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Plaquette operators used in the rigorous study of ground states of the periodic Anderson model
in D=2 dimensions
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The derivation procedure of exact ground states for the periodic Anderson (Rédé) in restricted regions
of the parameter space ami=2 dimensions using plaquette operators is presented in detail. Using this
procedure, we are reporting exact ground states for PAM in two dimensions and finite value of the interaction,
whose presence do not require the next-to-nearest-neighbor extension terms in the Hamiltonian. In order to do
this, a completely new type of plaquette operator is introduced for PAM, based on which a localized phase is
deduced whose physical properties are analyzed in detail. The obtained results provide exact theoretical data
that can be used for the understanding of system properties leading to metal-insulator transitions, strongly
debated in recent publications in the frame of PAM. In the described case, the loss of the localization character
is connected to the breakdown of the long-range density-density correlations rather than Kondo physics.
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[. INTRODUCTION The deduction of exact ground statesDir- 2 dimensions
is of large interest in general, and for strongly correlated
The periodic Anderson modéPAM) is one of the basic systems in special. In the case of PAM, at finite and nonzero
models describing strongly correlated systems whose charagalue of the interaction, the only one procedure doable work-
teristics has to be interpreted in a two-band pictufthe  ing at the moment in this respect, is based on plaquette op-
model is largely applied in the study of heavy-fermion erators introduced in Ref. 18, and a decomposition of the
systemg, intermediate-valence compountsr even high on-site Hubbard interaction as described in Ref. 16. During

critical temperature superconduct6rgx contrast, however, this proceduref] is such transformed to contain in a positive
with other models used in the understanding of phenomengemidefinite form products of plaquette operators. Since in
created by strong correlation effects, where at least in ongD the product of plaquette operators generates NNN one-
dimension, exact solutions exigior example the Hubbard particle terms as well, the general impression created by the
modeP), the physics described by PAM is almost exclusivelymethod suggests that the applicability of the procedure is
interpreted on the basis of approximations. This is due to thentimately connected to NNN contributions in 2D, and the
fact that only few results are exactly known about the behaveeduced exact ground states are fingerprints of this fact.
ior of PAM. In this paper, presenting exact ground states for PAM in
Indeed, what we know about the physical behavior of2D at finite value of the interaction, in restricted regions of
PAM in rigorous terms can be summarized as follows: Thethe parameter space and without NNN type of extension
first results, related to the ground state of decorated hypercterms inH, we demostrate that the plaquette operator proce-
bic lattices in the limit of infinite interaction strength, has dure and the ground states deduced with it are not necessar-

been provided by Brandt and Giesekdsllowed by a non- jly connected to the presence of NNN extensiongdinIn
magnetic ground state restricted to one dimensidD) and  order to clarify these aspect® the plaquette operator tech-
on-site repulsior =« case obtained by StraékThis solu- nique is analyzed in detail in general terms and 2D, a

tion has been extended B=2,3 as well, all=.*?Again  completely new type of plaquette operator is introduced,
for infinite on-site Hubbard repulsion has been demonstrategihich allows the deduction of the presented reslis, the

that at quarter filling the ground-state is unique with a de-obtained localized exact ground state is analyzed and de-
fined total spin’® It has been also underlined that the modelscribed in detail, andiv) implications of the results relating
becomes solvable in the case of constant and infinite rang@e metal-insulator transition in frame of PAM are presented.
hopping™* We further know that for only on-site hybridiza- ~ The deduced ground state is a completely localized state.
tion and without direct hopping in the correlated band, thein order to characterize this phase, after obtaining the exact
symmetrical half-filled case is spin sindfeind in 1D also  ground state, all relevant ground-state expectation values and
pseudospin singlef, at half-filling antiferromagnetic corre- correlation functions have been exactly calculated and ana-
lations are preserif, and in 1D, 2D long-range order of |yzed. The obtained state is paramagnetic, and based on a
ferro, antiferro, and pairing type is abséntRecently have coherent control that it has on the occupation number of all
been published the first exact ground states at fibitéh  |attice sites, it introduces long-range density-density correla-
1D***" and 2D;® respectively. Concerning 2D, the reported tions into the system producing a localized state.

ground state'$ require next-to-nearest-neighb®NN) one- Concerning implications to physical systems, we mention
particle terms as well in the Hamiltonialﬁ-lq, and from the the intense activity in the field related to the understanding of
obtained solutions, especially the physical properties of théhe metal-insulator transitiofMIT) in frame of PAM. The
itinerant one has been described in detalil. subject has an almost 30 years of histbhand gained re-
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newed interest in the last period based on the observed MIT . . . A

similarities between the Hubbard model and PAM, used for Ei=Ex 0, Vo=2 (Vodf fi,+Hc). (3

example in the understanding of the isostructural electroni- e e

cally driven MIT transitiongsuch as they— « transition in ~ The nonlocal one-particle contributions remain to be pre-

