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Quantum impurity solvers using a slave rotor representation
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We introduce a representation of electron operators as a product of a spin-carrying fermion and of a phase
variable dual to the total charge~slave quantum rotor!. Based on this representation, a method is proposed for
solving multiorbital Anderson quantum impurity models at finite interaction strengthU. It consists in a set of
coupled integral equations for the auxiliary field Green’s functions, which can be derived from a controlled
saddle point in the limit of a large number of field components. In contrast to some finite-U extensions of the
noncrossing approximation, the method provides a smooth interpolation between the atomic limit and the
weak-coupling limit, and does not display violation of causality at low frequency. We demonstrate that this
impurity solver can be applied in the context of dynamical mean-field theory, at or close to half-filling. Good
agreement with established results on the Mott transition is found, and large values of the orbital degeneracy
can be investigated at low computational cost.
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I. INTRODUCTION

The Anderson quantum impurity model~AIM ! and its
generalizations play a key role in several recent deve
ments in the field of strongly correlated electron systems
single-electron devices, it has been widely used as a sim
fied model for the competition between the Coulomb blo
ade and the effect of tunneling.1 In a different context, the
dynamical mean-field theory~DMFT! of strongly correlated
electron systems replaces a spatially extended system b
Anderson impurity model with a self-consistently dete
mined bath of conduction electrons.2,3 Naturally, the AIM is
also essential to our understanding of local moment form
tion in metals and to that of heavy-fermion materials, p
ticularly in the mixed-valence regime.4

It is therefore important to have at our disposal quant
tive tools allowing for the calculation of physical quantitie
associated with the AIM. The quantity of interest depends
the specific context. Many recent applications require a
culation of the localized level Green’s function~or spectral
function! and possibly of some two-particle correlation fun
tions.

Many such ‘‘impurity solvers’’ have been developed ov
the years. Broadly speaking, these methods fall in two
egories: numerical algorithms which attempt at a direct
lution on the computer and analytical approximati
schemes~which may also require some numerical impleme
tation!. Among the former, the quantum Monte Carlo~QMC!
approach~based on the Hirsch-Fye algorithm! and the nu-
merical renormalization group play a prominent role. Ho
ever, such methods become increasingly costly as the c
plexity of the model increases. In particular, the rapid
developing field of applications of DMFT to electronic stru
ture calculations5 requires methods that can handle impur
models involving orbital degeneracy. For example, mater
involving f electrons are a real challenge to DMFT calcu
tions when using the quantum Monte Carlo approach. Si
larly, cluster extensions of DMFT require one to handle
large number of correlated local degrees of freedom. T
0163-1829/2002/66~16!/165111~16!/$20.00 66 1651
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dimension of the Hilbert space grows exponentially with t
number of these local degrees of freedom, and this is a
vere limitation to all methods, particularly the exact diag
nalization and numerical renormalization group methods.

The development of fast and accurate~although approxi-
mate! impurity solvers is therefore essential.31 In the one-
orbital case, the iterated perturbation theory~IPT!
approximation6 has played a key role in the development
DMFT, particularly in elucidating the nature of the Mo
transition.7 A key reason for the success of this method
that it becomes exact both in the limit of weak interactio
and in the atomic limit. Unfortunately, however, extensio
of this approach to the multiorbital case have not been
successful.8 Another widely employed method is the non
crossing approximation~NCA!.9,10 This method takes the
atomic limit as a starting point and performs a self-consist
resummation of the perturbation theory in the hybridizati
to the conduction bath. It is thus intrinsically a stron
coupling approach, and indeed it is in the strong-coupl
regime that the NCA has been most successfully applied.
NCA does suffer from some limitations, however, which c
become severe for some specific applications. These lim
tions, are of two kinds.

~i! The low-energy behavior of NCA integral equations
well known to display non-Fermi-liquid power laws. Th
can be better understood when formulating the NCA
proach in terms of slave bosons.11,12 It becomes clear then
that the NCA actually describes accurately the overscree
regime of multichannel models. This is in a sense a rema
able success of the NCA, but also calls for some care w
applying the NCA to Fermi-liquid systems in the screen
regime. It must be noted that recent progresses have b
made to improve the low-energy behavior in the Fermi-liqu
case.13

~ii ! A more important limitation for practical application
has to do with the finite-U extensions of NCA equations
Standard extensions do not reproduce correctly the nonin
actingU50 limit. In contrast to IPT, they are not ‘‘interpo
lative solvers’’ between the weak-coupling and stron
©2002 The American Physical Society11-1



d

r

ki

h
o

tr
s
icl
h

h
il-
e

ac
e
of
t
te

be
ap
f

le

.
d
p
in
T
m

la

om
d

b

ow

is
he
d

ed
er

o-
th

is
to
et
est
-

of
ita-

otal
tro-
two

ase
ve
er

le

e
of

-

ic
e

ic

mic

y

SERGE FLORENS AND ANTOINE GEORGES PHYSICAL REVIEW B66, 165111 ~2002!
coupling limits. Furthermore, the physical self-energy ten
to develop noncausal behavior at low frequency@i.e.,
Sd9(v).0] below some temperature~the ‘‘NCA pathology’’!
At half-filling and large U, this only happens at a rathe
low-energy scale, but away from half-filling or for smallerU,
this scale can become comparable to the bandwidth, ma
the finite-U NCA of limited applicability.

In this article, we introduce new impurity solvers whic
overcome some of these difficulties. Our method is based
a rather general representation of strongly correlated elec
systems, which has potential applications to lattice model
well.27 The general idea is to introduce a new slave part
representation of physical electron operators, which emp
sizes thephase variable dual to the total chargeon the im-
purity. This should be contrasted to slave boson approac
to a multiorbital AIM: there, one introduces as many aux
iary bosons as there are fermion states in the local Hilb
space. This is far from economical: when the local inter
tion depends on the total charge only, it should be possibl
identify a collective variable which provides a minimal set
collective slave fields. We propose that the phase dual to
total charge precisely plays this role. This turns a correla
electron model~at finite U) into a model of spin-~and
orbital-! carrying fermions coupled to aquantum rotor de-
gree of freedom. Various types of approximations can then
made on this model. In this article, we emphasize an
proximate treatment based on as-model representation o
the rotor degree of freedom, which is then solved in the lim
of a large number of components. This results in coup
integral equations which share some similarities to those
the NCA, but do provide the following improvements.

~i! The noninteracting (U50) limit is reproduced exactly
For a fully symmetric multiorbital model at half-filling an
in the low-temperature range, the atomic limit is also ca
tured exactly, so that the proposed impurity solver is an
terpolative scheme between weak and strong coupling.
s-model approximation does not treat as nicely the ato
limit far from half-filling, however ~though improvements
are possible; see Sec. V E!.

~ii ! The physical self-energy does not display any vio
tion of causality~even at low temperature or smallU). This
is guaranteed by the fact that our integral equations bec
exact in the formal limit of a large number of orbitals an
components of thes-model field.

It should be emphasized, though, that the low-energy
havior of our equations is similar to the~infinite-U) NCA
and characterized by non-Fermi-liquid power laws bel
some low-energy scale.

As a testing ground for the new solver, we apply it in th
paper to the DMFT treatment of the Mott transition in t
multiorbital Hubbard model. We find an overall very goo
agreement with the general aspects of this problem,
known from numerical work and from some recently deriv
exact results. We also compare to other impurity solv
~IPT, exact diagonalization, QMC, NCA!, particularly re-
garding the one-electron spectral function.

This article is organized as follows. In Sec. II, we intr
duce a representation of fermion operators in terms of
phase variable dual to the total charge~taking the finite-U,
16511
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multiorbital Anderson impurity model as an example!. In
Sec. III, as-model representation of this phase variable
introduced, along with a generalization from O(2)
O(2M ). In the limit of a large number of components, a s
of coupled integral equations is derived. In Sec. IV, we t
this ‘‘dynamical slave rotor’’~DSR! approach on the single
impurity Anderson model. The rest of the paper~Sec. V! is
devoted to applications of this approach in the context
DMFT, which puts in perspective the advantages and lim
tions of the new method.

