this figure is merely to 1 .
demonstrate the close similarity between the discrete fcc |a,M,k>=\/—N REQ e R la,Rt7,), (5.24
band structure and the continuum band structure. Slight ad- ©
justments in the model parameters would likely give an everwhich are also orthogonal and complete:
better agreement.

The main problem with this result is that= 3a, corre-

’ P!\ — , , , —-iG-7
sponds to a basis size of 512 grid points per primitive unit (. kla’,p K= Ouar Oy % O-kr,68

cell Qq. This is unattractive in comparison to the basis di- (5.295
mensions of~100 plane waves that are typically used in

empirical pseudopotential calculations for tetrahedral semi- _

conductors. However, changing the fcc gridate a, (i.e., ; % 2 k) (enmkl=1. (5.29

64 grid points per primitive cell makes it impossible to kefo

achieve a satisfactory fit to the band structure using localf the HamiltonianH is invariant with respect to lattice trans-
pseudopotentials. A good fit is possible only if the nonlocallationsR, then its matrix elements in the Bloch basis are
Hamiltonian matrix elements are treated as fitting param-

eters. But in that case, one can reduce the basis dimensions{@.#.k[H[a", 1" K")

even further by using the tight-binding approach.

:<(1,/.L,k|H|0[’,/.L,,k>2 5k,k/‘GeiiG'T#,, (527)
G
B. Tight-binding method
where

In the tight-binding approach, the grid points are no
longer restricted to lie on a Bravais lattice, and all of the  (a,u,k|H|a’,u’,k)
Hamiltonian matrix elements are treated as fitting param-

eters. In addition, it is assumed here that the model is con- = > (a7 Hla R + 7, ek ® w7,

structed using the symmetrization procedure described in R 0

Sec. Il, so that a distinct set of orthogonal orbitals is associ- (5.29
ated with each atom. The objective then is to find the small- '

est coordinate basis that provides a physically reasonablEhe kinematic momentum operat6t.24) is related to this
model of the given system. Hamiltonian by
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TABLE I. Number of free parameters for different tight-binding be deduced easily from the link geometry results presented in
models in the diamond structure. The first four rows refer to con-Appendix C. The corresponding numbers for the compound

ventional t|ght-b|nd|ng models, while the remaining refer to mOdelSmodels(Wlth more than one genera)cuvere determ|ned us-
obtained from symmetrized coordinate eigenkets. NN denotes neairﬁg the algorithm in Appendix B.

est neighbors. The most striking feature of Table | is the relative paucity

of free parameters in the symmetrized coordinate approach,

Model Parameters . o -
Basic Size Onsite INN 2NN 3NN which occurs because of the restrictich16) |mp_osed by _
local gauge symmetry. Several of the symmetrized coordi-
sp® 4 2 4 7 7 nate models are direct analogs of conventional mogdeds
spis* 5 4 7 11 11 they have identical symmetryfor example, thg111) (T,)
spid? 6 3 7 13 13 model corresponds tep?, and the|100» model corresponds
spids* 10 7 17 33 33  tosp’d? [see Egs(2.10 and(2.13]. However, the number
of free parameters in conventional tight-binding theory
|111) (Tq) 4 2 1 1 0 grows steadily with distance, whereas in the present theory
|100) 6 2 1 1 0 there is no coupling beyond second nearest neighbors.
|112) (Op) 8 3 3 1 0 This dearth of adjustable parameters means that the small-
1110 12 3 1 1 0 est basis sets do not provide a reliable model for the energy
|110) +|000) 13 5 1 1 0 band structure. For example, in thEll) (T4) model, the
[111)+]100) 14 7 5 1 0 splitting of the bonding and antibonding states at thd”
[111)+|100)+|000) 15 11 5 1 0 point is the same as that of tipestates al” (and that of the