Ce compounds’®~2°Since the exactly deduced ground-statesented. In order to make the notations clear, instead of the

energy values presented in this paper are not containing esite-numbering notatiofi) we use here the vectorial nota-

ponential factors characteristic to Kondo type of behaviortion for the lattice sites. The kinetic-energy contributitn

the results reported here underline that at least in some re- f,+7 thus is given by

gions of the parameter space a localization-delocalization

transition in frame of PAM is not necessarily connected to

Kondo physics. A A
The remaining part of the paper is organized as follows: T=2 @l die +t/8 Fipr o+ H.C), 4

Section Il presents the Hamiltonian we use, Sec. Ill describes e

the plaquette operator technique, Sec. IV presents the tranand the nonlocal hybridization becomes

formation of the starting Hamiltonian into a new expression

containing plaquette operators, Sec. V describes the detected ~ dfat 2 fd3t A

exact ground states, Sec. VI concludes the paper, and Appen- V"'_i;,, (Vi ofivr ot Vit obivr o HC). (5)

dixes A-D, containing the mathematical details of the start- . o )

by the superscriptsd(f) and (fd) is given by mathematical
convenience, and through the paper

Il. THE EXPRESSION OF THE HAMILTONIAN f f
vif=yid=y, (6)

We start with a generic PAM Hamiltonian written for 2D

. will be considered. We note that at the level of one-particle
square lattice as

contributionsH, and as a consequenteandV,,, contain at
AT S NN e the start all contributions entering in an elementary plaquette
H=T4+T;+E;+V+U, 1 ) |
dr i @ (unit cell for the system27 In these circumstances, for both
where, the contributing terms in order, are representing th&gs. (4) and (5), it is important thatr to be rigorously de-

kinetic energy ofd electrons ﬁ—d)’ the kinetic energy of fined.. Th.iS is becaus@) \_/ve would like to represent different
electrons ), the on-sitef electron energy&;), the hybrid- contributions correctly in terms of plaquette operators, and

s . . . . i) we must avoid multiple counting of different terms en-
ization (V), and the on-site Hubbard interaction written for (i) P g

- - L . tering in the expression dfi. For this reason, we mention
electronsJ =UU;, the last contribution represents the inter- 9 P

. =0 has b idered during thi that for a given lattice site, taking into account nearest-
action term, andJ>0 has been considered during this paper'neighbor(NN) and NNN contributions as welthese will be

The presence of¢ in H is motivated by the overwhelming present in an elementary plaquetteight hopping possibili-
evidence that the heaVy'fermlon materials contain Very naltes exist. From these, 0n|y four are taken into account ex-
row hybndlzed band§ in tht_alr real band structure around theyjicitly by =,, and the remaining four contributions are in-
Fermi level EF) which exist already at temperatures far troduced into the Hamiltonian by the H.c. operation. In these

above the thermodynamically determined Kondo temperagonditions, the defined four differentcontributions entering
ture, being relativelyl independent and holding an accentu-ijy 5. are

atef charactef®
The interaction term during this paper is exactly trans-x=ax;, y=ax,, X+y=a(X;+X,), Y—X=a(X,—Xy),
formed in the form &

. o . . wherea is the lattice constant anxi,x,, are the versors of
Oi=> n,nf =P+ n — 1) , (2)  theOx,Oy axis, respectively. The hopping and hybridization
! : matrix elements generated by the contributions from (Zy.

are represented for clarity in Fig. 1. Also for clarity, the

explicit expressions of andV,, from Egs.(4) and (5) are
presented in Appendix A.

In the case of concrete materials, the NNN one-particle
ntributions are small, and as a consequence are often ne-
lected. Furthermore, it is important to know in rigorous

where, the positive semidefinite operatBf ==;(1—n/ ,

—n{ +n!.n{ ) defined by Eq.2) requires for its lowest
zero eigenvalue at least ohelectron on every lattice sif8.
As will be clarified in Sec. V, the representation presented irl:o
Eq. (2) is a key feature from the point of view of the inter-

action j[erm in the process of the dedu_ctlon of exact groun erms if NNN contributions are introducing small corrections
states in the_ f.ram.e Qretsented_here at flhltealge. into the results or are able to provide qualitatively new ef-
The hybridizationV is considered to be built up from a fects. In the case of PAM, which is in a relatively early stage
local Vy and a nonlocaV/,,, contribution,V=Vy+V,,. Thus, of its exact description, this issue must be also clarified.
the local one-particle terms of the Hamiltonian &eandV, ~ Because of this reason, during this paper, even if we start
whose expressions become with NNN terms inH for technical reasons, we try to obtain
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exact ground-state solutions for PAM in the absence of NNN FIG. 2. A 4x4 square lattice in 2D covered by elementary
contributions as well. This task is also enhanced by the ainlaguettes denoted bl, 1=1,2,....,9. The nuibers paced in

to extend the potential possibilities of the plaquette operatoflown-left corner of every plaquette denote the lattice sites adad
procedure we use. Starting from these motivations, we arfe lattice constant.

