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Plaquette operators used in the rigorous study of ground states of the periodic Anderson model
in DÄ2 dimensions

Zsolt Gulácsi*
Department of Theoretical Physics, University of Debrecen, Poroszlay ut 6/C, H-4010 Debrecen, Hungary

~Received 22 March 2002; revised manuscript received 12 June 2003; published 10 October 2002!

The derivation procedure of exact ground states for the periodic Anderson model~PAM! in restricted regions
of the parameter space andD52 dimensions using plaquette operators is presented in detail. Using this
procedure, we are reporting exact ground states for PAM in two dimensions and finite value of the interaction,
whose presence do not require the next-to-nearest-neighbor extension terms in the Hamiltonian. In order to do
this, a completely new type of plaquette operator is introduced for PAM, based on which a localized phase is
deduced whose physical properties are analyzed in detail. The obtained results provide exact theoretical data
that can be used for the understanding of system properties leading to metal-insulator transitions, strongly
debated in recent publications in the frame of PAM. In the described case, the loss of the localization character
is connected to the breakdown of the long-range density-density correlations rather than Kondo physics.
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I. INTRODUCTION

The periodic Anderson model~PAM! is one of the basic
models describing strongly correlated systems whose cha
teristics has to be interpreted in a two-band picture.1 The
model is largely applied in the study of heavy-fermio
systems,2 intermediate-valence compounds,3 or even high
critical temperature superconductors.4 In contrast, however
with other models used in the understanding of phenom
created by strong correlation effects, where at least in
dimension, exact solutions exist~for example the Hubbard
model5!, the physics described by PAM is almost exclusive
interpreted on the basis of approximations. This is due to
fact that only few results are exactly known about the beh
ior of PAM.

Indeed, what we know about the physical behavior
PAM in rigorous terms can be summarized as follows: T
first results, related to the ground state of decorated hype
bic lattices in the limit of infinite interaction strength, ha
been provided by Brandt and Giesekus6 followed by a non-
magnetic ground state restricted to one dimension~1D! and
on-site repulsionU5` case obtained by Strack.7 This solu-
tion has been extended toD52,3 as well, atU5`.8,9 Again
for infinite on-site Hubbard repulsion has been demonstra
that at quarter filling the ground-state is unique with a d
fined total spin.10 It has been also underlined that the mod
becomes solvable in the case of constant and infinite ra
hopping.11 We further know that for only on-site hybridiza
tion and without direct hopping in the correlated band,
symmetrical half-filled case is spin singlet12 and in 1D also
pseudospin singlet,13 at half-filling antiferromagnetic corre
lations are present,14 and in 1D, 2D long-range order o
ferro, antiferro, and pairing type is absent.15 Recently have
been published the first exact ground states at finiteU in
1D16,17 and 2D,18 respectively. Concerning 2D, the reporte
ground states18 require next-to-nearest-neighbor~NNN! one-
particle terms as well in the Hamiltonian (Ĥ), and from the
obtained solutions, especially the physical properties of
itinerant one has been described in detail.
0163-1829/2002/66~16!/165109~13!/$20.00 66 1651
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The deduction of exact ground states inD52 dimensions
is of large interest in general, and for strongly correlat
systems in special. In the case of PAM, at finite and nonz
value of the interaction, the only one procedure doable wo
ing at the moment in this respect, is based on plaquette
erators introduced in Ref. 18, and a decomposition of
on-site Hubbard interaction as described in Ref. 16. Dur

this procedure,Ĥ is such transformed to contain in a positiv
semidefinite form products of plaquette operators. Since
2D the product of plaquette operators generates NNN o
particle terms as well, the general impression created by
method suggests that the applicability of the procedure
intimately connected to NNN contributions in 2D, and th
deduced exact ground states are fingerprints of this fact.

In this paper, presenting exact ground states for PAM
2D at finite value of the interaction, in restricted regions
the parameter space and without NNN type of extens
terms inĤ, we demostrate that the plaquette operator pro
dure and the ground states deduced with it are not nece
ily connected to the presence of NNN extensions inĤ. In
order to clarify these aspects~i! the plaquette operator tech
nique is analyzed in detail in general terms and 2D,~ii ! a
completely new type of plaquette operator is introduc
which allows the deduction of the presented results,~iii ! the
obtained localized exact ground state is analyzed and
scribed in detail, and~iv! implications of the results relating
the metal-insulator transition in frame of PAM are present

The deduced ground state is a completely localized st
In order to characterize this phase, after obtaining the ex
ground state, all relevant ground-state expectation values
correlation functions have been exactly calculated and a
lyzed. The obtained state is paramagnetic, and based
coherent control that it has on the occupation number of
lattice sites, it introduces long-range density-density corre
tions into the system producing a localized state.

Concerning implications to physical systems, we ment
the intense activity in the field related to the understanding
the metal-insulator transition~MIT ! in frame of PAM. The
subject has an almost 30 years of history,19 and gained re-
©2002 The American Physical Society09-1
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newed interest in the last period based on the observed
similarities between the Hubbard model and PAM, used
example in the understanding of the isostructural electro
cally driven MIT transitions~such as theg→a transition in
Ce compounds!.20–25Since the exactly deduced ground-sta
energy values presented in this paper are not containing
ponential factors characteristic to Kondo type of behav
the results reported here underline that at least in some
gions of the parameter space a localization-delocaliza
transition in frame of PAM is not necessarily connected
Kondo physics.

The remaining part of the paper is organized as follow
Section II presents the Hamiltonian we use, Sec. III descr
the plaquette operator technique, Sec. IV presents the tr
formation of the starting Hamiltonian into a new express
containing plaquette operators, Sec. V describes the dete
exact ground states, Sec. VI concludes the paper, and Ap
dixes A–D, containing the mathematical details of the sta
ing points of the paper, close the presentation.

II. THE EXPRESSION OF THE HAMILTONIAN

We start with a generic PAM Hamiltonian written for 2
square lattice as

Ĥ5T̂d1T̂f1Êf1V̂1Û, ~1!

where, the contributing terms in order, are representing
kinetic energy ofd electrons (T̂d), the kinetic energy off
electrons (T̂f), the on-sitef electron energy (Êf), the hybrid-
ization (V̂), and the on-site Hubbard interaction written fof
electronsÛ5UÛ f , the last contribution represents the inte
action term, andU.0 has been considered during this pap
The presence ofT̂f in Ĥ is motivated by the overwhelming
evidence that the heavy-fermion materials contain very n
row hybridized bands in their real band structure around
Fermi level (EF) which exist already at temperatures f
above the thermodynamically determined Kondo tempe
ture, being relativelyT independent and holding an accent
ate f character.26

The interaction term during this paper is exactly tran
formed in the form

Û f5(
i

n̂i ,↑
f n̂i ,↓

f 5 P̂81(
i

S (
s

n̂i ,s
f 21D , ~2!

where, the positive semidefinite operatorP̂85( i(12n̂i ,↑
f

2n̂i ,↓
f 1n̂i ,↑

f n̂i ,↓
f ) defined by Eq.~2! requires for its lowest

zero eigenvalue at least onef electron on every lattice site.16

As will be clarified in Sec. V, the representation presented
Eq. ~2! is a key feature from the point of view of the inte
action term in the process of the deduction of exact gro
states in the frame presented here at finiteU value.

The hybridizationV̂ is considered to be built up from
local V̂0 and a nonlocalV̂nl contribution,V̂5V̂01V̂nl . Thus,
the local one-particle terms of the Hamiltonian areÊf andV̂0
whose expressions become
16510
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Êf5Ef(
i ,s

n̂i ,s
f , V̂05(

i ,s
~V0d̂i ,s

† f̂ i ,s1H.c.!. ~3!