p states aiX). In the|100) model, there is no coupling at all
betweenp orbitals on different atoms at the point, so the
(a,u,Klpla’,u' k) splitting of bonding and antibonding states is zero. Such dif-
ficulties arise primarily because there is only one nearest-
(5.29 neighbor coupling parameter in these models.
' To increase the number of adjustable parameters without
an undue increase in basis size, one must deliberately search
where the original basis was assumed to be given by Edor models with themost complicatedopology available. A
(5.20. Note that Eq(5.29 has the form of an intra-atomic good starting point is the11) (Oy,) basis, which already has
matrix elementproportional tox,—X,+) plus an interatomic three nearest-neighbor parameters. Combining this with a
matrix element(proportional toiV,). The zero-parameter |100) basis raises that number to four or five, depending on
model of Eq.(1.3) is obtained in the limix,—0. the relative values of the coordinates in the two generators.
Let us now consider specific examplestdffor tetrahe-  This 14-orbital model is a dramatic improvement over any of
dral semiconductors. The simplest tight-binding model forthe smaller models; however, an ex{t®0 site adds sub-
the diamond or zinc-blende structure consists of a sisgle stantial extra flexibility without much change in the basis
orbital per atom, which is obtained by putting one coordinatesize. Thus, the 15-orbital model generated|0690), |111),
eigenket at each atomic positigsee Eq.(2.13)]. In this  and|100 is probably the smallest basis capable of describing
model, as shown in Appendix C, each atom is linked to fourtetrahedral semiconductors accurately. In the language of
nearest neighbors and 12 second-nearest neighbors. Mocenventional tight-binding theory, this would be referred to
distant linkages do not exist because the Voronoi polyhedras ans®p®d®f model.
for these atoms do not touch one another. As shown in Table I, this model has 17 free parameters
Such a simple model is, of course, unable to describe evefone of which is just the reference energgpecific defini-
the qualitative features of tetrahedral semiconductors. Theons for these parameters are given in Table Il, which also
simplest conventional tight-binding model that works in thispresents parameter values for Ge and Si obtained by fitting
case is thesp® model?>~*??The basic features of this model the band structure of the 15-orbital model to that given by
are described in Table I, which lists the basis ¢imember of  the nonlocal empirical pseudopotentials of Chelikowsky and
orbitals per atomnand the number of independent Hamil- Cohen’~"" Local Hamiltonian matrix elements are labeled
tonian matrix elements for coupling between atoms in theV, whereas nonlocal on-site, nearest-neighbor, and second-
diamond structure out to third nearest neighfdr§able |  nearest-neighbor terms are denotegs, andy, respectively.
also lists the properties of other tight-binding models used inThe subscripts, b, e, andf refer to independent sites gen-
the literature, such asp®s*,’* sp®d?,*® andsp®d®s*.> The  erated by|0,0,0), |r,r,r), |—r,—r,—r), and|r’,0,0), re-
number of parameters listed in this table is the number perspectively. The labels, e, andf are the Wyckoff labels for
mitted by the symmetry of the model, which is not necessarsites of different symmetry in the diamond structeft@he
ily the same as that used in any specific implementation inabel b is not correct Wyckoff notation; it actually refers to
the literature. an independent site, but the notatiof was used here be-
For comparison, the bottom half of Table | lists the prop-cause these sites lie on the bonds between atoms.
erties of several tight-binding models constructed from sym- The energy band structure calculated from the parameters
metrized coordinate eigenkets. The number of free paramn Table Il is plotted in Fig. 2. One can see that the 15-orbital
eters for the models generated [290), [111), and|110) may  model provides a good fit to the nonlocal pseudopotential

m ; ’ ’
= m(xa_xa’+lvk)<a”u”k|H|a 72 'k>'
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TABLE II. Independent Hamiltonian parameters in the 15- 10
orbital model generated §9,0,0, |r,r,r), and|r’,0,0).
Parameter ValugRy)

Symbol Definition Ge Si

Va (0,0,0H|0,0,0) 1.225 36 1.762 82

A (r,r,r|H|r,r.r) 118998 1.65167 3

Ve (=r,r,r[H|=r,r,r) 1.07211 117674 &

\z (r’,0,0/H|r’,0,0) 1.77902  1.98485 £
Qap —(0,0,0H|r,r,r) —0.564 83 —0.507 49

Qe —(0,0,0H|—r,r,r) 0.07052  0.24801

gt —(0,0,0H|r",0,0) 0.06400 —0.07980

pe —(r,r,r|H|=r,rr) 0.03841 0.19402 10
apy —(r,r,r|H|r",0,0) 0.69832  0.78464

Qo —(—r,r,r|H|0s",0) 0.31958 0.13684 -2
g —(r',0,0/H|0s",0) ~043768 —047311
Bob —(r,r,r|Hla=r,a—r,a—r) 0.74306  1.45766

Bee —{-r,r,r[Hla-r,a-r,a+r) —0.03011 0.01537

B —(r,r,r|Hla-r’,a,a) —0.07041 —0.35201

Bet —(=r,r,r|[Hla-r",a,a) 0.28640  0.40040

Bit —(r’,0,0lH]a,a—r’,a) 0.13140 0.17401

Yee —(=r,rr|H|=r,2a=r,2a-r) 0.02976 0.02025

bands from the bottom of the valence band to about 5 eVE
above the top of the valence band. Qualitative errors begin tcg
occur near 9 eV at both tHeandX points. For example, the o
X, level near 9 eV in both figures should occur above 12 eV.
This discrepancy can be eliminated, but the author has no
found any way of doing so without adversely affecting the
quality of the overall fit. -10

It should be emphasized that the parameters in Table Il _j,
are presented here merely as “proof of concept;” they are in = X UK T
no way intended as the final word on the subject, and the (b) Wave vector k

author would be surprised if a better set were not found in ) N .
the future. The quantities included in the fitting procedure FIG- 2. Energy band structure of germanium and silicon. Solid
were the valence- and conduction-band energy level, at lines: 15-o_rb|tall tight-binding m_odel based on pa_rameters in Table
X, L, and K. Effective masses and deformation potentials” Dotted lines: Nonlocal empirical pseudopotential model of Ref.