reporting in this paper exact ground-states, for PAM in 2D aty|5quettes. Using this notation, we start from the lowest el-
f|n|Ee and nonzerdJ, in the absence of NNN extension terms ementary plaguette row, counting from left to right inside a
in H. row and then going upward with the notation.

In order to be able to obtain exact ground stateDin Taking periodic boundary conditions into account in both
=2 dimensions for the PAM Hamiltonian presented in Eq.directions, the number of plaguettes becomes equal to the
(1), we use a plaquette operator procedure that will be deaumber of lattice sitebl, . In this case, it is advantageous to
scribed in details in the following section. Concerning thedenote every plaquettei by its down-left cornelj as p; .
method itself, in our knowledge, it is used now for the sec-Concerning the notation of a plaquette through its down-left
ond time(see also Ref. 38and other methods in obtaining corner, for clarity we mention that for example, in Fig. 2, the
exact ground states for PAM iB=2 dimensions are not PlaquetteP5 defined by the lattice sites (6,7,10,11) becomes
known at the moment. In principle, the procedure can b Of the plaquetteP7 defined by the lattice sites
applied for other model Hamiltonians as well, containing(9:10,13,14) becomes,, etc., see also Fig. 3. .
itinerant degrees of freedom. The technique needs the trans- Let us now consider for pedagogical reasons, sahe

formation ofH in a positive semidefinite expression basedf€rmionic operators crea:[ing particles on lattice sites within
on plaquette operators. In 2D, the plaquette operatass the system. In general, titg operators can be labeled also by
block operator units used for descriptiayenerate local, NN, @ supplementary index that contains all relevant quantum
and NNN terms as well. This suggests that also the studieBumbers as wellin the case of PAMa=(0,9), whereo

2D Hamiltonian must contain such type of contributions. If = [+ denotes the spin angi=d,f the type of particl¢ In

this would be the case, the application possibility of the prothiS section, being interested in the presentation of the
cedure in 2D would be strongly limited to Hamiltonians that Method, we are neglecting theindex for simplicity. If the
contain NNN extension terms as well. We demonstrate iféader understands how the procedure works, the presented
this paper that this impression is not correct, and the procerelations can be easily generalized @r, as well.

dure can be extendgd and applied even in the absence of Using thec; operators, plaquette operators can be con-
NNN contributions inH. We further mention that for Hamil-  structed by a linear combination 6]‘ acting on the corners
tonians containing main long-range terigmext to NNN or  of an elementary plaquette. We are denoting the coefficients
higher-range contributionsthe block unit used for descrip- of this linear combination bya, i, wherep denotes the

tion must be enlarged. plaquettej labels a given corner of the plaqueft@nalyzed,
andc denotes the type of operator consideftds becomes
lIl. PLAQUETTE OPERATORS USED the « index Whenaiya is used instead O&i)v reSpectively.

FOR THE TRANSFORMATION OF THE HAMILTONIAN For example, in case of the plaquetig81) andp(il+1)

from Fig. 3a), we obtain
Let us consider a 2D finitdl, =N, X N, square lattice,

with lattice constant. In order to identify the lattice sites, Ai1=ap(i1),i1cCit T @p(iv),i1+1,cCit+ 11 Ap(it),j1cCi1

we are numbering them hystarting from the left-down cor- -

ner, taking into account first the lowest row and inside a row +ap(i),j1+1cCj1+1s

counting from left to right(we mention that for a vectorial - . -

position notation we are going to us@stead ofi, when this Air+1=8p(i1+1)i1+1cCi1+1T Bp(in+1)i1+2cCit+2

is necessany For example, in the simple casedf =4, we A -

obtain the lattice site numbering presented in Fig. 2. As can Fap(1+1)1+1cCi1+1T 8pinr1),j1r2cCitra:

be seen in this figure, we are denoting Pythe elementary 8
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j1 j1+1 j1+2 Similarly, the next-nearest-neighbor hopping amplitude

for the (i1,j1+ 1) hopping from the plaquette(il) of Fig.

