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Quantum impurity solvers using a slave rotor representation
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We introduce a representation of electron operators as a product of a spin-carrying fermion and of a phase
variable dual to the total chargslave quantum rotgr Based on this representation, a method is proposed for
solving multiorbital Anderson quantum impurity models at finite interaction stretgtl consists in a set of
coupled integral equations for the auxiliary field Green’s functions, which can be derived from a controlled
saddle point in the limit of a large number of field components. In contrast to someUirdt¢ensions of the
noncrossing approximation, the method provides a smooth interpolation between the atomic limit and the
weak-coupling limit, and does not display violation of causality at low frequency. We demonstrate that this
impurity solver can be applied in the context of dynamical mean-field theory, at or close to half-filling. Good
agreement with established results on the Mott transition is found, and large values of the orbital degeneracy
can be investigated at low computational cost.
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[. INTRODUCTION dimension of the Hilbert space grows exponentially with the
number of these local degrees of freedom, and this is a se-
The Anderson quantum impurity modéAIM) and its  vere limitation to all methods, particularly the exact diago-
generalizations play a key role in several recent developnalization and numerical renormalization group methods.
ments in the field of strongly correlated electron systems. In  The development of fast and accuré&éthough approxi-
single-electron devices, it has been widely used as a simplimate impurity solvers is therefore essentfalln the one-
fied model for the competition between the Coulomb block-orbital case, the iterated perturbation theoryPT)
ade and the effect of tunnelifigin a different context, the approximatiofi has played a key role in the development of
dynamical mean-field theoDMFT) of strongly correlated DMFT, particularly in elucidating the nature of the Mott
electron systems replaces a spatially extended system by #ransition! A key reason for the success of this method is
Anderson impurity model with a self-consistently deter-that it becomes exact both in the limit of weak interactions
mined bath of conduction electrofid Naturally, the AIM is  and in the atomic limit. Unfortunately, however, extensions
also essential to our understanding of local moment formaef this approach to the multiorbital case have not been as
tion in metals and to that of heavy-fermion materials, par-successfu‘i’. Another widely employed method is the non-
ticularly in the mixed-valence reginfe. crossing approximatiofNCA).>1% This method takes the
It is therefore important to have at our disposal quantita-atomic limit as a starting point and performs a self-consistent
tive tools allowing for the calculation of physical quantities resummation of the perturbation theory in the hybridization
associated with the AIM. The quantity of interest depends orio the conduction bath. It is thus intrinsically a strong-
the specific context. Many recent applications require a caleoupling approach, and indeed it is in the strong-coupling
culation of the localized level Green’s functidar spectral  regime that the NCA has been most successfully applied. The
function) and possibly of some two-particle correlation func- NCA does suffer from some limitations, however, which can
tions. become severe for some specific applications. These limita-
Many such “impurity solvers” have been developed overtions, are of two kinds.
the years. Broadly speaking, these methods fall in two cat- (i) The low-energy behavior of NCA integral equations is
egories: numerical algorithms which attempt at a direct sowell known to display non-Fermi-liquid power laws. This
lution on the computer and analytical approximationcan be better understood when formulating the NCA ap-
schemegwhich may also require some numerical implemen-proach in terms of slave bosohist? It becomes clear then
tation). Among the former, the quantum Monte Ca(@MC)  that the NCA actually describes accurately the overscreened
approach(based on the Hirsch-Fye algorithrand the nu- regime of multichannel models. This is in a sense a remark-
merical renormalization group play a prominent role. How-able success of the NCA, but also calls for some care when
ever, such methods become increasingly costly as the conapplying the NCA to Fermi-liquid systems in the screened
plexity of the model increases. In particular, the rapidlyregime. It must be noted that recent progresses have been
developing field of applications of DMFT to electronic struc- made to improve the low-energy behavior in the Fermi-liquid
ture calculationdrequires methods that can handle impurity case
models involving orbital degeneracy. For example, materials (ii) A more important limitation for practical applications
involving f electrons are a real challenge to DMFT calcula-has to do with the finitdJ extensions of NCA equations.
tions when using the quantum Monte Carlo approach. SimiStandard extensions do not reproduce correctly the noninter-
larly, cluster extensions of DMFT require one to handle aactingU=0 limit. In contrast to IPT, they are not “interpo-
large number of correlated local degrees of freedom. Théative solvers” between the weak-coupling and strong-
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coupling limits. Furthermore, the physical self-energy tendsnultiorbital Anderson impurity model as an examplén
to develop noncausal behavior at low frequendye.,  Sec. lll, ac-model representation of this phase variable is
34(w)>0] below some temperatuteéhe “NCA pathology”) introduced, along with a generalization from O(2) to
At half-filling and large U, this only happens at a rather O(2M). In the limit of a large number of components, a set
low-energy scale, but away from half-filling or for smalley ~ of coupled integral equations is derived. In Sec. IV, we test
this scale can become comparable to the bandwidth, makirigis “dynamical slave rotor’(DSR) approach on the single-
the finitelU NCA of limited applicability. impurity Anderson model. The rest of the papg8ec. V) is

In this article, we introduce new impurity solvers which devoted to applications of this approach in the context of
overcome some of these difficulties. Our method is based oRMFT, which puts in perspective the advantages and limita-
a rather general representation of strongly correlated electrdiPns of the new method.
systems, which has potential applications to lattice models as

well2” The general idea is to introduce a new slave particle Il. ROTORIZATION
representation of physical electron operators, which empha- _ .
sizes thephase variable dual to the total chargs the im- The present article emphasizes the role played by the total

purity. This should be contrasted to slave boson approacheédectron charge and its conjugate phase variable. We intro-
to a multiorbital AIM: there, one introduces as many auxil- duce a representation of the physical electron in terms of two
iary bosons as there are fermion states in the local Hilber@uxiliary fields: a fermion field which carries spiand or-
space. This is far from economical: when the local interacbital) degrees of freedom and tfitotal) charge raising and
tion depends on the total charge only, it should be possible ttPwering operators which we represent in terms of a phase
identify a collective variable which provides a minimal set of degree of freedom. The latter plays a role similar to a slave
collective slave fields. We propose that the phase dual to theoson: here a “slave” O(2) quantum rotor is used rather
total charge precisely plays this role. This turns a correlate¢han a conventional bosonic field.
electron model(at finite U) into a model of spin-(and
orbital-) carrying fermions coupled to quantum rotor de- A. Atomic model
gree of freedomVarious types of approximations can then be . I . .
made on this model. In this article, we emphasize an ap-, "We first éxplain this construction on the simple example
proximate treatment based oncamodel representation of ©f @n atomic problem, consisting in a-fold degenerate
the rotor degree of freedom, which is then solved in the limit3°mic level subject to a local SM)-symmetric Coulomb
of a large number of components. This results in coupled€Pulsion:
integral equations which share some similarities to those of
the NCA, but do provide the following improvements.

(i) The noninteractingly =0) limit is reproduced exactly.
For a fully symmetric multiorbital model at half-filing and
in the low-temperature range, the atomic limit is also cap-We use herey,= €4+ U/2 as a convenient redefinition of the
tured exactly, so that the proposed impurity solver is an inimpurity level, and we recast the spin and orbital degrees of
terpolative scheme between weak and strong coupling. Thigeedom into a single index=1, ... N (for N=2, we have
o-model approximation does not treat as nicely the atomi@a single orbital with two possible spin states=1,]). We
limit far from half-filling, however (though improvements note thate, is zero at half filling, due to particle-hole sym-
are possible; see Sec. V.E metry.

(if) The physical self-energy does not display any viola- The crucial point is that the spectrum of the atomic
tion of causality(even at low temperature or sméll). This  Hamiltonian (1) depends only on the total fermionic charge

2

N
2 did,— 5 ()

U
HlOCaIZE €0 djrd(r+5

is guaranteed by the fact that our integral equations becom@=0, ... N and has a simple quadratic dependenceon
exact in the formal limit of a large number of orbitals and
components of the--model field. U N12

It should be emphasized, though, that the low-energy be- Eo=¢€0Q+ > Q- AR (2

havior of our equations is similar to th@nfinite-U) NCA
and characterized by non-Fermi-liquid power laws belo
some low-energy scale.