The kinetic-energy cutoff for the latter calculation wds (
were not considered, and no attempt was made at ensurlngG)z<21(2ﬂ/ao)z which corresponds to 113 plane waved at
transferability.

The main difficulty encountered during the fitting was the
lack of any reliable method for establishing a sound starting ) ) o )
point. Unlike the case for smaller tight-binding models, the AS @ test of the field-particle coupling in the 15-orbital
present Hamiltonian has almost no simple analytical SO|umodel the imaginary part of the7transverse dielectric tensor
tions (except for thel';», I'1,, and X, states, which are was calculated from the formdfa™
relatively unimportantthat can be used to determine starting
values. The formul#4.42 for the kinetic energy provides a <8
set of “free-particle” parameters that is better than nothing; €37 ( CE (2m)°
but in a 15-orbital basis, Eq4.42) is a poor approximation
to the continuum kinetic energ$.19. After several months X 8(Egx— E x—hw)dk, (5.30
and dozens of different schem@sghich still sampled only an
infinitesimal fraction of parameter spacéhe author was un- \where# w is the photon energy, arjdk) is an eigenket oH
able to find any method whose success could honestly bgith energyE,, . The sum covered the four valence bands
attributed to anything other than trial and error. Hence, theand the seven lowest conduction bamds he integral was
development of a robust fitting procedure remains an unperformed using a modified Gilat-Raubenheimer
solved problem. techniqué® 8! based on 4596k points in the irreducible

C. Dielectric function

" e
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part of the Brillouin zon& 83 (representing 2048 000 points 40 .
in the full Brillouin zone. The energy interval for this cal- .
el [ Experiment
culation was 1 meV. — — - PP (local p)
To reveal more clearly the physical meaning of the calcu- —-— PP (nonlocal p)
lated spectra, the same method was used to calculate the joil 30 ---- TB(=0)
—— TB(r=af3)

density-of-states function
N
w

20,
(2m)®

20

JE)=>

C,v

fﬂ* S(Eq— E,x—E)dPk.  (5.30)
0

The dielectric function differs frond(E), in that each tran-

sition is weighted by the oscillator strength 10

2(vk|p*|ck)(ck|pfluk)
M(Eck—E, k)

fof= (5.3

One may therefore use, andJ to define an average oscil-
lator strength at each energy by

(a)
50
mwQ, €*(w)

Ff(fhw)= :
()= w2e? Wiw)

(5.33

40
In cubic crystals, the tenso(5.30 and(5.33 reduce to sca-
lars: €5%(w) = €3(w) Sop -

The calculated dielectric functioe,(w) for Ge and Si is
plotted in Fig. 3. This figure compares experimental ¥ata
for the dielectric function with the values given by E§.30 o
for (i) the nonlocal pseudopotential model of Chelikowsky
and CohefP~""and(ii) the 15-orbital tight-binding model of
Table Il. For each model, two plots eh(w) are given, cor-
responding to two different expressions for the momentum
operatorp.

In pseudopotential calculations, optical properties are usu-
ally calculated fromA-p coupling withp=—i%V."” How-
ever, if the pseudopotential is nonlocal, this coupling is not
gauge invariant; the correct linear coupling is given instead
by the kinematic momentunp=(m/i%)[x,H].}* Since
pseudopotential calculations are usually performed in a

30

20

10

0

nematic momentum is given by E.9) (which is valid for
both discrete and continuous coordinatgs

In the present tight-binding theory, the kinematic momen-
tum is given by Eq(5.29. The two tight-binding functions
plotted in Fig. 3 correspond to two different choices of the

PHYSICAL REVIEW B6, 165212 (2002

........... Experiment

— —- PP (local p)

— - — PP (nonlocal p)

----TB(@F=0
( = ) S R

—— TB (r=a/3) Y

Energy (V)

FIG. 3. Imaginary part of the transverse dielectric function
plane-wave basis, a more convenient expression for the kpf germanium and silico_n. Dotted line: Experimenta_l data from
Ref. 84. Long dashed line: Nonlocal pseudopotential model of
Ref. 77 with canonicallocal) momentump= —iAV. Dot-dashed
line: Nonlocal pseudopotential model of Ref. 77 with kinematic
(nonloca) momentump=(m/i#)[x,H]. Short dashed line: 15-
orbital tight-binding model from Table Il with—0 andr’—0.
Solid line: 15-orbital tight-binding model from Table Il with

intra-atomic coordinatex,, which are determined by the r=Llaandr'=2r.