A) p(il) p(il+1) 3(a), corjtained in the Hamiltonian term'T'il,jHl
=(tfj141C11Cj1+1+ H.C.), becomes

il il+1 il+2

ticl,j1+l: a;(il),il,cap(il),ler 1c- (13)
jl jl+l jl+2
n=4  n=3m=4  m=3 In Eq. (11) only the plaquette operator produkf,A;; con-
B) pGl) p(il+1) tributes, because the NNN hopping describecfrmﬁlﬂ is
. ot 5 contained only in the plaquet®il). These examples illus-
n= n=lm= m=

trate that plaquette operators can be extremely useful in the
i1 i1+1 il+2 study of different model Hamiltoniarts, since as seen from

FIG. 3. Two neighboring plaquettqil) andp(i1+1) inthe  EO- (9), different emerging contributions iH can be repre-
square lattice &), and the notation of lattice sites inside the sentedAm diagonal, or positive semidefinite form via the op-
plaquettes byr andm, respectively B). eratorsA, . As can be observed from Eq4.0) and(11), such

a type of representation in terms of plaquette operators, from

Working with plaquettes, we must observe that all one-the point of view ofH parameters, simply means a param-
particle contributions of a given Hamiltonian can be obtainedetrization in term of plaquette operator coefficients; . .
starting from plaquette operators. For example, let us confor this to be possible, the plaguette operator products
sider the hopping matrix element connecting the nearests;,\med up over lattice sites of the fOFFf]AiTAi (i) must

rjelghbor If\ttlge S'tes'}ﬁ 111 1+1) from F|g.. da), r?am(.ely generate terms presentl-?h (i) must generate terms that are

Tize1j1+1= (G 1j2+1Ci141Cjara T H.C.). This Hamiltonian  c,nstants of motiorifor example total number of particles,

contribution can be obtained, for example, from the expresy; |atice sitey or (jii) must generate terms that can be can-

sionAl A+ Al A4 1. Indeed, we have celed out if the(i) and(ii) conditions cannot be applied. We

will return back to this problem after presenting the new
R T . R plaquette operators defined in this pajsre after Eq(17)],
AitAir T AL 1AL 17 Tinr 1141+ 0, 9 and the following section exemplifies in detail such a type of
- transformation.

where, the operato@I concentrates all the other tgrms ob-  \when the one-particléi parameters are not locéfor

tained from th_e left side (_)f Ec[Q_). The opera’_toO will not exampleticl,jlzt?:1+1,j1+1:tfl+2,jl+2 for all vertical nearest-

be neglected in our considerations. It contains 30 terms thfﬁeighbor hoppings which means

can be easily calculated from E@) (see also Appendix B

The important aspect here, which must be kept in mind, is

that O does not contains contributions entering in tf1+1d-l+1=t§, (12

Tiir1j1+1- Otherwise, the concrete expression of

O is not important at the moment. The relation from the parametera,; . of different plaquette operators are not
Eq. (9 is obtained since, ALA,; gives rise to m_dependent. In the case of translational invariant !—|am|.lto-
* at o At oA nians, we can chose for example translational invariant
(Ap(in)ir+16@pan) jr+1cCit+1CjaatH.C), @A A1 plaguette operator parameters as illustrated by Fig). Be-
creates the term 9€(i1+1),i1+1,cap(i1+1),11+1,c0ﬁ+1Cj1+1 noting the sites inside a given plaquette starting from the
+H.c.), respectively. Because the bond € 1,j1+1) isnot  down-left corner and counting anticlockwise, the corners of
present in other elementary plaquettes, even if we take intthe plaquettgp(i1) [andp(i1+1)] in Fig. 3(b), will be de-
consideration all the plaquettes from the whole lattice in anoted byn (and m), respectively. Given by the considered
sum of the form ziAi"Ai, the hopping matrix element translational invariance of plaquette operators, the plaguette
tf1+1j1+1 Can be unambiguously expressed as operator parameters of the plaquetgs1) andp(il+1)
with n=m= 7 equal indices will have the same valag,
7=1,2,3,4. This property is extended as well to all
tleJHl:a;(i1)]i1+lvcap(i1),j1+1,c plaquettes. In the examples contained in Figb)3 the

(10 plaguette operatord;,, A, ,; become in this case

*
tapi111),i1+168p(i1+1)j1+1c-

The obtained Eq(10) shows that the Hamiltonian param-
eters(at least the one-particle ones in the present)cear

be expressed in term of plaquette operator parameters if we
succeed to express EhTeA corresponding Hamiltonian terms into. A, = A1¢Cirs 1T 8cCirs 2t AgcCirs1+a3cCirs -

a sum of the form=; A/ A, . (13

Aj1=a1cCi1tapcCi11+ 11 4cCi1TA3cCj1 11,
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From Egs.(10), (12), and(13), the unique NN hopping ma- n(k)

trix element iny direction ofc particles, based on E@10)

becomes 1r
t?[: a;,ca3,c+ aI,ca4,c ’ (14) 0.5

and, from Eqs(11) and(13), the unique NNN hopping of the

same patrticles along the main diagonal of every elementary

plaquette will be described by N
thry=alcasc- (15 FIG. 4. Momentum distribution function(k) for the itinerant
solution of Ref. 18 in the upper diagonalized, half-filled band, along
the whole first Brillouin zone. As can be seen, nonregularities of
%rr]]y kind inn(k) and its derivatives of any order are missing, sig-
naling non-Fermi-liquid behavior in normal phase and 2D.

