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Consequences of local gauge symmetry in empirical tight-binding theory
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A method for incorporating electromagnetic fields into empirical tight-binding theory is derived from the
principle of local gauge symmetry. Gauge invariance is shown to be incompatible with empirical tight-binding
theory unless a representation exists in which the coordinate operator is diagonal. The present approach takes
this basis as fundamental and uses group theory to construct symmetrized linear combinations of discrete
coordinate eigenkets. This produces orthogonal atomiclike ‘‘orbitals’’ that may be used as a tight-binding basis.
The coordinate matrix in the latter basis includes intra-atomic matrix elements between different orbitals on the
same atom. Lattice gauge theory is then used to define discrete electromagnetic fields and their interaction with
electrons. Local gauge symmetry is shown to impose strong restrictions limiting the range of the Hamiltonian
in the coordinate basis. The theory is applied to the semiconductors Ge and Si, for which it is shown that a
basis of 15 orbitals per atom provides a satisfactory description of the valence bands and the lowest conduction
bands. Calculations of the dielectric function demonstrate that this model yields an accurate joint density of
states, but underestimates the oscillator strength by about 20% in comparison to a nonlocal empirical pseudo-
potential calculation.
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I. INTRODUCTION

Tight-binding theory was originally proposed as anab
initio technique for calculating the electronic properties
crystalline solids from atomic wave functions.1 However,
first-principles calculations based on a linear combination
atomic orbitals~LCAO! are computationally very demand
ing, and the tight-binding approach met with relatively litt
success until Slater and Koster suggested that it be used
interpolation scheme,2 in which the Hamiltonian matrix ele
ments are fitted to experimental data or to band structu
computed by other methods. This made it possible to
scribe atomic-level physics in a basis of minimal size, le
ing to wide-ranging applications in many areas
condensed-matter physics.3–8 With modern computer capa
bilities, first-principles electronic-structure calculations a
now commonplace, andab initio tight-binding theories are
flourishing.6–10 Yet even today, the empirical theory2 pre-
dominates~even for the fitting of first-principles calcula
tions! because it is simple and physically intuitive.

The formalism of Slater and Koster2 is incomplete, how-
ever, in that it contains no prescription for coupling the ele
tronic system to external electromagnetic fields. Inab initio
theories,6–10 one can use minimal coupling~with suitable
modifications for nonlocal potentials11! and calculate directly
the necessary matrix elements of the momentum or velo
operator. In the empirical theory, these matrix elements
simply be treated as extra fitting parameters,12–15determined
by fitting the dielectric function ~and thus oscillator
strengths! to experimental or first-principles spectra. How
ever, even with the full use of symmetry restrictions, t
number of additional parameters can be undesirably la
for example, Chang and Aspnes13 have proposed ansp3d2

model for GaAs with 13 Hamiltonian parameters and 17
dependent momentum parameters.

It is therefore clearly desirable to find ways of reducing
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eliminating these extra fitting parameters. One possibility
to define a kinematic momentum operator~equal to massm
times velocity! by

p5
m

i\
@x,H#, ~1.1!

wherex is the coordinate of the electron andH is the Hamil-
tonian. In a sense this merely trades one problem for ano
since the coordinate matrix elements are still unknown, a
the number of these allowed by symmetry is no less than
number of momentum matrix elements. However, it is phy
cally reasonable to simplify the coordinate matrix by setti
all nonlocal matrix elements to zero:

^a,xi uxua8,xi 8&5d i i 8@daa8xi1xaa8~ i !#. ~1.2!

Here ua,xi& is the ket vector for an orthogonalized atom
orbital ~Löwdin orbital16,17! of typea located at positionxi .
The parameterxaa8 is an intra-atomic matrix element, cou
pling orbitalsa anda8 on the same atom.

The simplest choice of all is to set

xaa8[0; ~1.3!

in this model, there are no fitting parameters beyond th
found in the Hamiltonian.3,4,18–26A closely related approach
is the Peierls substitution,11,27–31 in which the zero-field
Hamiltonian matrix^a,xi uHua8,xi 8& for a particle of charge
e is replaced by

^a,xi uHua8,xi 8&expS ie

\cExi 8

xi
A•dxD 1ef~xi !d i i 8daa8

~1.4!

in the presence of a vector potentialA and scalar potentialf.
If the path of integration in Eq.~1.4! is chosen to be a
straight line,11,28,30 then the linear term in the Taylor-serie
©2002 The American Physical Society12-1
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BRADLEY A. FOREMAN PHYSICAL REVIEW B 66, 165212 ~2002!
expansion of this equation is the same as theA•p coupling
obtained from Eqs.~1.1!–~1.3!.28

The total elimination of extra fitting parameters mak
this model an attractive one. However, by eliminating t
intra-atomic matrix elementsxaa8 , one obtains a tight-
binding model that is not valid in the tight-binding limit o
isolated atoms. Thus, although the model should provid
reasonable description of interatomic transitions between
tended states, one has less confidence in its ability to
scribe localized states, which may be important at surface
interfaces. Many authors have therefore suggested augm
ing the zero-parameter model by including a small numbe
intra-atomic matrix elements.32–39 It has been shown for po
rous Si that, although the intra-atomic matrix elements
small in magnitude~in a Bloch-function basis1!, the interfer-
ence between these terms and the interatomic matrix e
ments contributes 25% of the total absorption.37 Thus, it ap-
pears that a quantitative treatment of nanostructures may
be possible~in general! without the inclusion of intra-atomic
matrix elements.

The main difficulty with such models32–39 is that they are
not gauge invariant.31 As shown by the examples in Refs. 1
and 40, lack of gauge invariance can lead to gross qualita
errors in the predicted values of physical quantities. Th
there are significant problems with both approaches con
ered above. The models withxaa850 are gauge invariant
but they cannot describe intra-atomic transitions. The mod
with xaa8Þ0 can describe intra-atomic transitions, but th
are not gauge invariant.

The purpose of this paper is to demonstrate a techn
for constructing tight-binding models that are gauge inva
ant and provide a full description of intra-atomic transition
This is achieved by treating empirical tight-binding theo
not as an approximation derived from the Schro¨dinger equa-
tion, but as a fundamental quantum-mechanical system i
own right. This theory is required to satisfy all of the bas
principles of quantum mechanics, the most important
which ~in the present context! is the principle of local gauge
symmetry.41–46 The essence of this principle is the conce
that electromagnetism in quantum mechanics is the ga
invariant manifestation of a nonintegrable~i.e., path-
dependent! phase factor.42,44

As will be shown in Sec. II below, the reason why exis
ing models with intra-atomic coupling32–38are not gauge in-
variant is that the coordinatesx, y, andz do not commute.31

Gauge invariance requires commuting coordinates, the e
tence of which implies the existence of a basis of coordin
eigenkets. Since empirical tight-binding theory deals w
finite vector spaces, the coordinate basis is necessarily
crete. Hence, the most general gauge-invariant finite ve
space is a set of discrete coordinate eigenkets. This b
may be transformed to a tight-binding basis by construct
‘‘orbitals’’ from symmetrized combinations of coordinat
eigenkets~using well-known techniques for symmetrizin
plane waves47,48!.

The concept of gauge symmetry on a discrete lattice
not new, having appeared many years ago as a techn
for imposing a momentum cutoff in quantum chrom
dynamics.46,49–52 Governale and Ungarelli40 have recently
16521
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suggested using lattice gauge techniques in empirical ti
binding theory. However, their proposal, like most applic
tions of lattice gauge theory, is based on a simple cubic
tice. As shown below, the simple cubic lattice is unsuita
for practical tight-binding models because it can on
achieve sufficient accuracy with an unreasonably large b
~i.e., a very small lattice constant!. Thus, the development o
efficient tight-binding models requires the consideration
more general geometries.

Christ, Friedberg, and Lee53–55 have developed a lattice
gauge theory forrandom lattices, which~with some slight
modifications! is sufficiently general for the present pu
poses. However, the complete formal machinery of quan
chromodynamics is somewhat cumbersome when one
dealing only with simple electromagnetism. Thus, for re
sons of clarity, the author has chosen to present the theo
terms of a simple but elegant approach used by Dirac.42 After
a preliminary discussion of topology~i.e., how an electron is
permitted to move from one lattice site to another! in Sec.
III, Sec. IV presents an adaptation of Dirac’s analysis42 to the
case of a discrete lattice. The outcome is a gauge-invar
formulation of electromagnetism in empirical tight-bindin
theory.

Although the theory derived in this way has many sim
larities with conventional tight-binding theory, there are s
nificant differences as well. Not all tight-binding models c
be made gauge invariant;56 this is possible only if the basis
can be constructed from symmetrized coordinate eigenk
In addition, local gauge symmetry imposes strong rest
tions on the Hamiltonian matrix, which have the effect
sharply reducing the number of allowed Hamiltonian fittin
parameters. Finally, unlike previous empirical tight-bindi
theories, the present approach provides an explicit~discrete!
wave function for the electron.

The formalism derived here is applied to two semicond
tors with the diamond structure~Ge and Si! in Sec. V. For
these systems, a basis of 15 orbitals per atom is show
provide a satisfactory fit to the valence bands and the low
conduction bands~up to about 5 eV above the valence-ba
maximum!. These results are comparable to those obtai
from a ten-orbital basis proposed recently in Ref. 57. T
basis used here is 50% larger, but their model57 cannot be
made gauge invariant if intra-atomic coupling is include
Thus, it appears that some trade-offs are necessary if ga
invariance is to be achieved.

II. COORDINATE MATRICES AND THE COORDINATE
REPRESENTATION

As mentioned above, the intra-atomic coupling used
existing tight-binding models32–38 leads to a lack of gauge
invariance.31 This may be seen from a simplesp3 model for
a single atom. In this case, we know from atomic phys
that there are coordinate matrix elements coupling thes and
p orbitals:

^suxupx&5^suyupy&5^suzupz&[c, ~2.1!

wherec is real. In the basis$us&,upx&,upy&,upz&%, the matrices
representingx andy are therefore
2-2
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x5F 0 c 0 0

c 0 0 0

0 0 0 0

0 0 0 0

G , y5F 0 0 c 0

0 0 0 0

c 0 0 0

0 0 0 0

G . ~2.2!

But this implies thatx andy do not commute:

xy2yx5F 0 0 0 0

0 0 c2 0

0 2c2 0 0

0 0 0 0

GÞ0. ~2.3!

This means that the coordinate representation~consisting of
simultaneous eigenkets ofx, y, andz) does not exist. Even
more important, it means that the theory cannot be ga
invariant. In a gauge transformation, the vector and sc
potentials transform as

A→A1“L, f→f2
1

c

]L

]t
, ~2.4!

and the state ketuc& transforms as

uc&→Uuc&, U[expF ieL~x,t !

\c G , ~2.5!

where L is an arbitrary function ofx5(x,y,z) and t. If a
theory is gauge invariant, all physically measurable qua
ties must be independent of such transformations. But
expectation valuêx& is a measurable quantity, and under
gauge transformation one has

^x&→^U†xU&, ~2.6!

whereU†xUÞx if L depends ony or z. Hence, no theory
can be gauge invariant ifx, y, andz do not commute.

Is there any way of achieving gauge invariance witho
setting c50? Perhaps thesp3 basis is too small, and th
situation might be improved by including more orbita
(d, f , . . . ,). However, one soon finds that for anyfinite
LCAO basis, the lack of gauge invariance persists. This
lows directly from the Wigner-Eckart theorem—sincex is a
vector operator, it couples states with angular momentuml to
those with l 61. Hence, any finite truncation of the bas
results in noncommuting coordinates.

Another possibility is to keep the samesp3 basis, but
modify the coordinate matrix. The physical justification f
doing so is the fact that the orbitals used in empirical tig
binding theory are not atomic orbitals, they areorthogonal-
ized atomic orbitals.16 Therefore, they do not have the fu
rotational symmetry of atomic orbitals; they have only t
site symmetry of the crystal structure. For example, the
oms in a diamond crystal have site symmetryTd .58 There-
fore, the orbital that was denotedupz& above should really be
written asuG15

z &, since it belongs to theG15 representation of
Td .59

However, thed orbital udxy& also transforms asuG15
z &.

Thus, in theTd group, the matrix elementb[^G15
x uyuG15

z & is
allowed, and the coordinate matrices~2.2! become
16521
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x5F 0 c 0 0

c 0 0 0

0 0 0 b

0 0 b 0

G , y5F 0 0 c 0

0 0 0 b

c 0 0 0

0 b 0 0

G . ~2.7!