parameters andr’ in Table Il. One choice was the limit
—0, r’'—0, which is equivalent to the zero-parameter

Several conclusions may be drawn from Fig. 3. The first

model of Egs.(1.3) and (1.4). The other, more physically s that, within a given modelpseudopotential or tight bind-
realistic choice was=3a andr’=\2r. The valuer=3a ing), the choice of momentum operator does not have much
was chosen because it yields equidistant lattice sites alongumerical significance for the present calculation. This was
the bond directiong111). The valuer’ = \/2r was used be- to be expected on physical grounds, since the intra-atomic
cause a somewhat larger val(eg., 1.5) breaks the link coordinatex, (in the tight-binding modgland the nonlocal

ags in Table I, whereas a somewhat smaller valigeg., part of the momentuntin the pseudopotential modeboth
1.3r) breaks the linksBy; and B¢; (while simultaneously lead to polarization effectsvithin the atom. Yet it is well
forming a new link Bye). These values of andr’ also  known that the bonds between atoms are much easier to po-
generated successful starting values for some of the pararfarize than the atoms themselvi€sHence, in a bulk semi-
eters in Table I(although the final fitted parameters were notconductor, intra-atomic effects yield only a minor numerical
very close to the starting values correction. This conclusion should remain valid in any sys-
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tem where the states are extended, but it may break down ii ‘ ' ’ ‘
systems where localized states are |mp0&éﬁﬁ R Pseudopotential
The nonlocal part of the pseudopotential momentum tends 3 Tight binding
to increases,(w) in most frequency ranges, but it sometimes
has the opposite effecsee, e.g., the region below 4 eV in
Si). However, the intra-atomic coupling in the tight-binding
model always decreases(w). This may be understood by 5 »
noting that the dominant nonlocal term in the Hamiltonian of _,5;
Table Il is the coupling3,, along the bond between nearest > L .
neighbors. Increasing the value ofdecreases the distance = - T,
betweerb sites on neighboring atoms, thereby decreasing the .
momentum matrix in Eq.5.29. This tends to increase
(slightly) the discrepancy between the tight-binding and
pseudopotential dielectric functions. It is possible, however,
that a different parametrization of the Hamiltonian might
yield different results. 0
The tight-binding and pseudopotential dielectric functions (a)
are quite similar in Ge, but there is a significant discrepancy
at theE, peak in Si. The reason for the difference between : . . |
the models is apparent from the joint density of statesd )
average oscillator strength plotted in Fig. 4. This figure s ;?zﬁfgli’;’;‘::;al
shows that the tight binding is very accurate in Ge and
somewhat less so in Si, as might have been expected fror
the quality of the fitted energy bands in Fig. 2. However, the
tight-binding model underestimates the oscillator strength : !
over almost the entire frequency range shown, typically by g 2 N
about 20%. The difference is most pronounced between 4~
and 4.5 eV in Si, where it exceeds 30%. When combineds |
with a slight underestimate dfin the same region, this leads ™~ "
to the discrepancy in thE, peak noted above. 1+
The E, peak in Si is associated with a volumekrspace
near (0.9,0.1,0.1)2/a,,’” which is close to theX point. I . s
Thus, the physical reason for the error in the peak is
probably the spuriouX; conduction band near 9 eV in Fig. :
2. Because this band is too low in energy, it mixes more 3 4 5 6
strongly with the lowestX; conduction band in the tight- (b) Energy (eV)
binding model than it does in the pseudopotential model.
This change in the wave function causes a correspondin
.Change.m oscillator strgngth. Thu§, .the me.ljomy of the erro Ref. 77 with kinematic momentump=(m/i#)[x,H]. Solid
in the SIE, peak would likely be eliminated if one could find .~ o - T
- . line: 15-orbital tight-binding model from Table Il with=3a and
an improved parameter set that raises the energy of the upper”
) r=2r.
X3 conduction band.

It is less clear whether the systematic underestimate of o ) ]
oscillator strength at all frequencies could be resolved byight-binding models. Chelikowsky and Cohen have attrib-
changing the Hamiltonian parameters. Oscillator strengtitéd this discrepancy to the neglect of exciton efféets.
was not included in the present fitting routine, so it is pos-However, a recent first-principles calculation of(w) that
sible that with specific attention to this feature, one couldncludes electron-hole interactidiishows that the contribu-

improve the oscillator strength while maintaining the quality fion from excitons in Ge is not large enough to 7f|II7the gap in
of the joint density of states. However, it is also possible thaf19- 3- Thus, the empirical pseudopotential for & prob-
such an underestimate is a fundamental limitation impose@bly needs further adjustment to increase Ejepeak.
by the small basis size in the tight-binding model. Thus, at
present, the 15-orbital model is capable of providing semi-
guantitative predictions of oscillator strength that reproduce
all of the major trends exhibited by the pseudopotential This paper has shown that intra-atomic optical transitions
model. Whether future developments bring it into precisecan be incorporated into tight-binding theory in a gauge-
guantitative agreement remains to be seen. invariant way if the coordinate representation is taken as fun-
Finally, it is worth noting that in Fig. 3, the calculat&g damental. Orthogonal atomiclike orbitals can be constructed
peak(between 2 and 3 eMor Ge is considerably less than from symmetrized coordinate eigenkets, and the coupling to
the experimental value for both the pseudopotential an@lectromagnetic fields can then be described using lattice