Similarly, all one-particle Hamiltonian matrix elements can
be expressed in term of plaquette operator parameters. Wh
the so obtained equatiofas Eqs(14) and(15)] allow solu-
tions for the plaquette operator parametéhss is possible
usually in a restricted parameter space regRydetermined unique, even if we are interested in the study of a fixed

by the values oH parameters the on?-garticle part of the model (as PAM in the present caseéis a consequence, we
Hamiltonian can be expressed v&AfAi [see Eq.(9)]. can chose other possible forms for the plaquette operators,
Based on these relations and using, for example, propertiemnd using them we can deduce other ground states in other
related to positive semidefinite operators, the Hamiltonian ofegions of theT=0 phase diagram of the model. To exem-
the system can be diagonalized exactly, at least for thelify this statement, in the present paper, we define for the
ground state, insid@®,, . decomposition of the studied PAM Hamiltonian in transla-
After testing this method in 10Refs. 16,17 (using bonds tional invariant case, a completely new type of plaquette op-
instead of plaquettéssuch a type of procedure has beeneratorsA; andB;. Each of these has different plaquette op-

recently usetf in order to provide the first exact ground- erator parameters, , , andb, 4 ,, n=1,2,3,4,g=d,f, and

state wave functions for the periodic Anderson model in 2D ___ A 5
in restricted regions of the parameter space. This has be g=1,1. Furthermore, both plaquette operatéfsandB, are

PG e %ntaining both spin components with different humerical
done by choosing;=d; ,,f; , for d,f electrons withfixed  prefactors, i.e.a, 4., bng. are considered independent,
spin in PAM, and defining, based on this choice, the,  ando dependent. Exemplifying the new form for the case of
_spin-dependent plaquette ooperators containing  spinthe plaquette(i1) of Fig. 3b), wherei denotes the vectorial
independena,, ; parameters witly=d,f; n=1,2,3,4 as fol-  position of the site 1, the newA; operator is defined as
lows [the example is taken for the plaqueti€il) of Fig.
3(b)]: A A - - -
Aip1=aiqg1di;+azg1dits 1 tasg i1+ aag,1dj1y

Airg=argbdirgtafis,tazadini ot assfisci,e +ayg, Oy +agg digra, +asg dirs1, +asg djy

+agqdjir10tasifjirietasgdjietassfji,.
(16)

+ags fivyTass 1 fiveytass fjiea taas fin

+agg, fin Tass firee tags fjoee taas fjo -
(17

The obtained ground-state solutions based on (E6)
were connected to 3/4 fillinf and are highly nontrivial

states. One of them is a completely localized state, and th§imilar expression is used for thik operator as well for the

second one is itinerant, with the momentum distribution me ol t@(i1) in which. the ol it rator pa-
function for the half-filled upper diagonalized band as showrp2Me pPlague e(i1), ch, the paquetie operalor pa

in Fig. 4, presenting a clear evidence (@kactly deduced rameters are considerd} g, , instead ofay,q,,. Note the
non-Fermi-liquid behavior in normal phase abe-2 spatial plaquette-_lndependent _value_s of %o— a.mdbf"gv”. param-
dimensions. This shows that the procedure detects grou gfers, Wh'Ch'. as _explalned in this section, is given by the
states that are far to be trivial. However, the inconvenienc ranslatlonz:;ll invariance of the conS|dereq system.

of the plaquette operator from Eq(16) is that via Comparing Eqs(16) and (17), we realize that the\; ,

> Al A, , it creates NNN terms that must be presenHin plaquette operators for both=1,| values have eight inde-
as well, so the deduced ground states, and the procedu?@nqema”'g parameters, while in Fhe present case, for both
itself, seem to be related to the presence of NNN extensiondi . Bi operators, the number of independent plaquette op-

nience can be removed. parameters give us the possibility to demonstrate that the

For this reason, we must observe, that the choice of th@€scribed procedure is able to detect also the ground states

operatorsS; in Eq. (13) and the form of the plaquette opera- Whose presence do not require the NNN termsHirof the
tor itself is not fixed goriori. This means that the possibility system, even if thé\iTAi products are providing such type of
presented in Eq(16) for the plaquette operators is not terms at the start. The key feature for this to work is the
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presence of two plaquette operatd}s and Bi containing the H parameters. These relations contribute in the definition
different spin-dependent coefficients. Indeed, in this case, bgf Py (see also the observations below E26)].