The nonlocal one-particle contributions remain to be p
sented. In order to make the notations clear, instead of
site-numbering notation~i! we use here thei vectorial nota-
tion for the lattice sites. The kinetic-energy contributionT̂

5T̂d1T̂f thus is given by

T̂5 (
i,r ,s

~ t r
dd̂i,s

† d̂i1r ,s1t r
f f̂ i,s

† f̂ i1r ,s1H.c. !, ~4!

and the nonlocal hybridization becomes

V̂nl5 (
i,r ,s

~Vr
d fd̂i,s

† f̂ i1r ,s1Vr
f d f̂ i,s

† d̂i1r ,s1H.c.!. ~5!

The notation of the nonlocal hybridization matrix elemen
by the superscripts (d f) and (f d) is given by mathematica
convenience, and through the paper

Vr
d f5Vr

f d5Vr ~6!

will be considered. We note that at the level of one-parti
contributionsĤ, and as a consequenceT̂ andV̂nl , contain at
the start all contributions entering in an elementary plaqu
~unit cell for the system!.27 In these circumstances, for bot
Eqs. ~4! and ~5!, it is important thatr to be rigorously de-
fined. This is because~i! we would like to represent differen
contributions correctly in terms of plaquette operators, a
~ii ! we must avoid multiple counting of different terms e
tering in the expression ofĤ. For this reason, we mentio
that for a given lattice site, taking into account neare
neighbor~NN! and NNN contributions as well~these will be
present in an elementary plaquette!, eight hopping possibili-
ties exist. From these, only four are taken into account
plicitly by ( r , and the remaining four contributions are in
troduced into the Hamiltonian by the H.c. operation. In the
conditions, the defined four differentr contributions entering
in ( r are

x5ax1, y5ax2, x1y5a~x11x2!, y2x5a~x22x1!,

~7!
wherea is the lattice constant andx1,x2, are the versors of
theOx,Oy axis, respectively. The hopping and hybridizatio
matrix elements generated by the contributions from Eq.~7!
are represented for clarity in Fig. 1. Also for clarity, th
explicit expressions ofT̂ and V̂nl from Eqs.~4! and ~5! are
presented in Appendix A.

In the case of concrete materials, the NNN one-parti
contributions are small, and as a consequence are often
glected. Furthermore, it is important to know in rigoro
terms if NNN contributions are introducing small correctio
into the results or are able to provide qualitatively new
fects. In the case of PAM, which is in a relatively early sta
of its exact description, this issue must be also clarifi
Because of this reason, during this paper, even if we s
with NNN terms inĤ for technical reasons, we try to obtai
9-2
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PLAQUETTE OPERATORS USED IN THE RIGOROUS . . . PHYSICAL REVIEW B 66, 165109 ~2002!
exact ground-state solutions for PAM in the absence of N
contributions as well. This task is also enhanced by the
to extend the potential possibilities of the plaquette opera
procedure we use. Starting from these motivations, we
reporting in this paper exact ground-states, for PAM in 2D
finite and nonzeroU, in the absence of NNN extension term
in Ĥ.

In order to be able to obtain exact ground states inD
52 dimensions for the PAM Hamiltonian presented in E
~1!, we use a plaquette operator procedure that will be
scribed in details in the following section. Concerning t
method itself, in our knowledge, it is used now for the se
ond time~see also Ref. 18!, and other methods in obtainin
exact ground states for PAM inD52 dimensions are no
known at the moment. In principle, the procedure can
applied for other model Hamiltonians as well, containi
itinerant degrees of freedom. The technique needs the tr
formation of Ĥ in a positive semidefinite expression bas
on plaquette operators. In 2D, the plaquette operators~as
block operator units used for description! generate local, NN,
and NNN terms as well. This suggests that also the stud
2D Hamiltonian must contain such type of contributions.
this would be the case, the application possibility of the p
cedure in 2D would be strongly limited to Hamiltonians th
contain NNN extension terms as well. We demonstrate
this paper that this impression is not correct, and the pro
dure can be extended and applied even in the absenc
NNN contributions inĤ. We further mention that for Hamil-
tonians containing main long-range terms~next to NNN or
higher-range contributions!, the block unit used for descrip
tion must be enlarged.

III. PLAQUETTE OPERATORS USED
FOR THE TRANSFORMATION OF THE HAMILTONIAN

Let us consider a 2D finiteNL5NL3NL square lattice,
with lattice constanta. In order to identify the lattice sites
we are numbering them byi starting from the left-down cor-
ner, taking into account first the lowest row and inside a r
counting from left to right~we mention that for a vectoria
position notation we are going to usei instead ofi, when this
is necessary!. For example, in the simple case ofNL54, we
obtain the lattice site numbering presented in Fig. 2. As
be seen in this figure, we are denoting byPi the elementary

FIG. 1. Hopping and hybridization matrix elements indicated
dashed lines in the elementary plaquette (i1,i2,i3,i4).
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plaquettes. Using this notation, we start from the lowest
ementary plaquette row, counting from left to right inside
row and then going upward with the notation.

Taking periodic boundary conditions into account in bo
directions, the number of plaquettes becomes equal to
number of lattice sitesNL . In this case, it is advantageous
denote every plaquettePi by its down-left cornerj as pj .
Concerning the notation of a plaquette through its down-
corner, for clarity we mention that for example, in Fig. 2, t
plaquetteP5 defined by the lattice sites (6,7,10,11) becom
p6, or the plaquetteP7 defined by the lattice site
(9,10,13,14) becomesp9, etc., see also Fig. 3.

Let us now consider for pedagogical reasons, someĉi
†

fermionic operators creating particles on lattice sites wit
the system. In general, theĉi operators can be labeled also b
a supplementarya index that contains all relevant quantu
numbers as well@in the case of PAM,a5(s,g), wheres
5↑,↓ denotes the spin andg5d, f the type of particle#. In
this section, being interested in the presentation of
method, we are neglecting thea index for simplicity. If the
reader understands how the procedure works, the prese
relations can be easily generalized forĉi ,a as well.

Using the ĉi operators, plaquette operators can be c
structed by a linear combination ofĉi acting on the corners
of an elementary plaquette. We are denoting the coefficie
of this linear combination byap,i ,c , where p denotes the
plaquette,i labels a given corner of the plaquettep analyzed,
andc denotes the type of operator considered~this becomes
the a index whenĉi ,a is used instead ofĉi), respectively.
For example, in case of the plaquettesp( i1) andp( i111)
from Fig. 3~a!, we obtain

Âi15ap( i1),i1,cĉi11ap( i1),i111,cĉi1111ap( i1),j 1,cĉj 1

1ap( i1),j 111,cĉj 111 ,

Âi1115ap( i111),i111,cĉi1111ap( i111),i112,cĉi112

1ap( i111),j 111,cĉj 1111ap( i111),j 112,cĉj 112 .

~8!

FIG. 2. A 434 square lattice in 2D covered by elementa
plaquettes denoted byPI, I 51,2, . . . ,9. The numbers paced in
down-left corner of every plaquette denote the lattice sites, anda is
the lattice constant.
9-3
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ZSOLT GULÁCSI PHYSICAL REVIEW B66, 165109 ~2002!
Working with plaquettes, we must observe that all on
particle contributions of a given Hamiltonian can be obtain
starting from plaquette operators. For example, let us c
sider the hopping matrix element connecting the near
neighbor lattice sites (i111,j 111) from Fig. 3~a!, namely
T̂i111,j 1115(t i111,j 111

c ĉi111
† ĉ j 1111H.c.). This Hamiltonian

contribution can be obtained, for example, from the expr
sion Âi1

† Âi11Âi111
† Âi111. Indeed, we have

Âi1
† Âi11Âi111

† Âi1115T̂i111,j 1111Ô, ~9!

where, the operatorÔ concentrates all the other terms o
tained from the left side of Eq.~9!. The operatorÔ will not
be neglected in our considerations. It contains 30 terms
can be easily calculated from Eq.~8! ~see also Appendix B!.
The important aspect here, which must be kept in mind
that Ô does not contains contributions entering
T̂i111,j 111. Otherwise, the concrete expression
Ô is not important at the moment. The relation fro
Eq. ~9! is obtained since, Âi1

† Âi1 gives rise to

(ap( i1),i111,c* ap( i1),j 111,cĉi111
† ĉ j 1111H.c.), andÂi111

† Âi111

creates the term (ap( i111),i111,c* ap( i111),j 111,cĉi111
† ĉ j 111

1H.c.), respectively. Because the bond (i111,j 111) is not
present in other elementary plaquettes, even if we take
consideration all the plaquettes from the whole lattice in
sum of the form ( i Âi

†Âi , the hopping matrix elemen
t i111,j 111
c can be unambiguously expressed as

t i111,j 111
c 5ap~ i1!,i111,c* ap( i1),j 111,c

1ap~ i111!,i111,c* ap( i111),j 111,c . ~10!