As a testing ground for the new solver, we apply it in this
paper to the DMFT treatment of the Mott transition in the ; . ) . .
multiorbital Hubbard model. We find an overall very good StateJr"l' - 0g) (along with spin-carrying auxiliary fermi-
agreement with the general aspects of this problem, aansf,). Hgnce, these methpds are not describing the atomic
known from numerical work and from some recently derivedSPECtrUm in & very economical manner.
exact results. We also compare to other impurity solvers "€ spectrum of Eq(1) can actually be reproduced by
(IPT, exact diagonalization, QMC, NOA particularly re- introducing, besides the set of auxiliary fermlo‘ds asnjgle
garding the one-electron spectral function. additional variable—namely, the angular momentis

This article is organized as follows. In Sec. Il, we intro- —id/d6 associated with a quantum O(2) rotér(i.e., an
duce a representation of fermion operators in terms of thangular variable ifi0,277]). Indeed, the energy leve(®) can
phase variable dual to the total chargeking the finiteU, be obtained using the Hamiltonian

WThere are ¥ states, but onlyN+ 1 different energy levels,
with degeneracies '(\j) In conventional slave boson
methods:*® a bosonic field is introduced for each atomic
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HIocaI: 2 GOfZ-fU+ ;I:z (3) H= Z 60f3f0+ %I:z—i_kZ ekcl,ack,a'_l—kZ Vk(Cl,Uer_ia
A constraint must be imposed which ensures that the total +f:§cklae‘ %), 9
number of fermions is equal to the O(2) angular momentum
(up to a shiff: We then set up a functional integral formalism for ftjeand
0 degrees of freedom, and derive the action associated with
E:E f(TTfU_ E} 4) EqQ. (10). This is simply done byAswitching from phase and
o 2 angular momentunoperators (6,L) to fields (6,9.0) de-

. . ending on imaginary timere[0,8]. The action is con-
gg'fzrgsfﬁgfiﬁ',‘gv_eﬂ ,Vzﬂufs_ o fﬂfzi”f“,{lig?"xm,ee”}r‘jm @ ructed fromS= ffdr{ ~iL 9,6+H+{"3,1], and an inte-
the absence of any constraintan be an arbitrarYpositi\/e gration overL is performed. It is also necessary to introduce
or negativeé integer. The spectrum of Eq(3) is €,Q a complexA Lagrange multiplien in order to implement the
+UI2/2, with |=Q—N/2 thanks to Eq(4), so that it coin- constraintL=ngT,fU—N/2. We note that, because of the
cides with Eq.(2). charge conservation on the local impurity¢can be chosen to

To be complete, we must show that each state in the Hilbe independent of time, witth e[ 0,27/3].
bert space can be constructed in terms of these auxiliary This leads to the following expression of the action:
degrees of freedom, in a way compatible with the Pauli prin-
ciple. This is achieved by the following identification:

|01+ 0Q)g=]01: okl =Q=N2)y,  (§)

in which |o---0g)q ¢ denotes the antisymmetric fermion
state built out ofd and f fermions, respectively, anfl),
denotes the quantum rotor eigenstate with angular momen-
tuml, i.e., (6]1),=€"’. The creation of a physical electron
with spin o corresponds to acting on such a state Wﬁhas
well as raising the total chargangular momentuinby one
unit. Since the raising operator &, this leads to the rep-
resentation

B 9.0+ih)> N
szf drY, fl(a,+e—h)f,+ ¥+—h
0 o ¢ 2U 2

+E [Cl (r(ar—’_ ek)ck U+chl (rfae7i0+H'C']'
k,o ' ' '
(10

We can recast this formula in a more compact form by intro-
ducing the hybridization function

o [Vidl?
di=f! ¢, d,=f, e (©) Miw)=2 e A
Let us illustrate this foN=2 by writing the four possible
states in the form1)q=[1)1[0)s, |1)a=[1)1[0)s, |11)q
=[71)¢/+1)y, and|0)4=|0)¢ — 1), and showing that this

structure is preserved by =f'e'’. Indeed,

and integrating out the conduction electron bath. This leads
to the final form of the action of the S™) Anderson impu-
rity model in terms of the auxiliary fermions and phase field:

T Da=dllDa=t111@ 0),=IT il +1)p. () o_ BdTEf;(MEO_h)ng;h
0 o

The key advantage of the quantum rotor representation is

that the original quartic interaction between fermions has B B ) . i 8 —i8(e")
been replaced in Eq3) by a simple kinetic termi(?) for the * fo deo dr'A(7=7 ); fo(nfo()e '
phase field.

(12)

B. Rotor representation of Anderson impurity models
C. Slave rotors, Hubbard-Stratonovich fields, and gauge

We now turn to an SU{)-symmetric Anderson impurity :
transformations

model in which the atomic orbital is coupled to a conduction
electron bath: In this section, we present an alternative derivation of the

expression(12) of the action which does not rely on the

+ el c concept of slave particles. This has the merit of giving a
s Kekovko more explicit interpretation of the phase variable introduced
above by relating it to a Hubbard-Stratonovich decoupling
T + field. This section is, however, not essential to the rest of the

+;, Vi oot d,Cio)- (8) paper and can be skipped upon first reading.
Let us start with the imaginary-time action of the Ander-
Using the representatidi), we can rewrite this Hamiltonian son impurity model in terms of the physical electron field for
in terms of the (;,0) fields only: the impurity orbital:

N2
g — —
2 did,— 5

(o

U
H=2 ed’d,+ >
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N12 This is exactly expressior(12), with the identification

> did,— 5} ¢o/B=ih. This, together with Eq(17), provides an explicit
7 relation between the quantum rotor and Lagrange multiplier
8 8 fields on one side, and the Hubbard-Stratonovich field con-
+ fo deo dr'A(7— T’); di(nd,(7').  (13)  jugate to the total charge, on the other.

B u
s=J dr>, dl(o,+ €o)dyt
0 T

Because we have chosen an 8Q{symmetric form for the
Coulomb interaction, we can decouple it with only one
bosonic Hubbard-Stratonovitch fieltl(7):

I1l. SIGMA-MODEL REPRESENTATION AND SOLUTION
IN THE LIMIT OF MANY COMPONENTS

A. From quantum rotors to a o model

2
S= JBdTE d3(57+ €o+id(7))d,+ ¢_(T) — iﬂqg(ﬂ Instead of using a phase field to represent the O(2) degree
0 o 2U 2 of freedom, one can use a constraingdmplex bosonic
5 rp field X=e'? with
+J de dr'A(r— ) 2 di(n)d(7"). (14)
0 0 o
IX(7)[*=1. (19

Hence, a linear coupling of the fielfl( 7) to the fermions has

beenl'intr]?duc”edh. The igiea isdnowf to efl_irrlgnate this r:inear-l-he action(12) can be rewritten in terms of this field, pro-
coupling for all the Fourier modes of thg field, except that - ;geq 5 | agrange multiplier field(r) is used to implement
corresponding to zero frequencyy=[5¢ [27]. This can  nis constraint:

be achieved by performing the following gauge transforma-

tion:

B N
drY, f1(9,+e—h)f,+ Sh-

. S= =+ | dr
dl(r)zfl(r)ex;(iﬁ)(ﬁ)exp(—i¢or/,8). (15) fo v 2U

h? J’B |a.X|?
o 2U

_ 2_
The reason for the second phase factor in this expression is + ﬁ(x* IX=H.c)+N(7)(|X[*~1)

that it guarantees that the new fermion fié[Ej also obeys
antiperiodic boundary conditions in the path integral. It is +fﬁ J"B Al n ) .l
easy to check that this change of variables does not provide 0 dr 0 dr'A(r=r7 )2;‘ Fo( D (T)X(D)XT (7).

any Jacobian, so that the action simply reads (20

B _bo #*(1) N ¢
Szf drd il g+ eoti— |+ o —ig — Hence, the Anderson model has been written as a theory of
o < B 2U 2 B o . .
auxiliary fermions coupled to a nonlinear O(2) model,