>B/B; we can cancel out not only thie] terms created by We und_erlin_e that since the structure of plaqugtte opera-
s, ATA;, which are not present ifi (these would represent, ©°° used in this papgsee Eq(17)] is completely different

for example, hopping terms containing spin fliput also the from the structure of the plaquette operators from Bdy

PO , _ [in that case, instead of E¢L9), we have 17 equations pre-
NNN terms generated by;AjA; . Because of this reason, it gented in Eq(9) of Ref. 18, containing 16 unknown vari-
is possible to obtain the expression of a Hamiltonian nobpjeq, the problem set up here, from mathematical point of

containing N'NN contributions in terms of plaquette operatoryiew, is completely different from that analyzed in our pre-
products which create such type of elements. The concretgq ;s work.

transformation of the PAM Hamiltonian is presented in the e also note that as can be seen from Appendix B

following section. >ATA introduces () like terms as well, which are miss-
ing from the Hamiltonian. Because of this reason we need a
second plaguette operator proddgBB;, whose role is ex-
actly to cancel out these supplementary terms not present in
Comparing the expression of the Hamiltonian presentedH, [Eq. (1)]. Furthermore, the presenceEfBiTéi allows us

in the preceding section together with the explicitations conysg to cancel out the NNN terms createdﬂqi\?Ai . Via Eq.
tained in Appendixes A and B, Eqe3), (AL), (A2), and (18), there is a possibility to expredd through Z;(A/A

(B1), we realize that the following relation holds: St . ) )
+B;B;) even in the absence of NNN terms in the Hamil-

IV. THE HAMILTONIAN WRITTEN
IN TERMS OF PLAQUETTE OPERATORS

o N Na tonian, and to obtain ground-state wave functions in this case
Tat Ti+Vo+V,=—2> ATA-> BB as well.
! ! Using now Eqs(2) and(3), we have
4
+> [Zl (|ang,0/2 O+E=UP +(E+WD H ,—UN,, (20
o - o '
by g2 %ﬁ at a where the positive semidefinite operafdr has been defined
n.dol”) ~ o in Sec. Il. Adding Eq.(20) to Eq. (18) and using for the

. plaguette operators the anticommutation property presented
in Eqg. (B2), we find

o RN

" A= (AAl+B8H+UP"

N A ~ I
+|bn,f,(r|2):|2_ fi-l:ofi,(r’ (18) d d f f ~did
: =N (U+KF+ KT+ K3+ K)) + NFKE
if the hopping and hybridization matrix elements are related

- > +NIK T+ NiK] +NIK] + (Eg+U)(N]+N), (21)
to the parameters of the plaquette operafgrandB; via

where the introduced constants are defined Ky
F(t?,Viiang.o:bng o) =0, (19  =3}_i(lang.el®+|bng.0l?), and the particle number opera-

tors byNg=3n? _, with g=d,f. Imposing the relations
i

where the nonlinear system of equations from Eip) is
presented explicitly in the Appendix C, amd=d,f. These
equations arise as Eqd.4) and(15) in Sec. lll. The system K{=KI=K, K{=K[=K E+U=K-K', (22
of equations Eq.(19) must be considered as containing _ .

known A parameterstf ,V,) and unknown plaguette opera- the expression off from Eq.(21) becomes

tor numerical prefactorsa 4 ,,bng,,). In fact, a simple

(but lengthy algebraic calculation shows that E({.8) ex- H=> (AAT+BB)+UP’
actly holds if the relations between the parametersi aind !
the numerical prefactors of the plaquette operators, presented +KR— N, (4K — 2E,—U). 23)

explicitly in Appendix C, are satisfied. The number of equa-

tions contained in Eq19) is 70, and the 32 unknown com- Since we are working at fixed number of particdsfrom
plex plaquette operator parameters provides 64 unknowgq, (23), we obtain(replacingN by N)

variables(the real and imaginary pajtsThese are entering in

Eq. (19 in a nonlinear, but complex-algebraic manner. Since A=P+ = (24)
the number of equations is higher that the number of un- R

known variables, solutions will be allowed only if some in- whereP for U>0 is a positive semidefinite operator defined
terdependencddixed by Eq.(19)] will be present between by
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system means in fact half-filled upper hybridized batide

P=> (AAT+BB)+UP’, (25 lower band being completely filled wp
' The wave vectoq‘%} represents the ground state of the
and the numbekE, is given by starting Hamiltonian, only if Eq(1) can be transformed in
Eq. (24). This is possible only if we are situated inside the
Eg=KN—N,(4K—-2E;—U). (26)  regionP, of the parameter space, i.e., the system of equa-

tions Eq.(19) detailed in Appendix C. allows solutions for
the plaquette operator parameters, in conditions in which
also the constrains from Eq6) and (22) hold. In the re-
maining part of the paper we will concentrate on these pos-
ble solutions.