II. ROTORIZATION

The present article emphasizes the role played by the t
electron charge and its conjugate phase variable. We in
duce a representation of the physical electron in terms of
auxiliary fields: a fermion field which carries spin~and or-
bital! degrees of freedom and the~total! charge raising and
lowering operators which we represent in terms of a ph
degree of freedom. The latter plays a role similar to a sla
boson: here a ‘‘slave’’ O(2) quantum rotor is used rath
than a conventional bosonic field.

A. Atomic model

We first explain this construction on the simple examp
of an atomic problem, consisting in anN-fold degenerate
atomic level subject to a local SU(N)-symmetric Coulomb
repulsion:

H local5(
s

e0 ds
†ds1

U

2 F(
s

ds
†ds2

N

2 G2

. ~1!

We use heree0[ed1U/2 as a convenient redefinition of th
impurity level, and we recast the spin and orbital degrees
freedom into a single indexs51, . . . ,N ~for N52, we have
a single orbital with two possible spin statess5↑,↓). We
note thate0 is zero at half filling, due to particle-hole sym
metry.

The crucial point is that the spectrum of the atom
Hamiltonian~1! depends only on the total fermionic charg
Q50, . . . ,N and has a simple quadratic dependence onQ:

EQ5e0Q1
U

2 FQ2
N

2 G2

. ~2!

There are 2N states, but onlyN11 different energy levels,
with degeneracies (Q

N). In conventional slave boson
methods,14,15 a bosonic field is introduced for each atom
state us1•••sQ& ~along with spin-carrying auxiliary fermi-
ons f s

†). Hence, these methods are not describing the ato
spectrum in a very economical manner.

The spectrum of Eq.~1! can actually be reproduced b
introducing, besides the set of auxiliary fermionsf s

† , a single

additional variable—namely, the angular momentumL̂5
2 i ]/]u associated with a quantum O(2) rotoru ~i.e., an
angular variable in@0,2p#). Indeed, the energy levels~2! can
be obtained using the Hamiltonian
1-2



ot
um

H
lia
in

n

e
n

-

n
a

on

with
d

ce

e

ro-

ads

ld:

the
e

a
ed

ing
the

r-
or

QUANTUM IMPURITY SOLVERS USING A SLAVE . . . PHYSICAL REVIEW B 66, 165111 ~2002!
H local5(
s

e0f s
† f s1

U

2
L̂2. ~3!

A constraint must be imposed which ensures that the t
number of fermions is equal to the O(2) angular moment
~up to a shift!:

L̂5(
s

F f s
† f s2

1

2G . ~4!

This restricts the allowed values of the angular momentum
be l 5Q2N/252N/2,2N/211, . . . ,N/221, N/2, while in
the absence of any constraintl can be an arbitrary~positive
or negative! integer. The spectrum of Eq.~3! is e0Q
1Ul 2/2, with l 5Q2N/2 thanks to Eq.~4!, so that it coin-
cides with Eq.~2!.

To be complete, we must show that each state in the
bert space can be constructed in terms of these auxi
degrees of freedom, in a way compatible with the Pauli pr
ciple. This is achieved by the following identification:

us1•••sQ&d5us1•••sQ& f u l 5Q2N/2&u , ~5!

in which us1•••sQ&d, f denotes the antisymmetric fermio
state built out ofd and f fermions, respectively, andu l &u
denotes the quantum rotor eigenstate with angular mom
tum l, i.e., ^uu l &u5eil u. The creation of a physical electro
with spin s corresponds to acting on such a state withf s

† as
well as raising the total charge~angular momentum! by one
unit. Since the raising operator iseiu, this leads to the rep
resentation

ds
†[ f s

† eiu, ds[ f s e2 iu. ~6!

Let us illustrate this forN52 by writing the four possible
states in the formu↑&d5u↑& f u0&u , u↓&d5u↓& f u0&u , u↑↓&d
5u↑↓& f u11&u , and u0&d5u0& f u21&u and showing that this
structure is preserved byds

†5 f s
†eiu. Indeed,

u↑↓&d5d↑
†u↓&d5 f ↑

†u↓& fe
1 iuu0&u5u↑↓& f u11&u . ~7!

The key advantage of the quantum rotor representatio
that the original quartic interaction between fermions h
been replaced in Eq.~3! by a simple kinetic term (L̂2) for the
phase field.

B. Rotor representation of Anderson impurity models

We now turn to an SU(N)-symmetric Anderson impurity
model in which the atomic orbital is coupled to a conducti
electron bath:

H5(
s

e0ds
†ds1

U

2 F(
s

ds
†ds2

N

2 G2

1(
k,s

ekck,s
† ck,s

1(
k,s

Vk~ck,s
† ds1ds

†ck,s!. ~8!

Using the representation~6!, we can rewrite this Hamiltonian
in terms of the (f s

† ,u) fields only:
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H5(
s

e0f s
† f s1

U

2
L̂21(

k,s
ekck,s

† ck,s1(
k,s

Vk~ck,s
† f se2 iu

1 f s
†ck,seiu!. ~9!

We then set up a functional integral formalism for thef s
† and

u degrees of freedom, and derive the action associated
Eq. ~10!. This is simply done by switching from phase an
angular momentumoperators (u,L̂) to fields (u,]tu) de-
pending on imaginary timetP@0,b#. The action is con-
structed fromS[*0

bdt@2 iL ]tu1H1 f †]t f #, and an inte-

gration overL̂ is performed. It is also necessary to introdu
a complex Lagrange multiplierh in order to implement the
constraintL̂5(s f s

† f s2N/2. We note that, because of th
charge conservation on the local impurity,h can be chosen to
be independent of time, withihP@0,2p/b#.

This leads to the following expression of the action:

S5E
0

b

dt(
s

f s
†~]t1e02h! f s1

~]tu1 ih !2

2U
1

N

2
h

1(
k,s

@ck,s
† ~]t1ek!ck,s1Vkck,s

† f se2 iu1H.c.#.

~10!

We can recast this formula in a more compact form by int
ducing the hybridization function

D~ iv![(
k

uVku2

iv2ek
~11!

and integrating out the conduction electron bath. This le
to the final form of the action of the SU(N) Anderson impu-
rity model in terms of the auxiliary fermions and phase fie

S5E
0

b

dt(
s

f s
†~]t1e02h! f s1

~]tu1 ih !2

2U
1

N

2
h

1E
0

b

dtE
0

b

dt8D~t2t8!(
s

f s
†~t! f s~t8!eiu(t)2 iu(t8).

~12!

C. Slave rotors, Hubbard-Stratonovich fields, and gauge
transformations

In this section, we present an alternative derivation of
expression~12! of the action which does not rely on th
concept of slave particles. This has the merit of giving
more explicit interpretation of the phase variable introduc
above by relating it to a Hubbard-Stratonovich decoupl
field. This section is, however, not essential to the rest of
paper and can be skipped upon first reading.

Let us start with the imaginary-time action of the Ande
son impurity model in terms of the physical electron field f
the impurity orbital:
1-3
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S5E
0

b

dt(
s

ds
†~]t1e0!ds1

U

2 F(
s

ds
†ds2

N

2 G2

1E
0

b

dtE
0

b

dt8D~t2t8!(
s

ds
†~t!ds~t8!. ~13!

Because we have chosen an SU(N)-symmetric form for the
Coulomb interaction, we can decouple it with only o
bosonic Hubbard-Stratonovitch fieldf(t):

S5E
0

b

dt(
s

ds
†~]t1e01 if~t!!ds1

f2~t!

2U
2 i

N

2
f~t!

1E
0

b

dtE
0

b

dt8D~t2t8!(
s

ds
†~t!ds~t8!. ~14!

Hence, a linear coupling of the fieldf(t) to the fermions has
been introduced. The idea is now to eliminate this line
coupling for all the Fourier modes of thef field, except that
corresponding to zero frequency:f0[*0

bf @2p#. This can
be achieved by performing the following gauge transform
tion:

ds
†~t!5 f s

†~t!expS i E
0

t

f D exp~2 if0t/b!. ~15!

The reason for the second phase factor in this expressio
that it guarantees that the new fermion fieldf s

† also obeys
antiperiodic boundary conditions in the path integral. It
easy to check that this change of variables does not pro
any Jacobian, so that the action simply reads

S5E
0

b

dt(
s

f s
† S ]t1e01 i

f0

b D f s1
f2~t!