The obtained Eq.~10! shows that the Hamiltonian param
eters~at least the one-particle ones in the present case! can
be expressed in term of plaquette operator parameters i
succeed to express the corresponding Hamiltonian terms
a sum of the form( i Âi

†Âi .

FIG. 3. Two neighboring plaquettesp( i1) andp( i111) in the
square lattice (A), and the notation of lattice sites inside th
plaquettes byn andm, respectively (B).
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Similarly, the next-nearest-neighbor hopping amplitu
for the (i1,j 111) hopping from the plaquettep( i1) of Fig.
3~a!, contained in the Hamiltonian termT̂i1,j 111

5(t i1,j 111
c ĉi1

† ĉ j 1111H.c.), becomes

t i1,j 111
c 5ap~ i1!,i1,c* ap( i1),j 111,c . ~11!

In Eq. ~11! only the plaquette operator productÂi1
† Âi1 con-

tributes, because the NNN hopping described byT̂i1,j 111 is
contained only in the plaquettep( i1). These examples illus
trate that plaquette operators can be extremely useful in
study of different model HamiltoniansĤ, since as seen from
Eq. ~9!, different emerging contributions inĤ can be repre-
sented in diagonal, or positive semidefinite form via the o
eratorsÂi . As can be observed from Eqs.~10! and~11!, such
a type of representation in terms of plaquette operators, f
the point of view ofĤ parameters, simply means a param
etrization in term of plaquette operator coefficientsap,i ,c .
For this to be possible, the plaquette operator produ
summed up over lattice sites of the form( i Âi

†Âi ~i! must

generate terms present inĤ, ~ii ! must generate terms that a
constants of motion~for example total number of particles
or lattice sites!, or ~iii ! must generate terms that can be ca
celed out if the~i! and~ii ! conditions cannot be applied. W
will return back to this problem after presenting the ne
plaquette operators defined in this paper@see after Eq.~17!#,
and the following section exemplifies in detail such a type
transformation.

When the one-particleĤ parameters are not local~for
examplet i1,j 1

c 5t i111,j 111
c 5t i112,j 112

c for all vertical nearest-
neighbor hoppings!, which means

t i111,j 111
c 5ty

c , ~12!

the parametersap,i ,c of different plaquette operators are n
independent. In the case of translational invariant Hami
nians, we can chose for example translational invari
plaquette operator parameters as illustrated by Fig. 3~b!. De-
noting the sites inside a given plaquette starting from
down-left corner and counting anticlockwise, the corners
the plaquettep( i1) @andp( i111)] in Fig. 3~b!, will be de-
noted byn ~and m), respectively. Given by the considere
translational invariance of plaquette operators, the plaqu
operator parameters of the plaquettesp( i1) and p( i111)
with n5m5t equal indices will have the same valueat,c ,
t51,2,3,4. This property is extended as well to
plaquettes. In the examples contained in Fig. 3~b!, the
plaquette operatorsÂi1 , Âi111 become in this case

Âi15a1,cĉi11a2,cĉi1111a4,cĉj 11a3,cĉj 111 ,

Âi1115a1,cĉi1111a2,cĉi1121a4,cĉj 1111a3,cĉj 112 .
~13!
9-4
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From Eqs.~10!, ~12!, and~13!, the unique NN hopping ma
trix element iny direction of c particles, based on Eq.~10!
becomes

ty
c5a2,c* a3,c1a1,c* a4,c , ~14!

and, from Eqs.~11! and~13!, the unique NNN hopping of the
same particles along the main diagonal of every elemen
plaquette will be described by

tx1y
c 5a1,c* a3,c . ~15!

Similarly, all one-particle Hamiltonian matrix elements c
be expressed in term of plaquette operator parameters. W
the so obtained equations@as Eqs.~14! and~15!# allow solu-
tions for the plaquette operator parameters~this is possible
usually in a restricted parameter space regionPH determined
by the values ofĤ parameters!, the one-particle part of the
Hamiltonian can be expressed via( i Âi

†Âi @see Eq.~9!#.
Based on these relations and using, for example, prope
related to positive semidefinite operators, the Hamiltonian
the system can be diagonalized exactly, at least for
ground state, insidePH .

After testing this method in 1D~Refs. 16,17! ~using bonds
instead of plaquettes!, such a type of procedure has be
recently used18 in order to provide the first exact ground
state wave functions for the periodic Anderson model in
in restricted regions of the parameter space. This has b
done by choosingĉi5d̂i ,s , f̂ i ,s for d, f electrons withfixed

spin in PAM, and defining, based on this choice, theÂi ,s
spin-dependent plaquette operators containing s
independentan,g parameters withg5d, f ; n51,2,3,4 as fol-
lows @the example is taken for the plaquettep( i1) of Fig.
3~b!#:

Âi1,s5a1,dd̂i1,s1a1,f f̂ i1,s1a2,dd̂i111,s1a2,f f̂ i111,s

1a3,dd̂j 111,s1a3,f f̂ j 111,s1a4,dd̂j 1,s1a4,f f̂ j 1,s .

~16!

The obtained ground-state solutions based on Eq.~16!
were connected to 3/4 filling,18 and are highly nontrivial
states. One of them is a completely localized state, and
second one is itinerant, with the momentum distributi
function for the half-filled upper diagonalized band as sho
in Fig. 4, presenting a clear evidence of~exactly deduced!
non-Fermi-liquid behavior in normal phase andD52 spatial
dimensions. This shows that the procedure detects gro
states that are far to be trivial. However, the inconvenie
of the plaquette operator from Eq.~16! is that via
( i ,sÂi ,s

† Âi ,s it creates NNN terms that must be present inĤ
as well, so the deduced ground states, and the proce
itself, seem to be related to the presence of NNN extens
in the Hamiltonian. We present below how this inconv
nience can be removed.

For this reason, we must observe, that the choice of
operatorsĉi in Eq. ~13! and the form of the plaquette oper
tor itself is not fixed apriori . This means that the possibilit
presented in Eq.~16! for the plaquette operators is no
16510
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unique, even if we are interested in the study of a fix
model ~as PAM in the present case!. As a consequence, w
can chose other possible forms for the plaquette opera
and using them we can deduce other ground states in o
regions of theT50 phase diagram of the model. To exem
plify this statement, in the present paper, we define for
decomposition of the studied PAM Hamiltonian in trans
tional invariant case, a completely new type of plaquette
eratorsÂi and B̂i . Each of these has different plaquette o
erator parametersan,g,s andbn,g,s , n51,2,3,4,g5d, f , and
s5↑,↓. Furthermore, both plaquette operatorsÂi andB̂i are
containing both spin components with different numeric
prefactors, i.e.,an,g,s , bn,g,s are considered independen
ands dependent. Exemplifying the new form for the case
the plaquettep( i1) of Fig. 3~b!, wherei denotes the vectoria
position of the sitei1, the newÂi operator is defined as

Âi15a1,d,↑d̂i1,↑1a2,d,↑d̂i111,↑1a3,d,↑d̂ j 111,↑1a4,d,↑d̂ j 1,↑

1a1,d,↓d̂i1,↓1a2,d,↓d̂i111,↓1a3,d,↓d̂ j 111,↓1a4,d,↓d̂ j 1,↓

1a1,f ,↑ f̂ i1,↑1a2,f ,↑ f̂ i111,↑1a3,f ,↑ f̂ j 111,↑1a4,f ,↑ f̂ j 1,↑

1a1,f ,↓ f̂ i1,↓1a2,f ,↓ f̂ i111,↓1a3,f ,↓ f̂ j 111,↓1a4,f ,↓ f̂ j 1,↓ .