The transformation of Eq1) into Eq.(24) is possible only if
the system of equations Eg4.9) and (22) allows solutions
for the plaquette operator parameters. The presence of the
solutions will be possible only on restricted domaijAs of ;
the parameter space of the problem given by the interdeper?

dences between th& parameters mentioned below Eg9). . We underline, that\Ifg> presented in Eq(28) describes

As a consequence, the solutions that will be presented beloff@orously only theu>0 case, since the presence of fhg
are valid only in thisP,, region. operator into the ground state is required only by the nonzero

U value. As a consequence, the ground statd-al cannot
be expressed in the form presented in E28). We empha-
size that the differences between Eg8) and the ground
states deduced previou$iyare present because instead of

In this section, we are presenting first the derivation of theff; /Al obtained in the old case with, , defined by Eq.

exact ground states, then we discuss the possible solutionsg), we now have in the ground-state wave function
for the plaquette operator parameters, and finally, we analyzg A gt
in extreme details the solution obtained for zero NNN con- "5 '

V. EXACT GROUND-STATE WAVE-FUNCTION
SOLUTIONS

Before going further, we mention that the physical prop-

tributions. erties of the ground-state wave function written mathemati-
cally in Eq. (28) strongly depend on the nature of the con-
A. The derivation of the exact ground states crete solutions provided by E(L9).

Starting from Eq.(24), taking into account thaP is a .
positive semidefinite operator, we realize that the ground B. Solutions for the plaquette operator parameters

state of H=P+ E, is the wave function¥ ), for which The solutions for the plaquette operator parameters, which

|5|\pg>:o_ To find| W 4), we have to keep in mind E¢25) lead to the ground staf&V';), must be obtained solving to-
that defines. Given by gether Egs(6), (22), and(C1). These taken together repre-
' sent 74 nonlinear complex-algebraic coupled equations, so it

AiTAr:OBiTB?:o!AiTAjT: _AjTAi‘r!éiTEJT is a relatively difficult mathematicgl task. o
A study of the next-nearest-neighbor contributions enter-
=-B/B! A'B'=-B/A! ing in Eq. (C1) shows that the solutions exist only if the

following interdependences are present between the
(27) plaquette operator parameters:

we observe that the plaquette operator part of @§) ap-

PN ~ * *
plied to II,A'B! gives zero. Furthermore, siné® requires Ado_ bsg-o_ P30 150
for its zero(and minimum eigenvalue at least orfeslectron Tdo azd,—o asf,-o bi;, 7
on every lattice site, we add to the ground state the contri-
bution F,=1II(u; Tl + i T, where u; , are arbitrary 84, bag-v  bary 1o

coefficients. As a consequence, the ground state with the (29)

property P| ¥ 4)=0 becomes

;,d,a a4,d,—0 a4,f,—0' ;,f,a o
where x,,y, are complex, finite, nonzero, otherwise arbi-
trary parameters defined by the ratios presented in(Zg).
Using Eq.(29), the studied system of equations can be com-
) _ ) pletely transcribed for thé, 4 , unknown variables witm
where,|0) is the bare vacuum with no fermions present. The— 1 73 4 g=f,d; o=1,| [the a,4, parameters being
product in Eq.(28) must be taken over all lattice sites. Be- given throughb, 0.0 Via Eq. (29)] Since the so obtained
cause of this reason, the product of the creation operators igqyations for thé, , , variables are representing the starting
Eq. (28) introducesN=3N, particles within the system, SO nint of the description of physical properties provided by
the deduced ground-state wave function corresponds to 3ihe deduced ground states, they are presented in(Bd3.
filling. All degeneration possibilities of the ground state areang (D2) of Appendix D. Starting from this moment, we
contained in Eq(28), since the wave function with the prop- myst solve the system of equations presented in Appendix D.
erty P|¥)=0 at 3/4 filling always can be written in the We have found for the system of equations Efpl) and
presente(ﬂ\lfg> form. We underline, however, that PAM con- (D2) several mathematical solutions, which will be briefly
tains two hybridized bands, and 3/4 filling for a two-band presented below.