2U
2 i

N

2

f0

b

1E
0

b

dtE
0

b

dt8D~t2t8!(
s

f s
†~t! f s~t8!

3expS i E
t8

t Ff2
f0

b G D . ~16!

We now set

f~t!5
]u

]t
1

1

b
f0 S with f0[E

0

b

f @2p# D ~17!

and notice that the fieldu(t) has the boundary conditio
u(b)5u(0)@2p#. It therefore corresponds to an O(2) qua
tum rotor, and the expression of the action finally reads

S5E
0

b

dt(
s

f s
† S ]t1e01 i

f0

b D f s1

S ]tu1
f0

b D 2

2U
2 i

N

2

f0

b

1E
0

b

dtE
0

b

dt8D~t2t8!(
s

f s
†~t! f s~t8!eiu(t)2 iu(t8).

~18!
16511
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This is exactly expression~12!, with the identification
f0 /b[ ih. This, together with Eq.~17!, provides an explicit
relation between the quantum rotor and Lagrange multip
fields on one side, and the Hubbard-Stratonovich field c
jugate to the total charge, on the other.

III. SIGMA-MODEL REPRESENTATION AND SOLUTION
IN THE LIMIT OF MANY COMPONENTS

A. From quantum rotors to a s model

Instead of using a phase field to represent the O(2) de
of freedom, one can use a constrained~complex! bosonic
field X[eiu with

uX~t!u251. ~19!

The action~12! can be rewritten in terms of this field, pro
vided a Lagrange multiplier fieldl(t) is used to implement
this constraint:

S5E
0

b

dt(
s

f s
†~]t1e02h! f s1

N

2
h2

h2

2U
1E

0

b

dt
u]tXu2

2U

1
h

2U
~X* ]tX2H.c.!1l~t!~ uXu221!

1E
0

b

dtE
0

b

dt8D~t2t8!(
s

f s
†~t! f s~t8!X~t!X* ~t8!.

~20!

Hence, the Anderson model has been written as a theor
auxiliary fermions coupled to a nonlinear O(2)s model,
with a constraint~implemented byh) relating the fermions
and thes-model fieldX(t).

A widely used limit in whichs models become solvabl
is the limit of a large number of components of the field. Th
motivates us to generalize Eq.~20! to a model with an
O(2M ) symmetry. The bosonic fieldX is thus extended to an
M-component complex fieldXa (a51, . . . ,M ) with
(auXau25M . The corresponding action reads

S5E
0

b

dt(
s

f s
†~]t1e02h! f s1

N

2
h2M

h2

2U
2Ml

1E
0

b

dt(
a

u]tXau2

2U
1

h

2U
~Xa* ]tXa2H.c.!1luXau2

1E
0

b

dtE
0

b

dt8
1

M
D~t2t8!

3(
s,a

f s
†~t! f s~t8!Xa~t!Xa* ~t8!.

Let us note that this action corresponds to the Hamiltoni
1-4
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H5(
s

e0f s
† f s1

U

2M (
a,b

L̂a,b
2 1 (

k,sa
ekck,sa

† ck,sa

1 (
k,s,a

Vk

AM
~ck,sa

† f sXa* 1 f s
†ck,saXa!. ~21!

In this expression,L̂a,b denotes the angular momentu
tensor associated with theXa vector. The Hamiltonian~21! is
a generalization of the SU(N)3O(2)5U(N) Anderson im-
purity model to an SU(N)3O(2M ) model in which the total
electronic charge is associated with a specific componen
L̂. It reduces to the usual Anderson model forM51.

In the following, we consider the limit where bothN and
M become large, while keeping a fixed ratioN/M . We shall
demonstrate that exact coupled integral equations can be
rived in this limit, which determine the Green’s functions
the fermionic ands-model fields~and the physical electron
Green’s function as well!. The fact that these coupled inte
gral equations do correspond to the exact solution of a w
defined Hamiltonian model@Eq. ~21!# guarantees that no un
physical features~like, e.g., violation of causality! arise in
the solution. Naturally, the generalized Hamiltonian~21! is a
formal extension of the Anderson impurity model of physic
at
ue

he

t
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interest. Extending the charge symmetry from O(2)
O(2M ) is not entirely innocuous, even at the atomic level:
we shall see below, the energy levels of a single O(2M )
quantum rotor have multiple degeneracies and depend on
charge ~angular momentum! quantum number in a way
which does not faithfully mimic theO(2) case. Neverthe-
less, the basic features defining the generalized model~a lo-
calized orbital subject to a Coulomb charging energy a
coupled to an electron bath by hybridization! are similar to
the original model of physical interest.

B. Integral equations

In this section, we derive coupled integral equatio
which become exact in the limit whereboth M and N are
large with a fixed ratio:

N[
N

M
~N,M→`!. ~22!

Following Ref. 12~see also Ref. 11!, the two-body interac-
tion between the auxiliary fermions and thes-model fields is
decoupled using~bosonic! bilocal fields Q(t,t8) and
Q̄(t,t8) depending on two times. Hence, we consider
action
S5E
0

b

dt(
s

f s
†~]t1e02h! f s1

N

2
h2M

h2

2U
2Ml1E

0

b

dt(
a

u]tXau2

2U
1

h

2U
~Xa* ]tXa2H.c.!1luXau2

1E
0

b

dtE
0

b

dt8 M
Q~t,t8!Q̄~t,t8!

D~t2t8!
2E

0

b

dtE
0

b

dt8 Q̄~t,t8!(
a

Xa~t!Xa* ~t8!

1E
0

b

dtE
0

b

dt8 Q~t,t8!(
s

f s
†~t! f s~t8!. ~23!
.

In the limit ~22!, this action is controlled by a saddle point,
which the Lagrange multipliers take static expectation val
h andl, while the saddle-point values of theQ andQ̄ fields
are translation-invariant functions of timeQ(t2t8) and
Q̄(t2t8).

Introducing the imaginary-time Green’s functions of t
auxiliary fermion ands-model fields as

Gf~t![2^Tt f s~t! f s
†~0!&, ~24!

GX~t![1^TtXa~t!Xa* ~0!&, ~25!

we differentiate the effective action~23! with respect to
Q(t) and Q̄(t), which leads to the following saddle-poin
equations Q̄(t)52ND(t)Gf(2t) and Q(t)
5D(t)GX(t). The functionsQ( ivn) (5S f) and Q̄* ( inn)
(5SX) define fermionic and bosonic self-energies:

Gf
21~ ivn!5 ivn2e01h2S f~ ivn!, ~26!
s GX
21~ inn!5

nn
2

U
1l2

2ihnn

U
2SX~ inn!, ~27!

wherevn (nn) is a fermionic~bosonic! Matsubara frequency
The saddle-point equations read

SX~t!52ND~2t!Gf~t!, ~28!

S f~t!5D~t!GX~t!, ~29!

together with the constraints associated withh andl:

GX~t50!51, ~30!

Gf~t502!5
1

2
2

2h

NU

1
1

NU
@]tGX~t502!1]tGX~t501!#.

~31!
1-5
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SERGE FLORENS AND ANTOINE GEORGES PHYSICAL REVIEW B66, 165111 ~2002!
There is a clear similarity between the structure of th
coupled integral equations and the infinite-U NCA
equations.9 We note also significant differences, such as
constraint equations. Furthermore, the finite value of
Coulomb repulsionU enters the bosonic propagator~27! in a
quite novel manner.

The two key ingredients on which the present method
based is the use of a slave rotor representation of ferm
operators and the use of integral equations for the freque
dependent self-energies and Green’s functions. For this
son, we shall denote the integral equations above unde
name of ‘‘dynamical slave rotor’’ method in the following.

C. Some remarks

We make here some technical remarks concerning th
integral equations.