This yields

xy2yx5F 0 0 0 0

0 0 c22b2 0

0 b22c2 0 0

0 0 0 0

G , ~2.8!

which is equal to zero ifb56c.
Settingb5c would imply that thep and d orbitals have

equal weight in theG15 states. This is not as absurd as
sounds; Boguslawski and Gorczyca60 have shown using first-
principles pseudopotential calculations that for theG15 states
at the top of the valence band in GaAs, the probability
finding an electron in a cationd orbital isgreaterthan that of
finding it in a cationp orbital. ~In AlAs, the probability ratio
is greater than 2.60! Thus, it is not unreasonable to assum
that b andc have comparable magnitudes.

If one setsb5c, then the coordinate operators have
multaneous eigenketsux8,y8,z8&, which are given by

uccc&5
1

2
~ uG1&1uG15

x &1uG15
y &1uG15

z &),

ucc̄c̄&5
1

2
~ uG1&1uG15

x &2uG15
y &2uG15

z &),

uc̄cc̄&5
1

2
~ uG1&2uG15

x &1uG15
y &2uG15

z &),

uc̄c̄c&5
1

2
~ uG1&2uG15

x &2uG15
y &1uG15

z &). ~2.9!

Note that the coordinate eigenvalues are located at the
ners of a tetrahedron. In fact, the linear combinations giv
in Eq. ~2.9! are identical to the hybrid bond orbitals used
analytical tight-binding theories,3,4 although these are not or
dinarily interpreted as exact coordinate eigenkets because
G15 states are assumed to be purep orbitals.

The procedure outlined above is rather clumsy; one s
ply modifies the coordinate matrices by trial and error in
attempt to make them commute. One cannot predict in
vance whether the attempt will succeed, and in general it
not. However, the unitary transformation~2.9! may be in-
verted to obtain

uG1&5
1

2
~ uccc&1ucc̄c̄&1uc̄cc̄&1uc̄c̄c&),

uG15
x &5

1

2
~ uccc&1ucc̄c̄&2uc̄cc̄&2uc̄c̄c&),

uG15
y &5

1

2
~ uccc&2ucc̄c̄&1uc̄cc̄&2uc̄c̄c&),
2-3
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BRADLEY A. FOREMAN PHYSICAL REVIEW B 66, 165212 ~2002!
uG15
z &5

1

2
~ uccc&2ucc̄c̄&2uc̄cc̄&1uc̄c̄c&), ~2.10!

which immediately suggests a more fruitful approach. T
linear combinations given in Eq.~2.10! are just what one
would obtain by starting with a single coordinate eigen
~say uccc&) and using the symmetry operations of the tet
hedral groupTd to construct ‘‘symmetrized’’ orbitals47,48 that
transform according to the irreducible representations
Td .59

Thus, in this alternative approach, the coordinate bas
taken as fundamental, and the tight-binding basis is mere
secondary alternative that is useful for reasons of symme
Since the existence of a coordinate representation is ne
sary for gauge invariance, no tight-binding basis can
made gauge invariant if it cannot be represented in term
symmetrized coordinate eigenkets.56 Hence, this symmetri-
zation procedure provides us with all possible gau
invariant tight-binding models.

The orbitals in Eq.~2.10! are useful as a starting point, bu
they cannot be interpreted as atomic orbitals because the
not have inversion symmetry. To obtain more atomiclike
bitals, one can apply the symmetry operations of the cu
groupOh to the basis ketuccc&, which yields the orbitals

uG1&5us&5
1

A8
~ uccc&1ucc̄c̄&1uc̄cc̄&1uc̄c̄c&

1uc̄c̄c̄&1uc̄cc&1ucc̄c&1uccc̄&),

uG28&5u f xyz&5
1

A8
~ uccc&1ucc̄c̄&1uc̄cc̄&1uc̄c̄c&

2uc̄c̄c̄&2uc̄cc&2ucc̄c&2uccc̄&),

uG15
z &5upz&5

1

A8
~ uccc&2ucc̄c̄&2uc̄cc̄&1uc̄c̄c&

2uc̄c̄c̄&1uc̄cc&1ucc̄c&2uccc̄&),

uG258
xy &5udxy&5

1

A8
~ uccc&2ucc̄c̄&2uc̄cc̄&1uc̄c̄c&

1uc̄c̄c̄&2uc̄cc&2ucc̄c&1uccc̄&). ~2.11!

Here two different labels are used: the representations
Oh ,61 and the conventional atomic orbital notation. Oth
orbitals not given here may be obtained from cyclic perm
tations ofx, y, andz. Note that theTd orbital uG15

z & in Eq.
~2.10! is the same as (1/A2)(upz&1udxy&), whereas theTd

orbital uG1& is just (1/A2)(us&1u f xyz&).
In the basis~2.11!, the nonzero coordinate matrix ele

ments are

^suxupx&5^pxuyudxy&5^dxyuzu f xyz&5c, ~2.12!

plus others given by cyclic permutations. The selection ru
for x are thus the same as those in a spherically symme
16521
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atom—although, in any real atom, the matrix elements~2.12!
would not be numerically equal. This equality occurs b
cause the basis kets~2.11! are degenerate eigenkets of th
radial coordinater 5Ax21y21z2. To break the numerica
equality, one would need to use basis functions with a lin
combination of different radii.

The above procedure may, of course, be applied to co
dinate eigenkets other thanuccc&. Below is a list of the
representations obtained by applying the symmetry op
tions of Oh to several different ‘‘generator’’ eigenkets:

u000&→G1→s,

u100&→G11G151G12→s1p3d2,

u111&→G11G151G2581G28→s1p3d3f 1,

u110&→G11G121G151G2581G25→s1p3d5f 3.
~2.13!

Explicit basis functions for these representations are give
Appendix A.

With these results, one can now construct a gau
invariant tight-binding model simply by putting a set~or
more than one set! of these ‘‘orbitals’’ on each atom in a
crystal or molecule. In such a model, the coordinate ope
torsx, y, andz commute by construction. However, one is n
longer permitted to choose orbitals arbitrarily. The choic
are limited to takingall of the orbitals in a set or takingnone
of them. As an example, one cannot discard thef orbitals in
the basis generated byu110& without destroying the gauge
invariance of the theory.

This approach yields a tight-binding model with orthog
nal orbitals. Another approach is to define a grid of coor
nates, some points of which are not uniquely associated w
individual atoms. One may still construct symmetrized orb
als in this case, but the orbitals are not orthogonal. T
makes the tight-binding approach more difficult; howev
one can simplify the theory by choosing a Bravais lattice
the coordinate grid, in which case the model may be view
as a discrete pseudopotential model. Applications of both
pseudopotential and tight-binding approaches are consid
below in Sec. V.

III. TOPOLOGY OF THE LATTICE

As we have seen, the most general gauge-invariant ti
binding basis consists of a set of discrete coordinate eig
kets, which will be referred to as a lattice. Such a lattice
generally not periodic. In order to apply the principle of loc
gauge symmetry to such a system, one must be able to
culate the change in phase that occurs along any spec
path in coordinate space.42,44 Thus, the first step is to defin
what is meant by a ‘‘path’’ in a discrete coordinate system

In general, a path is just an ordered sequence of points
a continuous coordinate system, neighboring points in
sequence must be separated by an infinitesimal distance.
defines thetopologyof the system, in which points are linke
together only if they are adjacent in coordinate space. I
2-4
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desirable to define the topology of the discrete lattice in
similar way.

One way to do this is to construct a Voronoi polyhedr
around each site in the lattice.53 A Voronoi polyhedron is just
the region in space closest to that point;62 if the lattice is a
Bravais lattice, the polyhedron is the same as a Wigner-S
cell. In mathematical terms, the Voronoi polyhedronV i for
site xi is the set of pointsx such thatux2xi u<ux2xj u for all
j Þ i . The topology is then defined by the following rule:
V i andV j share a surface with areaSi j .0, the sitesxi and
xj are linked together; otherwise, they are not.

In some cases, it may happen that two Voronoi polyhe
share only a point or a line, in which caseSi j 50. The link-
ing algorithm presented in Ref. 53 does not consider
possibility ~because Ref. 53 deals only with random lattic
for which the probability of such an event is zero!. For cer-
tain applications, it is useful to include links between su
sites,62 but we shall see below that these links should
excluded in the present situation. Thus, only adjacent s
whose Voronoi polyhedra share a surface withSi j .0 are
linked.

A path in the discrete lattice is then just an ordered
quence of linked points, and a closed path is one whose
and last points are the same. By definition, every edge
Voronoi polyhedron is equidistant from three or more latt
sites, all of which lie in a plane perpendicular to the giv
edge. These sites are closer to this edge than any other
The links between these sites form a closed path, and
area bordered by the links is called a ‘‘plaquette.’’ There i
one-to-one relationship between the plaquettes and the e
of the Voronoi polyhedra.

The plaquettes partition all of coordinate space into n
overlapping volumes called~Delaunay! cells. Each cell is
uniquely associated with one corner of a Voronoi polyh
dron. The partitioning of space into cells is referred to a
Delaunay tessellation.62

A general algorithm for calculating the geometry
Voronoi polyhedra, links, plaquettes, and cells is presente
Appendix B. The expressions derived there will be of use
what follows.

IV. LOCAL GAUGE SYMMETRY ON AN ARBITRARY
DISCRETE LATTICE

Christ, Friedberg, and Lee53–55 have developed a theor
of local gauge symmetry on a random lattice. This sect
presents a modified version of their theory, with special e
phasis on the implications of the principle of local gau
symmetry for tight-binding theory. The presentation follow
Dirac’s approach,42 in which the existence of electromag
netic fields is ‘‘derived’’ as a straightforward consequence
a degree of freedom~nonintegrable phases! possessed by an
quantum-mechanical system that can be represented in
ordinate basis.

A. Electromagnetism is a nonintegrable phase

In a discrete coordinate basis, any ket vector may be
pressed as
16521
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uc&5(
i

ci uxi&, ~4.1!

whereuxi& is a coordinate eigenket, which is assumed to
normalized such that

^xi uxj&5d i j . ~4.2!

Dirac’s starting point42 is the fact that physical predictions i
quantum mechanics are ultimately expressed in terms
probabilities of the formu^cuc8&u2, where the probability
amplitude^cuc8& is given by

^cuc8&5(
i

ci* ci8 . ~4.3!

The probability is obviously well defined even when th
overall phase ofuc& has no definite value. This degree
freedom is referred to as global gauge symmetry.

The existence of global gauge symmetry raises the qu
tion of whether it is necessary for the local probability am
plitude ci to have a definite phase. In other words, supp
we write

ci5bie
ib i, ~4.4!

where the phase ofbi is well defined~to within an integer
multiple of 2p), but b i is a nonintegrable function—that is
the change inb i around a closed path can take on any val
In this case one can see thatu^cuc8&u2 is well definedonly if
the change inb i around any closed path is thesamefor all
statesuc& and uc8& ~to within an integer multiple of 2p,
which is absorbed into the definition ofbi). But anything
that is the same for all states can be viewed as a physic
real part of the dynamical system. Since the present sys
consists only of a single point particle, these nonintegra
phases must represent a field of force acting on the part

The principle of local gauge symmetry is therefore d
fined by the following two postulates:42 ~i! The physical pre-
dictions of the theory must be unambiguous.~ii ! The phase
of ci at any point in space and time need not be well defin
only thechangein phase betweenlinkedpoints must be defi-
nite. As shown above, these postulates entail that the cha
in b i around any closed path must be the same for all sta
According to postulate~ii !, this change is fixed for any pat
by the change inb i between two linked points in space,

k i j 5b i2b j ~ i linked to j !, ~4.5!

and in time,

l i5
db i

dt
[ḃ i . ~4.6!

Sinceb i is nonintegrable,k i j and l i are independentvari-
ables. These two quantities are the fundamental dynam
variables that arise from the principle of local gauge symm
try. It will now be shown thatk i j andl i can be interpreted a
potentialsfor the electromagnetic field.

One possible closed path involves a space displacem
di j 5xi2xj and an infinitesimal time displacementdt, fol-
2-5
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lowed bydj i and2dt. The change in phase around this pa
can be used to define~tentatively! an electric-field variable

Eji 52
\

e

l j2l i2k̇ j i

dj i
, ~4.7a!

wheredji 5udj i u. If the indexl is used to label the links, on
may write this in the simpler form

El52
\

e

Dl l2k̇ l

dl
. ~4.7b!