B B ) N ) with a constraintimplemented byh) relating the fermions
+ fo dr | d7r'A(r=7 )2 f(Df,(7) and thes-mode fieldX(7).
7 A widely used limit in whicho models become solvable
(T b0 is the limit of a large number of components of the field. This
xex;{lfT,[¢— ED (16) motivates us to generalize ER0) to a model with an

O(2M) symmetry. The bosonic field is thus extended to an
We now set M-component complex fieldX, (a=1,...M) with
S ./X./?=M. The corresponding action reads

h2

S—Jﬁdsz + hf+NhM MX
- 0 To’ a'((?r €0~ )a' E - m_

00 1 , 5
=5t 5 b (wnh 00= /s (2| an

and notice that the field(7) has the boundary condition

0(B)=6(0)[27]. It therefor_e correspond.s to an 0O(2) quan- B |0.X,J2 h
tum rotor, and the expression of the action finally reads +f dr> >0 + m(x’;arxa— H.c)+\|X,|?
0 @
(bo)z B (B 1
6’794‘— r_ o
VBl N +fod7fodTMA(T ™)

B
S=f dr> fi(a7+eo+i@
0 o B

fot+ >0 15 B

i X2 (D7) Xo(1)XE(T).
+fﬁd7fﬁdT’A(T— )X (D) (7)€ #7100, o.a
0 0 o

(18 Let us note that this action corresponds to the Hamiltonian
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interest. Extending the charge symmetry from O(2) to
HZ; EOf:rrftf 2M 4 2 L3 apt 2 Eka 7aCk,oa O(2M) is not entirely innocuous, even at the atomic level: as
we shall see below, the energy levels of a single @2
quantum rotor have multiple degeneracies and depend on the
+ (Ck sl X ek caXa). (21)  charge (angular momentuin quantum number in a way
Ko \/— which does not faithfully mimic theD(2) case. Neverthe-
less, the basic features defining the generalized m@adial-
calized orbital subject to a Coulomb charging energy and
coupled to an electron bath by hybridizaticare similar to
the original model of physical interest.

In this expressionf_aﬁ denotes the angular momentum
tensor associated with the, vector. The Hamiltoniai2l) is
a generalization of the SW) X O(2)=U(N) Anderson im-
purity model to an SU{) X O(2M) model in which the total
electronic charge is associated with a specific component of B. Integral equations

L. It reduces to the usual Anderson model kbr=1.

In the following, we consider the limit where bobhand
M become large, while keeping a fixed rahdM. We shall
demonstrate that exact coupled integral equations can be de
rived in this limit, which determine the Green’s functions of
the fermionic andr-model fields(and the physical electron N:
Green'’s function as well The fact that these coupled inte-
gral equations do correspond to the exact solution of a wellFollowing Ref. 12(see also Ref. 11 the two-body interac-
defined Hamiltonian modéEq (21)] guarantees that no un- tion between the aUX|I|ary fermions and tikemodel fields is
physical featureglike, e.g., violation of causalityarise in ~ decoupled using(bosonig bilocal fields Q(r,7') and
the solution. Naturally, the generalized Hamiltoni@d) isa  Q(r,7’) depending on two times. Hence, we consider the
formal extension of the Anderson impurity model of physicalaction

In this section, we derive coupled integral equations
which become exact in the limit whetsoth M and N are
large with a fixed ratio:

N
i (M=), (22)

B : h? |a.X |2 )
s:f drY, fi(a,+e—h)f,+ = h Mg —MA+ f dTE U (x*a X,—H.C)+N|X,|
0 o
B (B TO(T, 7 B (B _
# [Par [P m TR [P (P Qi) S X, (1X5(7)
0 0 A(r—1") 0 0 @
B (B
+f drj dr’ Q(T,T')E fl(r)fg(r'). (23
0 0 o
|
In the limit (22), this action is controlled by a saddle point, at V2 2ihw,
which the Lagrange multipliers take static expectation values Gy H(ivp) = TN x(ivy), 27

h and\, while the saddle-point values of tl@andafields _ o _
are translation-invariant functions of tim@(r—+') and Wherew, (v,) is a fermionic(bosonig Matsubara frequency.
6(7— ). The saddle-point equations read

Introducing the imaginary-time Green’s functions of the

auxiliary fermion ands-model fields as Zx(1)= = NA(=7)Gy(7), (28

Gi(1)=—(Tf,(N1}0), 29 Hi(D=AE(), 29
together with the constraints associated witand \:
Gx(7)=+(T X (1)X%(0)), (25
Gy(7=0)=1, (30
we differeﬂtiate the effective actiof23) with respect to
Q(7) and Q(7), which leads to the following saddle-point 1 2h

equations  Q(7)=—NA(DG(—7) and  Q(7) Ci(7=0)=5-31

=A(7)Gx(7). The functionsQ(iw,) (=2¢) and 6*(ivn) 1

(=2y) define fermionic and bosonic self-energies: + WWTGX( 7=07)+9,Gy(7=0")].
G; Hiwy) =iw,—e+h—3(iwy,), (26) (31)
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There is a clear similarity between the structure of thesemple, it is essential in order to describe correctly the Mott
coupled integral equations and the infinile- NCA insulating staté.However, the DSR integral equations fail to
equations. We note also significant differences, such as thereproduce exactly the @) atomic limit off half-filling, as
constraint equations. Furthermore, the finite value of theexplained in Appendix A. Deviations become severe for too
Coulomb repulsiolJ enters the bosonic propagat@7) ina  high dopings, as discussed in Sec. V E. This makes the
quite novel manner. present form of DSR applicable only for systems in the vi-
The two key ingredients on which the present method areinity of half-filling.
based is the use of a slave rotor representation of fermion We now discuss some general spectral properties of the
operators and the use of integral equations for the frequencydSR solver. From the representation of the physical electron
dependent self-energies and Green’s functions. For this refield d'=f'X and from the convention chosen for the
son, we shall denote the integral equations above under thgseudoparticle Green's functiori®4) and (25), the one-
name of “dynamical slave rotor” method in the following. electron physical Green’s function is simply expressed as

C. Some remarks Gy(7)=G(7)Gx(— 7). (34)
We make here some technical remarks concerning these
integral equations. Therefore Eq.(30), combined with the fact that! has a
First, we clarify how the interaction parameter was  (_1) discontinuity at7=0 [which is obvious from Eg.
scaled in order to obtain the DSR equations above. This iSSL@G)], shows thatdz possesses also a-() jump at zero
is related to the manner in which the atomic imX€0) IS jmaginary time. This ensures that the physical spectral
treated in this method. In the original O(2) atomic Hamil- \yeight is unity in our theory and thus that physical spectral
tonian (1), the charge gap between the ground state and thg,ction are correctly normalized. Because the DSR integral
first excited state i8)/2 at half-filling (o=0). In the DSR g4 ations result from a controlled lareM limit, it also
method, the charge gap is associated with the gap in the slayg g res that the physical self-energy always has the correct
rotor spectrum. If the O(®) generalization of Eq(1) is  gign[i.e., Im3 4(w+i0")<0]. This isnot the cas# for the
written as in Eq(21), finite-U version of the NCA® which is constructed as a
resummation of the strong-coupling expansion in the hybrid-

Hint:i 2 |”_‘21,ﬁ, (32) ization functionA(7). (Strong-coupling resummations ge-
2M 373 nerically suffer from noncausality; see also Ref. 17 for an
illustration)

the spectrum readg,=UI(I+2M —2)/(2M). As a result,

; s Finally, we comment on the noninteracting lintit— 0.
the energy difference from the ground state to the first ex-_ . "< = ) L T
cited state iSE,—Eo=U(2M—1)/(2M)=U at large M, This is a major failure of the usual NCA, which limits its

whereas it i<U/2 atM=1. In order to use the DSR method applicability in the weakly correlated regime. In the DSR

in practice as an approximate impurity solver, the parametefr0 rmalism, this limit isexactas can be noticed from E7).