First, we clarify how the interaction parameterU was
scaled in order to obtain the DSR equations above. This is
is related to the manner in which the atomic limit (D50) is
treated in this method. In the original O(2) atomic Ham
tonian ~1!, the charge gap between the ground state and
first excited state isU/2 at half-filling (e050). In the DSR
method, the charge gap is associated with the gap in the s
rotor spectrum. If the O(2M ) generalization of Eq.~1! is
written as in Eq.~21!,

Hint5
U

2M (
a,b

L̂a,b
2 , ~32!

the spectrum readsEl5Ul ( l 12M22)/(2M ). As a result,
the energy difference from the ground state to the first
cited state isE12E05U(2M21)/(2M ).U at large M,
whereas it isU/2 at M51. In order to use the DSR metho
in practice as an approximate impurity solver, the param
U should thus be normalized in a different way than in E
~21!, so that the gap is kept equal toU/2 in the large-M limit
as well. Technically this can be enforced by choosing
normalization

Hint8 5
U

4M22 (
a,b

L̂a,b
2 ~33!

instead of Eq.~32!. Note that this scaling coincides with Eq
~32! for M51, but does yieldE12E05U/2 for largeM, as
desired. This definition ofU was actually used when writing
the saddle-point integral equations~27!, although we post-
poned the discussion of this point to the present section
reasons of simplicity.

Let us elaborate further on the accuracy of the DSR in
gral equations in the atomic limit. In Appendix A, we sho
that the physical electron spectral function obtained wit
DSR in the atomic limit coincides with the exact O(2) res
at half-filling and atT50. This is a nontrivial result, given
the fact that the constraint is treated on average and
above remark on the spectrum. In contrast to the NCA,
DSR method~in its present form! is not based by construc
tion on a strong-coupling expansion around the exact ato
spectrum, so that this is a crucial check for the applicabi
of this method in practice. In the context of DMFT, for e
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ample, it is essential in order to describe correctly the M
insulating state.7 However, the DSR integral equations fail t
reproduce exactly the O~2! atomic limit off half-filling, as
explained in Appendix A. Deviations become severe for t
high dopings, as discussed in Sec. V E. This makes
present form of DSR applicable only for systems in the
cinity of half-filling.

We now discuss some general spectral properties of
DSR solver. From the representation of the physical elect
field ds

†5 f s
†X and from the convention chosen for th

pseudoparticle Green’s functions~24! and ~25!, the one-
electron physical Green’s function is simply expressed a

Gd~t!5Gf~t!GX~2t!. ~34!

Therefore Eq.~30!, combined with the fact thatf s
† has a

(21) discontinuity att50 @which is obvious from Eq.
~26!#, shows thatds

† possesses also a (21) jump at zero
imaginary time. This ensures that the physical spec
weight is unity in our theory and thus that physical spect
function are correctly normalized. Because the DSR integ
equations result from a controlled large-N,M limit, it also
ensures that the physical self-energy always has the co
sign @i.e., ImSd(v1 i01),0]. This isnot the case16 for the
finite-U version of the NCA,10 which is constructed as a
resummation of the strong-coupling expansion in the hyb
ization function D(t). ~Strong-coupling resummations ge
nerically suffer from noncausality; see also Ref. 17 for
illustration.!

Finally, we comment on the noninteracting limitU→0.
This is a major failure of the usual NCA, which limits it
applicability in the weakly correlated regime. In the DS
formalism, this limit isexactas can be noticed from Eq.~27!.
Indeed, asU vanishes, only the zero-frequency component
GX( inn) survives, so thatGX(t) simply becomes a constan
Because of the constraint~30!, we get correctlyGX(t)51 at
U50. From Eqs.~29! and~34!, this proves thatGd(t) is the
noninteracting Green’s function:

Gd
U50~ ivn!5

1

ivn2e02D~ ivn!
. ~35!

We finally acknowledge that an alternative dynamical a
proximation to the finite-U Anderson model13 was recently
developed as an extension of the NCA by Kroha and Wo¨lfle
~a conventional slave boson representation was used in
work!. Much progress has been made following this meth
but to the authors’ knowledge, this technique has not
been implemented in the context of DMFT~one of the rea-
sons is its computational cost!. By developing the DSR ap
proximation, we pursue a rather complementary goal:
aim here is not to improve the low-energy singularities u
ally encountered with integral equations, but rather to hav
fast and efficient solver which reproduces correctly the m
features of the spectral functions and interpolates betw
weak and strong coupling. In that sense, it is very w
adapted to the DMFT context.
1-6
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IV. APPLICATION TO THE SINGLE-IMPURITY
ANDERSON MODEL

We now discuss the application of the DSR in the si
plest setting: that of a single impurity hybridized with a fixe
bath of conduction electrons. For simplicity, we focus on
half-filled, particle-hole-symmetric case, which impliese0
5h50. The doped~or mixed valence! case will be ad-
dressed in the next section, in the context of DMFT.

As the strength of the Coulomb interactionU is increased
from weak to strong coupling, two well-known effects a
expected~see, e.g., Ref. 4!. First, the width of the low-energy
resonance is reduced from its noninteracting valueD0
[uD9(0)u. As one enters the Kondo regimeD0!U!L
~with L the conduction electrons bandwidth!, this width be-
comes a very small energy scale, of the order of the Ko
temperature:

TK5A2UD0exp@2pU/~8D0!#. ~36!

A ~local! Fermi-liquid description applies, with quasipart
cles having a large effective mass and small weight:Z
5m/m* ;TK /D0. The impurity spin is screened forT
,TK .

Second, the corresponding spectral weight is transfe
to high energies, into ‘‘Hubbard bands’’ associated to
atomiclike transitions~adding or removing an electron int
the half-filled impurity orbital!, broadened by the hybridiza
tion to the conduction electron bath. The suppression of
low-energy spectral weight corresponds to the suppressio
the charge fluctuations on the local orbital. These satell
are already visible at moderate values of the couplingU/D0.
As temperature is increased fromT,TK to T.TK , the
Kondo quasiparticle resonance is quickly destroyed, and
missing spectral weight is added to the Hubbard bands.

The aim of this section is to investigate whether the in
gral equations introduced in this paper reproduce th
physical effects in a satisfactory manner.

A. Spectral functions

We have solved numerically these integral equations
iteration, both on the imaginary axis and for real frequenc
Working on the imaginary axis is technically much easier
discretization of the intervaltP@0,b# is used~with typically
8192 points and up to 32 768 for reaching the lowest te
peratures!, as well as fast fourier transforms for the Green
functions. Searching by dichotomy for the saddle-point va
of the Lagrange multiplierl @Eq. ~30!# is conveniently
implemented at each step of the iterative procedure. Tec
cal details about the analytic continuation of Eqs.~28!–~31!
to real frequencies, as well as their numerical solution,
given in Appendix B.

In Fig. 1, we display our results for the impurity-orbit
spectral functionrd(v), at three different temperatures~the
density of states of the conduction electron bath is chose
a semicircle with half-widthL56, the resonant level width
is D050.16, and we takeU52). The growth of the Kondo
resonance as the temperature is lowered is clearly seen
temperatures in Fig. 1 have been chosen such as to illus
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three different regimes: forT@TK , no resonance is seen an
the spectral density displays a ‘‘pseudogap’’ separating
two high-energy bands; forT.TK , transfer of spectral
weight to low energy is seen, resulting in a fully develop
Kondo resonance forT!TK . We have not obtained an ana
lytical determination of the Kondo temperature within th
present scheme. In the case of NCA equations, it is poss
to derive a set of differential equations in the limit of infini
bandwidth which greatly facilitates this. This procedure ca
not be applied here, because of the form~27! of the boson
propagator. Nevertheless, we checked that the numerica
timates of the width of the Kondo peak are indeed expon
tially small in U as in formula~36!; see Fig. 2. However,
becauseU is normalized as in Eq.~33! ~which gives the
correct atomic limit!, the prefactor inside the exponential a
pears to be twice too small.

In Fig. 3, we display the spectral function for a fixed lo
temperature and increasing values ofU. The strong reduction
of the Kondo scale~resonance width! upon increasingU is
clear in this figure. We note that the high-energy peaks h
a width which remains of orderD0, independently ofU,
which is satisfactory. However, we also note that they are
peaked exactly at the atomic value6U/2, which might be an
artifact of these integral equations. The shift is rather sm
however.

FIG. 1. d-level spectral functionrd(v) for fixed U52 and in-
verse temperaturesb54,20,2000, with the conduction electro
bath described in the text.