~17!

Similar expression is used for theB̂i operator as well for the
same plaquettep( i1), in which, the plaquette operator pa
rameters are consideredbn,g,s , instead ofan,g,n . Note the
plaquette-independent values of thean,g,s andbn,g,s param-
eters, which, as explained in this section, is given by
translational invariance of the considered system.

Comparing Eqs.~16! and ~17!, we realize that theÂi ,s
plaquette operators for boths5↑,↓ values have eight inde
pendentan,g parameters, while in the present case, for b
Âi , B̂i operators, the number of independent plaquette
erator parameters is 32. This enlargement of the numbe
parameters give us the possibility to demonstrate that
described procedure is able to detect also the ground s
whose presence do not require the NNN terms inĤ of the
system, even if theÂi

†Âi products are providing such type o
terms at the start. The key feature for this to work is t

FIG. 4. Momentum distribution functionn(k) for the itinerant
solution of Ref. 18 in the upper diagonalized, half-filled band, alo
the whole first Brillouin zone. As can be seen, nonregularities
any kind inn(k) and its derivatives of any order are missing, si
naling non-Fermi-liquid behavior in normal phase and 2D.
9-5
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ZSOLT GULÁCSI PHYSICAL REVIEW B66, 165109 ~2002!
presence of two plaquette operatorsÂi and B̂i containing
different spin-dependent coefficients. Indeed, in this case
( i B̂i

†B̂i we can cancel out not only the↑↓ terms created by

( i Âi
†Âi , which are not present inĤ ~these would represen

for example, hopping terms containing spin flip!, but also the
NNN terms generated by( i Âi

†Âi . Because of this reason,
is possible to obtain the expression of a Hamiltonian
containing NNN contributions in terms of plaquette opera
products which create such type of elements. The conc
transformation of the PAM Hamiltonian is presented in t
following section.

IV. THE HAMILTONIAN WRITTEN
IN TERMS OF PLAQUETTE OPERATORS

Comparing the expression of the Hamiltonian presen
in the preceding section together with the explicitations c
tained in Appendixes A and B, Eqs.~3!, ~A1!, ~A2!, and
~B1!, we realize that the following relation holds:

T̂d1T̂f1V̂01V̂nl52(
i

NL

Âi
†Âi2(

i

NL

B̂i
†B̂i

1(
s

F (
n51

4

~ uan,d,su2

1ubn,d,su2!G(
i

NL

d̂i,s
† d̂i,s

1(
s

F (
n51

4

~ uan, f ,su2

1ubn, f ,su2!G(
i

NL

f̂ i,s
† f̂ i,s , ~18!

if the hopping and hybridization matrix elements are rela
to the parameters of the plaquette operatorsÂi and B̂i via

F~ t r
g ,Vr ;an,g,s ,bn,g,s!50, ~19!

where the nonlinear system of equations from Eq.~19! is
presented explicitly in the Appendix C, andg5d, f . These
equations arise as Eqs.~14! and~15! in Sec. III. The system
of equations Eq.~19! must be considered as containin
known Ĥ parameters (t r

g ,Vr) and unknown plaquette opera
tor numerical prefactors (an,g,s ,bn,g,s). In fact, a simple
~but lengthy! algebraic calculation shows that Eq.~18! ex-
actly holds if the relations between the parameters ofĤ and
the numerical prefactors of the plaquette operators, prese
explicitly in Appendix C, are satisfied. The number of equ
tions contained in Eq.~19! is 70, and the 32 unknown com
plex plaquette operator parameters provides 64 unkn
variables~the real and imaginary parts!. These are entering in
Eq. ~19! in a nonlinear, but complex-algebraic manner. Sin
the number of equations is higher that the number of
known variables, solutions will be allowed only if some i
terdependences@fixed by Eq.~19!# will be present between
16510
y
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te
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e
-

the Ĥ parameters. These relations contribute in the definit
of PH ~see also the observations below Eq.~26!#.

We underline that since the structure of plaquette ope
tors used in this paper@see Eq.~17!# is completely different
from the structure of the plaquette operators from Eq.~16!
@in that case, instead of Eq.~19!, we have 17 equations pre
sented in Eq.~9! of Ref. 18, containing 16 unknown vari
ables#, the problem set up here, from mathematical point
view, is completely different from that analyzed in our pr
vious work.

We also note that as can be seen from Appendix
( iÂi

†Âi introduces (↑,↓) like terms as well, which are miss
ing from the Hamiltonian. Because of this reason we nee
second plaquette operator product( iB̂i

†B̂i , whose role is ex-
actly to cancel out these supplementary terms not prese
Ĥ, @Eq. ~1!#. Furthermore, the presence of( iB̂i

†B̂i allows us

also to cancel out the NNN terms created by( iÂi
†Âi . Via Eq.

~18!, there is a possibility to expressĤ through ( i(Âi
†Âi

1B̂i
†B̂i) even in the absence of NNN terms in the Ham

tonian, and to obtain ground-state wave functions in this c
as well.

Using now Eqs.~2! and ~3!, we have

Û1Êf5UP̂81~Ef1U !(
i,s

f̂ i,s
† f̂ i,s2UNL , ~20!

where the positive semidefinite operatorP̂8 has been defined
in Sec. II. Adding Eq.~20! to Eq. ~18! and using for the
plaquette operators the anticommutation property prese
in Eq. ~B2!, we find

Ĥ5(
i

~ÂiÂi
†1B̂iB̂i

†!1UP̂8

2NL~U1K↑
d1K↓

d1K↑
f 1K↓

f !1N̂↑
dK↑

d

1N̂↓
dK↓

d1N̂↑
f K↑

f 1N̂↓
f K↓

f 1~Ef1U !~N̂↑
f 1N̂↓

f !, ~21!

where the introduced constants are defined byKs
g

5(n51
4 (uan,g,su21ubn,g,su2), and the particle number opera

tors by N̂s
g5(

i
n̂i,s

g , with g5d, f . Imposing the relations

K↑
d5K↓

d5K, K↑
f 5K↓

f 5K f , Ef1U5K2K f , ~22!

the expression ofĤ from Eq. ~21! becomes

Ĥ5(
i

~ÂiÂi
†1B̂iB̂i

†!1UP̂8

1KN̂2NL~4K22Ef2U !. ~23!

Since we are working at fixed number of particlesN, from

Eq. ~23!, we obtain~replacingN̂ by N!

Ĥ5 P̂1Eg , ~24!

whereP̂ for U.0 is a positive semidefinite operator define
by
9-6
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P̂5(
i

~ÂiÂi
†1B̂iB̂i

†!1UP̂8, ~25!

and the numberEg is given by

Eg5KN2NL~4K22Ef2U !. ~26!

The transformation of Eq.~1! into Eq.~24! is possible only if
the system of equations Eqs.~19! and ~22! allows solutions
for the plaquette operator parameters. The presence of t
solutions will be possible only on restricted domainsPH of
the parameter space of the problem given by the interde
dences between theĤ parameters mentioned below Eq.~19!.
As a consequence, the solutions that will be presented be
are valid only in thisPH region.

V. EXACT GROUND-STATE WAVE-FUNCTION
SOLUTIONS

In this section, we are presenting first the derivation of
exact ground states, then we discuss the possible solu
for the plaquette operator parameters, and finally, we ana
in extreme details the solution obtained for zero NNN co
tributions.