U should thus be normalized in a different way than in Eq_lgdged, ad) v_anlshes:tr(])ar‘}lsy the zgro-lfr%quency compontenttof
(21), so that the gap is kept equalt2 in the largeM limit x(1vp) sufr\élr:/es, sot . S(T) S|mpty ecotrlnes a cc_)nls Ein '
as well. Technically this can be enforced by choosing th ecause of the constrai(80), We get correc 3GX(T)_. a
normalization =0. From Eqgs(29) and(34), this proves thaG4(7) is the
noninteracting Green'’s function:
U .
ro__ = 2
Hint_4M_2 ;B La,ﬁ (33) Vo, 1
Gy (lwp)=

- - . (35
instead of Eq(32). Note that this scaling coincides with Eq. ton—€o—Aiwn)
(32 for M=1, but does yieldE; —Ey=U/2 for largeM, as
desired. This definition of) was actually used when writing We finally acknowledge that an alternative dynamical ap-
the saddle-point integral equatiof&7), although we post- proximation to the finitdd Anderson modéf was recently
poned the discussion of this point to the present section fodeveloped as an extension of the NCA by Kroha andf@o
reasons of simplicity. (a conventional slave boson representation was used in this
Let us elaborate further on the accuracy of the DSR intework). Much progress has been made following this method,
gral equations in the atomic limit. In Appendix A, we show but to the authors’ knowledge, this technique has not yet
that the physical electron spectral function obtained withinbeen implemented in the context of DMK®ne of the rea-
DSR in the atomic limit coincides with the exact O(2) resultsons is its computational cosBy developing the DSR ap-
at half-filling and atT=0. This is a nontrivial result, given proximation, we pursue a rather complementary goal: the
the fact that the constraint is treated on average and tha&m here is not to improve the low-energy singularities usu-
above remark on the spectrum. In contrast to the NCA, theally encountered with integral equations, but rather to have a
DSR method(in its present formis not based by construc- fast and efficient solver which reproduces correctly the main
tion on a strong-coupling expansion around the exact atomiteatures of the spectral functions and interpolates between
spectrum, so that this is a crucial check for the applicabilityweak and strong coupling. In that sense, it is very well
of this method in practice. In the context of DMFT, for ex- adapted to the DMFT context.
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IV. APPLICATION TO THE SINGLE-IMPURITY 2 | | | \
ANDERSON MODEL I \

We now discuss the application of the DSR in the sim- 1.5F -
plest setting: that of a single impurity hybridized with a fixed
bath of conduction electrons. For simplicity, we focus on the
half-filled, particle-hole-symmetric case, which implieg - 7
=h=0. The doped(or mixed valencg case will be ad-
dressed in the next section, in the context of DMFT.

As the strength of the Coulomb interactibhis increased 0sr l
from weak to strong coupling, two well-known effects are
expectedsee, e.g., Ref.)4First, the width of the low-energy ob—o ! T
resonance is reduced from its noninteracting valhg -3 2 1 0 ! 2 3
=[A"(0)|. As one enters the Kondo regimeg,<U<A FIG. 1. d-level spectral functiomy(w) for fixed U=2 and in-

(with A the conduction electrons bandwiditithis width be-  verse temperatureg=4,20,2000, with the conduction electron
comes a very small energy scale, of the order of the Kond®ath described in the text.
temperature:
three different regimes: for> Ty, no resonance is seen and
Tk=V2UAqgexd —7U/(8Ap)]. (36)  the spectral density displays a “pseudogap” separating the
o o ) ) . two high-energy bands; fof=Ty, transfer of spectral
A (local) Fermi-liquid description applies, with quasiparti- yeijght to low energy is seen, resulting in a fully developed
cles hf‘V'”g a large effective mass and small weight: kondo resonance foF<Ty . We have not obtained an ana-
=m/m*~Ty/Ao. The impurity spin is screened fof  |ytical determination of the Kondo temperature within the
<Tk. _ S present scheme. In the case of NCA equations, it is possible
Second, the corresponding spectral weight is transferregh derive a set of differential equations in the limit of infinite
to high energies, into “Hubbard bands” associated t0 thepandwidth which greatly facilitates this. This procedure can-
atomiclike transitiongadding or removing an electron into ot pe applied here, because of the fof2d) of the boson
the half-filled impurity orbital, broadened by the hybridiza- propagator. Nevertheless, we checked that the numerical es-
tion to the conduction <_alectron bath. The suppression o_f th@mates of the width of the Kondo peak are indeed exponen-
low-energy spectral weight corresponds to the suppression @fly small in U as in formula(36); see Fig. 2. However,
the charge fluctuations on the local orbital. These satellitepecaysel is normalized as in Eq(33) (which gives the
are already visible at moderate values of the coupliido.  correct atomic limit, the prefactor inside the exponential ap-
As temperature is increased from<Ty to T>Ty, the pears to be twice too small.
Kondo quasiparticle resonance is quickly destroyed, and the |n Fig. 3, we display the spectral function for a fixed low
missing spectral weight is added to the Hubbard bands.  temperature and increasing valuesbfThe strong reduction
The aim of this section is to investigate whether the inte-gf the Kondo scaldresonance widthupon increasingJ is
gral equations introduced in this paper reproduce thesglear in this figure. We note that the high-energy peaks have

physical effects in a satisfactory manner. a width which remains of ordeA,, independently ofU,
which is satisfactory. However, we also note that they are not
A. Spectral functions peaked exactly at the atomic valadJ/2, which might be an
artifact of these integral equations. The shift is rather small,

We have solved numerically these integral equations b¥|owever
iteration, both on the imaginary axis and for real frequencies. '
Working on the imaginary axis is technically much easier. A

discretization of the intervate [0,3] is used(with typically 0.06—————————T 7

8192 points and up to 32768 for reaching the lowest tem- 0.05
peratures as well as fast fourier transforms for the Green’s I
functions. Searching by dichotomy for the saddle-point value 0.044
of the Lagrange multiplierA [Eq. (30)] is conveniently —
implemented at each step of the iterative procedure. Techni- Tk o003

cal details about the analytic continuation of E@8)—(31)
to real frequencies, as well as their numerical solution, are
given in Appendix B.

In Fig. 1, we display our results for the impurity-orbital I
spectral functiorpy(w), at three different temperaturéhe 0
density of states of the conduction electron bath is chosen as
a semicircle with half-widthA =6, the resonant level width
is Ag=0.16, and we tak&) =2). The growth of the Kondo FIG. 2. Kondo temperatur from the exact formuldline) and
resonance as the temperature is lowered is clearly seen. Them the numerical solution of the DSR equatid®ts. Units of
temperatures in Fig. 1 have been chosen such as to illustrag@ergy are such that,=0.16.

0.02

0.01
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1.5 B

0.5 =
2.5
0 > Sy 0 ‘ I ‘ 2
FIG. 3. pg(w) at low temperature £=600) and for increasing FIG. 5. Imaginary part of the physical self-energy on the real-
u=1,2, 3. frequency axis, folJ = 0.5 (upper curvgandU =2 (lower curve at
B=600.