HereEl is interpreted as the component of the electric fi
in the directiondl5dj i ; the components perpendicular todl
are not defined. Equation~4.7! takes a familiar form if ex-
pressed in terms of the potentials

f i5
\

e
l i , Al52

\c

e

k l

dl
, ~4.8!

since then

El52
Df l

dl
2

1

c

]Al

]t
. ~4.9!

Here the notation]Al /]t indicates thatdl is to be held con-
stant during the differentiation.

Another type of closed path is an elementary plaquettq
constructed from linksl in coordinate space~see Sec. III and
Appendix B!. The change in phase around the perimeter
the plaquette may be used to define the magnetic field

Bq52
1

Sq

\c

e (
l Pq

k l5
1

Sq
(
l Pq

Aldl , ~4.10!

whereSq is the area of the plaquette@see Eq.~B24!#. Sum-
ming Eq. ~4.10! over the~closed! surface of a cellc leads
immediately to the ‘‘no monopoles’’ law:63

(
qPc

BqSq50. ~4.11!

Likewise, summingEldl around the perimeter of a plaquet
gives Faraday’s law:

(
dlPSq

Eldl52
1

c

d

dt
~BqSq!. ~4.12!

The other two Maxwell equations can be obtained fro
the LagrangianL5L f1Le , whereL f is the electromagnetic
field Lagrangian

L f5
1

8p (
l

3El
2V l2

1

8p (
q

3Bq
2Vq . ~4.13!

HereV l5
1
3 Sldl is the volume of linkl, whereSl5Si j is the

area of the surface shared by the Voronoi polyhedra for s
i and j ~see Appendix B!. Likewise, Vq5 1

3 Sqdq is the vol-
ume of plaquetteq, wheredq is the length of the Vorono
polyhedron edge corresponding toq. Equation~4.13! is just a
discrete version of the standard field Lagrangia64
16521
f

es

(8p)21 *(E22B2)d3x; the only apparent difference is a
extra factor of 3. This factor cancels the factor of1

3 in the
definition ofV l andVq , thus leading to the correct Maxwe
equations below. It appears in Eq.~4.13! because the stan
dard Lagrangian is expressed in terms ofE25Ex

21Ey
2

1Ez
2 , whereasEl

2 includes only the component ofE in the
direction ofdl .

The electronic term in the Lagrangian, which includes t
field-particle coupling, is

Le5
i\

2 (
i

~ci* ċi2 ċi* ci !2(
i , j

ci* Hi j cj ~4.14a!

5
i\

2 (
i

~bi* ḃi2ḃi* bi !2(
i , j

bi* H̃ i j bj . ~4.14b!

Here Hi j 5^xi uHuxj& is the Hamiltonian in the absence o
electromagnetic fields, while

H̃ i j 5Hi j e
2 i (b i2b j )1\ḃ id i j . ~4.15!

The first expression~4.14a! for Le has exactly the same form
as the Lagrangian in the case of no electromagnetic fie
This expresses the fundamental physical content of the p
ciple of local gauge symmetry—that the influence of the fie
upon the particle can be expressedentirely in terms of the
nonintegrable phase of the probability amplitudeci5bie

ib i.
In the second expression~4.14b! for Le , all of the noninte-
grable phases are collected together in the effective Ha
tonianH̃ i j . This is the usual approach in which the probab
ity amplitude bi has a well-defined phase, and the fie
appears only in the Hamiltonian.

The Hamiltonian ~4.15! appearing in the Lagrangia
~4.14b! depends upon the phase differenceb i2b j . This
phase difference is not well defined unless the sitesi and j
are linked. But according to postulate~i! above, all physical
predictions of the theory must be unambiguous. Hence,
principle of local gauge symmetry demands that

Hi j 50 ~ i not linked toj !. ~4.16!

Local gauge symmetry therefore imposes constraints
found in conventional tight-binding models.

Note that the LagrangianL is gauge invariant by construc
tion. In other words, bothL f andLe are invariant under the
gauge~phase! transformation

bi→bie
2 ix i,

l i→l i1ẋ i , ~4.17!

k i j →k i j 1x i2x j ,

wherex i is an arbitrary integrable function.
Given the above Lagrangian, the Euler-Lagrange equa

for l i or f i is just Gauss’s law

(
j

Eji Sji 54pqi , ~4.18!
2-6
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whereqi5ebi* bi is the charge on sitei. The corresponding
equation fork l is the Ampère-Maxwell equation

(
dqPSl

Bqdq2
1

c

d

dt
~ElSl !5

4p

c
I l , ~4.19!

whereI l5I j i 5(2e/\)Im(bj* H̃ j i bi) is the current from sitei
to site j. Summing Eq.~4.19! over all links that contain a
given sitei yields the charge conservation law65

q̇i1(
j

I j i 50. ~4.20!

Thus, we see thatl i andk l can be given a consistent inte
pretation as discrete electromagnetic potentials, since
above equations are in full agreement with macroscopic~i.e.,
long-wavelength! electromagnetism.

In some applications of Voronoi polyhedra, it is useful
link sites i and j whose polyhedra share only a line or poin
hence Sl5Si j 50.62 For such links, the link volumeV l
5 1

3 Sldl is zero, so the electric fieldEl does not contribute to
the field Lagrangian~4.13!, Gauss’s law ~4.18!, or the
Ampère-Maxwell equation~4.19!. The magnetic-field contri-
bution to Eq.~4.19! likewise vanishes, becauseSl50. The
current through such a link must therefore be zero, which
only be true, in general, if the Hamiltonian matrix eleme
Hi j vanishes. Links withSi j 50 are consequently devoid o
any physical significance, and there is no loss of generali
one excludes them at the outset by linking only sites w
Si j .0.

Returning to the LagrangianL, the Euler-Lagrange equa
tion for bi* is just the Schro¨dinger equation

i\ḃi5(
j

H̃ i j bj . ~4.21!

Since bi is an ordinary probability amplitude with a wel
defined phase,H̃ i j must be the Hamiltonian in the presen
of electromagnetic fields. With the restriction~4.16!, one can
express Eq.~4.15! as

H̃ i j 5Hi j exp~2 ik i j !1\l id i j

5Hi j exp~ ieAi j di j /\c!1ef id i j . ~4.22!

Note the strong similarity between this result and the Pei
substitution ~1.4!. The main difference is that Eq.~4.22!
gives the Hamiltonian in the coordinate representation,
the tight-binding representation.

If uk i j u!1 ~i.e., if the field is weak or the lattice spacing
small!, the Hamiltonian~4.22! reduces to

H̃ i j .Hi j 2
e

mc
A i j •pi j 1

e2Ai j
2

2mc2
D i j 1ef id i j . ~4.23!

Here a vector potential has been defined asA i j 5Ai j d̂i j ,
while the momentum operator is given by

pi j 5
m

i\
di j Hi j 5

m

i\
~xi2xj !Hi j , ~4.24!
16521
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which is the same as the kinematic momentum defined ab
in Eq. ~1.1!. The Hamiltonian~4.22! therefore clearly gives
the correct first-orderA•p coupling. We shall see below tha
the dimensionless quantity

D i j 5
1

i\
di j •pi j 52

m

\2
di j

2 Hi j ~4.25!

can be viewed as a geometric weight factor that gives
correctA2 coupling also.

B. Geometric definition of momentum and kinetic energy

Up to this point, little has been said about the structure
the HamiltonianHi j . Within the bounds of the restriction
~4.16!, Hi j may be treated as an arbitrary fitting paramet
However, in some circumstances it may be desirable to
duce the number of fitting parameters by using a theoret
formula for Hi j that would reproduce the Schro¨dinger equa-
tion in the limit of zero lattice spacing.

Let us start by considering the momentum operator, wh
will be defined in this section as the canonical moment
p52 i\“. A discrete expression for the gradient opera
may be obtained from the integral definition of th
gradient:66

“ f ~x!5 lim
V→0

F 1

VE
]V

f ~x!dSG , ~4.26!

where dS is a surface element pointing outward fromV.
Now the limiting volume in a discrete lattice is the volum
V i of the Voronoi polyhedron for sitexi . On the surfaceSi j
shared byV i andV j , the value off (x) may be taken to be
1
2 @ f (xi)1 f (xj )#. Hence, the discrete gradient may be defin
as

“ f ~xi !5
1

V i
(

j

1

2
@ f ~xi !1 f ~xj !#Sj i , ~4.27!

whereSj i 5Sji d̂j i . Now since

(
j

Sj i 5E
]V i

dS50, ~4.28!

the term involvingf (xi) drops out, leaving only

“ f ~xi !5
1

2V i
(

j
f ~xj !Sj i . ~4.29!

An alternative derivation of this result is given in Eq.~17! of
Ref. 55.

The canonical momentum operatorp may therefore be
defined as67

^X i upuw&52 i\“^X i uw& ~4.30a!

52
i\

2V i
(

j
^X j uw&Sj i . ~4.30b!

Here the basis ketsuX i&5V i
21/2uxi& are chosen to satisfy

‘‘ d-function’’ normalization
2-7
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^X i uX j&5
d i j

V i
, ~4.31!

in contrast to the usual ketsuxi&, which are normalized to
unity @see Eq.~4.2!#. The normalization~4.31! is used here
because it agrees~in the limit V i→0) with the d-function
normalization of continuous coordinate eigenkets, up
which the definition~4.30a! is based.67

Substitutinguw&5uX j& in Eq. ~4.30b! then gives

^X i upuX j&5
i\Si j

2V iV j
, ~4.32!

which clearly satisfies

(
j

^X i upuX j&V j50. ~4.33!

ReplacinguX i&5V i
21/2uxi& in Eq. ~4.32! then yields the de-

sired result

^xi upuxj&5
i\Si j

2AV iV j

. ~4.34!

Note that this matrix is Hermitian becauseSj i 52Si j . If the
kets uxi& are used in Eq.~4.30a! above, a non-Hermitian ca
nonical momentum is obtained.

There is some question as to whether this definition op
should be referred to as ‘‘canonical,’’ because it does
satisfy the canonical commutation relations. In a continu
coordinate basis, the canonical momentum satisfies

^x8u@xa,pb#ux9&5 i\dabd~x82x9!, ~4.35!

wherea andb are Cartesian components of the given ve
tors. The corresponding equation in the discrete basis is

^X i u@xa,pb#uX j&5
i\di j

a Si j
b

2V iV j
, ~4.36!

which obviously does not agree. Note, however, that

(
i , j

^X i u@xa,pb#uX j&V iV j5
i\

2 (
i , j

di j
a Si j

b 5 i\dabV,

~4.37!

where V is the total volume, and the second equality
proved in Eq.~11! of Ref. 55. This agrees with the relation

E E ^x8u@xa,pb#ux9&d3x8d3x95 i\dabV ~4.38!

in the continuous basis. Hence, Eq.~4.37! is as close as one
can come to a canonical commutation relation in a gen
discrete basis.68,69

A similar definition may be used for the kinetic-energ
operator T52\2¹2/2m. The integral definition of the
divergence,66

“•F~x!5 lim
V→0

F 1

VE
]V

F~x!•dSG , ~4.39!
16521
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gives the Laplacian

¹2f ~x!5 lim
V→0

F 1

VE
]V
“ f ~x!•dSG , ~4.40!

the discrete form of which is

¹2f ~xi !5
1

V i
(

j
S f ~xj !2 f ~xi !

dji
DSji . ~4.41!

An alternative derivation of this result is given in Eq.~12! of
Ref. 55. The procedure used above in Eqs.~4.30!–~4.34!
then yields the kinetic-energy operator

^xi uTuxj&52
\2

2m

Si j

di jAV iV j

1d i j

\2

2mV i
(

k

Sik

dik
, ~4.42!

which satisfies@cf. Eq. ~4.33!#

(
j

^X i uTuX j&V j50. ~4.43!

Note that foriÞ j , ^xi uTuxj& decreases continuously to ze
whenSi j →0. This ensures that the Hamiltonian is a contin
ous function of the lattice coordinates, even as new links
formed and old ones are broken.

Such continuity is also desirable when the Hamiltonian
determined empirically, especially for applications~such as
molecular dynamics5,70! in which the atomic positions vary
with time. This can be achieved by defining the nonloc
elements of the empirical Hamiltonian as

^xi uHuxj&52
\2

2m

Si j

di jAV iV j

f i j ~ iÞ j !, ~4.44!

where the fitting parameterf i j is a continuous, nonsingula
function of the lattice coordinates.