FIG. 4. Joint density of statekand average oscillator strength
for Ge and Si. Dotted line: Nonlocal pseudopotential model of

VI. DISCUSSION AND CONCLUSIONS
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gauge theory. A model based on 15 such orbitals per atom some internal degrees of freedgoorresponding to the sym-
capable of describing the most important features of the tetmetry labels of the atomic orbitalshat are coupled to the
rahedral semiconductors Ge and Si. This basis is slightlgauge field. In this way, one might hope to reproduce the
larger than existing ten-orbital modélsbut it has the advan-  effects of intra-atomic coupling while remaining in the tight-
tages of(i) gauge invariance angi) providing an explicit bioding basis. There are, however, numerous difficulties with
wave function for the electron. A larger basis is needed in théhis approach. _
present theory because the restrictions imposed by local First. the lattice sites in lattice gauge theory represent
gauge symmetry reduce the number of available Hamiltoniaftates of the same particle at different positions. Hence, these
fitting parameters. states are identical apart from their positions. However, in
The field-particle coupling derived here is similar to that ight-binding theory the atoms are generally not the same.
given by the Peierls substitutidh2’~3but the field-induced _Seoon_d, the fleld_equanons for a non-A_behan gauge field are
phase factor appears in the coordinate representation rathi@ffinsically nonlinear, because the field carries its own
than the tight-binding representation. Thus, the present forch@rge and is coupled directly to itseffe., it is self-
malism includes intra-atomic coupling not present in thefadiating. Itis therefore difficult to |mag|nelhow ;uch qﬂeld
Peierls substitution. Ismail-Beigi, Chang, and Ldtieave could reproduce ordinary electromagnetism, in which the
recently presented a derivation of the Peierls phase for norfi€ld has no charge, and nonlinearities arise only from inter-
local Hamiltonians in a continuous coordinate representatiorCtions with matter. Third, one would need to define a new
They have argued that this derivation justifies the use of thg@uge field theory every time one added new orbitals to the
Peierls substitution in tight-binding theory. However, their Model, and every one of these non-Abelian field theories
derivation cannot be extrapolated to tight-binding theory, be¥Vould need to reproduce the results of Abelian electromag-
cause ordinanA-p coupling gives rise to intra-atomic inter- netic theory. Flnally,_ the coordinate opera_tor in this approach
actions that are not included in the Peierls substitution. Th&ould still have a discrete, degenerate eigenvalue spectrum.
existence of such interactions was not considered in the 1hUS. it appears that the present approach—that is, an
tight-binding theory of Ref. 11. Abelian U1) gauge f|old in the coordlnote representation—is
It is interesting to consider whether there are any othefn® ©nly gauge-invariant method for including electromag-
ways of incorporating local gauge symmetry into tight- netic fields in emplrloal t|gh'F-b_|nd|ng theory th_at ten_ds to-
binding theory. One possibility is to work directly in the yvard the correcF continuum limit as the basis dlmens_lons are
usual tight-binding representatiofsee, e.g., Eq.(1.4], increased. In this case, the on_Iy way that the essential struc-
where the basis kets are labeled by the symmetry of thire of the theory can be modified is to change the topology
orbital and the position of the atom. If gauge symmetry is toOf t.he system so as to increase the number of links between
be applied in this basis, the coordinate operator must be dfattice sites. This would increase the number of free param-
agonal, hence all intra-atomic matrix elements must be set tBt€rs in the Hamiltonian, thereby permitting a reduction in
zero[as in EqQ.(1.3]. One could then introduce an Abelian bas!s_3|ze. Suc_h a modification .would clearly bo beneficial,
U(1) gauge field on this lattice using the approach describe ut it is not ob\{lous that_there exists any alternotlve topology
above in Sec. IV. The results would be identical to thosd©f 9eneral lattices that is capable of reproducing continuum
found in Sec. IV, except that the phase factor in the Hamil-6/éctromagnetism unambiguously. Hence, this possibility
tonian (4.22 would be applied in the tight-binding represen- Will not be explored further here.
tation rather than the coordinate representation. Hence, this
approach would constitute a “derivation” of the Peierls ACKNOWLEDGMENTS
phasg1.4). Such a derivation would eliminate the ambiguity

ﬁissfecéaftgf evﬁlri,hmtgﬁncmgti (;fngé?hﬂf qég'é)éégtigigt?ncgefsfor helpful discussions. This work was supported by Hong
11qand 30. 9P gy Kong RGC Grant No. HKUST6139/00P.