: Figure 4 illustrates how the high- and Iovy—energy features1imit considered in this paper. The calculations are detailed in
in the d-level spectral functions are associated with corre-Appendix C, where we establish the following

sponding features in the auxiliary particle spectral functions (i) Friedel sum rule The zero-frequency value of the

p: andpy. In particular, theo-model bosor(slave rotoy is ) . e
entirely responsible for the Hubbard bands at high enéagy (rjelae(;/sel spectral function al'=0 is independent o) and

expected, since it describes charge fluctuajions

As stressed in the Introduction, an advantage of our
scheme is that the-level self-energy is always causal, even pa(w=T=0)= ta
for small U or large doping. This is definitely an improve- wA"(0) N+1
Irge"rrltj gfafg(;n Esrg%.tos,tf}?olrd:qsuvﬁ]li\lciﬁgtaizp;?sx(;rr;?é:rn;[hggls This is to be cont_rast_ed_ with the exact value for the O(2)
decreasegand eventually vanishgssU goes to zerdfor a model M=1), which is independent dfl and reads
more detailed discussion and comparison to the NCA, see
Sec. Ill). However, it is also clear from this figure that the pﬁxactw=T=O)=
low-energy behavior of the self-energy is not consistent with wA"(0)
Fermi-liquid theory. This is a generic drawback of NCA-like

integral equation approaches, which we now discuss in mor&nis is theFriedel sum rulg**® which in this particle-hole-
detail. symmetric case simply follows from the Fermi-liquid re-

quirement that théinverse lifetime X5(w=0) should van-
ish atT=0 [sinceG; '=iw—A(iw)—24(iw)]. As a result,
B. Low-energy behavior and Friedel sum rule pq(0) is pinned at its noninteracting value. The integral
We discuss here the low-energy behavior of the integrafduations discussed here yield a nonvanisBifygo = 0) (al-
equations(in the case of a featureless conduction electrorPeit always negative in order to satisfy causaliyd hence
bath, for both thed-level and auxiliary field Green’s func- do not describe a Fermi-liquid at low energy. The ressify
tions. As explained below, this low-energy behavior depend#s identical to that found in the NCA fod =<, but holds
sensitively on the ratioV'=N/M which is kept fixed in the here for arbitraryu. There is actually no contradiction be-
tween this remark and the fact that our integral equations
yield the exact spectral function in thié— 0 limit. Indeed,
the limit U—0 at finite T,w does not commute witlw, T
—0 at finiteU [in which Eq.(37) holds|.
- (i) Low-frequency behavioiThe auxiliary particle spec-
tral functions have a low-frequency singularity characterized
by exponents which depend continuously &h(as in the
U= NCA): pr(w)=1/3](w)=1w|®, py(w)xl/S}(w)
axsgn(w)/|w|*x, with a;=1—ax=1/(N+1). These behav-
iors are characterized more precisely in Appendix C. A
power-law behavior is also found for the physical self-energy
3 (w)—24(0) at low frequencyas evident from Fig. b
2 ‘ w ‘ | ‘ L ‘ Let us comment on the origin of these low-energy fea-
2 = 0 ! 2 tures, as well as on their consequences for practical uses of
FIG. 4. Pseudoparticle spectral functiontat=2 and3=600. the present method.
The Kondo resonance is visible jif(w), dashed curve, whereas  First, it is clear from expressiof21) that the Anderson
px(w) displays higher-energy features, solid curve. impurity Hamiltonian generalized to SN{j X O(2M) actu-

-1 @2 T N
r( . (37

2 N+1

(M=1, anyN). (39
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ally involvesM channels of conduction electrartdence, the T T

non-Fermi-liquid behavior found when solving the integral 06- i
equations associated with theM — o limit simply follows

from the fact that multichannel models leadawerscreening 051 7
of the impurity spin and correspond to a non-Fermi-liquid 04l i
fixed point. In that sense, these integral equations reproduce »

very accurately the expected low-energy physics, as previ- 0.31 .

ously studied for the simplest case of the Kondo model in

Refs. 11 and 12. 02

Naturally, this means that the use of such integral equa- 0.1+ =
tions to describe the one-chanriekactly screenedcase be- I
comes problematic in the low-energy region. In particular, %3 3

the exact Friedel sum rule is violated, tddevel lifetime

remains finite at low energy, and non-Fermi-liquid singulari-
ties are found. While the approach is reasonable in order t ver
reproduce the overall features of the one-electron spectra, it
should not be employed to calculate transport Properties ahainoq introduced in this paper in the context of DMFT,

Ipw energy, for example. We note, howeyer, th_at the deV'ailvith very encouraging results. As explained above, this is
tion from the exact Friedel sum rule vanishes in tfe» o

e . . L articularly relevant in view of the recent applications of
limit. This is expected from the fact that in this limit the b y PP

ber of ch | . I d to orbital d DMFT to electronic structure calculations of correlated
numoer of channe GM) IS Small as compared 1o orbital A€~ ¢)i445 \yhich call for efficient multiorbital impurity solvers.
generacy N). The violation of the sum rule remains rather

f f ble values A% Thi As is well known?*® DMFT maps a lattice Hamiltonian
small even for reasonablé values IS parameter can g 5 self-consistent quantum impurity model. We discuss

actually be used as an adjustable parameter when using the. e hai-filed Hubbard model and address later the

pre?enctj methooll as an afproxr:_r&?t_e |mp;1ur|t|3(/j solve% Thhere 'Soped case. We then have to solve a particle-hole-symmetric
no fundamental reason for whiok=N should provide the  Anderson impurity model:

best approximate description of the spectral functions of the
one-channel case. We shall use this possibility when apply-

ing this method in the DMFT context in the next section: S=J
there, we choosd&/=3 in order to adjust to the known criti-
cal value ofU for a single orbital. We also used this value in B 8
the calculations reported above. The zero-frequency value of +j drf d7’ A(7— T,)E dz(r)dg( ), (39
the spectral density is thys,(0)=1.85, while the Friedel 0 0 v
sum rule would yieldp4(0)=1.95 (cf. Fig. 3. Hence the
violation of the sum rule is a small effe¢of the order of
5%), comparable to the one found with “numerically exact” A(7)=1t2Gy( 7). (40)
solvers, due to discretization errdrsAlso, we point out that

the pinning ofpy4(0) at a value independent bf (albeit not  In this expression, a semicircular density of states with half-
that of the Friedel sum rules an important aspect of the bandwidthD =2t has been considered, corresponding to an
present method, which will prove to be crucial in the contextinfinite-connectivity Bethe latticez=«) with hoppingt;;

of DMFT in order to recover the correct scenario for the=t//z. In the following, we shall generally express all en-
Mott transition. ergies in units oD(D=1).

Finally, we emphasize that increasing the paramgter In practice, one must iterate numerically the “DMFT
also corresponds to increasing the orbital degeneracy of theop”: A(7)—Gy(7)— A(7)hew=1t2Gq, USING sOMe “impu-
impurity level. This will be studied in more details in Sec. rity solver.” Here, we make use of the integral equations
V D. In particular, we shall see that correlation effects be-(28)—(31). The hybridization functionA(7) being deter-
come weaker ad/is increasedfor a given value olJ), due  mined by the self-consistency conditi¢#0), there are only

FIG. 6. Local spectral function g8=40 andU=1,2,3 for the
half-filled Hubbard model within DMFT, as obtained with the DSR

B U
drY, dlo.d,+—
0 T 2

2
> dj;dg—l}

subject to the self-consistency condition

to enhanced orbital fluctuations. two free parameters, the local Coulomb repulsiband the
temperaturel (normalized byD).
V. APPLICATIONS TO DYNAMICAL MEAN-FIELD We display in Fig. 6 the spectral functions obtained at low
THEORY AND THE MOTT TRANSITION temperature, for increasing values 0f and in Fig. 7 the

corresponding phase diagram. The value of the paraméter
has been adapted to the description of the one-orbital case
Dynamical mean-field theory has led to significant(see below The most important point is that we findca-

progress in our understanding of the physics of a correlatedxistence regiorat low enough temperature: for a range of
metal close to the Mott transiticnThe detailed description couplingsU.;(T)<U=<U_,(T), both a metallic solution and

of this transition itself within DMFT is now well an insulating solution of th@paramagneticDMFT equations
established:”1>1%-23n this section, we use these establishedexist. The Mott transition is thus first order at finite tempera-
results as a benchmark and test the applicability of thdures. This is in agreement with the results established for