Note that the operatorsp and T do not satisfy T
5p2/2m, becausep2, unlike p andT, couples sites that are
not linked. However,p andT are related by

pi j 5
m

i\
di j Ti j ~4.45a!

or

p5
m

i\
@x,T#. ~4.45b!

Thus, any Hamiltonian of the formH5T1V(x), whereV is
a local potential, satisfies Eq.~1.1!. Hence, for such a Hamil-
tonian, the canonical momentump52 i\“ used in this sec-
tion agrees with the kinematic momentum defined earlier

Now let us examine the dimensionless factorD i j defined
above in Eq.~4.25!. If H5T1V, this becomes

D i j 5
Si j di j

2AV iV j

5
3V i j

2AV iV j

, ~4.46!

whereV i j 5
1
3 Si j di j is the volume of the link between sitesi

and j ~see Appendix B!. The factorD i j appears in theA2
2-8
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term in the Hamiltonian~4.23!, which will be referred to as
H2. In a continuous coordinate basis,H2 is given by

^x8uH2ux9&5
e2

2mc2
A2~x8!d~x82x9!, ~4.47!

which means that it satisfies

E E ^x8uH2ux9&d3x8d3x95
e2

2mc2E A2~x8!d3x8.

~4.48!

The corresponding equations for the discrete basis are

^X i uH2uX j&5
e2

2mc2

3Ai j
2 V i j

2V iV j
~4.49!

and

(
i , j

^X i uH2uX j&V iV j5
e2

2mc2

3

2 (
i , j

Ai j
2 V i j

5
e2

2mc2 (
l

3Al
2V l . ~4.50!

The second equality in Eq.~4.50! was obtained by noting
that a sum overi and j covers each linkl twice. The only
apparent difference between Eqs.~4.48! and~4.50! is a factor
of 3. This appears for the same reason that it does in
Lagrangian~4.13!—i.e., A2 in Eq. ~4.48! refers toAx

21Ay
2

1Az
2 , whereasAl

2 in Eq. ~4.50! refers only to the componen
of A in the direction ofdl .

Therefore, Eqs.~4.48! and~4.50! are the same in the limi
of zero lattice spacing, and the factorD i j is simply a geo-
metric weight factor that provides the correctA2 coupling in
the Hamiltonian~4.23!.

C. Spin

The theory presented thus far has been for a particle w
spin zero. Particles with spin12 may be described using
discrete version of the Dirac Hamiltonian for a free partic

H5ca•p1bmc2, ~4.51!

where a and b are Dirac’s 434 matrices. The momentum
operatorp can either be calculated from geometry or fitted
experiment. In the presence of electromagnetic fields,
Hamiltonian becomes

H̃5ca•p1bmc21ef, ~4.52!

where@cf. Eq. ~4.22!#

pi j 5pi j exp~2 ik i j !. ~4.53!

A nonrelativistic Hamiltonian may be obtained by applying
Foldy-Wouthuysen transformation71,72 to Eq. ~4.52!, which
yields
16521
e

th

:

e

Hnr5
1

2m
~s•p!22

1

8m3c2
~s•p!41ef

2
1

8m2c2
†s•p,~@s•p,ef#1 i\s•ṗ!‡, ~4.54!

where s is the Pauli spin matrix, and all terms of orde
(v/c)4 have been included. This Hamiltonian couples si
that are not linked, but there is no ambiguity because
Dirac equation is taken as fundamental.

If we assume for simplicity that the lattice coordinates
not depend on time, then

~@s•p,ef#1 i\s•ṗ! i j 52s•pi j Vi j , ~4.55!

where

Vi j 5e~f i2f j !2\k̇ i j 52eEi j di j ~4.56!

is the difference in potential energy of sitesi andj due to the
electric field. The last term in Eq.~4.54! therefore consists o
the Darwin term

Hi j
D5

1

8m2c2 (
k

~Vki1Vk j!pik•pk j ~4.57!

plus the spin-orbit coupling

Hi j
so5

i

8m2c2 (
k

~Vki1Vk j!s•~pik3pk j!, ~4.58!

where the identity

~s•a!~s•b!5a•b1 i s•~a3b! ~4.59!

has been used. Now the main contribution to spin-orbit c
pling comes from the atomic cores, where the potential
ergy and wave function vary rapidly. However, in any ba
of reasonable size, the lattice imposes a wavelength cu
that eliminates such rapid variations. The potentialf i must
therefore be viewed as a pseudopotential, not a true ato
potential. Hence, for practical purposes,f i in the spin-orbit
Hamiltonian ~4.58! should be treated as a fitting parame
that is independent of the value used for the firstef term in
~4.54!.

The first two terms in the Hamiltonian~4.54! are kinetic-
energy terms, which may be rewritten using

~s•p! i j
2 5(

k
@pik•pk j1 i s•~pik3pk j!#, ~4.60!

in which the second term describes the intrinsic magn
dipole moment of the particle. For a general lattice, this te
is not zero even when there is no electromagnetic field,
cause different components of the momentum operator
not commute~i.e., p3pÞ0!. This follows from the fact that
there is generally no more than one sitek linked to bothi and
j, and for thati and j, pik3pk j is generally not zero.

However, if the lattice is a Bravais lattice, thenp3p is
always zero. This follows from the fact that every site in
Bravais lattice is identical, so for a given nonzeropik3pk j ,
2-9
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there is always another sitem with pim5pk j and pm j5pik ,
hence pik3pk j1pim3pm j50. Clearly one also hasdik
3dk j1dim3dm j50, so the sitesi, k, j, andm lie in a single
plane. If i is not linked toj andk is not linked tom, theni, k,
j, andm form a single plaquetteq, which has the shape of
rectangle. Otherwise, they form two triangular plaquettes

If the momentum operator is given by Eq.~4.34!, then the
intrinsic magnetic dipole term in the Hamiltonian~4.54! for
such a Bravais lattice is

Hi j
mag52

e\

8mcS SikSk jSq
2

dikdk jV i
2D s•Bq , ~4.61!

where the weak-field approximationuk i j u!1 has been used
and the direction ofBq is that ofSq . If the sitesi, k, j, andm
form a single rectangular plaquette, thenSq is the area of that
plaquette; otherwise, it is the combined area of the two
angles~in which caseBq is the average magnetic field of th
two plaquettes!.

As an example, consider a simple cubic lattice with latt
constanta, for which Sik5Sk j5Sq5a2, dik5dk j5a, and
V i5a3. In this case, the factor in parentheses in Eq.~4.61! is
unity, and Hi j

mag couples sites on opposite corners of ea
plaquette~with di j 5A2a). By comparison, the dipole term
in the continuum Hamiltonian is given by

1

2m
@s•~p2eA/c!#25

1

2m
~p2eA/c!22

e\

2mc
s•B.

~4.62!

The numerical factor in front of this dipole coupling is fou
times larger than that in Eq.~4.61!. This occurs because Eq
~4.61! couples each sitei to four other sitesj.

V. APPLICATION TO TETRAHEDRAL
SEMICONDUCTORS

This section considers several different methods of imp
menting the theory developed in Sec. IV. Spin is neglecte
all of the applications that follow.

A. Discrete pseudopotential method

The simplest geometry occurs when the lattice sitesxi are
chosen to lie on a Bravais lattice. One possible approac
this case is to use the geometric expression~4.42! for the
kinetic energyT, and assume that the potential energyV is
local. This approach will be referred to as the discr
pseudopotential method.

If x lies on a Bravais lattice~the subscripti is omitted
here!, one may define a reciprocal lattice as the set of
vectorsg such thatg•x52p3integer. The volume of a primi-
tive cell in the direct lattice is denotedv0, while that of a
primitive cell in the reciprocal lattice isv0* 5(2p)3/v0.

In a crystal, the Hamiltonian will be periodic with respe
to some larger Bravais lattice whose sites are denoted bR,
whereRP$x%. One may then define a corresponding rec
rocal lattice as the set of all vectorsG such thatG•R
52p3integer. The volume of a primitive cell inR space is
16521
i-

e

h
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in
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e
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V05nv0, wheren is an integer, and the volume of a prim
tive cell in G space isV0* 5(2p)3/V0.

Periodic boundary conditions may then be implemen
over an even larger Bravais lattice whose sites are den
by L , whereLP$R%. The corresponding reciprocal lattic
vectors are denotedk, wherek•L52p3integer. The volume
over which periodic boundary conditions are applied isV
5NV0, whereN is an integer, and the volume of a primitiv
cell in k space isV* 5(2p)3/V. Note that according to the
above definitions,GP$k% andgP$G%.

Coordinate eigenkets in this system are denotedux&, where
ux1L &[ux& due to the periodic boundary conditions. The o
thogonality and closure relations in this basis are therefo

^xux8&5(
L

dx2x8,L , ~5.1!

(
xPV

ux&^xu51. ~5.2!

In a system with periodic boundary conditions, the coor
nate operator is not well defined; only periodic functions
the coordinate are permitted. Therefore, the definition of
kinematic momentum must be slightly modified. Instead
Eq. ~1.1!, one has

^xupux8&5
m

i\
~x2x8!^xuHux8& if xPV andx8PV, ~5.3!

with ^xupux8&5^x1L upux81L 8& otherwise.
Another useful representation is the crystal moment

representation

uk&5
1

AN (
xPV

eik•xux&, ~5.4!

whereN5nN5V/v0. The corresponding orthogonality an
closure relations are

^kuk8&5(
g

dk2k8,g , ~5.5!

(
kPv0*

uk&^ku51. ~5.6!

In the crystal momentum representation, a periodic Ham
tonian^xuHux8&5^x1RuHux81R& couples only those state
that differ by a reciprocal lattice vectorG:

^k8uHuk&5(
G

dk8,k1G^k1GuHuk&, ~5.7!

where

^k1GuHuk&5
1

n (
xPV

(
x8PV0

e2 i (k1G)•x8^x8uHux&eik•x.

~5.8!

The kinematic momentum~5.3! also satisfies Eq.~5.7!. Its
matrix elements are related to those ofH by
2-10
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CONSEQUENCES OF LOCAL GAUGE SYMMETRY IN . . . PHYSICAL REVIEW B66, 165212 ~2002!
^k1Gupuk&5
m

\
“k^k1GuHuk&. ~5.9!

On a Bravais lattice, the kinetic energy~4.42! and canoni-
cal momentum~4.34! are translationally invariant:

^xuTux8&5T~x2x8!, ~5.10!

whereT(x1L )5T(x). The matrix elements ofT are there-
fore given by

^kuTuk8&5T~k!(
g

dk2k8,g , ~5.11!

where

T~k!5 (
xPV

T~x!e2 ik•x. ~5.12!

For tetrahedral semiconductors with the diamond or zi
blende structure, it is convenient to use a cubic lattice for
grid $x%. Expressions for the link distancesdi j and surface
areasSi j are given in Appendix C for the simple cubic, bod
centered cubic, and face-centered cubic lattices. The re
ing kinetic-energy operators given by Eqs.~4.42! and ~5.12!
are

Tsc~k!5
2\2

ma2 Fsin2S kxa

2 D1sin2S kya

2 D1sin2S kza

2 D G ,
Tbcc~k!5

\2

2ma2 H 6F12cosS kxa

2 D cosS kya

2 D cosS kza

2 D G
1Fsin2S kxa

2 D1sin2S kya

2 D1sin2S kza

2 D G J ,

Tfcc~k!5
2\2

ma2 F32cosS kya

2 D cosS kza

2 D
2cosS kza

2 D cosS kxa

2 D2cosS kxa

2 D cosS kya

2 D G ,
~5.13!

all of which reduce toT(k).\2k2/2m whenka!1. Herea
is the lattice constant of the grid$x%, which is some integer
fraction of the lattice constanta0 of the crystal lattice$R%.

A canonical momentum operatorp(k) corresponding to
Eq. ~4.34! may be defined in a similar manner. This opera
is given by

p~k!5
m

\
“kT~k!, ~5.14!

which follows from Eq.~4.45!. Note that this result is just a
special case of the kinematic momentum~5.9!.