The problem with this approach lies in its treatment of the
coordinate operator. In the theory described in Sec. IV, when APPENDIX A: SYMMETRIZED ORBITALS

the basis size is increased, the eigenvalue spectrum of the This section presents symmetrized orbitals obtained by
coordinate operator remains nondegenerate, ten@inthe  55ving the symmetry operations of the cubic grapto
limit of infinite basis dimensionstoward a continuous spec- ha coordinate eigenketa00) and|110). [The orbitals for

Giagonalin the tght binding basie, s cgemvaloe specirum -1 M2 be found n EQ(210.] For 100, 1 the basis
always degenerate, tendiriign the limit of infinite basis di- ets are ordered a8 100)_' 010 ! 00, [100), |010),
mensions toward a discrete spectrum with infinite degen-|001)}, then the symmetrized orbitals are
eracy. Hence, any tight-binding theory that is either based on
or equivalent to the Peierls substitution cannot reproduce the o1
correct continuum limit of the coordinate operator. To)= |S>_E(1'1’1’1’1’1’

As a generalization of the above approach, one might also
consider introducing a non-Abelian gauge fféd®4°->%in 1
the tight-binding basis. The idea would be to treat the tight- T2 =|p,)=—=(0,0,1,0,0 1),
binding electron as a new type of “elementary particle” with V2

I am grateful to Peter Vogl, Tim Boykin, and Tai Kai Ng
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1 X=X+ Ay B3
T2y =[dp2 2 y2)= —=(~1,-12-1,-1,2), S (B3)

2\3 where\ is a real parameten;j, = njj /njj , andxjj is the
point in the plangB2) equidistant fromx;, x;, andx,. To

b\ _ _ _ etermine this point, note that pointsequidistant fromx;
IT7)=dy2-y2) 2(1* 101-1,0. (AD) andx; satisfy
For |110), if the basis kets are ordered §911), |011), 1
—_ L T — — =) X—=(X:+Xx)|=0.

|011), |011), |10, |10), |101), [101), |110), |110), (=) [ x5 (%) =0 B4)

1110), [110)}, then the symmetrized orbitals are The pointx;;, therefore satisfies the three equations
“Xjik=C r=12,3 BS
IT)=|s)=—=(1,1,1,1,1,1,1,1,1,1, 1)1 B Xi=Cr ) (B9

f in which

a1=dji , a2=dki, a3:nijk, (B6)

9 =[p2)= \/—(1 1.1,-1,1,-1,1-1,0,000, which may be viewed as a set of obligmore specifically,

monoclinig basis vectors, and
|F?2>:|d212—x2—y2> 1,
C1=5 (Xj=X7),
—(-1,-1,-1-1-1,-1,-1,-1,2,2,2,2,
2\/— 15
CZZE(XK_Xi)v

I dy2_,2 1,1,1,1+-1,-1,-1,—-1,0,0,0,0,
T2 =Ide-y2)= \/—( C3= Mijic X=X - (X; X X ). (B7)

1 The solution to Eqs(B5) is given by
032y = |dxy>=5(0,0,0,0,0,0,0,0,h 1,-1,3), 3
Xijk: 2 CSbSI (B8)

|56y =1 x2—y2)) = \/—( 1,1,-111-11-1,0,0,0,0. whereby is a reciprocal basis vector satisfyiag: by= 6, ;

(A2) eg.,

For the triply degenerate representatibig, I'»s , andl s, 8 X a8y

only one representative orbital is given; the others may be Yo (apXag)
obtained from cyclic permutations af y, andz

(B9)

Now sincea, - (a2><a3)=ni2jk, the vectorshg are given ex-

plicitly by
APPENDIX B: GEOMETRY OF VORONOI POLYHEDRA

— 2 2
This appendix presents an algorithm for calculating the by = [djj (i) = dhi(dji - dhi) /i
geometry of the Voronoi polyhedra associated with a given
set of nodes;. The basic element in this algorithm is a
procedure for finding the edges of the polyhedra. An edge of
a Voronoi polyhedron is a finite line segment consisting of
points that are closer to thrger morg nodes than to any Equation(B8) may then be rearranged in the more symmet-
other nodes. The first step is therefore to determine the equ@c form
tion defining this line.

[dkl(d ) d]l d]l dkl)]/nljk’ (BlO)

_ 2
3= Njji /N, -

Any three noncollinear points;, x;, and x, define a x[d (dji- dk.)]+X,[d (dy;- d,J)]+xk[d (di-di)]
plane whose normal is the vector Xijk = o .
ijk
nijk=dji XdkiZXiXXj+Xj XX+ X X X (Bl) (Bll)

This result, together with EqB3), defines the line equidis-

whered;; =x; — x; . This plane is the set of poinkssatisfyin
L P P fying tant from nodes«;, x;, andxy.