A. One-orbital case: Mott transition, phase diagram
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FIG. 7. Single-orbital(paramagnetic phase diagram at half- FIG. 8. Comparison between DSRlashed ling IPT (solid
filling. Squares indicate the exact diagonalizati@D) result, the  line), and ED(dotted ling at U= 2.4 andB=60.
DSR result is the solid line, and IPT the dashed line.
early developments of the DMFT approach to the Mott

this problem by solving the DMFT equations with controlled transition’ A comparison of the spectral functions obtained
numerical method¥>?*as well as with analytical result&:2? by the present method to those obtained with IPT and ED is
In particular, the spectral functions that we obtgifig. 6)  displayed in Fig. 8, for a value ob) corresponding to a
display the well-known separation of energy scales foundorrelated metal close to the transition.
within DMFT: there is a gradua| narrowing of the quasipar- The overall Shape and characteristic features of the Spec-
ticle peak, together with a preformed Mott gap at the transitral function are quite similar for the three methods. A nar-
tion. In the next section, we compare these spectral function®W quasiparticle peak is formed, together with Hubbard
to those obtained using other approximate solvers. A®ands, and there is a clear separation of energy scales be-
pointed out there, despite some formal similarity in thetween the width of the central pedtelated to the quasipar-
method, it is well known that the standatiNCA does not  ticle weight and the “preformed” Mott(pseudggap associ-
reproduce correctly this separation of energy scales close ®f€d with the Hubbard bands: this is a distinguishing aspect
the transitiort® of DMFT. It is crucial for an approximate solver to repro-
Let us explain how the parametaf has been chosen in duce this separation of energy scales in order to yield a cor-
these calculations. As demonstrated below, the values of th€ct description of the Mott transition and phase diagram.
critical couplingsU,, andU_, (and hence the whole phase There are of'course some dlfferencgs between the three
diagram and coexistence windpwtrongly depend on the methods, on Whlch we now comment. First, we note that the
value of this parameter. This is expected, sinéés a mea-  |PT approximation has a somewhat larger quasiparticle band-
sure of orbital degeneracy. What has been done in the calcividth. This is because the transition poldt, is overesti-
lations displayed above is to choas&n such a way that the mated within IPT(cf. Fig. 7), SO that a more fair comparison
known valué® U ,(T=0)=2.9 of the critical coupling, at should perhaps be made at fixddU.,. It is true, howgver,
which the T=0 metallic solution disappears in the single- that the DSR method has a tendency to underestimate the
orbital case, is accurately reproduced. We found that thiguasmartlc_:le bandwidth and particularly at smaller values of
requires\=3 (note thatN/M = 2 in the one-orbital case, so Y- Accordingly, the Hubbard bands have a somewhat too
that the best agreement is not found by a naive application dfrge spectral weight, but are correctly located in first ap-
the largeN, M limit). This value being fixed, we find a criti- proximation. The detalleq shape of the Hubbard bands_ is not
cal couplingU.;(T=0)=2.3 in good agreement with the Very accurately known, in any caselhe ED method in-
value from (adaptativé exact diagonalizationd) ,~2.4.  Volves a broadening of thé-function peaks obtained by di-
The whole domain of coexistence in the (T) plane is also agonallz_lng the_ impurity Hamllton!an with a limited _number
in good agreement with established restiitsparticular we of effective orbitals, so that t.he h|gh—.energy behavior is not
find the critical end point af,=1/30, while QMC vyields VerY accurate on the real axis. This is also true, actually, of

T.=1/40). These are very stringent tests of the applicabilityth® more sophisticated numerical renormalization grove

of the present method, since we have allowed ourselves fpm'Phasize that, since the DSR method does not have the
use only one adjustable parameteY)( In Sec. V D, we correct low-frequency Fermi-liquid behavior, the quasiparti-

study how the Mott transition depends on the number ofle bandwidth should _be interpretgd as the W,idth of the cen-
orbitals, which further validates the procedure followed herelr@ Peak inpg(w) (while the quasiparticle weigh cannot
be defined formally.

In Figs. 9 and 10, we display the spectral functions ob-
tained by using the NCA methd@xtended at finitdJ in the

Let us now compare the spectral functions obtained by thgimplest manner It is clear that theJ-NCA underestimates
present method with other impurity solvers commonly usedconsiderably the quasiparticle bandwidtimd thus yields a
for solving the DMFT equations. We start with the iterated Mott transition at a rather low value of the coupling@his is
perturbation theory approximation and the exact diagonalizanot very surprising, since this method is based on a strong-

tion method. Both methods have played a major role in theoupling expansion around the atomic limit, and one could

B. Comparison to other impurity solvers: Spectral functions
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FIG. 9. U-NCA spectral function folJ = 1.5 at low temperature. FIG. 11. Double occupancy #=80 as a function ofJ. The

ED result is indicated with squares. DSR overshoots the exact result
think again of a comparison for fixed/U.. More impor- ~ ©n the left, whereas IPT is slightly displaced to the right.
tantly, theU-NCA misses the important separation of energy
scales between the central peak and the Mott gap. As a result, Using the constraint(4), we calculate the connected
it does not reproduce correctly the phase diagram for theharge susceptibility in the following manner:
Mott transition within DMFT (in particular regarding coex-
istence. A related key observation is that thé&NCA does L
not have the correct weak-coupliggmall-U) limit. To illus- _
trate this point, we display in Fig. 10 tHe-NCA and DSR XC(T)=< 2(,: (n"(T)_ 5) ; (n,,/(O)— §>>
spectral functions for a tiny value of the interactibhiD
=0.1: the DSR result is shown to approach correctly the L 1
semicircular shape of the noninteracting density of states, =(L(1)L(0))=—(d,6(7)d,6(0))
while theU-NCA displays a characteristic inverted V shape: U
in this regime the violation of the Friedel sum rule becomes >
Iargg and the negative lifetime patr_lology is encountered = —Z{GX(T)(afGX( ) +U8(7)—[39,Gx(7)]%}.
within U-NCA. In contrast, the DSR yields a pinning of the U
spectral density at B-independent value and does not lead
to a violation of causality. It should be emphasized, however,
that, even though it yields the exddt=0 density of states at ) ) ) )
T=0, the DSR method is not quantitatively very accurate inT he double occupancy is obtained by taking the equal-time
the weak-coupling regime. value

(41)

C. Double occupancy Xc(7=0)=2(nyn)=2d; . (42

Finally, we demonstrate that two-particle correlators in
the charge sector can also be reliably studied with the DSR In Fig. 11, we plot the double occupancy obtained in that
method, taking the fraction of doubly occupied sites manner, in comparison to the ED and IPT results. Within ED,

=(n;n;) as an example. d,, is calculated directly from the charge correlator. Within
IPT, xc(7) is not approximated very reliabfy}, but the
08 , , : ‘ : ‘ double occupancy can be accurately calculated by taking a

derivative of the internal energy with respectUo

Figure 11 demonstrates that the DSR method is very ac-
0.6 = curate in the Mott transition region and in the insulator. In
particular, the hysteretic behavior is well reproduced. In the
weak-coupling regime, however, the approximation deterio-

Qe 7 rates. This issue actually depends on the quantity: the physi-
cal Green’s function has the correct linit—0, as empha-
ook i sized above, but this is not true for the charge susceptibility

(hence ford, ). The mathematical reason is that the con-

straint(4) is crucial for writing Eq.(41), but this constraint is

0 L - I ‘ . only treated on average within our method. This shows the

4 2 0 2 4 . L . :

inherent limitations of slave boson techniques for evaluating

FIG. 10. Results fold=0.1 showing howU-NCA overshoots tWO'_paftide prOpertie.S- The frequgnqy dependenqe of two-

the Friedel's sum rule. The slave rotor method is correctly convergparticle correlators will be dealt with in a forthcoming pub-

ing towards the free density of staté&emicirculay. lication.
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FIG. 12. Instability linedJ 1(T),U,(T) and coexistence region ~ FIG. 13. Spectral function aj=2, =60 and for onesolid
for one, two, three, and four orbital®lE 2, 4, 6, 8) as obtained by ine) and two orbitalsdashed ling

DMFT (DSR solvey.
ond, the Hubbard bands also shift towards larger energies, an

D. Multiorbital effects effect which can be understood in the way atomic states

. . broadens in the insulatéf.
In this section, we apply the DSR method to study the " 1, onclude this section, we have found that the DSR