The matrix elements of a local periodic potentialV(x)
5V(x1R) are given by Eq.~5.7!, where
16521
-
e
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^k1GuVuk&5
1

n (
xPV0

V~x!e2 iG•x ~5.15!

is independent ofk. It will be assumed here thatV is a
superposition of local atomic pseudopotentials:

V~x!5 (
m51

Na

(
RPV

vm~x2R2tm!, ~5.16!

wherevm(x)5vm(x1L ) is the pseudopotential for atomm,
whose position in the unit cellV0 is given bytm . In this
case

^k1GuVuk&5
1

Na
(
m51

Na

vm~G!e2 iG•tm, ~5.17!

wherevm(G) is the atomic form factor

vm~G!5
Na

n (
xPV

vm~x!e2 iG•x ~5.18!

andNa is the number of atoms in the unit cellV0.
The main practical difficulty in implementing the discre

pseudopotential method is thatT(k) is not a good approxi-
mation to the continuum kinetic energy

Tcont~k!5
\2k2

2m
~5.19!

unlesska!1. This means that the lattice constanta of the
grid $x% must be significantly smaller than the lattice co
stanta0 of the crystal lattice$R%. To obtain one grid point at
each atom in the diamond structure,a must satisfy a
5a0 /2l ~for a bcc grid! or a5a0/4l ~for sc and fcc!, where
l is a positive integer. Numerical accuracy generally requi
l .1, as shown below.

The shapeof the Brillouin zone is also important. If the
shape of the Wigner-Seitz cell forv0* is not congruent with
the shape of the Wigner-Seitz cell forV0* , then T(k) will
deviate fromTcont(k) more rapidly in some directions tha
others. This can lead to significant qualitative errors in
kinetic energy. For example, in diamond, the lowest co
tinuum eigenvalues atG are Tcont(G)5\2G2/2m, whereG
5(000), ^111&, ^200&, and^220& ~in units of 2p/a0). But
for a sc grid with a5 1

4 a0, the value of Tsc(^200&)
52\2/ma2 is actually lower than that of Tsc(^111&)
53\2/ma2. The correct ratioTcont(^200&)5 4

3 Tcont(^111&) is
only approached in the limit of very smalla/a0, making the
sc grid a poor choice for diamond.

The natural choice for diamond is the fcc grid, since
Brillouin zone has the same shape as that of diamond.
deed, one hasTfcc(^200&)5 4

3 Tfcc(^111&) even for the maxi-
mum grid size a5 1

4 a0. The only problem here is tha
Tfcc(^220&)5 3

2 Tfcc(^200&), which is not sufficiently close to
the correct ratioTcont(^220&)52Tcont(^200&) to make a
5 1

4 a0 a satisfactory choice for numerical calculations. T

next possibility is a5 1
8 a0, which yields Tfcc(^220&)5( 3

2

1A2/4)Tfcc(^200&).1.85Tfcc(^200&).
2-11
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BRADLEY A. FOREMAN PHYSICAL REVIEW B 66, 165212 ~2002!
The energy band structure for GaAs calculated using
fcc grid with a5 1

8 a0 is given in Fig. 1. The fcc kinetic
energy obtained from Eq.~5.13! was multiplied by a constan
factor p2(21A2)/3251.053 so that Tfcc(k) matches
Tcont(k) at G5^111& and G5^200&. The pseudopotentia
form factors~5.18! for this calculation were taken from Re
73. No attempt was made to fit the energy bands by mod
ing the form factors; the purpose of this figure is merely
demonstrate the close similarity between the discrete
band structure and the continuum band structure. Slight
justments in the model parameters would likely give an e
better agreement.

The main problem with this result is thata5 1
8 a0 corre-

sponds to a basis size of 512 grid points per primitive u
cell V0. This is unattractive in comparison to the basis
mensions of'100 plane waves that are typically used
empirical pseudopotential calculations for tetrahedral se
conductors. However, changing the fcc grid toa5 1

4 a0 ~i.e.,
64 grid points per primitive cell! makes it impossible to
achieve a satisfactory fit to the band structure using lo
pseudopotentials. A good fit is possible only if the nonlo
Hamiltonian matrix elements are treated as fitting para
eters. But in that case, one can reduce the basis dimen
even further by using the tight-binding approach.

B. Tight-binding method

In the tight-binding approach, the grid points are
longer restricted to lie on a Bravais lattice, and all of t
Hamiltonian matrix elements are treated as fitting para
eters. In addition, it is assumed here that the model is c
structed using the symmetrization procedure described
Sec. II, so that a distinct set of orthogonal orbitals is ass
ated with each atom. The objective then is to find the sm
est coordinate basis that provides a physically reason
model of the given system.

FIG. 1. Energy band structure of GaAs calculated by the d
crete local pseudopotential method, using an fcc grid witha
5

1
8 a0. Solid lines: fcc kinetic energy from Eq.~5.13!. Dotted lines:

continuum kinetic energy from Eq.~5.19!.
16521
n

-

c
d-
n

it
-

i-

al
l
-
ns

-
n-
in
i-
l-
le

The basis kets in the tight-binding approach will be wr
ten asua,R1tm&, whereR is a lattice vector for the Bravais
lattice over which the Hamiltonian is periodic, andtm is the
position of atomm within the primitive unit cellV0. These
quantities are defined exactly as they were in Sec. V A;
vectorsL , G, andk are also defined in the same way. Th
label a may refer to a coordinatexa within the atom, in
which case

ua,R1tm&[uxa1R1tm& ~5.20!

is just a coordinate eigenket. However,a may also be used
as a symmetry label for an atomic orbital that is a symm
trized linear combination of the kets~5.20!:

ua,R1tm&5(
b

Cb~a!uxb1R1tm&. ~5.21!

In either case, the basis is orthogonal,

^a,R1tmua8,R81tm8&5daa8dmm8(L
dR2R8,L ,

~5.22!

and complete,

(
a

(
m

(
RPV

ua,R1tm&^a,R1tmu51. ~5.23!

In periodic systems, it is convenient to define the Blo
sums1

ua,m,k&5
1

AN
(

RPV
eik•(R1tm)ua,R1tm&, ~5.24!

which are also orthogonal and complete:

^a,m,kua8,m8,k8&5daa8dmm8(G dk2k8,Ge2 iG•tm,

~5.25!

(
a

(
m

(
kPV0*

ua,m,k&^a,m,ku51. ~5.26!

If the HamiltonianH is invariant with respect to lattice trans
lationsR, then its matrix elements in the Bloch basis are

^a,m,kuHua8,m8,k8&

5^a,m,kuHua8,m8,k&(
G

dk2k8,Ge2 iG•tm8, ~5.27!

where

^a,m,kuHua8,m8,k&

5 (
R8PV

^a,tmuHua8,R81tm8&e
ik•(R81tm82tm).

~5.28!

The kinematic momentum operator~4.24! is related to this
Hamiltonian by

-

2-12
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CONSEQUENCES OF LOCAL GAUGE SYMMETRY IN . . . PHYSICAL REVIEW B66, 165212 ~2002!
^a,m,kupua8,m8,k&

5
m

i\
~xa2xa81 i¹k!^a,m,kuHua8,m8,k&, ~5.29!

where the original basis was assumed to be given by
~5.20!. Note that Eq.~5.29! has the form of an intra-atomi
matrix element~proportional toxa2xa8) plus an interatomic
matrix element~proportional to i“k). The zero-paramete
model of Eq.~1.3! is obtained in the limitxa→0.

Let us now consider specific examples ofH for tetrahe-
dral semiconductors. The simplest tight-binding model
the diamond or zinc-blende structure consists of a sings
orbital per atom, which is obtained by putting one coordin
eigenket at each atomic position@see Eq.~2.13!#. In this
model, as shown in Appendix C, each atom is linked to fo
nearest neighbors and 12 second-nearest neighbors.
distant linkages do not exist because the Voronoi polyhe
for these atoms do not touch one another.

Such a simple model is, of course, unable to describe e
the qualitative features of tetrahedral semiconductors.
simplest conventional tight-binding model that works in th
case is thesp3 model.2–4,22The basic features of this mode
are described in Table I, which lists the basis size~number of
orbitals per atom! and the number of independent Ham
tonian matrix elements for coupling between atoms in
diamond structure out to third nearest neighbors.22 Table I
also lists the properties of other tight-binding models used
the literature, such assp3s* ,74 sp3d2,13 andsp3d5s* .57 The
number of parameters listed in this table is the number p
mitted by the symmetry of the model, which is not necess
ily the same as that used in any specific implementation
the literature.

For comparison, the bottom half of Table I lists the pro
erties of several tight-binding models constructed from sy
metrized coordinate eigenkets. The number of free par
eters for the models generated byu100&, u111&, andu110& may

TABLE I. Number of free parameters for different tight-bindin
models in the diamond structure. The first four rows refer to c
ventional tight-binding models, while the remaining refer to mod
obtained from symmetrized coordinate eigenkets. NN denotes n
est neighbors.

Model Parameters
Basis Size On-site 1NN 2NN 3NN

sp3 4 2 4 7 7
sp3s* 5 4 7 11 11
sp3d2 6 3 7 13 13
sp3d5s* 10 7 17 33 33

u111& (Td) 4 2 1 1 0
u100& 6 2 1 1 0
u111& (Oh) 8 3 3 1 0
u110& 12 3 1 1 0
u110&1u000& 13 5 1 1 0
u111&1u100& 14 7 5 1 0
u111&1u100&1u000& 15 11 5 1 0
16521
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be deduced easily from the link geometry results presente
Appendix C. The corresponding numbers for the compou
models~with more than one generator! were determined us
ing the algorithm in Appendix B.

The most striking feature of Table I is the relative pauc
of free parameters in the symmetrized coordinate appro
which occurs because of the restriction~4.16! imposed by
local gauge symmetry. Several of the symmetrized coo
nate models are direct analogs of conventional models~i.e.,
they have identical symmetry!; for example, theu111& (Td)
model corresponds tosp3, and theu100& model corresponds
to sp3d2 @see Eqs.~2.10! and ~2.13!#. However, the number
of free parameters in conventional tight-binding theo
grows steadily with distance, whereas in the present the
there is no coupling beyond second nearest neighbors.

This dearth of adjustable parameters means that the sm
est basis sets do not provide a reliable model for the ene
band structure. For example, in theu111& (Td) model, the
splitting of the bonding and antibondings states at theG
point is the same as that of thep states atG ~and that of the
p states atX). In the u100& model, there is no coupling at a
betweenp orbitals on different atoms at theG point, so the
splitting of bonding and antibonding states is zero. Such
ficulties arise primarily because there is only one near
neighbor coupling parameter in these models.

To increase the number of adjustable parameters with
an undue increase in basis size, one must deliberately se
for models with themost complicatedtopology available. A
good starting point is theu111& (Oh) basis, which already ha
three nearest-neighbor parameters. Combining this wit
u100& basis raises that number to four or five, depending
the relative values of the coordinates in the two generat
This 14-orbital model is a dramatic improvement over any
the smaller models; however, an extrau000& site adds sub-
stantial extra flexibility without much change in the bas
size. Thus, the 15-orbital model generated byu000&, u111&,
andu100& is probably the smallest basis capable of describ
tetrahedral semiconductors accurately. In the language
conventional tight-binding theory, this would be referred
as ans3p6d5f model.

As shown in Table I, this model has 17 free paramet
~one of which is just the reference energy!. Specific defini-
tions for these parameters are given in Table II, which a
presents parameter values for Ge and Si obtained by fit
the band structure of the 15-orbital model to that given
the nonlocal empirical pseudopotentials of Chelikowsky a
Cohen.75–77 Local Hamiltonian matrix elements are labele
V, whereas nonlocal on-site, nearest-neighbor, and sec
nearest-neighbor terms are denoteda, b, andg, respectively.
The subscriptsa, b, e, and f refer to independent sites gen
erated byu0,0,0&, ur ,r ,r &, u2r ,2r ,2r &, and ur 8,0,0&, re-
spectively. The labelsa, e, and f are the Wyckoff labels for
sites of different symmetry in the diamond structure.58 The
label b is not correct Wyckoff notation; it actually refers t
an independente site, but the notationb was used here be
cause these sites lie on the bonds between atoms.

The energy band structure calculated from the parame
in Table II is plotted in Fig. 2. One can see that the 15-orb
model provides a good fit to the nonlocal pseudopoten

-
s
ar-
2-13
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BRADLEY A. FOREMAN PHYSICAL REVIEW B 66, 165212 ~2002!
bands from the bottom of the valence band to about 5
above the top of the valence band. Qualitative errors begi
occur near 9 eV at both theL andX points. For example, the
X1 level near 9 eV in both figures should occur above 12
This discrepancy can be eliminated, but the author has
found any way of doing so without adversely affecting t
quality of the overall fit.