FIG. 2. Kondo temperatureTK from the exact formula~line! and
from the numerical solution of the DSR equations~dots!. Units of
energy are such thatD050.16.
1-7
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SERGE FLORENS AND ANTOINE GEORGES PHYSICAL REVIEW B66, 165111 ~2002!
Figure 4 illustrates how the high- and low-energy featu
in the d-level spectral functions are associated with cor
sponding features in the auxiliary particle spectral functio
r f andrX . In particular, thes-model boson~slave rotor! is
entirely responsible for the Hubbard bands at high energy~as
expected, since it describes charge fluctuations!.

As stressed in the Introduction, an advantage of
scheme is that thed-level self-energy is always causal, eve
for small U or large doping. This is definitely an improve
ment as compared to the usualU-NCA approximation. This
is illustrated by Fig. 5, from which it is also clear thatSd
decreases~and eventually vanishes! asU goes to zero~for a
more detailed discussion and comparison to the NCA,
Sec. III!. However, it is also clear from this figure that th
low-energy behavior of the self-energy is not consistent w
Fermi-liquid theory. This is a generic drawback of NCA-lik
integral equation approaches, which we now discuss in m
detail.

B. Low-energy behavior and Friedel sum rule

We discuss here the low-energy behavior of the integ
equations~in the case of a featureless conduction elect
bath!, for both thed-level and auxiliary field Green’s func
tions. As explained below, this low-energy behavior depe
sensitively on the ratioN5N/M which is kept fixed in the

FIG. 3. rd(v) at low temperature (b5600) and for increasing
U51, 2, 3.

FIG. 4. Pseudoparticle spectral function atU52 andb5600.
The Kondo resonance is visible inr f(v), dashed curve, wherea
rX(v) displays higher-energy features, solid curve.
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limit considered in this paper. The calculations are detailed
Appendix C, where we establish the following.

~i! Friedel sum rule. The zero-frequency value of th
d-level spectral function atT50 is independent ofU and
reads

rd~v5T50!5
21

pD9~0!

p/2

N11
tanS p

2

N
N11D . ~37!

This is to be contrasted with the exact value for the O(
model (M51), which is independent ofN and reads

rd
exact~v5T50!5

21

pD9~0!
~M51, anyN!. ~38!

This is theFriedel sum rule,4,18 which in this particle-hole-
symmetric case simply follows from the Fermi-liquid re
quirement that the~inverse! lifetime Sd9(v50) should van-
ish atT50 @sinceGd

215 iv2D( iv)2Sd( iv)]. As a result,
rd(0) is pinned at its noninteracting value. The integ
equations discussed here yield a nonvanishingSd9(v50) ~al-
beit always negative in order to satisfy causality! and hence
do not describe a Fermi-liquid at low energy. The result~37!
is identical to that found in the NCA forU5`, but holds
here for arbitraryU. There is actually no contradiction be
tween this remark and the fact that our integral equati
yield the exact spectral function in theU→0 limit. Indeed,
the limit U→0 at finite T,v does not commute withv,T
→0 at finiteU @in which Eq.~37! holds#.

~ii ! Low-frequency behavior. The auxiliary particle spec-
tral functions have a low-frequency singularity characteriz
by exponents which depend continuously onN ~as in the
U5` NCA!: r f(v)}1/S f9(v)}1/uvua f , rX(v)}1/SX9 (v)
}sgn(v)/uvuaX, with a f512aX51/(N11). These behav-
iors are characterized more precisely in Appendix C.
power-law behavior is also found for the physical self-ene
Sd9(v)2Sd9(0) at low frequency~as evident from Fig. 5!.

Let us comment on the origin of these low-energy fe
tures, as well as on their consequences for practical use
the present method.

First, it is clear from expression~21! that the Anderson
impurity Hamiltonian generalized to SU(N)3O(2M ) actu-

FIG. 5. Imaginary part of the physical self-energy on the re
frequency axis, forU50.5 ~upper curve! andU52 ~lower curve! at
b5600.
1-8
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QUANTUM IMPURITY SOLVERS USING A SLAVE . . . PHYSICAL REVIEW B 66, 165111 ~2002!
ally involvesM channels of conduction electrons. Hence, the
non-Fermi-liquid behavior found when solving the integ
equations associated with theN,M→` limit simply follows
from the fact that multichannel models lead tooverscreening
of the impurity spin and correspond to a non-Fermi-liqu
fixed point. In that sense, these integral equations reprod
very accurately the expected low-energy physics, as pr
ously studied for the simplest case of the Kondo mode
Refs. 11 and 12.

Naturally, this means that the use of such integral eq
tions to describe the one-channel~exactly screened! case be-
comes problematic in the low-energy region. In particu
the exact Friedel sum rule is violated, thed-level lifetime
remains finite at low energy, and non-Fermi-liquid singula
ties are found. While the approach is reasonable in orde
reproduce the overall features of the one-electron spectr
should not be employed to calculate transport propertie
low energy, for example. We note, however, that the dev
tion from the exact Friedel sum rule vanishes in theN→`
limit. This is expected from the fact that in this limit th
number of channels~M! is small as compared to orbital de
generacy (N). The violation of the sum rule remains rath
small even for reasonable values ofN. This parameter can
actually be used as an adjustable parameter when using
present method as an approximate impurity solver. Ther
no fundamental reason for whichN5N should provide the
best approximate description of the spectral functions of
one-channel case. We shall use this possibility when ap
ing this method in the DMFT context in the next sectio
there, we chooseN53 in order to adjust to the known criti
cal value ofU for a single orbital. We also used this value
the calculations reported above. The zero-frequency valu
the spectral density is thusrd(0).1.85, while the Friedel
sum rule would yieldrd(0).1.95 ~cf. Fig. 3!. Hence the
violation of the sum rule is a small effect~of the order of
5%!, comparable to the one found with ‘‘numerically exac
solvers, due to discretization errors.19 Also, we point out that
the pinning ofrd(0) at a value independent ofU ~albeit not
that of the Friedel sum rule! is an important aspect of th
present method, which will prove to be crucial in the conte
of DMFT in order to recover the correct scenario for t
Mott transition.

Finally, we emphasize that increasing the parameteN
also corresponds to increasing the orbital degeneracy o
impurity level. This will be studied in more details in Se
V D. In particular, we shall see that correlation effects b
come weaker asN is increased~for a given value ofU), due
to enhanced orbital fluctuations.

V. APPLICATIONS TO DYNAMICAL MEAN-FIELD
THEORY AND THE MOTT TRANSITION

A. One-orbital case: Mott transition, phase diagram

Dynamical mean-field theory has led to significa
progress in our understanding of the physics of a correla
metal close to the Mott transition.2 The detailed description
of this transition itself within DMFT is now well
established.2,7,15,19–22In this section, we use these establish
results as a benchmark and test the applicability of
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method introduced in this paper in the context of DMF
with very encouraging results. As explained above, this
particularly relevant in view of the recent applications
DMFT to electronic structure calculations of correlat
solids,5 which call for efficient multiorbital impurity solvers

As is well known,2,3,6 DMFT maps a lattice Hamiltonian
onto a self-consistent quantum impurity model. We disc
first the half-filled Hubbard model and address later
doped case. We then have to solve a particle-hole-symm
Anderson impurity model:

S5E
0

b

dt(
s

ds
†]tds1

U

2 F(
s

ds
†ds21G2

1E
0

b

dtE
0

b

dt8 D~t2t8!(
s

ds
†~t!ds~t8!, ~39!

subject to the self-consistency condition

D~t!5t2Gd~t!. ~40!

In this expression, a semicircular density of states with h
bandwidthD52t has been considered, corresponding to
infinite-connectivity Bethe lattice (z5`) with hopping t i j

5t/Az. In the following, we shall generally express all e
ergies in units ofD(D51).

In practice, one must iterate numerically the ‘‘DMF
loop’’: D(t)→Gd(t)→D(t)new5t2Gd , using some ‘‘impu-
rity solver.’’ Here, we make use of the integral equatio
~28!–~31!. The hybridization functionD(t) being deter-
mined by the self-consistency condition~40!, there are only
two free parameters, the local Coulomb repulsionU and the
temperatureT ~normalized byD).