3\? pendehncg of thhe I\élott transmor? on orbital d(?generracy. jelds quite satisfactory results when used in the DMFT con-
¢ ﬁmdp a‘?]'.zit att ellreb?rehatélls rs{tage \I/(.eryb'ev;/ NUMENCHt for multiorbital models. In the future, we plan to use this
methods which can reliably handle the multiorbital case, €Sp,aq4 in the context of realistic electronic structure calcu-
pecially whenN becomes large. Multiorbital extensions of |aiiqng combined with DMFT, in situations where “numeri-
IPT have be(_an studigtibut t_he results are much less sgtls— cally exact’ solvers (e.g., QMQ become prohibitively
factory than in the one-orbital case. The ED method is Sepoqy There are, however, some limitations to the use of

verely limited by the exponential growth of the size of the DSR (at least in the present version of the approaethich

Hilbert space. The Mott transition has been studied in th%re encountered when the occupancy is not clodé/20 We
multiorbital case using the QMC approach, with a recenty, - mine this issue in the next section

study?® going up toN= 8 (4 orbitals with spii. Furthermore,
we have recently obtainddsome analytical results on the
values of the critical couplings in the limit of larg¢ Those,
together with the QMC results, can be used as a benchmark Up to now, we studied the half-filled problethe., con-
of the DSR approximation presented here. As explainedaining exactlyN/2 electrong with exact particle-hole sym-
above, a value ofV_,=3 was found to describe best the metry. In that casesp=e€4+U/2=0 and the Lagrange mul-
single-orbital case N=2). Hence, upon increasiny, we tiplier h enforcing the constrair81) could be set tdi=0. In
choose the parametey such thatVy/Ny-,=N/2. How- realistic cases, particle-hole symmetry will be brokso that
ever, forN large enough, it might be more accurate to use thesg# 0), and we need to consider fillings different frawi2.
naive valueNy=N. Hence, the Lagrange multipliér must be determined in or-

In Fig. 12, we display the coexistence region inthgT)  der to fulfill Eq. (31), which we rewrite more explicitly as
plane for increasing values of, as obtained with DSR. The

E. Effects of doping

values of the critical interactions grow wit. A fit of the 1 2h 11 —ipy (0 £ ein0)
transition linesU,(T) (where the insulator disapperand 72~ AU + M B4 21U+x—2ihv. /U S o(iv)
Uo(T) (where the metal disappeangelds " " (25)
U (N,T)=A(T)YN, 43 Inthis expressionny=(1/N)Z (f'f )= (1/N)2 (d'd,) is
the average occupancy per orbital flaydote that the num-
Ue(N,T)=Ay(T)N. (44) bers of auxiliary fermions and physical fermions coincide, as

clear from Eq(34).] Heren; is related to thal-level position
These results are in good accordance with both the QM@or chemical potential, in the DMFT contexty
data?® and the exact results established in Ref. 15. When
increasing the number of orbitals, the coexistence region 1 2
widens and the critical temperature associated with the end nf_E n lo,—egth—3¢(iw,)’
point of the Mott transition line also increases.

We display in Fig. 13 the DSR result for the spectral We display in Fig. 14 the spectral function obtained with
function forN=2 andN=4, at a fixed value ofJ andT. = the DSR solver when doping the Mott insulator away from
Two main effects should be noted. First, correlations effectalf-filling. A critical value of the chemical potentiéi.e., of
in the metal become weaker &kis increasedfor a fixed ¢p) is required to enter the metallic state. The spectral func-
U), as clear, e.g., from the increase of the quasiparticleion displays the three expected features: lower and upper
bandwidth. This is due to increasing orbital fluctuations. SecHubbard bands, as well as a quasiparticle pembich, in

eia)nO+

(46)
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T and the “preformed gap” Hence the DSR solver is quite
useful in the DMFT context, at a low computational cost, and
might be applicable to electronic structure calculations for
systems close to half-filling when the orbital degeneracy be-
comes large. To incorporate more realistic modeling, one can
introduce different energy levels for each correlated orbital,
while the extension to nonsymmetric Coulomb interactions
(such as the Hund'’s couplingnay require some additional
work.

The DSR method does not reproduce Fermi-liquid behav-
ior at low energy, however, which makes it inadequate to
address physical properties in the very-low-energy regime
(as is also the case with the N@CAThe main limitation,
however, is encountered when departing from half-filling
(i.e., from N/2 electrons in arN-fold degenerate orbital

hile the DSR approximation can be used at small dopings,
It fails to reproduce the correct atomic limit when the occu-

ately apparent from this figure that the DSR method in thePancy (_1iffers significantly _fronN/Z (and _in particglgr cannot
doped case overestimates the spectral weight of the uppgf':"':ll.\"”tr1 the Mott transition at other integer fillings in the
Hubbard band. This can be confirmed by a comparison t(r)nuluorbltal casg We would like to emphasize, however,
other solversie.g., ED. Note that the energy scale below that this results from extending the slave rotor variable to a
which a causality’ violation appears within theNCA be- field with a large number of components. It is POSSi.ble to
comes rapidly large as the system is doped, while no suclmnprove this feature of the DSR method by dealing directly
violation occurs within DSR ' with an O(2) phase variable, which does reproduce accu-

The DSR method encouﬁters severe limitations howeverlately the atomic limit even when the constraint is treated at
as the total occupancy becomes very different friu2 the mean-field level. We intend to address this issue in a
This is best understood by studying the dependence of thféf'ture_ work. An_other possible direction is {0 examine sys-
occupancy uporeg, in the atomic limit. As explained in tematic corrections beyond the saddle-point approximation
Appendix. A, the use ofr-model variablex (in the largeM in the largeN,M expansion.

limit) results in a poor description of the vs ¢, dependence . F”?a”y' we would like to outline some ot_her p033|bl_e ap-
(“Coulomb staircasey. As a result, it is not possible to de- plications of the slave rotor representation introduced in this

scribe the Mott transitions occurring in the multiorbital paper(Sec. I). This representation is both physically natural

model at integer fillings different fron\/2 using the DSR and economical. In systems with strong Coulomb interac-

approximation. It should be emphasized, however, that thi%ions’ the phasg variable du'al to t_he I_ocal charge Is an impor-
pathology is only due to the approximation of the O(2) ant collective field. Promoting this single field to the status

uantum rotore'® by a O(M) o-model field. A perfect de- of a slave particle avoids the redundancies of the usual slave
quant y : . AP - boson representations. In forthcoming publications, we in-
scription of the Coulomb staircase is found for all fillings

. . . . tend to use this representation f@y constructing impurity
when treating the constraid) on average while keeping a ; 29 )
true quantum rotof’ Hence, it seems feasible to overcome?rcélvsgsnén_ézee%%rgﬁtx tcﬁ‘:\)r(teenc::%(:f)e,;g’t:iz,n anc\:Atlirgﬁhn’tlTjit be
this problem and extend the practical use of ttignamical d y 8 P arg ; . _

- - . calculated?® (ii) constructing mean-field theories tttice
slave rotor approach to all fillings. We intend to address this 7
issue in a future work modg!s of cprrelqted electroris.g., the Hubbard model
' and(iii ) dealing with quantum effects on the Coulomb block-

ade in mesoscopic systems.

0.6
0.5 »
0.4 _
0.3 »
0.2 _

0.1

0

FIG. 14. Doping the insulator=3 and = 60) with ,=0,1
(corresponding tm;=0.5, 0.4, respectively

this case where the doping is rather large, is located almost
the top of the lower Hubbard bapdHowever, it is immedi-

VI. CONCLUSION

We conclude by summarizing the strong points as well as ACKNOWLEDGMENTS
the limitations of the new quantum impurity solver intro-

duced in this paper, as well as possible extensions and app|'hg with us their QMC results on the multiorbital Hubbard

cations. model and to T. Pruschke and P. Lombardo for sharing with

On the positive side, the DSR method provides an interys weir expertise of the NCA method. We also acknowledge

polating scheme between the weak coupling and atomic limg;qcssjons with G. Kotliatthanks to CNRS funding under
its (at half-filling). It is also free of some of the pathologies Contract No. PICS-1062and with H.R. Krishnamurthy

encountered in the simplest finité- extensions of NCA (thanks to IFCPAR Contract No. 2404 s well as with M.
(negative lifetimes at low temperatur&Vhen applied in the Devoret and D. Esteve. '

context of DMFT, it is able to reproduce many of the quali-

tatively important features associated with the Mott transi-
tion, such as coexisting insulating and metallic solutions and
the existence of two energy scales in the DMFT description In this appendix we prove the claim that the atomic limit
of a correlated metdkhe quasiparticle coherence bandwidth of the model is exact at half-filing and at zero temperature

We are grateful to B. Amadon and S. Biermann for shar-

APPENDIX A:  THE ATOMIC LIMIT
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Fig. 15. This discrepancy with the correct res(dven for
one orbita) finds its root in the larg# treatment of the slave
rotor X.