~ —x)=0 B2 The next step is to determine whether any segment of this
nljk (X X|) . ( ) . . .
line forms an edge of a Voronoi polyhedron. Points on such a
The line consisting of all pointg equidistant fromx;, x;, segment must lie closer tq, x;, andx, than to any other
andx, may therefore be written as nodex,,. For each node,,, one calculates
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(B12)

If @,=0, thenx,, lies in the plane(B2). In this case, if
[Xm—Xijk| <X — x|, then no portion of the lin€B3) forms
an edge of a Voronoi polyhedron. On the other handixf
—Xijk|=|xi—Xijk|, then the ling(B3) may form an edgéde-
pending on the position of the other nodgs).

If a,#0, thenx,, does not lie in the plané2). In this
case, points on the lin@3) that are closer t; than tox,,
satisfy[cf. Eq. (B4)]

@m= i Njj -

dim'(xijk+)\ﬁijk_xim)>ol (Bl?))

in which X;,=3(x;+Xy,). Hence, the position of the point
equidistant fronx;, x;, X, andxy, is given by the following
value of the parametex in Eq. (B3):

_ Gim® (Xim — Xiji)

T (B14)
One may then define
N min=Max\ | @,>0) (B19

(i.e., the maximum value aof, for all m such thata,,>0)
and
N max= MINA | ¢y <0). (B16)

If Nmac>Amin, then the line segmentB3) with A in<\
<Amax forms an edge of a Voronoi polyhedron. This esta
lishes the positions of two corners of the polyhedron:

Xc:Xijk+)\minﬁijk )
(B17)

The set of all nodes in the plaiiB2) that lie closer to the
line segmenh i, <A<\ than any other node defines what

Xer = Xijk T Nmadlijk -
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FIG. 5. Partitioning of the surfacg; into triangles for the area
calculation in Eq(B20).

the perimeter of the polygon, then partitioning the polygon
into triangles as shown in Fig. 5. The normal area vector is

1 Ni
§i=3 & (e 17 x)Xe—x),  (B20)
whereN;j; is the number of corner points common to nodes
andj. The area5;=|S;]| is the area of the surface shared by
the Voronoi polyhedra for siteisandj; note that ifN;; =1 or
2, the shared region is a point or line, and the d&20) is
zero. Nodex; andx; are linked only ifS;>0.

The volume(); of the Voronoi polyhedron for nodg;
may be calculated fron$; andd;;. One simply integrates
the identity V-x=3 over the polyhedron, using the diver-
gence theorem and the fact that the plane contaiipgs

b_the perpendicular bisector df; (althoughd;; need not inter-

sectS;; itself). The result is

1
For each linkl=(i,j), one can construct a polyhedron by

drawing lines from nodeg; andx; to each of their common
corner pointsx;. The volume of this polyhedron is

is called a plaquette. Since there are, in general, more than

three such nodes, it is convenient to define a unique Iqbel
for each plaquette, with

anﬁijk , XqEXijk! (818)

for any members; , x;, andx, of the given plaquettgThe
sign ofﬁq is fixed by some convention for the ordering of the

nodesx;, X, andx,.) Each plaquette is associated uniquely

with one edge of a Voronoi polyhedron, the length of which
is

dq:|xc’_xc|:7\max_)\min- (B19)

with d,>0 by definition.
At this point, one has sufficient information to determine
whether a link exists between any pair of nodesandx; .

1

The volume(),=(};; is bisected by§=S;;, with half lying
in Q; and half in{};; hence

1

The nodes in plaquettg define a polygon in the plane
(B2); the perimeter of this polygon is formed by the links

Hence, the area of the plaquette can be calculated in the same

way as the link are&B20):

(B24)

N
1 q
The first step is to use the above procedure to find all of the Se=3 ,23 (Xi—1 = X)X (X = X),

corner pointsx, common to nodes andj. By definition, all

such points lie in the planéB4). The set of these points whereNg is the number of nodes in plaquetieA polyhe-
defines a polygon, the perimeter of which consists of the linelron may be constructed for each plaquette by drawing lines
segmentgB19). The area of the polygon may be calculatedfrom each node of the plaquette to the corner poiBtk7);

by numbering the corner points in sequential order around the volume of this polyhedron is
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1 The remaining lattices to be considered are those obtained
Qq=3S4dq- (B25 by putting symmetrized orbitals on the atomic sites of the
diamond or zinc-blende structure. If only a singl@rbital
per atom is usedi.e., one|000) basis ket per atojn then
each atom is linked to four nearest neighbors and 12 second-
nearest neighbors, with