We display in Fig. 6 the spectral functions obtained at lo
temperature, for increasing values ofU, and in Fig. 7 the
corresponding phase diagram. The value of the parameteN
has been adapted to the description of the one-orbital c
~see below!. The most important point is that we find aco-
existence regionat low enough temperature: for a range
couplingsUc1(T)<U<Uc2(T), both a metallic solution and
an insulating solution of the~paramagnetic! DMFT equations
exist. The Mott transition is thus first order at finite tempe
tures. This is in agreement with the results established

FIG. 6. Local spectral function atb540 andU51,2,3 for the
half-filled Hubbard model within DMFT, as obtained with the DS
solver.
1-9
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SERGE FLORENS AND ANTOINE GEORGES PHYSICAL REVIEW B66, 165111 ~2002!
this problem by solving the DMFT equations with controlle
numerical methods,19,21as well as with analytical results.20,22

In particular, the spectral functions that we obtain~Fig. 6!
display the well-known separation of energy scales fou
within DMFT: there is a gradual narrowing of the quasipa
ticle peak, together with a preformed Mott gap at the tran
tion. In the next section, we compare these spectral funct
to those obtained using other approximate solvers.
pointed out there, despite some formal similarity in t
method, it is well known that the standardU-NCA does not
reproduce correctly this separation of energy scales clos
the transition.23

Let us explain how the parameterN has been chosen i
these calculations. As demonstrated below, the values o
critical couplingsUc1 and Uc2 ~and hence the whole phas
diagram and coexistence window! strongly depend on the
value of this parameter. This is expected, sinceN is a mea-
sure of orbital degeneracy. What has been done in the ca
lations displayed above is to chooseN in such a way that the
known value20 Uc2(T50).2.9 of the critical coupling, at
which the T50 metallic solution disappears in the singl
orbital case, is accurately reproduced. We found that
requiresN.3 ~note thatN/M52 in the one-orbital case, s
that the best agreement is not found by a naive applicatio
the largeN,M limit !. This value being fixed, we find a criti
cal couplingUc1(T50).2.3 in good agreement with th
value from ~adaptative! exact diagonalizationsUc1.2.4.
The whole domain of coexistence in the (U,T) plane is also
in good agreement with established results~in particular we
find the critical end point atTc.1/30, while QMC yields
Tc.1/40). These are very stringent tests of the applicabi
of the present method, since we have allowed ourselve
use only one adjustable parameter (N). In Sec. V D, we
study how the Mott transition depends on the number
orbitals, which further validates the procedure followed he

B. Comparison to other impurity solvers: Spectral functions

Let us now compare the spectral functions obtained by
present method with other impurity solvers commonly us
for solving the DMFT equations. We start with the iterat
perturbation theory approximation and the exact diagonal
tion method. Both methods have played a major role in

FIG. 7. Single-orbital~paramagnetic! phase diagram at half
filling. Squares indicate the exact diagonalization~ED! result, the
DSR result is the solid line, and IPT the dashed line.
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early developments of the DMFT approach to the M
transition.7 A comparison of the spectral functions obtain
by the present method to those obtained with IPT and ED
displayed in Fig. 8, for a value ofU corresponding to a
correlated metal close to the transition.

The overall shape and characteristic features of the s
tral function are quite similar for the three methods. A n
row quasiparticle peak is formed, together with Hubba
bands, and there is a clear separation of energy scales
tween the width of the central peak~related to the quasipar
ticle weight! and the ‘‘preformed’’ Mott~pseudo!gap associ-
ated with the Hubbard bands: this is a distinguishing asp
of DMFT. It is crucial for an approximate solver to repro
duce this separation of energy scales in order to yield a
rect description of the Mott transition and phase diagram

There are of course some differences between the t
methods, on which we now comment. First, we note that
IPT approximation has a somewhat larger quasiparticle ba
width. This is because the transition pointUc2 is overesti-
mated within IPT~cf. Fig. 7!, so that a more fair compariso
should perhaps be made at fixedU/Uc2. It is true, however,
that the DSR method has a tendency to underestimate
quasiparticle bandwidth and particularly at smaller values
U. Accordingly, the Hubbard bands have a somewhat
large spectral weight, but are correctly located in first a
proximation. The detailed shape of the Hubbard bands is
very accurately known, in any case.~The ED method in-
volves a broadening of thed-function peaks obtained by di
agonalizing the impurity Hamiltonian with a limited numbe
of effective orbitals, so that the high-energy behavior is n
very accurate on the real axis. This is also true, actually
the more sophisticated numerical renormalization group.! We
emphasize that, since the DSR method does not have
correct low-frequency Fermi-liquid behavior, the quasipa
cle bandwidth should be interpreted as the width of the c
tral peak inrd(v) ~while the quasiparticle weightZ cannot
be defined formally!.

In Figs. 9 and 10, we display the spectral functions o
tained by using the NCA method~extended at finiteU in the
simplest manner!. It is clear that theU-NCA underestimates
considerably the quasiparticle bandwidth~and thus yields a
Mott transition at a rather low value of the coupling!. This is
not very surprising, since this method is based on a stro
coupling expansion around the atomic limit, and one co

FIG. 8. Comparison between DSR~dashed line!, IPT ~solid
line!, and ED~dotted line! at U52.4 andb560.
1-10
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QUANTUM IMPURITY SOLVERS USING A SLAVE . . . PHYSICAL REVIEW B 66, 165111 ~2002!
think again of a comparison for fixedU/Uc . More impor-
tantly, theU-NCA misses the important separation of ener
scales between the central peak and the Mott gap. As a re
it does not reproduce correctly the phase diagram for
Mott transition within DMFT~in particular regarding coex
istence!. A related key observation is that theU-NCA does
not have the correct weak-coupling~small-U) limit. To illus-
trate this point, we display in Fig. 10 theU-NCA and DSR
spectral functions for a tiny value of the interactionU/D
50.1: the DSR result is shown to approach correctly
semicircular shape of the noninteracting density of sta
while theU-NCA displays a characteristic inverted V shap
in this regime the violation of the Friedel sum rule becom
large and the negative lifetime pathology is encounte
within U-NCA. In contrast, the DSR yields a pinning of th
spectral density at aU-independent value and does not le
to a violation of causality. It should be emphasized, howev
that, even though it yields the exactU50 density of states a
T50, the DSR method is not quantitatively very accurate
the weak-coupling regime.

C. Double occupancy

Finally, we demonstrate that two-particle correlators
the charge sector can also be reliably studied with the D
method, taking the fraction of doubly occupied sitesd↑↓
[^n↑n↓& as an example.

FIG. 9. U-NCA spectral function forU51.5 at low temperature

FIG. 10. Results forU50.1 showing howU-NCA overshoots
the Friedel’s sum rule. The slave rotor method is correctly conve
ing towards the free density of states~semicircular!.
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Using the constraint~4!, we calculate the connecte
charge susceptibility in the following manner:

xc~t![K (
s

S ns~t!2
1

2D(
s8

S ns8~0!2
1

2D L
5^L̂~t!L̂~0!&5

1

U2
^]tu~t!]tu~0!&

5
2

U2
$GX~t!]t

2GX~t!1Ud~t!2@]tGX~t!#2%.

~41!

The double occupancy is obtained by taking the equal-t
value

xc~t50!52^n↑n↓&52d↑↓ . ~42!

In Fig. 11, we plot the double occupancy obtained in th
manner, in comparison to the ED and IPT results. Within E
d↑↓ is calculated directly from the charge correlator. With
IPT, xc(t) is not approximated very reliably,24 but the
double occupancy can be accurately calculated by takin
derivative of the internal energy with respect toU.