APPENDIX B: NUMERICAL SOLUTION
OF THE REAL-TIME EQUATIONS

Here we show how the saddle-point equati¢28)—(31)
can be analytically continued along the real axis. We start
0 ; with 2 x(7)=—-NA(7)G;(—7), which can be first Fourier
-3U2 -Un2 U2 3u2 e, transformed into

FIG. 15. Impurity occupancy in function of treelevel position . _ J"B ivpT_
in the rotor descriptior(solid curveg and the exact resulfdotted 2x(iv) 0 dr Zx(7)e
curve, in the two-orbital case.
d d Ne(€1) —Ne(e€y)
. - ~N| 2G(er) | A" ()2
[at finite temperature, deviations from the exact result are of T T vyt e— €
order exp(pBU) and therefore negligible for pratical pur- (B1)
pose$. To do this, we first extract the values of the mean-
field parameters. andh from the saddle-point equations at where we used the spectral representation
zero temperature andl(7)=0:
dw G"(€)
G(z)=—| —
dv 1 T Z—€

27 12 N 2ihy’ for each Green's function. The notation here is quite stan-

(B2)

U TAY U dard:G”(e)=ImG(e+i0"), ne(€) is the Fermi factor, and
ng(€) denotes the Bose factor.

It is then immediate to continuév,—v+i0" in Eq.
— ’ 5. (B1), and using again the spectral decompositiB2), we
2m (V 2hv derive an equation between retarded quantities:

2h 4h J‘ dv V2

H(h_EO)ZE—N—U"r‘NUz

U U

d
(A1) 2x<v>=—/vf —Gi(eIne(e)A (et 1)

Performing the integrals shows that=(U2—4h?)/(4U)
and 8(h—ep) =1/2, so thath=¢,. If |e5|>U/2, the equa- de
tions lead actually to a solution with an empty or full va- _Nf ?A (Ne(e)Gle—w). (B3)

lence, which we show in Fig. 15. ) . -
We can now compute the physical Green's functionA calculation along the same lines for the fermionic self-

Gu(r)=G{(n)Gy(—7) from the pseudopropagators €N€rgy>(7)=A(7)Gx(7) leads to
Gi(iwy)=1/(iw,) and

de
3(0)=— [ Zeians(asw-e
1
V2/U+ (U/4— €2/U) — 2i egvy /U _fEA,,(e)nF(e)Gx(w_e)_ (B4)
-1 1 i
T teq—UR  ivtegt U2

Gx(ivy) =

(A2) The numerical implementation is then straightforward be-

cause Egs(B3) and(B4) can each be expressed as the con-
Performing the convolution in imaginary frequency andVolution product of two quantities, so that they can be cal-

taking the limitT=0 leads to culated rapidly using the fast Fourier transfo(RFT). The
algorithm is looped back using the Dyson equatitfos real
1 2 frequency
Gyliw,)=— Gx(iv,)Gi(iwy+ivy) (A3)
d"%n iy XU TN " G;l(w)=w—eo+h—2f(w), (B5)
__ 12 v A S T LA LA P
“Ton—egt U2 Tan—eq—UR2" (Ad) NNV u

Becauseeg=— u+U/2, this is the correct atomic limit of At each iteration\ andh are determined using a bisec-
the single-band mode(at half-filling). The result for the tion on Egs.(30) and(31), which can be properly expressed
empty or full orbital, is however, not accurate, as shown inin terms of retarded Green’s functions:
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de _, AT (1—- A"(0) s
1ZJ?GX(6)nB(€)v (B7) S (r)= xI'( ax) (0) sgr(7) )
’7T2 |T|2—ax
1 2h 2 (de The next step is to use E(C3) the other way around to get
- - Y/ B
M= M AU 7 Cx(€)ens(e), (B8) from Egs. (C7) and (C8) the w dependance of the self-
wheren;, the average number of physical fermions, is energies.
- de " ” _ NAfA”(O) 1—ay
ny=G(7=0 ):—f;sf(e)np(e). (B9) o) =T el sgrtw), (€Y
We note here that solving these real-time integral equa- 1 AxA”(0)
tions can be quite difficult deep in the Kondo regime of the Siw)= = ﬁlaﬂl*% (C10
X

Anderson model or very close to the Mott transition for the

full DMFT equations. The reason is th@i(w) andGx(w) |t js necessary at this point to calculate the real part of both
develop low-energy singularitieéhis is analytically shown  get energies. This can be done using the Kramers-Kronig
in the next appendix which make the numerical resolution rgation, but analyticity provides a simpler route. Indeed, by

very un.precise if one uses the FFT. In that case,'it is NeCe$ioticing thatd(z) is an analytic function of and must be
sary to introduce a logarithmic mesh of frequettiosing the | \nivaluated above the real axis. we find
benefit of the FFT speed, but increasing the accyracyo '

perform a Padextrapolation of the imaginary-time solution. NAA"0)  ellar D

_— 17a
Ex(z)—w 1—a sir'[(af—l)ﬂ/z]lzl £

APPENDIX C: FRIEDEL'S SUM RULE

We present here for completeness the derivation of the 1 AGA"(0)  e'axm2 .
slave rotor Friedel's sum rule, equati¢d?), at half-filling. 3H(2)=——— : |Z]* 7 ox,
. i . . 7 l—ay siMaxw/2]
The idea, motivated by the numerical analysis as well as
theoretical argument$;®is that the pseudoparticles develop
low-frequency singularities at zero temperature:

The same argument shows from E¢S1) and(C2) that

" — i(as+1)m/2
Gi(w)=A¢|o| ™1, (C1) - e —ay

CO=A G (@ D d " 1

Gi(w)=Ax| o]~ *sgn ). (C2
i . iayml2
Using the spectral representation _ € —a

GX(Z) AX Sir[ax’JT/Z] |Z| X, (C12)

G —_ f+ood(1) *a)TG/I C3
(1= o T € (@), €3 We can therefore collect the previous expressions, using

. . . Dyson’s formula for complex argument,
we deduce the long-time behavior of the Green’s functions 4 P g

[we denote byl'(z) the gamma functioh G (2)=2-3((2) (C13
f - ’
A (1—a;) sgn(7)
(=" v (4 » 2
g | 7| Cx (2)== 5 +A=2x(2), (C19
Gy(7)= Ad(1-ay) 1 (C5) and this enables us to extract the leading exponents, as well
X T |7-|1*01x' as the product of the amplitudes:
We have similarly 1
a;= , (C1H5
()= (C) N
if one assumes a regular bath density of states at zero fre- AXTNFL (C10

guency. The previous expressions allow to extract the long-
time behavior of the pseudo-self-energjasing the saddle-

point equationg28) and(29)]: _om 1 k
APX= T 20 Sl = 3737 (C17)
S (7) NAT (1—af) A"(0) 7
T = 1
X w2 | 7|2 We finish by computing the long-time behavior of the
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physical Green’s functionGy(7)=G(7)Gx(— 7) together
with Egs.(C4) and(C5):

This proves Eq(37). In principle, next to leading order
corrections can be computed by the same line of arguments,
although this is much more involvéd. Non-Fermi-liquid
correlations in the physical Green'’s function would appear in
this computation.

3 T T N
Gl D= ) BN 2 A1

1
. (c18

A" (0)
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