A. The derivation of the exact ground states

Starting from Eq.~24!, taking into account thatP̂ is a
positive semidefinite operator, we realize that the grou
state of Ĥ5 P̂1Eg is the wave functionuCg&, for which
P̂uCg&50. To find uCg&, we have to keep in mind Eq.~25!

that definesP̂. Given by

Âi
†Âi

†50,B̂i
†B̂i

†50,Âi
†Âj

†52Âj
†Âi

† ,B̂i
†B̂j

†

52B̂j
†B̂i

† ,Âi
†B̂j

†52B̂j
†Âi

† ,

~27!

we observe that the plaquette operator part of Eq.~25! ap-
plied to ) iÂi

†B̂i
† gives zero. Furthermore, sinceP̂8 requires

for its zero~and minimum! eigenvalue at least onef electron
on every lattice site, we add to the ground state the con
bution F̂m5) i(m i,↑ f̂ i,↑

† 1m i,↓ f̂ i,↓
† ), where m i,s are arbitrary

coefficients. As a consequence, the ground state with
propertyP̂uCg&50 becomes

uCg&5)
i

@Âi
†B̂i

†~m i,↑ f̂ i,↑
† 1m i,↓ f̂ i,↓

† !#u0&, ~28!

where,u0& is the bare vacuum with no fermions present. T
product in Eq.~28! must be taken over all lattice sites. B
cause of this reason, the product of the creation operato
Eq. ~28! introducesN53NL particles within the system, s
the deduced ground-state wave function corresponds to
filling. All degeneration possibilities of the ground state a
contained in Eq.~28!, since the wave function with the prop
erty P̂uC&50 at 3/4 filling always can be written in th
presenteduCg& form. We underline, however, that PAM con
tains two hybridized bands, and 3/4 filling for a two-ba
16510
se

n-

w

e
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d
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e

e

in

/4

system means in fact half-filled upper hybridized band~the
lower band being completely filled up!.

The wave vectoruCg& represents the ground state of th
starting Hamiltonian, only if Eq.~1! can be transformed in
Eq. ~24!. This is possible only if we are situated inside th
regionPH of the parameter space, i.e., the system of eq
tions Eq.~19! detailed in Appendix C. allows solutions fo
the plaquette operator parameters, in conditions in wh
also the constrains from Eqs.~6! and ~22! hold. In the re-
maining part of the paper we will concentrate on these p
sible solutions.

We underline, thatuCg& presented in Eq.~28! describes
rigorously only theU.0 case, since the presence of theF̂m
operator into the ground state is required only by the nonz
U value. As a consequence, the ground state atU50 cannot
be expressed in the form presented in Eq.~28!. We empha-
size that the differences between Eq.~28! and the ground
states deduced previously18 are present because instead
) i,sÂi,s

† obtained in the old case withÂi,s defined by Eq.
~16!, we now have in the ground-state wave functi
) iÂi

†B̂i
† .

Before going further, we mention that the physical pro
erties of the ground-state wave function written mathem
cally in Eq. ~28! strongly depend on the nature of the co
crete solutions provided by Eq.~19!.

B. Solutions for the plaquette operator parameters

The solutions for the plaquette operator parameters, wh
lead to the ground stateuCg&, must be obtained solving to
gether Eqs.~6!, ~22!, and ~C1!. These taken together repre
sent 74 nonlinear complex-algebraic coupled equations, s
is a relatively difficult mathematical task.

A study of the next-nearest-neighbor contributions ent
ing in Eq. ~C1! shows that the solutions exist only if th
following interdependences are present between
plaquette operator parameters:

a1,d,s*

b1,d,s*
52

b3,d,2s

a3,d,2s
52

b3,f ,2s

a3,f ,2s
5

a1,f ,s*

b1,f ,s*
5xs ,

a2,d,s*

b2,d,s*
52

b4,d,2s

a4,d,2s
52

b4,f ,2s

a4,f ,2s
5

a2,f ,s*

b2,f ,s*
5ys , ~29!

where xs ,ys are complex, finite, nonzero, otherwise arb
trary parameters defined by the ratios presented in Eq.~29!.
Using Eq.~29!, the studied system of equations can be co
pletely transcribed for thebn,g,s unknown variables withn
51,2,3,4; g5 f ,d; s5↑,↓ @the an,g,s parameters being
given throughbn,g,s via Eq. ~29!#. Since the so obtained
equations for thebn,g,s variables are representing the starti
point of the description of physical properties provided
the deduced ground states, they are presented in Eqs.~D1!
and ~D2! of Appendix D. Starting from this moment, w
must solve the system of equations presented in Appendi

We have found for the system of equations Eqs.~D1! and
~D2! several mathematical solutions, which will be briefl
presented below.
9-7
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~a! Taking x↑5y↑5y,x↓5y↓521/y* , we find the first
class of solutions. The interesting aspect of this case is
the 20 equations contained in Eq.~D1! are automatically
satisfied, and we must concentrate only on equations
sented in Eq.~D2!. This last system provides a solution fo
bn,g,↓5ybn,g,↑ , g5d, f , which however do not have new
aspects in comparison to the solutions we find in Ref. 18

~b! As can be seen, in order to obtain new solutions,
must takex↑Þy↑ ,x↓Þy↓ into account. The first attempt tha
can be made is to considerx↑5x↓5x, y↑5y↓5y, and x
5y. This solution presents the interesting property that
duces the system to 1D case. This means that the solu
emerges only forty

d5ty
f 5Vy50 andty6x

d 5ty6x
f 5Vy6x50.

New aspects related to PAM in comparison with those
ported in Refs. 16,17 are not present. This case merits, h
ever, attention in the future, since it allows to study at
level of exact ground states@taken in the form of Eq.~28!#
the modification of the 1D properties to 2D characteristics
taking into account small and smooth deviations from thx
5y condition.

~c! The third solution that we have found was deduced
x↑5x↓5x, y↑5y↓5y, andxÞy case. This solution will be
presented here in detail, since it presents a 2D ground s
that emerges for zero next-nearest-neighborĤ contributions.
Such an exact solution for PAM is completely new, beca
it cannot be obtained by the decomposition us
previously.18

~d! We have studied also the generalxsÞx2s ,ys8 , ys

Þy2s ,xs8 case as well, obtaining only localized solutio
that require the presence of next-nearest-neighborĤ terms as
well.

C. Detailed analysis of the solution obtained in the absence
of next-nearest-neighbor Hamiltonian terms

Herewith, we analyze in detail the solution~c! described
above requiringxÞy. This emerges at

ty6x
d 5ty6x

f 5Vy6x
d f 5Vy6x

f d 50, ~30!

so it describes a ground-state wave function for PAM
containing in its Hamiltonian NNN extension terms. Such
exact ground state in 2D at finite nonzero value of the in
action is presented.

Solving for the plaquette operator parameters the sys
of equations Eqs.~D1! and ~D2!, we have found

a1,d,↑5x* pd , a1,d,↓5
yx* t2*

z1
pd , a2,d,↑5

y*

z1*
pd ,

a2,d,↓52
1

t1
pd ,

a3,d,↑5
t2y*

z1*
pd , a3,d,↓52pd ,
16510
at

e-

e
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e
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te
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n
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a4,d,↑52
1

yt1*
pd , a4,d,↓52

1

z1
pd,

a1,f ,↑5x* pf , a1,f ,↓5
yx* t2*

z1
pf , a2,f ,↑5

y*

z1*
pf ,

a2,f ,↓52
1

t1
pf ,

a3,f ,↑5
t2y*

z1*
pf , a3,f ,↓52pf ,

a4,f ,↑52
1

yt1*
pf , a4,f ,↓52

1

z1
pf ,

b1,d,↑5pd , b1,d,↓5
yt2*

z1
pd , b2,d,↑5

1

z1*
pd ,

b2,d,↓52
1

t1y*
pd ,

b3,d,↑52
xt2y*

z1*
pd , b3,d,↓5xpd ,

b4,d,↑5
1

t1*
pd , b4,d,↓5

y

z1
pd ,

b1,f ,↑5pf , b1,f ,↓5
yt2*

z1
pf , b2,f ,↑5

1

z1*
pf ,

b2,f ,↓52
1

t1y*
pf ,

b3,f ,↑52
xt2y*

z1*
pf , b3,f ,↓5xpf , b4,f ,↑5

1

t1*
pf ,

b4,f ,↓5
y

z1
pf . ~31!