Figure 11 demonstrates that the DSR method is very
curate in the Mott transition region and in the insulator.
particular, the hysteretic behavior is well reproduced. In
weak-coupling regime, however, the approximation dete
rates. This issue actually depends on the quantity: the ph
cal Green’s function has the correct limitU→0, as empha-
sized above, but this is not true for the charge susceptib
~hence ford↑↓). The mathematical reason is that the co
straint~4! is crucial for writing Eq.~41!, but this constraint is
only treated on average within our method. This shows
inherent limitations of slave boson techniques for evaluat
two-particle properties. The frequency dependence of tw
particle correlators will be dealt with in a forthcoming pu
lication.
-

FIG. 11. Double occupancy atb580 as a function ofU. The
ED result is indicated with squares. DSR overshoots the exact re
on the left, whereas IPT is slightly displaced to the right.
1-11
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D. Multiorbital effects

In this section, we apply the DSR method to study t
dependence of the Mott transition on orbital degeneracyN.
We emphasize that there are at this stage very few nume
methods which can reliably handle the multiorbital case,
pecially whenN becomes large. Multiorbital extensions
IPT have been studied,8 but the results are much less sat
factory than in the one-orbital case. The ED method is
verely limited by the exponential growth of the size of t
Hilbert space. The Mott transition has been studied in
multiorbital case using the QMC approach, with a rec
study25 going up toN58 ~4 orbitals with spin!. Furthermore,
we have recently obtained15 some analytical results on th
values of the critical couplings in the limit of largeN. Those,
together with the QMC results, can be used as a benchm
of the DSR approximation presented here. As explain
above, a value ofNN52.3 was found to describe best th
single-orbital case (N52). Hence, upon increasingN, we
choose the parameterN such thatNN /NN525N/2. How-
ever, forN large enough, it might be more accurate to use
naive valueNN5N.

In Fig. 12, we display the coexistence region in the (U,T)
plane for increasing values ofN, as obtained with DSR. The
values of the critical interactions grow withN. A fit of the
transition linesUc1(T) ~where the insulator disappears! and
Uc2(T) ~where the metal disappears! yields

Uc1~N,T!5A1~T!AN, ~43!

Uc2~N,T!5A2~T!N. ~44!

These results are in good accordance with both the Q
data,25 and the exact results established in Ref. 15. Wh
increasing the number of orbitals, the coexistence reg
widens and the critical temperature associated with the
point of the Mott transition line also increases.

We display in Fig. 13 the DSR result for the spect
function for N52 andN54, at a fixed value ofU and T.
Two main effects should be noted. First, correlations effe
in the metal become weaker asN is increased~for a fixed
U), as clear, e.g., from the increase of the quasipart
bandwidth. This is due to increasing orbital fluctuations. S

FIG. 12. Instability linesUc1(T),Uc2(T) and coexistence region
for one, two, three, and four orbitals (N52, 4, 6, 8) as obtained by
DMFT ~DSR solver!.
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ond, the Hubbard bands also shift towards larger energies
effect which can be understood in the way atomic sta
broadens in the insulator.26

To conclude this section, we have found that the D
yields quite satisfactory results when used in the DMFT c
text for multiorbital models. In the future, we plan to use th
method in the context of realistic electronic structure cal
lations combined with DMFT, in situations where ‘‘numer
cally exact’’ solvers ~e.g., QMC! become prohibitively
heavy. There are, however, some limitations to the use
DSR ~at least in the present version of the approach!, which
are encountered when the occupancy is not close toN/2. We
examine this issue in the next section.

E. Effects of doping

Up to now, we studied the half-filled problem~i.e., con-
taining exactlyN/2 electrons!, with exact particle-hole sym-
metry. In that case,e0[ed1U/250 and the Lagrange mul
tiplier h enforcing the constraint~31! could be set toh50. In
realistic cases, particle-hole symmetry will be broken~so that
e0Þ0), and we need to consider fillings different fromN/2.
Hence, the Lagrange multiplierh must be determined in or
der to fulfill Eq. ~31!, which we rewrite more explicitly as

nf5
1

2
2

2h

NU
1

1

NU

1

b (
n

2 inn~einn01
1einn02

!

nn
2/U1l22ihnn /U2SX~ inn!

.

~45!

In this expression,nf5(1/N)(s^ f s
† f s&5(1/N)(s^ds

†ds& is
the average occupancy per orbital flavor.@Note that the num-
bers of auxiliary fermions and physical fermions coincide,
clear from Eq.~34!.# Herenf is related to thed-level position
~or chemical potential, in the DMFT context! by

nf5
1

b (
n

eivn01

ivn2e01h2S f~ ivn!
. ~46!

We display in Fig. 14 the spectral function obtained w
the DSR solver when doping the Mott insulator away fro
half-filling. A critical value of the chemical potential~i.e., of
e0) is required to enter the metallic state. The spectral fu
tion displays the three expected features: lower and up
Hubbard bands, as well as a quasiparticle peak~which, in

FIG. 13. Spectral function atU52, b560 and for one~solid
line! and two orbitals~dashed line!.
1-12
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this case where the doping is rather large, is located almo
the top of the lower Hubbard band!. However, it is immedi-
ately apparent from this figure that the DSR method in
doped case overestimates the spectral weight of the u
Hubbard band. This can be confirmed by a comparison
other solvers~e.g., ED!. Note that the energy scale belo
which a causality violation appears within theU-NCA be-
comes rapidly large as the system is doped, while no s
violation occurs within DSR.

The DSR method encounters severe limitations howe
as the total occupancy becomes very different fromN/2.
This is best understood by studying the dependence of
occupancy upone0, in the atomic limit. As explained in
Appendix. A, the use ofs-model variablesX ~in the large-M
limit ! results in a poor description of thenf vs e0 dependence
~‘‘Coulomb staircase’’!. As a result, it is not possible to de
scribe the Mott transitions occurring in the multiorbit
model at integer fillings different fromN/2 using the DSR
approximation. It should be emphasized, however, that
pathology is only due to the approximation of the O(
quantum rotoreiu by a O(M ) s-model field. A perfect de-
scription of the Coulomb staircase is found for all filling
when treating the constraint~4! on average while keeping
true quantum rotor.27 Hence, it seems feasible to overcom
this problem and extend the practical use of the~dynamical!
slave rotor approach to all fillings. We intend to address t
issue in a future work.

VI. CONCLUSION

We conclude by summarizing the strong points as wel
the limitations of the new quantum impurity solver intr
duced in this paper, as well as possible extensions and a
cations.

On the positive side, the DSR method provides an in
polating scheme between the weak coupling and atomic
its ~at half-filling!. It is also free of some of the pathologie
encountered in the simplest finite-U extensions of NCA
~negative lifetimes at low temperature!. When applied in the
context of DMFT, it is able to reproduce many of the qua
tatively important features associated with the Mott tran
tion, such as coexisting insulating and metallic solutions a
the existence of two energy scales in the DMFT descript
of a correlated metal~the quasiparticle coherence bandwid

FIG. 14. Doping the insulator (U53 andb560) with e050,1
~corresponding tonf50.5, 0.4, respectively!.
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and the ‘‘preformed gap’’!. Hence the DSR solver is quit
useful in the DMFT context, at a low computational cost, a
might be applicable to electronic structure calculations
systems close to half-filling when the orbital degeneracy
comes large. To incorporate more realistic modeling, one
introduce different energy levels for each correlated orbi
while the extension to nonsymmetric Coulomb interactio
~such as the Hund’s coupling! may require some additiona
work.

The DSR method does not reproduce Fermi-liquid beh
ior at low energy, however, which makes it inadequate
address physical properties in the very-low-energy reg
~as is also the case with the NCA!. The main limitation,
however, is encountered when departing from half-filli
~i.e., from N/2 electrons in anN-fold degenerate orbital!.
While the DSR approximation can be used at small dopin
it fails to reproduce the correct atomic limit when the occ
pancy differs significantly fromN/2 ~and in particular canno
deal with the Mott transition at other integer fillings in th
multiorbital case!. We would like to emphasize, howeve
that this results from extending the slave rotor variable t
field with a large number of components. It is possible
improve this feature of the DSR method by dealing direc
with an O(2) phase variable, which does reproduce ac
rately the atomic limit even when the constraint is treated
the mean-field level. We intend to address this issue i
future work. Another possible direction is to examine sy
tematic corrections beyond the saddle-point approxima
in the large-N,M expansion.