It should be emphasized that the parameters in Tabl
are presented here merely as ‘‘proof of concept;’’ they are
no way intended as the final word on the subject, and
author would be surprised if a better set were not found
the future. The quantities included in the fitting procedu
were the valence- and conduction-band energy levels aG,
X, L, and K. Effective masses and deformation potenti
were not considered, and no attempt was made at ensu
transferability.

The main difficulty encountered during the fitting was t
lack of any reliable method for establishing a sound start
point. Unlike the case for smaller tight-binding models, t
present Hamiltonian has almost no simple analytical so
tions ~except for theG128 , G12, and X2 states, which are
relatively unimportant! that can be used to determine starti
values. The formula~4.42! for the kinetic energy provides
set of ‘‘free-particle’’ parameters that is better than nothin
but in a 15-orbital basis, Eq.~4.42! is a poor approximation
to the continuum kinetic energy~5.19!. After several months
and dozens of different schemes~which still sampled only an
infinitesimal fraction of parameter space!, the author was un-
able to find any method whose success could honestly
attributed to anything other than trial and error. Hence,
development of a robust fitting procedure remains an
solved problem.

TABLE II. Independent Hamiltonian parameters in the 1
orbital model generated byu0,0,0&, ur ,r ,r &, andur 8,0,0&.

Parameter Value~Ry!

Symbol Definition Ge Si

Va ^0,0,0uHu0,0,0& 1.225 36 1.762 82
Vb ^r ,r ,r uHur ,r ,r & 1.189 98 1.651 67
Ve ^2r ,r ,r uHu2r ,r ,r & 1.072 11 1.176 74
Vf ^r 8,0,0uHur 8,0,0& 1.779 02 1.984 85
aab 2^0,0,0uHur ,r ,r & 20.564 83 20.507 49
aae 2^0,0,0uHu2r ,r ,r & 0.070 52 0.248 01
aa f 2^0,0,0uHur 8,0,0& 0.064 00 20.079 80
abe 2^r ,r ,r uHu2r ,r ,r & 0.038 41 0.194 02
ab f 2^r ,r ,r uHur 8,0,0& 0.698 32 0.784 64
ae f 2^2r ,r ,r uHu0,r 8,0& 0.319 58 0.136 84
a f f 2^r 8,0,0uHu0,r 8,0& 20.437 68 20.473 11
bbb 2^r ,r ,r uHua2r ,a2r ,a2r & 0.743 06 1.457 66
bee 2^2r ,r ,r uHua2r ,a2r ,a1r & 20.030 11 0.015 37
bb f 2^r ,r ,r uHua2r 8,a,a& 20.070 41 20.352 01
be f 2^2r ,r ,r uHua2r 8,a,a& 0.286 40 0.400 40
b f f 2^r 8,0,0uHua,a2r 8,a& 0.131 40 0.174 01
gee 2^2r ,r ,r uHu2r ,2a2r ,2a2r & 0.029 76 0.020 25
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C. Dielectric function

As a test of the field-particle coupling in the 15-orbit
model, the imaginary part of the transverse dielectric ten
was calculated from the formula28,78

e2
ab~v!5

4p2e2

m2v2 (
c,v

2

~2p!3EV0*
^vkupauck&^ckupbuvk&

3d~Eck2Evk2\v!d3k, ~5.30!

where\v is the photon energy, andunk& is an eigenket ofH
with energyEnk . The sum covered the four valence bandsv
and the seven lowest conduction bandsc. The integral was
performed using a modified Gilat-Raubenheim
technique79–81 based on 45 961k points in the irreducible

FIG. 2. Energy band structure of germanium and silicon. So
lines: 15-orbital tight-binding model based on parameters in Ta
II. Dotted lines: Nonlocal empirical pseudopotential model of R
77. The kinetic-energy cutoff for the latter calculation wask
1G)2<21(2p/a0)2, which corresponds to 113 plane waves atG.
2-14
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CONSEQUENCES OF LOCAL GAUGE SYMMETRY IN . . . PHYSICAL REVIEW B66, 165212 ~2002!
part of the Brillouin zone82,83 ~representing 2 048 000 point
in the full Brillouin zone!. The energy interval for this cal
culation was 1 meV.

To reveal more clearly the physical meaning of the cal
lated spectra, the same method was used to calculate the
density-of-states function

J~E!5(
c,v

2V0

~2p!3EV0*
d~Eck2Evk2E!d3k. ~5.31!

The dielectric function differs fromJ(E), in that each tran-
sition is weighted by the oscillator strength

f cv
ab5

2^vkupauck&^ckupbuvk&
m~Eck2Evk!

. ~5.32!

One may therefore usee2 andJ to define an average osci
lator strength at each energy by

Fab~\v!5
mvV0

2\p2e2

e2
ab~v!

J~\v!
. ~5.33!

In cubic crystals, the tensors~5.30! and~5.33! reduce to sca-
lars: e2

ab(v)5e2(v)dab .
The calculated dielectric functione2(v) for Ge and Si is

plotted in Fig. 3. This figure compares experimental dat84

for the dielectric function with the values given by Eq.~5.30!
for ~i! the nonlocal pseudopotential model of Chelikows
and Cohen75–77and~ii ! the 15-orbital tight-binding model o
Table II. For each model, two plots ofe2(v) are given, cor-
responding to two different expressions for the moment
operatorp.

In pseudopotential calculations, optical properties are u
ally calculated fromA•p coupling withp52 i\“.77 How-
ever, if the pseudopotential is nonlocal, this coupling is
gauge invariant; the correct linear coupling is given inste
by the kinematic momentump5(m/ i\)@x,H#.11 Since
pseudopotential calculations are usually performed in
plane-wave basis, a more convenient expression for the
nematic momentum is given by Eq.~5.9! ~which is valid for
both discrete and continuous coordinatesx).

In the present tight-binding theory, the kinematic mome
tum is given by Eq.~5.29!. The two tight-binding functions
plotted in Fig. 3 correspond to two different choices of t
intra-atomic coordinatesxa , which are determined by th
parametersr and r 8 in Table II. One choice was the limitr
→0, r 8→0, which is equivalent to the zero-paramet
model of Eqs.~1.3! and ~1.4!. The other, more physically
realistic choice wasr 5 1

3 a and r 85A2r . The valuer 5 1
3 a

was chosen because it yields equidistant lattice sites a
the bond directionŝ111&. The valuer 85A2r was used be-
cause a somewhat larger value~e.g., 1.5r ) breaks the link
a f f in Table II, whereas a somewhat smaller value~e.g.,
1.3r ) breaks the linksbb f and b f f ~while simultaneously
forming a new link bbe). These values ofr and r 8 also
generated successful starting values for some of the pa
eters in Table II~although the final fitted parameters were n
very close to the starting values!.
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Several conclusions may be drawn from Fig. 3. The fi
is that, within a given model~pseudopotential or tight bind
ing!, the choice of momentum operator does not have m
numerical significance for the present calculation. This w
to be expected on physical grounds, since the intra-ato
coordinatexa ~in the tight-binding model! and the nonlocal
part of the momentum~in the pseudopotential model! both
lead to polarization effectswithin the atom. Yet it is well
known that the bonds between atoms are much easier to
larize than the atoms themselves.3,4 Hence, in a bulk semi-
conductor, intra-atomic effects yield only a minor numeric
correction. This conclusion should remain valid in any sy

FIG. 3. Imaginary part of the transverse dielectric functi
of germanium and silicon. Dotted line: Experimental data fro
Ref. 84. Long dashed line: Nonlocal pseudopotential model
Ref. 77 with canonical~local! momentump52 i\“. Dot-dashed
line: Nonlocal pseudopotential model of Ref. 77 with kinema
~nonlocal! momentump5(m/ i\)@x,H#. Short dashed line: 15-
orbital tight-binding model from Table II withr→0 and r 8→0.
Solid line: 15-orbital tight-binding model from Table II with
r 5

1
3 a and r 85A2r .
2-15
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BRADLEY A. FOREMAN PHYSICAL REVIEW B 66, 165212 ~2002!
tem where the states are extended, but it may break dow
systems where localized states are important.37,38

The nonlocal part of the pseudopotential momentum te
to increasee2(v) in most frequency ranges, but it sometim
has the opposite effect~see, e.g., the region below 4 eV
Si!. However, the intra-atomic coupling in the tight-bindin
model always decreasese2(v). This may be understood b
noting that the dominant nonlocal term in the Hamiltonian
Table II is the couplingbbb along the bond between neare
neighbors. Increasing the value ofr decreases the distanc
betweenb sites on neighboring atoms, thereby decreasing
momentum matrix in Eq.~5.29!. This tends to increase
~slightly! the discrepancy between the tight-binding a
pseudopotential dielectric functions. It is possible, howev
that a different parametrization of the Hamiltonian mig
yield different results.

The tight-binding and pseudopotential dielectric functio
are quite similar in Ge, but there is a significant discrepa
at theE2 peak in Si. The reason for the difference betwe
the models is apparent from the joint density of statesJ and
average oscillator strengthF plotted in Fig. 4. This figure
shows that the tight bindingJ is very accurate in Ge an
somewhat less so in Si, as might have been expected
the quality of the fitted energy bands in Fig. 2. However,
tight-binding model underestimates the oscillator stren
over almost the entire frequency range shown, typically
about 20%. The difference is most pronounced betwee
and 4.5 eV in Si, where it exceeds 30%. When combin
with a slight underestimate ofJ in the same region, this lead
to the discrepancy in theE2 peak noted above.

The E2 peak in Si is associated with a volume ink space
near (0.9,0.1,0.1)2p/a0,77 which is close to theX point.
Thus, the physical reason for the error in theE2 peak is
probably the spuriousX1 conduction band near 9 eV in Fig
2. Because this band is too low in energy, it mixes m
strongly with the lowestX1 conduction band in the tight
binding model than it does in the pseudopotential mod
This change in the wave function causes a correspon
change in oscillator strength. Thus, the majority of the er
in the SiE2 peak would likely be eliminated if one could fin
an improved parameter set that raises the energy of the u
X1 conduction band.

It is less clear whether the systematic underestimate
oscillator strength at all frequencies could be resolved
changing the Hamiltonian parameters. Oscillator stren
was not included in the present fitting routine, so it is po
sible that with specific attention to this feature, one co
improve the oscillator strength while maintaining the qual
of the joint density of states. However, it is also possible t
such an underestimate is a fundamental limitation impo
by the small basis size in the tight-binding model. Thus,
present, the 15-orbital model is capable of providing se
quantitative predictions of oscillator strength that reprodu
all of the major trends exhibited by the pseudopoten
model. Whether future developments bring it into prec
quantitative agreement remains to be seen.

Finally, it is worth noting that in Fig. 3, the calculatedE1
peak~between 2 and 3 eV! for Ge is considerably less tha
the experimental value for both the pseudopotential
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tight-binding models. Chelikowsky and Cohen have attr
uted this discrepancy to the neglect of exciton effects75

However, a recent first-principles calculation ofe2(v) that
includes electron-hole interactions85 shows that the contribu
tion from excitons in Ge is not large enough to fill the gap
Fig. 3. Thus, the empirical pseudopotential for Ge75,77 prob-
ably needs further adjustment to increase theE1 peak.

VI. DISCUSSION AND CONCLUSIONS

This paper has shown that intra-atomic optical transitio
can be incorporated into tight-binding theory in a gaug
invariant way if the coordinate representation is taken as f
damental. Orthogonal atomiclike orbitals can be construc
from symmetrized coordinate eigenkets, and the coupling
electromagnetic fields can then be described using lat

FIG. 4. Joint density of statesJ and average oscillator strengt
F for Ge and Si. Dotted line: Nonlocal pseudopotential model
Ref. 77 with kinematic momentump5(m/ i\)@x,H#. Solid
line: 15-orbital tight-binding model from Table II withr 5

1
3 a and

r 85A2r .
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gauge theory. A model based on 15 such orbitals per ato
capable of describing the most important features of the
rahedral semiconductors Ge and Si. This basis is slig
larger than existing ten-orbital models,57 but it has the advan
tages of~i! gauge invariance and~ii ! providing an explicit
wave function for the electron. A larger basis is needed in
present theory because the restrictions imposed by l
gauge symmetry reduce the number of available Hamilton
fitting parameters.