The conditions imposed for the parameters entering in
~31! are xy* Þ21, xÞy, t1Þt2 , t1t2* 5real, and

pdpf* 5real. Together with Eq.~31!, the nonzeroĤ param-
eters become

tx
d52R1updu2, ty

d52R2updu2, tx
f 52R1upf u2,

ty
f 52R2upf u2,

Vx52R1pd* pf , Vy52R2pd* pf , V052R3pd* pf ,

U1Ef5K2K f ,
9-8
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K5R3updu2, K f5R3upf u2. ~32!

TheRn , n51,2,3 factors present in this relation are given

R15
~11xy* !

z1*
S 12

t2

t1
D , R25

~y2x!

yt1*
S 11

t2t1* uyu2

uz1u2 D ,

R35~11uxu2!S 11
ut2u2uyu2

uz1u2
D 1

11uyu2

uz1u2
S 11

uz1u2

ut1u2uyu2
D .

~33!

We further mention that the obtained solution fory5z1

5t1 and x5t2 reduces to the isotropic case, wheretx
g5ty

g

5tg, g5d, f , andVx5Vy5V.
The ground-state wave function from Eq.~28! in the case

of the solution from Eq.~31! reduces to the simple form

uCg~ loc!&5)
i

~pd* d̂i,↑
† 1pf* f̂ i,↑

† !

3~pd* d̂i,↓
† 1pf* f̂ i,↓

† !~m i,↑ f̂ i,↑
† 1m i,↓ f̂ i,↓

† !u0&.

~34!

The result presented in Eq.~34! is obtained becauseP̂1

5) iÂi
†B̂i

† , in the studied case, is unable to introduce th

particles on the same lattice site. SinceP̂1 introducesN
52NL electrons in the system, being unable to put th
electrons on a given site, an uniform particle distribution w
be obtained with two electrons per site, which generates
product) i(pd* d̂i,↑

† 1pf* f̂ i,↑
† )(pd* d̂i,↓

† 1pf* f̂ i,↓
† ) in uCg(loc)& in

Eq. ~34!. The added term contained inF̂m @see Eq.~28!#
introduces one moref electron on each site and, as a con
quence, does not modify the created uniform particle dis
bution within the system, and Eq.~34! arise. This wave func-
tion has a well-defined norm

^Cg~ loc!uCg~ loc!&5~ updu21upf u2!NL)
i

~ um i,↑u21um i,↓u2!,

~35!

and as mentioned above, it coherently maintains three
ticles on every lattice site

n̂iuCg~ loc!&5F(
s

~ d̂i,s
† d̂i,s1 f̂ i,s

† f̂ i,s!G uCg~ loc!&

53uCg~ loc!&. ~36!

Denoting by ^•••&5^Cg(loc)u••
•uCg(loc)&/^Cg(loc)uCg(loc)& the ground-state expectatio
values, we obtain long-range density-density correlati
within the system

1

^n̂i&
^n̂in̂jÞ i&53. ~37!

Furthermore, it can be observed thatuCg(loc)& prohibits in
the same time the hopping and nonlocal hybridization
tween all site pairs
16510
e

e
l
e

-
i-

r-

s

-

^T̂d&5^T̂f&5^V̂nl&50, ~38!

since, forĝ,ĝ85 f̂ ,d̂, we havê ĝi,s
† ĝj ,s8

8 &50, for all jÞ i. As
a consequence, the ground stateuCg(loc)& clearly represents
a completely localized state.

The remaining nonzero ground-state expectation value
different Ĥ terms are given by

^Êf&
NL

5Ef

2upf u21updu2

updu21upf u2
,

^Û&
NL

5U
upf u2

updu21upf u2
,

^V̂0&
NL

52
Kupf u21K f updu2

updu21upf u2
. ~39!

Because ofU.0 and as seen from Eqs.~32! and ~33!,
K,K f.0, the nonzero on-site hybridization coupling the tw
bands decreases the energy of the system (^V̂0&,0,^Êf&
.0,^Û&.0). The ground-state energy becomesEg5^V̂0

1Êf1Û&.
In average, the number off electrons per site becomes

K (
s

f̂ i,s
† f̂ i,sL 511

x2

11x2
, ~40!

where x5pf /pd and we havex25ut f /tdu in the isotropic
case, andx25uta

f /ta
d u, a5x,y ~directions! in general, for the

considered solution. Since in concrete physical situationx
!1, the number off electrons per site is close to one, but n
exactly one in the ground state. Except the small numbe
sites with doublef-electron occupancy, the localf moments
are not compensated. In fact, definingm̂i

g5n̂i,↑
g 2n̂i,↓

g with

g5d, f , we have^m̂i
d&5x^m̂i

f&, and ^m̂i
f&1^m̂i

d&5(um i,↑u2

2um i,↓u2)/(um i,↑u21um i,↓u2), where as presented before,m i,s
are arbitrary.

FIG. 5. Phase diagram region where the localized solution
curs in the absence of next-nearest-neighbor terms and isotr
case. The presented surface extends up to infinity forU
1Ef)/utdu→`.
9-9
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Concentrating on the magnetic properties of the grou
state, the total spin of the system can be standardly expre
via Sz51/2( i(d̂i,↑

† d̂i,↑1 f̂ i,↑
† f̂ i,↑2d̂i,↓

† d̂i,↓2 f̂ i,↓
† f̂ i,↓), S1
o
pi

al

n

ta
in

nc
th

-
Eq
e

s
pe

hi

d
xt

le
le
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v

16510
d
ed
5(i(d̂i,↑

† d̂i,↓1 f̂ i,↑
† f̂ i,↓), S25(S1)†, andS25Sz

211/2(S1S2

1S2S1). Calculating the ground-state expectation valu
we find
^S2&5
3NL

4
1(

iÞ j

~ um i,↑u22um i,↓u2!~ um j ,↑u22um j ,↓u2!12~m i,↓m i,↑* m j ,↑m j ,↓* 1c.c.!

4~ um i,↑u21um i,↓u2!~ um j ,↑u21um j ,↓u2!
,

^Sz
2&5

NL

4
1(

iÞ j

~ um i,↑u22um i,↓u2!~ um j ,↑u22um j ,↓u2!

4~ um i,↑u21um i,↓u2!~ um j ,↑u21um j ,↓u2!
. ~41!
ex-

be-
-
the
o
lti-
in

ed,
Taking now two extremum$m i,s% distributions:
~a! For m i,↑5m↑ ,m i,↓50, we find ^Sz

2&5(NL/2)2, and
^S2&5(NL/2)(NL/211). This situation corresponds t
maximum total spin in the system, with average total s
absolute value per site (^S2&/NL

2 )1/25A1/2(1/211/NL),
which is of order 1/2 for largeNL .

~b! Dividing however the square lattice into two equ
sublattices withm i,↑5m,m i,↓50 in one sublattice, andm i,↑
50,m i,↓5m in the other one, we obtain̂Sz

2&50,A^S2&/NL
2

51/(A2NL), i.e., in the thermodynamic limit, the total spi
in absolute value per site is zero in this case.

As can be observed, the degeneration of the ground s
physically is given by the fact that all possible total sp
values are contributing in its construction. As a conseque
the ground state behaves paramagnetically. We must fur
n

te

e,
er

observe that not all different$m i,s% sets provide linearly in-
dependent ground-state wave-function contributions. For
ample, choosing for alli the valuesm i,↑5m↑ ,m i,↓50; m i,↑
50,m i,↓5m↓ ; or m i,↑5m↑ ,m i,↓5m↓ , we recover the same
ground state with maximum value of^S2&. As a conse-
quence, in order to find orthogonal wave functions that
long to the ground state, them i,s coefficients cannot be cho
sen completely random and independent. Also
normalization to unity ofuCg(loc)& represents a constraint t
the value of these coefficients. Neglecting the trivial mu
plicity obtained from the spatial orientation of the total sp

SW , the degree of the degeneration of the ground state isNL/2.
The spin-spin correlation functions can be also calculat

and for iÞ j we obtain in the case of a fixed$m i,s% set
^SW i•SW j&5
1

4

~ um i,↑u22um i,↓u2!~ um j ,↑u22um j ,↓u2!12~m i,↑m i,↓* m j ,↑* m j ,↓1c.c.!