Finally, the plaquette surfaces; partition all of space
into nonoverlapping polyhedréhis is referred to as a De-
launay tessellatidt). These polyhedréor cells) are in one-

to-one correspondence with the corner points of the _ _ 2
Voronoi polyhedra. The volume of cetlis di=\3a, $,=3\3a (C4
and
Oe=z S Sy (Xg=%0) (B26)
Y “(Xg™Xe)s 2
3 dce d,=2.2a, szzgaz. (C5)

where the direction 0§, is chosen to point outward fro . . _ _ _ _
(note thatx. does not necessarily lie inside, ,> so the dot Herea=za,, wherea, is the conventional cubic lattice con-

product may be negative for song. stant. Note that in this case, the lidk does not intersect the
A useful set of sum rules for verifying the consistency of surfaceS,. _ o
a calculated geometry is Coupling between second-nearest neighbors persists in

models with more than one orbital per atom. In thep®’
model with four|111) sites per atonfgenerated by applying
Ei Qi:EI Q=2 sz Qc=Q,  (B27)  the symmetry operations dfy to |r,r,r) and|a—r,a—r,a
d —r)), each site is linked to three others on the same atom,
where(} is the volume of some region over which the node
distribution is periodic, such as a primitive cell in a Bravais do=242r Sozliaz' (C8)
lattice (not to be confused with the generally nonperiodic cell 0 ' 4
Q.). The sum rule fof); follows directly from the definition : .
of Q; given in Sec. IlI, since every point i must lieinat °N€ o a neighboring atom,
least one Voronoi polyhedron, and the only regions of over- _ B 2.
lap between polyhedra are points, lines, or planes of zero di= V3(a-2n), 81—3\/§a ' €7
volume. The sum rule fof), was proven in Ref. 53. The and three second-nearest neighbors,
sum rule forQ), follows from that for();, since the sefQ,}

is just another way of partitioning the s¢f);} [see Eq. V2
(B23)]. Likewise, the sum rule fof), follows from that for d,=2\2(a-r), SZZTaZ- (C8)
O, since the sef()} is just another way of partitioning the
set{{).} [see Eqs(B19), (B25), and(B26)]. In the model generated by eith&g or Oy, and|r,0,0),
each of the six sites is linked to four others on the same
APPENDIX C: EXAMPLES OF LINK GEOMETRY atom,
This appendix presents values of the link lengthsind a%(5a—6r)
surface area$, for several lattices. The simplest geometry do=+2r, So=\/——; (C9
occurs for Bravais lattices, of which only the cubic lattices 4v2(a-r)
are considered here. For the simple cubic lattice, only nearegyr nearest neighbors,
neighbors are linked, with; =a andS;=a?, wherea is the
lattice constant. For the body-centered cubic lattice, both first 5 5 a’d;
and second nearest neighbors are linked, with d,=+3a“—4ar+2r-, SFm; (C10
3 33 and four second-nearest neighbors,
d1=£a, slz—fa2 (C1) 9
2 16 28— 2r)
a‘(a—2r
d,=2(2a-r), - - (C1)
and 2 ( S 2 2a1)
d,=a, 322132_ (C2 In the model generated by eith&g or O, and|r,r,0),
8 each of the 12 sites is linked to four others on the same atom,
For the face-centered cubic lattice, only nearest neighbortéN0 of which have
are linked, with P
do=/2r %:M (C12
g s a? 3 ° ’ 4\2(a—r)
Y2 T a2 and two of which have
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a’(7a—8r)

be b a(9a—4r)
do=/2r, sgzm. (C13 do=2r, Sy=——75 (C16
Each site is also linked to two nearest neighbors, Eachb site is linked to one nearest-neighliosite,
d,=+3a2—8ar+6r2, slz%, (C14 df°=3(a-2r), S?b=¥a2, (C17)
and one second-nearest neighbor, and three nearest-neighbesites,
ad be_ 2?1 2(a—2r)2 be_ L _ e
d,=2\2(a-r), Szzm_ (C15 d; a‘+2(a—2r)s, S 8adl . (C18

Eache site is also linked to threk sites via Eq(C18), to six
In the model generated by, and|r,r,r), there are two nearest-neighbae sites via

distinct lattice sites. Sites such gsr,r) and|a—r,a—r,a
—r) are labeledb because they lie on the bonds between ce > > ce 1 o

atoms, whereas sites such gsr,—r,—r) and |a+r,a di=v2a®+(a-2r)% S;=gzady,  (C19
+r,a+r) are labelect because they lie on “empty” bonds.

(Both of these sites are actually Wyckefsites, but they are and to three second-nearest-neighesites via
inequivalent because the site symmetry of the atoms in dia-

mond isTy4.) Eachb site is linked to threee sites on the d§e=2\/§(a—r), see

= \/E +2 C20
same atonfand vice versg with =—a(a+z2r).  (C20

4
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