The field-particle coupling derived here is similar to th
given by the Peierls substitution,11,27–31but the field-induced
phase factor appears in the coordinate representation r
than the tight-binding representation. Thus, the present
malism includes intra-atomic coupling not present in t
Peierls substitution. Ismail-Beigi, Chang, and Louie11 have
recently presented a derivation of the Peierls phase for n
local Hamiltonians in a continuous coordinate representat
They have argued that this derivation justifies the use of
Peierls substitution in tight-binding theory. However, th
derivation cannot be extrapolated to tight-binding theory,
cause ordinaryA"p coupling gives rise to intra-atomic inter
actions that are not included in the Peierls substitution. T
existence of such interactions was not considered in
tight-binding theory of Ref. 11.

It is interesting to consider whether there are any ot
ways of incorporating local gauge symmetry into tigh
binding theory. One possibility is to work directly in th
usual tight-binding representation@see, e.g., Eq.~1.4!#,
where the basis kets are labeled by the symmetry of
orbital and the position of the atom. If gauge symmetry is
be applied in this basis, the coordinate operator must be
agonal, hence all intra-atomic matrix elements must be se
zero @as in Eq.~1.3!#. One could then introduce an Abelia
U~1! gauge field on this lattice using the approach descri
above in Sec. IV. The results would be identical to tho
found in Sec. IV, except that the phase factor in the Ham
tonian~4.22! would be applied in the tight-binding represe
tation rather than the coordinate representation. Hence,
approach would constitute a ‘‘derivation’’ of the Peier
phase~1.4!. Such a derivation would eliminate the ambigui
associated with the choice of path28 in Eq. ~1.4!. ~Other tech-
niques for eliminating path ambiguity are described in Re
11 and 30.!

The problem with this approach lies in its treatment of t
coordinate operator. In the theory described in Sec. IV, w
the basis size is increased, the eigenvalue spectrum o
coordinate operator remains nondegenerate, tending~in the
limit of infinite basis dimensions! toward a continuous spec
trum. However, if the coordinate operator is required to
diagonal in the tight-binding basis, its eigenvalue spectrum
always degenerate, tending~in the limit of infinite basis di-
mensions! toward a discrete spectrum with infinite dege
eracy. Hence, any tight-binding theory that is either based
or equivalent to the Peierls substitution cannot reproduce
correct continuum limit of the coordinate operator.

As a generalization of the above approach, one might a
consider introducing a non-Abelian gauge field43–46,49–55in
the tight-binding basis. The idea would be to treat the tig
binding electron as a new type of ‘‘elementary particle’’ wi
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some internal degrees of freedom~corresponding to the sym
metry labels of the atomic orbitals! that are coupled to the
gauge field. In this way, one might hope to reproduce
effects of intra-atomic coupling while remaining in the tigh
binding basis. There are, however, numerous difficulties w
this approach.

First, the lattice sites in lattice gauge theory repres
states of the same particle at different positions. Hence, th
states are identical apart from their positions. However,
tight-binding theory the atoms are generally not the sam
Second, the field equations for a non-Abelian gauge field
intrinsically nonlinear, because the field carries its ow
charge and is coupled directly to itself~i.e., it is self-
radiating!. It is therefore difficult to imagine how such a fiel
could reproduce ordinary electromagnetism, in which
field has no charge, and nonlinearities arise only from in
actions with matter. Third, one would need to define a n
gauge field theory every time one added new orbitals to
model, and every one of these non-Abelian field theor
would need to reproduce the results of Abelian electrom
netic theory. Finally, the coordinate operator in this approa
would still have a discrete, degenerate eigenvalue spect

Thus, it appears that the present approach—that is
Abelian U~1! gauge field in the coordinate representation—
the only gauge-invariant method for including electroma
netic fields in empirical tight-binding theory that tends t
ward the correct continuum limit as the basis dimensions
increased. In this case, the only way that the essential st
ture of the theory can be modified is to change the topolo
of the system so as to increase the number of links betw
lattice sites. This would increase the number of free para
eters in the Hamiltonian, thereby permitting a reduction
basis size. Such a modification would clearly be benefic
but it is not obvious that there exists any alternative topolo
for general lattices that is capable of reproducing continu
electromagnetism unambiguously. Hence, this possib
will not be explored further here.
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APPENDIX A: SYMMETRIZED ORBITALS

This section presents symmetrized orbitals obtained
applying the symmetry operations of the cubic groupOh to
the coordinate eigenketsu100& and u110&. @The orbitals for
u111& may be found in Eq.~2.11!.# For u100&, if the basis
kets are ordered as$u100&, u010&, u001&, u1̄00&, u01̄0&,
u001̄&%, then the symmetrized orbitals are

uG1&5us&5
1

A6
~1,1,1,1,1,1!,

uG15
z &5upz&5

1

A2
~0,0,1,0,0,21!,
2-17
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uG12
a &5ud2z22x22y2&5

1

2A3
~21,21,2,21,21,2!,

uG12
b &5udx22y2&5

1

2
~1,21,0,1,21,0!. ~A1!

For u110&, if the basis kets are ordered as$u011&, u011̄&,
u01̄1&, u01̄1̄&, u101&, u101̄&, u1̄01&, u1̄01̄&, u110&, u11̄0&,
u1̄10&, u1̄1̄0&%, then the symmetrized orbitals are

uG1&5us&5
1

2A3
~1,1,1,1,1,1,1,1,1,1,1,1!,

uG15
z &5upz&5

1

2A2
~1,21,1,21,1,21,1,21,0,0,0,0!,

uG12
a &5ud2z22x22y2&

5
1

2A6
~21,21,21,21,21,21,21,21,2,2,2,2!,

uG12
b &5udx22y2&5

1

2A2
~1,1,1,1,21,21,21,21,0,0,0,0!,

uG258
xy &5udxy&5

1

2
~0,0,0,0,0,0,0,0,1,21,21,1!,

uG25
c &5u f z(x22y2)&5

1

2A2
~21,1,21,1,1,21,1,21,0,0,0,0!.

~A2!

For the triply degenerate representationsG15, G258 , andG25,
only one representative orbital is given; the others may
obtained from cyclic permutations ofx, y, andz.

APPENDIX B: GEOMETRY OF VORONOI POLYHEDRA

This appendix presents an algorithm for calculating
geometry of the Voronoi polyhedra associated with a giv
set of nodesxi . The basic element in this algorithm is
procedure for finding the edges of the polyhedra. An edge
a Voronoi polyhedron is a finite line segment consisting
points that are closer to three~or more! nodes than to any
other nodes. The first step is therefore to determine the e
tion defining this line.

Any three noncollinear pointsxi , xj , and xk define a
plane whose normal is the vector

ni jk5dj i 3dki5xi3xj1xj3xk1xk3xi , ~B1!

wheredj i 5xj2xi . This plane is the set of pointsx satisfying

ni jk•~x2xi !50. ~B2!

The line consisting of all pointsx equidistant fromxi , xj ,
andxk may therefore be written as
16521
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x5xi jk1ln̂i jk , ~B3!

wherel is a real parameter,n̂i jk5ni jk /ni jk , andxi jk is the
point in the plane~B2! equidistant fromxi , xj , andxk . To
determine this point, note that pointsx equidistant fromxi
andxj satisfy

~xj2xi !•Fx2
1

2
~xj1xi !G50. ~B4!

The pointxi jk therefore satisfies the three equations

ar•xi jk5cr ~r 51,2,3! ~B5!

in which

a15dj i , a25dki , a35ni jk , ~B6!

which may be viewed as a set of oblique~more specifically,
monoclinic! basis vectors, and

c15
1

2
~xj

22xi
2!,

c25
1

2
~xk

22xi
2!,

c35ni jk•xi5xi•~xj3xk!. ~B7!

The solution to Eqs.~B5! is given by

xi jk5(
s51

3

csbs , ~B8!

wherebs is a reciprocal basis vector satisfyingar•bs5d rs ;
e.g.,

b15
a23a3

a1•~a23a3!
. ~B9!

Now sincea1•(a23a3)5ni jk
2 , the vectorsbs are given ex-

plicitly by

b15@dj i ~dki
2 !2dki~dj i •dki!#/ni jk

2 ,

b25@dki~dji
2 !2dj i ~dj i •dki!#/ni jk

2 , ~B10!

b35ni jk /ni jk
2 .

Equation~B8! may then be rearranged in the more symm
ric form

xi jk5
xi@djk

2 ~dj i •dki!#1xj@dki
2 ~dk j•di j !#1xk@di j

2 ~dik•djk!#

2ni jk
2

.

~B11!

This result, together with Eq.~B3!, defines the line equidis
tant from nodesxi , xj , andxk .

The next step is to determine whether any segment of
line forms an edge of a Voronoi polyhedron. Points on suc
segment must lie closer toxi , xj , andxk than to any other
nodexm . For each nodexm , one calculates
2-18
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am5dim•n̂i jk . ~B12!

If am50, then xm lies in the plane~B2!. In this case, if
uxm2xi jk u,uxi2xi jk u, then no portion of the line~B3! forms
an edge of a Voronoi polyhedron. On the other hand, ifuxm
2xi jk u>uxi2xi jk u, then the line~B3! may form an edge~de-
pending on the position of the other nodesxm8).

If amÞ0, thenxm does not lie in the plane~B2!. In this
case, points on the line~B3! that are closer toxi than toxm
satisfy @cf. Eq. ~B4!#

dim•~xi jk1ln̂i jk2xim!.0, ~B13!

in which xim5 1
2 (xi1xm). Hence, the position of the poin

equidistant fromxi , xj , xk , andxm is given by the following
value of the parameterl in Eq. ~B3!:

lm5
dim•~xim2xi jk !

am
. ~B14!

One may then define

lmin5max~lmuam.0! ~B15!

~i.e., the maximum value oflm for all m such thatam.0)
and

lmax5min~lmuam,0!. ~B16!

If lmax.lmin , then the line segment~B3! with lmin,l
,lmax forms an edge of a Voronoi polyhedron. This esta
lishes the positions of two corners of the polyhedron:

xc5xi jk1lminn̂i jk ,

xc85xi jk1lmaxn̂i jk . ~B17!

The set of all nodes in the plane~B2! that lie closer to the
line segmentlmin,l,lmax than any other node defines wh
is called a plaquette. Since there are, in general, more
three such nodes, it is convenient to define a unique labq
for each plaquette, with

n̂q[n̂i jk , xq[xi jk , ~B18!

for any membersxi , xj , andxk of the given plaquette.~The
sign of n̂q is fixed by some convention for the ordering of th
nodesxi , xj , andxk .) Each plaquette is associated unique
with one edge of a Voronoi polyhedron, the length of whi
is

dq5uxc82xcu5lmax2lmin , ~B19!

with dq.0 by definition.
At this point, one has sufficient information to determi

whether a link exists between any pair of nodesxi and xj .
The first step is to use the above procedure to find all of
corner pointsxc common to nodesi and j. By definition, all
such points lie in the plane~B4!. The set of these point
defines a polygon, the perimeter of which consists of the
segments~B19!. The area of the polygon may be calculat
by numbering the corner pointsxc in sequential order aroun
16521
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the perimeter of the polygon, then partitioning the polyg
into triangles as shown in Fig. 5. The normal area vector

Si j 5
1

2 (
c53

Ni j

~xc212x1!3~xc2x1!, ~B20!

whereNi j is the number of corner points common to nodei
and j. The areaSi j 5uSi j u is the area of the surface shared
the Voronoi polyhedra for sitesi and j; note that ifNi j 51 or
2, the shared region is a point or line, and the area~B20! is
zero. Nodesxi andxj are linked only ifSi j .0.

The volumeV i of the Voronoi polyhedron for nodexi
may be calculated fromSi j and di j . One simply integrates
the identity“•x53 over the polyhedron, using the dive
gence theorem and the fact that the plane containingSi j is
the perpendicular bisector ofdi j ~althoughdi j need not inter-
sectSi j itself!. The result is

V i5
1

6 (
j

Si j di j . ~B21!

For each linkl[( i , j ), one can construct a polyhedron b
drawing lines from nodesxi andxj to each of their common
corner pointsxc . The volume of this polyhedron is

V l5
1

3
Sldl . ~B22!

The volumeV l[V i j is bisected bySl[Si j , with half lying
in V i and half inV j ; hence

V i5
1

2 (
j

V i j . ~B23!