~ um i,↑u21um i,↓u2!~ um j ,↑u21um j ,↓u2!
. ~42!
s the

ed.
t a

ed
rm

IT
ed
he
Since, as shown before, them i,s coefficients are not com
pletely independent, the spin-spin correlations given by
~42! are quasirandom. Resembling behavior is experim
tally seen in heavy-fermion cases.28

The phase diagram region where the solution occur
presented in Fig. 5 for the isotropic case. The general as
of this region remains the same in the anisotropic case
well. It represents a surface in the parameter space w
extends from the lowU region up to the highU region as
well. This region is completely different from that obtaine
in Ref. 18, which emerges for nonzero values of ne
nearest-neighbor hopping and nonlocal hybridizations.

The nonlocal nearest-neighbor hybridization matrix e
ment in the isotropic case is related to hopping matrix e
ments by (V/td)25t f /td. In the anisotropic case this relatio
becomes (Va /ta

d)25ta
f /ta

d , a5x,y. Modifying the values of
hopping or/and hybridization matrix elements, we can lea
.
n-

is
ct

as
ch

-

-
-

e

PH , destroying the ground-state character ofuCg(loc)&. This
process can be tuned by pressure that strongly influence
t r ,Vr parameters~see for example Ref. 29!. Since the reduc-
tion of Eq.~28! into the completely localizeduCg(loc)& from

Eq. ~34!, it is itself based on a delicate balance betweenĤ
parameters@contained in Eqs.~32!#, the loss of the localiza-
tion character of particles in principle can be easily achiev
This localization-delocalization transition represents in fac
MIT transition provided by PAM. Since the exactly deduc
ground-state energy do not contain the exponential te
characteristic for a Kondo-type behavior~see for example the
discussion presented in Ref. 2!, a such type of MIT transition
cannot be connected to Kondo physics. Instead, the M
transition connected to the destruction of the localiz
uCg(loc)& ground state is related to the breakdown of t
long-range density-density correlations.
9-10
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VI. SUMMARY AND CONCLUSIONS

We are presenting exact ground states for the perio
Anderson model~PAM! at finite U in D52 dimensions in
the case in which the Hamiltonian does not contain next
nearest-neighbor~NNN! extension terms. For this reaso
and based on this frame we present the following:

~i! The used plaquette operator procedure is presente
detail and it is underlined that its applicability is not co
nected to the presence of NNN extension terms in the Ha
tonian. We underline that this is the only one proced
known at the moment, which is able to provide exact grou
states for PAM inD52 dimensions and finiteU interaction
values.

~ii ! A new plaquette operator has been introduced for
study of the PAM Hamiltonian. The plaquette operator co
tains contributions coming from all spin components, p
sesses spin-dependent numerical prefactors, and allow
detection of ground-states even in the absence of NNN
tension terms in the Hamiltonian in restricted regions of
parameter space.

~iii ! The physical properties of the deduced ground s
have been analyzed in detail. All relevant ground-state
pectation values and correlation functions have been ded
for this reason.

~iv! The implications of the deduced results relating t
metal-insulator transition in the frame of PAM have be
analyzed. It has been pointed out that the loss of the lo
ization character in the studied case is connected to
breakdown of the long-range density-density correlatio
rather than Kondo physics.

The obtained exact ground state, emerging at 3/4 fill
does not requires the presence of NNN extension terms in
Hamiltonian; it is paramagnetic and presents quasirand
spin-spin correlations. It represents a fully quantu
mechanical state~in the sense that it is far to be quasiclas
cal!, and it is built up through superposition effects. T
ground-state wave function coherently controls the occu
tion number on all lattice sites, introducing in this mann
long-range density-density correlations within the syste
and prohibiting in the same time the hopping and nonlo
hybridizations. The localf moments are not compensated a
the f-electron occupation number per site in average is cl
to, but not exactly one.

Concerning the question of the physical relevance,
would like to mention that in general terms, even a solut
detected in a restricted parameter-space region which
haves completely repulsively in the renormalization gro
language could have significant physical implications.30 In
the present case, besides presenting open roots towar
deduction possibilities of exact ground states inD52 di-
mensions for strongly correlated systems, the presented
sults provide exact theoretical data that can be used in
process of understanding and description of the me
insulator transition in the frame of PAM.
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APPENDIX A: THE EXPLICIT EXPRESSION
OF THE NON-LOCAL ONE-PARTICLE

CONTRIBUTIONS IN THE HAMILTONIAN.

The kinetic energy term ford electrons has the explici
form

T̂d5(
i,s

@~ tx
dd̂i,s

† d̂i1x,s1H.c.!1~ ty
dd̂i,s

† d̂i1y,s1H.c.!

1~ tx1y
d d̂i,s

† d̂i1(x1y),s1H.c.!

1~ ty2x
d d̂i,s

† d̂i1(y2x),s1H.c.!#. ~A1!

The kinetic-energy term forf electrons can be simply ob
tained from Eq.~A1! interchanging thed index with the f

index, andd̂ by f̂ .
The explicit expression of the nonlocal hybridization b

comes

V̂nl5(
i,s

@~Vx
d fd̂i,s

† f̂ i1x,s1H.c.!1~Vx
f d f̂ i,s

† d̂i1x,s1H.c.!

1~Vy
d fd̂i,s

† f̂ i1y,s1H.c.!1~Vy
f d f̂ i,s

† d̂i1y,s1H.c.!

1~Vx1y
d f d̂i,s

† f̂ i1(x1y),s1H.c.!1~Vx1y
f d f̂ i,s

† d̂i1(x1y),s

1H.c.!1~Vy2x
d f d̂i,s

† f̂ i1(y2x),s1H.c.!

1~Vy2x
f d f̂ i,s

† d̂i1(y2x),s1H.c.!#. ~A2!

APPENDIX B: THE PLAQUETTE OPERATOR
CONTRIBUTIONS SUMMED UP OVER THE LATTICE

SITES

The expressionÂi
†Âi summed up over the whole lattic

considered with periodic boundary conditions in both dire
tions is presented below in condensed form (ĝ,ĝ85d̂, f̂ ;
g,g85d, f ).

(
i

Âi
†Âi5 (

s,s8
(
g,g8

(
i

NL H @ ĝi,s
† ĝi1x,s8

8 ~a1,g,s* a2,g8,s8

1a4,g,s* a3,g8,s8!1H.c.#

1@ ĝi,s
† ĝi1y,s8

8 ~a1,g,s* a4,g8,s81a2,g,s* a3,g8,s8!

1H.c.#1@ ĝi,s
† ĝi1(x1y),s8

8 ~a1,g,s* a3,g8,s8!1H.c.#

1@ ĝi,s
† ĝi1(y2x),s8

8 ~a2,g,s* a4,g8,s8!1H.c.#
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1F ĝi,s
† ĝi,s8

8 S (
n51

4

an,g,s* an,g8,s8D 1H.c.G
3F12

1

2
dg,g8ds,s8G J . ~B1!

Furthermore, the following property is satisfied

Âi
†Âi1ÂiÂi

†5 (
n51

4

~ uan,d,↑u21uan,d,↓u21uan, f ,↑u21uan, f ,↓u2!.

~B2!

For the B̂i plaquette operators, the Eqs.~B1! and ~B2!
hold as well by changing the coefficientsan,g,s to bn,g,s ,
whereg5d, f .

APPENDIX C: THE NONLINEAR SYSTEM
OF EQUATIONS

The explicit expression of the system of equations E
~19! containing 70 equalities is presented below in the c
densed form. The used abreviations areg,g85d, f , s
5↑,↓, and (g,g1) represents (d, f ) or ( f ,d).