Finally, we would like to outline some other possible a
plications of the slave rotor representation introduced in t
paper~Sec. II!. This representation is both physically natur
and economical. In systems with strong Coulomb inter
tions, the phase variable dual to the local charge is an im
tant collective field. Promoting this single field to the stat
of a slave particle avoids the redundancies of the usual s
boson representations. In forthcoming publications, we
tend to use this representation for~i! constructing impurity
solvers in the context ofextendedDMFT,29 in which the
frequency-dependent charge correlation function must
calculated,28 ~ii ! constructing mean-field theories oflattice
models of correlated electrons~e.g., the Hubbard model!,27

and~iii ! dealing with quantum effects on the Coulomb bloc
ade in mesoscopic systems.
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APPENDIX A: THE ATOMIC LIMIT

In this appendix we prove the claim that the atomic lim
of the model is exact at half-filling and at zero temperatu
1-13
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@at finite temperature, deviations from the exact result are
order exp(2bU) and therefore negligible for pratical pu
poses#. To do this, we first extract the values of the mea
field parametersl andh from the saddle-point equations
zero temperature andD(t)[0:

15E dn

2p

1

n2

U
1l1

2ihn

U

,

u~h2e0!5
1

2
2

2h

NU
1

4h

NU2E dn

2p

n2

S n2

U
1l D 2

1S 2hn

U D 2 .

~A1!

Performing the integrals shows thatl5(U224h2)/(4U)
and u(h2e0)51/2, so thath5e0. If ue0u.U/2, the equa-
tions lead actually to a solution with an empty or full v
lence, which we show in Fig. 15.

We can now compute the physical Green’s functi
Gd(t)5Gf(t)GX(2t) from the pseudopropagator
Gf( ivn)51/(ivn) and

GX~ inn!5
1

nn
2/U1~U/42e0

2/U !22i e0nn /U

5
21

inn1e02U/2
1

1

inn1e01U/2
. ~A2!

Performing the convolution in imaginary frequency a
taking the limitT50 leads to

Gd~ ivn!5
1

b (
inn

GX~ inn!Gf~ ivn1 inn! ~A3!

5
1/2

ivn2e01U/2
1

1/2

ivn2e02U/2
. ~A4!

Becausee052m1U/2, this is the correct atomic limit o
the single-band model~at half-filling!. The result for the
empty or full orbital, is however, not accurate, as shown

FIG. 15. Impurity occupancy in function of thed-level position
in the rotor description~solid curve! and the exact result~dotted
curve!, in the two-orbital case.
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Fig. 15. This discrepancy with the correct result~even for
one orbital! finds its root in the largeM treatment of the slave
rotor X.

APPENDIX B: NUMERICAL SOLUTION
OF THE REAL-TIME EQUATIONS

Here we show how the saddle-point equations~28!–~31!
can be analytically continued along the real axis. We s
with SX(t)52ND(t)Gf(2t), which can be first Fourier
transformed into

SX~ inn!5E
0

b

dt SX~t!einnt5

2NE de1

p
Gf9~e1!E de2

p
D9~e2!

nF~e1!2nF~e2!

inn1e12e2
,

~B1!

where we used the spectral representation

G~z!52E dv

p

G9~e!

z2e
~B2!

for each Green’s function. The notation here is quite st
dard:G9(e)[Im G(e1 i01), nF(e) is the Fermi factor, and
nB(e) denotes the Bose factor.

It is then immediate to continueinn→n1 i01 in Eq.
~B1!, and using again the spectral decomposition~B2!, we
derive an equation between retarded quantities:

SX~n!52NE de

p
Gf9~e!nF~e!D~e1n!

2NE de

p
D9~e!nF~e!Gf~e2n!. ~B3!

A calculation along the same lines for the fermionic se
energyS f(t)5D(t)GX(t) leads to

S f~v!52E de

p
GX9 ~e!nB~e!D~v2e!

2E de

p
D9~e!nF~e!GX~v2e!. ~B4!

The numerical implementation is then straightforward b
cause Eqs.~B3! and ~B4! can each be expressed as the co
volution product of two quantities, so that they can be c
culated rapidly using the fast Fourier transform~FFT!. The
algorithm is looped back using the Dyson equations~for real
frequency!

Gf
21~v!5v2e01h2S f~v!, ~B5!

GX
21~n!52

n2

U
1l1

2hn

U
2SX~n!. ~B6!

At each iteration,l and h are determined using a bisec
tion on Eqs.~30! and~31!, which can be properly expresse
in terms of retarded Green’s functions:
1-14
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15E de

p
GX9 ~e!nB~e!, ~B7!

nf5
1

2
2

2h

NU
2

2

NUE de

p
GX9 ~e!enB~e!, ~B8!

wherenf , the average number of physical fermions, is

nf5Gf~t502!52E de

p
Gf9~e!nF~e!. ~B9!

We note here that solving these real-time integral eq
tions can be quite difficult deep in the Kondo regime of t
Anderson model or very close to the Mott transition for t
full DMFT equations. The reason is thatGf(v) andGX(v)
develop low-energy singularities~this is analytically shown
in the next appendix!, which make the numerical resolutio
very unprecise if one uses the FFT. In that case, it is ne
sary to introduce a logarithmic mesh of frequency~losing the
benefit of the FFT speed, but increasing the accuracy! or to
perform a Pade´ extrapolation of the imaginary-time solution

APPENDIX C: FRIEDEL’S SUM RULE

We present here for completeness the derivation of
slave rotor Friedel’s sum rule, equation~37!, at half-filling.
The idea, motivated by the numerical analysis as well
theoretical arguments,12,30 is that the pseudoparticles develo
low-frequency singularities at zero temperature:

Gf9~v!5Af uvu2a f , ~C1!

GX9 ~v!5AXuvu2aXsgn~v!. ~C2!

Using the spectral representation

G~t!5E
0

1`dv

p
e2vtG9~v!, ~C3!

we deduce the long-time behavior of the Green’s functio
@we denote byG(z) the gamma function#:

Gf~t!5
AfG~12a f !

p

sgn~t!

utu12a f
, ~C4!

GX~t!5
AXG~12aX!

p

1

utu12aX
. ~C5!

We have similarly

D~t!5
D9~0!

pt
~C6!

if one assumes a regular bath density of states at zero
quency. The previous expressions allow to extract the lo
time behavior of the pseudo-self-energies@using the saddle-
point equations~28! and ~29!#:

SX~t!5
NAfG~12a f !

p2

D9~0!

utu22a f
, ~C7!
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S f~t!5
AXG~12aX!

p2

D9~0! sgn~t!

utu22aX
. ~C8!

The next step is to use Eq.~C3! the other way around to ge
from Eqs. ~C7! and ~C8! the v dependance of the self
energies:

SX9 ~v!5
N
p

AfD9~0!

12a f
uvu12a f sgn~v!, ~C9!

S f9~v!5
1

p

AXD9~0!

12aX
uvu12aX. ~C10!

It is necessary at this point to calculate the real part of b
self-energies. This can be done using the Kramers-Kro
relation, but analyticity provides a simpler route. Indeed,
noticing thatS(z) is an analytic function ofz and must be
univaluated above the real axis, we find

SX~z!5
N
p

AfD9~0!

12a f

ei (a f21)p/2

sin@~a f21!p/2#
uzu12a f ,

S f~z!5
1

p

AXD9~0!

12aX

eiaXp/2

sin@aXp/2#
uzu12aX.

The same argument shows from Eqs.~C1! and ~C2! that

Gf~z!5Af

ei (a f11)p/2

sin@~a f11!p/2#
uzu2a f , ~C11!

GX~z!5AX

eiaXp/2

sin@aXp/2#
uzu2aX. ~C12!

We can therefore collect the previous expressions, us
Dyson’s formula for complex argument,

Gf
21~z!5z2S f~z!, ~C13!

GX
21~z!52

z2

U
1l2SX~z!, ~C14!

and this enables us to extract the leading exponents, as
as the product of the amplitudes:

a f5
1

N11
, ~C15!

aX5
N

N11
, ~C16!

AfAX5
p

N11

1

D9~0!
sin2S p

2

N
N11D . ~C17!

We finish by computing the long-time behavior of th
1-15
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physical Green’s functionGd(t)5Gf(t)GX(2t) together
with Eqs.~C4! and ~C5!:

Gd~t!5
p

2~N11!
tanS p

2

N
N11D 1

pD9~0!

1

t
. ~C18!
y

M

d

s

-
r

x
.

e
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v.
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This proves Eq.~37!. In principle, next to leading orde
corrections can be computed by the same line of argume
although this is much more involved.12 Non-Fermi-liquid
correlations in the physical Green’s function would appea
this computation.
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