The nodes in plaquetteq define a polygon in the plane
~B2!; the perimeter of this polygon is formed by the linksdl .
Hence, the area of the plaquette can be calculated in the s
way as the link area~B20!:

Sq5
1

2 (
i 53

Nq

~xi 212x1!3~xi2x1!, ~B24!

whereNq is the number of nodes in plaquetteq. A polyhe-
dron may be constructed for each plaquette by drawing li
from each node of the plaquette to the corner points~B17!;
the volume of this polyhedron is

FIG. 5. Partitioning of the surfaceSi j into triangles for the area
calculation in Eq.~B20!.
2-19
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Vq5
1

3
Sqdq . ~B25!

Finally, the plaquette surfacesSq partition all of space
into nonoverlapping polyhedra~this is referred to as a De
launay tessellation62!. These polyhedra~or cells! are in one-
to-one correspondence with the corner pointsxc of the
Voronoi polyhedra. The volume of cellc is

Vc5
1

3 (
qPc

Sq•~xq2xc!, ~B26!

where the direction ofSq is chosen to point outward fromVc
~note thatxc does not necessarily lie insideVc ,53 so the dot
product may be negative for someq).

A useful set of sum rules for verifying the consistency
a calculated geometry is

(
i

V i5(
l

V l5(
q

Vq5(
c

Vc5V, ~B27!

whereV is the volume of some region over which the no
distribution is periodic, such as a primitive cell in a Brava
lattice~not to be confused with the generally nonperiodic c
Vc). The sum rule forV i follows directly from the definition
of V i given in Sec. III, since every point inV must lie in at
least one Voronoi polyhedron, and the only regions of ov
lap between polyhedra are points, lines, or planes of z
volume. The sum rule forVc was proven in Ref. 53. The
sum rule forV l follows from that forV i , since the set$V l%
is just another way of partitioning the set$V i% @see Eq.
~B23!#. Likewise, the sum rule forVq follows from that for
Vc , since the set$Vq% is just another way of partitioning th
set$Vc% @see Eqs.~B19!, ~B25!, and~B26!#.

APPENDIX C: EXAMPLES OF LINK GEOMETRY

This appendix presents values of the link lengthsdl and
surface areasSl for several lattices. The simplest geomet
occurs for Bravais lattices, of which only the cubic lattic
are considered here. For the simple cubic lattice, only nea
neighbors are linked, withd15a andS15a2, wherea is the
lattice constant. For the body-centered cubic lattice, both
and second nearest neighbors are linked, with

d15
A3

2
a, S15

3A3

16
a2 ~C1!

and

d25a, S25
1

8
a2. ~C2!

For the face-centered cubic lattice, only nearest neighb
are linked, with

d15
a

A2
, S15

a2

4A2
. ~C3!
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The remaining lattices to be considered are those obta
by putting symmetrized orbitals on the atomic sites of t
diamond or zinc-blende structure. If only a singles orbital
per atom is used~i.e., oneu000& basis ket per atom!, then
each atom is linked to four nearest neighbors and 12 sec
nearest neighbors, with

d15A3a, S153A3a2 ~C4!

and

d252A2a, S25
A2

4
a2. ~C5!

Herea5 1
4 a0, wherea0 is the conventional cubic lattice con

stant. Note that in this case, the linkd2 does not intersect the
surfaceS2.

Coupling between second-nearest neighbors persist
models with more than one orbital per atom. In the ‘‘sp3’ ’
model with fouru111& sites per atom~generated by applying
the symmetry operations ofTd to ur ,r ,r & and ua2r ,a2r ,a
2r &), each site is linked to three others on the same ato

d052A2r , S05
7A2

4
a2; ~C6!

one on a neighboring atom,

d15A3~a22r !, S153A3a2; ~C7!

and three second-nearest neighbors,

d252A2~a2r !, S25
A2

4
a2. ~C8!

In the model generated by eitherTd or Oh and ur ,0,0&,
each of the six sites is linked to four others on the sa
atom,

d05A2r , S05
a2~5a26r !

4A2~a2r !
; ~C9!

four nearest neighbors,

d15A3a224ar12r 2, S15
a2d1

2~a2r !
; ~C10!

and four second-nearest neighbors,

d25A2~2a2r !, S25
a2~a22r !

4A2~a2r !
. ~C11!

In the model generated by eitherTd or Oh and ur ,r ,0&,
each of the 12 sites is linked to four others on the same at
two of which have

d05A2r , S085
a2~3a24r !

4A2~a2r !
~C12!

and two of which have
2-20
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d05A2r , S095
a2~7a28r !

4A2~a2r !
. ~C13!

Each site is also linked to two nearest neighbors,

d15A3a228ar16r 2, S15
a2d1

2~a2r !
, ~C14!

and one second-nearest neighbor,

d252A2~a2r !, S25
a3

2A2~a2r !
. ~C15!

In the model generated byOh and ur ,r ,r &, there are two
distinct lattice sites. Sites such asur ,r ,r & and ua2r ,a2r ,a
2r & are labeledb because they lie on the bonds betwe
atoms, whereas sites such asu2r ,2r ,2r & and ua1r ,a
1r ,a1r & are labelede because they lie on ‘‘empty’’ bonds
~Both of these sites are actually Wyckoffe sites, but they are
inequivalent because the site symmetry of the atoms in
mond is Td .) Eachb site is linked to threee sites on the
same atom~and vice versa!, with
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d0
be52r , S0

be5
a~9a24r !

8
. ~C16!

Eachb site is linked to one nearest-neighborb site,
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29T. Dumitrică, J. S. Graves, and R. E. Allen, Phys. Rev. B58, 15

340 ~1998!.
30T. B. Boykin, R. C. Bowen, and G. Klimeck, Phys. Rev. B63,

245314~2001!.
31T. B. Boykin and P. Vogl, Phys. Rev. B65, 035202~2002!.
32A. Selloni, P. Marsella, and R. Del Sole, Phys. Rev. B33, 8885

~1986!.
33L. Reining, R. Del Sole, M. Cini, and J. G. Ping, Phys. Rev. B50,

8411 ~1994!.
34J. Bennetto and D. Vanderbilt, Phys. Rev. B53, 15 417~1996!.
35K. Leung and K. B. Whaley, Phys. Rev. B56, 7455~1997!.
36K. Leung, S. Pokrant, and K. B. Whaley, Phys. Rev. B57, 12 291

~1998!.
37M. Cruz, M. R. Beltrán, C. Wang, J. Tagu¨eña-Martı́nez, and Y. G.

Rubo, Phys. Rev. B59, 15381~1999!.
38T. G. Pedersen, K. Pedersen, and T. B. Kriestensen, Phys. Re

63, 201101~2001!.
39S. V. Goupalov and E. L. Ivchenko, Phys. Solid State43, 1867

~2001!.
40M. Governale and C. Ungarelli, Phys. Rev. B58, 7816~1998!.
41H. Weyl, Z. Phys.56, 330 ~1929!.
42P. A. M. Dirac, Proc. R. Soc. London, Ser. A133, 60 ~1931!.
43C. N. Yang and R. L. Mills, Phys. Rev.96, 191 ~1954!.
44T. T. Wu and C. N. Yang, Phys. Rev. D12, 3845~1975!.
2-21



ns

an
i-

v.

ay

a
ing
ve

one

the
s

.:

lids

-

n-

BRADLEY A. FOREMAN PHYSICAL REVIEW B 66, 165212 ~2002!
45K. Moriyasu, An Elementary Primer for Gauge Theory~World
Scientific, Singapore, 1983!.

46M. Guidry, Gauge Field Theories~Wiley, New York, 1991!.
47M. Tinkham,Group Theory and Quantum Mechanics~McGraw-

Hill, New York, 1964!.
48F. Bassani, inSemiconductors and Semimetals, edited by R. K.

Willardson and A. C. Beer~Academic, New York, 1966!, Vol. 1,
pp. 21–74.

49K. G. Wilson, Phys. Rev. D10, 2445~1974!.
50J. Kogut and L. Susskind, Phys. Rev. D11, 395 ~1975!.
51C. Rebbi,Lattice Gauge Theories and Monte Carlo Simulatio

~World Scientific, Singapore, 1983!.
52H. J. Rothe,Lattice Gauge Theories: An Introduction, 2nd ed.

~World Scientific, Singapore, 1997!.
53N. H. Christ, R. Friedberg, and T.D. Lee, Nucl. Phys. B202, 89

~1982!.
54N. H. Christ, R. Friedberg, and T.D. Lee, Nucl. Phys. B210, 310

~1982!; reprinted on p. 141 of Ref. 51.
55N. H. Christ, R. Friedberg, and T.D. Lee, Nucl. Phys. B210, 337

~1982!; reprinted on p. 168 of Ref. 51.
56Here and elsewhere, comments about a lack of gauge invari

in tight-binding theory refer to models with intra-atomic coord
nate matrix elements.

57J.-M. Jancu, R. Scholz, F. Beltram, and F. Bassani, Phys. Re
57, 6493~1998!.

58International Tables for Crystallography, 3rd ed., edited by T.
Hahn ~Kluwer, Dordrecht, 1992!, Vol. A.

59R. H. Parmenter, Phys. Rev.100, 573 ~1955!.
60P. Boguslawski and I. Gorczyca, Semicond. Sci. Technol.9, 2169

~1994!.
61L. P. Bouckaert, R. Smoluchowski, and E. Wigner, Phys. Rev.50,

58 ~1936!.
62A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu,Spatial Tessel-

lations: Concepts and Applications of Voronoi Diagrams, 2nd
ed. ~Wiley, New York, 2000!.

63Magnetic monopoles could be included in this formalism by p
ing close attention to phase changes of 2pn around a closed
path.42,52,86Such phase changes have been ignored here bec
magnetic monopoles are ordinarily of no interest in tight-bind
theory. An alternative approach to magnetic monopoles is gi
in Ref. 44.

64J. D. Jackson,Classical Electrodynamics, 2nd ed.~Wiley, New
York, 1975!.

65Equation~4.20! may also be derived from Eq.~4.21!.
16521
ce

B

-

use

n

66G. Arfken, Mathematical Methods for Physicists, 3rd ed.~Aca-
demic, San Diego, 1985!, p. 55.

67J. J. Sakurai,Modern Quantum Mechanics~Addison-Wesley,
Reading, MA, 1994!, p. 54.

68As noted by Graf and Vogl,28 the relation@xa,pb#5 i\dab can
never be satisfied in a finite basis, because tr(AB)5tr(BA) in a
finite basis.

69If the lattice happens to be a Bravais lattice, however, then
can show that

(
j

^X i u@xa,pb#uX j&V j5
i\

2V i
(

j
di j

a Si j
b 5 i\dab ,

where the second equality follows from Eq. (101
2 ) of Ref. 55

and the fact that a Bravais lattice has a center of inversion at
midpoint between two lattice sites,87 so that the center of mas
of the surfaceSi j is just 1

2 (xi1xj ).
70C. H. Xu, C. Z. Wang, C. T. Chan, and K. M. Ho, J. Phys

Condens. Matter4, 6047~1992!.
71L. L. Foldy and S. A. Wouthuysen, Phys. Rev.78, 29 ~1950!.
72A. Messiah,Quantum Mechanics~North-Holland, Amsterdam,

1962!.
73M. L. Cohen and T. K. Bergstresser, Phys. Rev.141, 789 ~1966!.
74P. Vogl, H. P. Hjalmarson, and J. D. Dow, J. Phys. Chem. So

44, 365 ~1983!.
75J. R. Chelikowsky and M. L. Cohen, Phys. Rev. Lett.31, 1582

~1973!.
76J. R. Chelikowsky and M. L. Cohen, Phys. Rev. B10, 5095

~1974!.
77J. R. Chelikowsky and M. L. Cohen, Phys. Rev. B14, 556~1976!.
78F. Bassani and G. Pastori Parravicini,Electronic States and Op

tical Transitions in Solids~Pergamon, Oxford, 1975!.
79G. Gilat and L. J. Raubenheimer, Phys. Rev.144, 390 ~1966!.
80L. R. Saravia and D. Brust, Phys. Rev.171, 916 ~1968!.
81S.-Y. Ren and W. A. Harrison, Phys. Rev. B23, 762 ~1981!.
82D. Brust, Phys. Rev.134, A1337 ~1964!.
83J. F. Cornwell,Group Theory in Physics~Academic, San Diego,

1984!, Vol. 1, pp. 213 and 233.
84D. E. Aspnes and A. A. Studna, Phys. Rev. B27, 985 ~1983!.
85L. X. Benedict, E. L. Shirley, and R. B. Bohn, Phys. Rev. B57,

R9385~1998!.
86T. A. DeGrand and D. Toussaint, Phys. Rev. D22, 2478~1980!.
87G. Burns and A. M. Glazer,Space Groups for Solid State Scie

tists, 2nd ed.~Academic, San Diego, 1990!, p. 53.
2-22