2tx
g5a1,g,s* a2,g,s1a4,g,s* a3,g,s1b1,g,s* b2,g,s1b4,g,s* b3,g,s ,

2ty
g5a1,g,s* a4,g,s1a2,g,s* a3,g,s1b1,g,s* b4,g,s1b2,g,s* b3,g,s ,

05a1,g,s* a2,g8,2s1a4,g,s* a3,g8,2s

1b1,g,s* b2,g8,2s1b4,g,s* b3,g8,2s ,

05a1,g,s* a4,g8,2s1a2,g,s* a3,g8,2s

1b1,g,s* b4,g8,2s1b2,g,s* b3,g8,2s ,

2tx1y
g 5a1,g,s* a3,g,s1b1,g,s* b3,g,s ,

2ty2x
g 5a2,g,s* a4,g,s1b2,g,s* b4,g,s ,

05a1,g,s* a3,g8,2s1b1,g,s* b3,g8,2s ,

05a2,g,s* a4,g8,2s1b2,g,s* b4,g8,2s ,

2Vx
g,g15a1,g,s* a2,g1 ,s1a4,g,s* a3,g1 ,s

1b1,g,s* b2,g1 ,s1b4,g,s* b3,g1 ,s ,

2Vy
g,g15a1,g,s* a4,g1 ,s1a2,g,s* a3,g1 ,s

1b1,g,s* b4,g1 ,s1b2,g,s* b3,g1 ,s ,

2Vx1y
g,g15a1,g,s* a3,g1 ,s1b1,g,s* b3,g1 ,s ,

2Vy2x
g,g15a2,g,s* a4,g1 ,s1b2,g,s* b4,g1 ,s ,

2V05 (
n51

4

an,d,s* an, f ,s1 (
n51

4

bn,d,s* bn, f ,s ,
16510
.
-

05 (
n51

4

an,g,s* an,g8,2s1 (
n51

4

bn,g,s* bn,g8,2s . ~C1!

APPENDIX D: THE EQUATIONS FOR THE PLAQUETTE
OPERATOR PARAMETERS

After using Eq. ~29!, the remaining equations for th
plaquette operator parameters are presented in detail in
appendix. These equations can be divided in two parts
homogeneous part@Eq. ~D1!#, and a nonhomogeneous on
@Eq. ~D2!#, see below. These two system of equations
presented here in detail in condensed form. Written exp
itly, Eq. ~D1! @Eq. ~D2!# contains 20~41! different equations,
respectively.

The homogeneous part of the equations is as followss
5↑,↓, g5d, f , g85d, f ):

~xsx2s* 11!b1,g,s* b1,g8,2s1~ysy2s* 11!b2,g,s* b2,g8,2s

1S 1

xsx2s*
11D b3,g,s* b3,g8,2s

1S 1

ysy2s*
11D b4,g,s* b4,g8,2s50,

~xsy2s* 11!b1,g,s* b2,g8,2s1S 1

xsy2s*
11D b4,g,s* b3,g8,2s50,

S 2
xs

ys
11Db1,g,s* b4,g8,2s1S 2

ys

xs
11Db2,g,s* b3,g8,2s50,

~D1!

The nonhomogeneous part of the equations is prese
below. The abbreviations used here are (g,g1)5(d, f ) or
( f ,d), and the presence ofs means that two equations ar
simultaneously present withs5↑ ands5↓. For a singleg
index, we haveg5d, f .

2V05~ uxsu211!b1,d,s* b1,f ,s1~ uysu211!b2,d,s* b2,f ,s

1S 1

ux2su2
11D b3,d,s* b3,f ,s

1S 1

uy2su2
11D b4,d,s* b4,f ,s ,

2tx
g5~xsys* 11!b1,g,s* b2,g,s1S 1

x2sy2s*
11D b4,g,s* b3,g,s ,

2ty
g5S 2

xs

y2s
11Db1,g,s* b4,g,s1S 2

ys

x2s
11Db2,g,s* b3,d,s ,
9-12
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2Vx
g,g15~xsys* 11!b1,g,s* b2,g1 ,s

1S 1

x2sy2s*
11D b4,g,s* b3,g1 ,s ,

2Vy
g,g15S 2

xs

y2s
11Db1,g,s* b4,g1 ,s

1S 2
ys

x2s
11Db2,g,s* b3,g1 ,s ,

Kg5~ uxsu211!ub1,g,su21~ uysu211!ub2,g,su2

1S 1

ux2su2
11D ub3,g,su21S 1

uy2su2
11D ub4,g,su2,
y

16510
2tx1y
g 5S 2

xs

x2s
11Db1,g,s* b3,g,s ,

2ty2x
g 5S 2

ys

y2s
11Db2,g,s* b4,g,s ,

2Vx1y
g,g15S 2

xs

x2s
11Db1,g,s* b3,g1 ,s ,

2Vy2x
g,g15S 2

ys

y2s
11Db2,g,s* b4,g1 ,s ,

Va
d f5Va

f d5Va , a5x,y,x1y,y2x;

U1Ef5K2K f ,K5Kd. ~D2!
tt.

.

o,
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2Zs. Gulácsi, R. Starck, and D. Vollhardt, Phys. Rev. B47, 8594

~1993!.
3M. A. N. Araujo, N. M. R. Peres, and P. D. Sacramento, Ph

Rev. B65, 012503~2001!.
4F. J. Ohkawa, Phys. Rev. B59, 8930~1999!.
5E. H. Lieb and F. Y. Wu, Phys. Rev. Lett.20, 1445~1968!.
6U. Brandt and A. Giesekus, Phys. Rev. Lett.68, 2648~1992!.
7R. Strack, Phys. Rev. Lett.70, 833 ~1993!.
8I. Orlik and Zs. Gula´csi, Philos. Mag. B76, 845 ~1997!.
9I. Orlik and Zs. Gula´csi, Philos. Mag. Lett.78, 177 ~1998!.

10T. Yanagisawa, Phys. Rev. Lett.70, 2024~1993!.
11C. Noce, A. Romano, and C. Lubritto, Phys. Lett. A205, 313

~1995!.
12K. Ueda, H. Tsunetsugu, and M. Sigrist, Phys. Rev. Lett.68, 1030

~1992!.
13C. Noce and M. Cuoco, Phys. Rev. B54, 11 951~1996!.
14G. S. Tian, Phys. Rev. B50, 6246~1994!; 63, 224413~2001!.
15C. Noce and M. Cuoco, Phys. Rev. B59, 7409~1999!.
16Zs. Gulacsi and I. Orlik, J. Phys. A34, L359 ~2001!.
17I. Orlik and Zs. Gula´csi, Philos. Mag. B81, 1587~2001!;
s.

Phys. Rev. B65, 129901~E! ~2002!.
18P. Gurin and Zs. Gulacsi, Phys. Rev. B64, 045118~2001!; ibid.

65, 129901~E! ~2002!.
19B. Johansson, Philos. Mag.30, 469 ~1974!.
20K. Held and R. Bulla, Eur. Phys. J. B17, 7 ~2000!.
21K. Held et al., Phys. Rev. Lett.85, 373 ~2000!.
22C. Huscroft, A. K. McMahan, and R. T. Scalettar, Phys. Rev. Le

82, 2342~1999!.
23K. Held, A. K. McMahan, and R. T. Scalettar, Phys. Rev. Lett.87,

276404~2001!.
24M. B. Zölfl, I. A. Nekrasov, Th. Pruschke, V. I. Anisimov, and J

Keller, Phys. Rev. Lett.87, 276403~2001!.
25P. van Dongenet al., Phys. Rev. B64, 195123~2001!.
26A. J. Arko et al., J. Electron Spectrosc. Relat. Phenom.117-118,

323 ~2001!.
27R. Monnier, L. Degiorgi, and D. D. Koelin, Phys. Rev. Lett.56,

2744 ~1986!.
28D. E. MacLaughlinet al., Phys. Rev. Lett.87, 066402~2001!.
29S. R. Saha, H. Sugawara, T. Namiki, Y. Aoki, and H. Sat

cond-mat/0206167~unpublished!.
30R. B. Laughlin, G. G. Lonzarich, P. Monthoux, and D. Pines, Ad

Phys.50, 361 ~2001!.
9-13