(W) =11 [AT8] (il 44 F110), (28)

165109-7



ZSOLT GULACSI PHYSICAL REVIEW B66, 165109 (2002

(@) Taking x;=y;=y,x; =y, =—1/*, we find the first 1 1
class of solutions. The interesting aspect of this case is that a441= " —5 Pd,  A1d,,=~ 5 Pa,
the 20 equations contained in E(P1) are automatically Y71 21
satisfied, and we must concentrate only on equations pre-
sented in Eq(D2). This last system provides a solution for . yx* 75 y*
bn.g. =Ybng . 9=d,f, which however do not have new Auf =X P g T P Aan TP
aspects in comparison to the solutions we find in Ref. 18. 1
(b) As can be seen, in order to obtain new solutions, we 1
must takex; #y; X, #y, into account. The first attempt that ., =— —Ps,
can be made is to consider=x =X, y;=y =Yy, andx v 71
=y. This solution presents the interesting property that re-
duces the system to 1D case. This means that the solution Ty B
emerges only fotJ=t/=V,=0 andtJ. =t.,=V,.,=0. Baf 1= P &= P
New aspects related to PAM in comparison with those re- !
ported in Refs. 16,17 are not present. This case merits, how-
S ; . 1 1
ever, attention in the future, since it allows to study at the g1 =———Pf, @ =——Pr
level of exact ground statdsaken in the form of Eq(28)] v y7} . Z;
the modification of the 1D properties to 2D characteristics by
taking into account small and smooth deviations fromxhe y7s 1
=y condition. D14,1=Pd> bl,d,izz_pd , bog i =—Pd,
(c) The third solution that we have found was deduced in 1 &N
X;=X; =X, y;=Y, =Y, andx#y case. This solution will be
presented here in detail, since it presents a 2D ground state - 1
that emerges for zero next-nearest-neigharontributions. 2d.1
Such an exact solution for PAM is completely new, because
it cannot be obtained by the decomposition used X7,y*
previously*® bag;=——-—Pg, Dzgq;=Xpq,
(d) We have studied also the general#X_, .Yy, Yo Z
#Y_,.X, case as well, obtaining only localized solution
that require the presence of next-nearest-neighbterms as

y
well. b4,d,T_Epdv b4,d,¢—z_lpda

*

S Pd>

1

C. Detailed analysis of the solution obtained in the absence y7s 1

of next-nearest-neighbor Hamiltonian terms by =Pt big = z Pt b2,f,T:Z_*pf’
1
Herewith, we analyze in detail the soluti¢c) described

above requiring<#y. This emerges at 1
b2,f,1: -

yEX y*x yEXT

Pz,

d *
tyix
. . . XToy* 1
so it describes a ground-state wave function for PAM not p=- Pr, bag =Xpr, basi=—ps,
containing in its Hamiltonian NNN extension terms. Such an . r v R
exact ground state in 2D at finite nonzero value of the inter-
action is presented. Y
Solving for the plaquette operator parameters the system b4,f,L_Z_lpf- (3D

of equations Eqs(D1) and(D2), we have found

The conditions imposed for the parameters entering in Eq.
(31) are xy*#—1, x#y, m#1, 77 =real, and

yx* 75 * _ -
A141=X"Pg, A1, - 2 Pd. az,d,T:y_*pd’ pqpf =real. Together with Eq(31), the nonzerdH param-
1 z eters become
1 tg:_Rl|pd|21 t3=—R2|pd|2, t;:_Rl|pf|2!
az4, =~ — Py
1 t;: —Ry|pil%,
oy* Vi=—Ripips, Vy=—Ropgps, Vo=—Rspgps,
a3d,1 =, Pd» 33d,|= ~Pd> ;
Z; U+E{=K—-K',
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K=Rg|pg|®, K'=Rs|pf|*. (32 (To=(T)=(V,)=0, (38)

TheR,, n=1,2,3 factors present in this relation are given bysince for@ §’=? d. we have@f ér y=0, for allj #i. As
1 1 1 ¥ o j'a./ 1 .

) a consequence, the ground stalg(loc)) clearly represents

1+xy*
R:L_ll@_z

1 a completely localized state.

—x * 2
), R2=(y )(1+ 7271 |Y|

i 1 y71 |24|? The remaining nonzero ground-state expectation values of
ol 1o 5 5 differentH terms are given by
SO B i 7 D )
3 2 |zl T ) (B _ 2pd*+lpd®  (0) il
- f 1 ~ —7
33 Na " pal2+lpd2 " N lpgl?+[pl?
We further mention that the obtained solution fpr 2z,
=71 andx=r7, reduces to the isotropic case, whefe-tJ (Vo) Klps*+K'lpgl? 39
:tg, g:d,f, andVX:Vy:V NA - |pd|2+|pf|2

The ground-state wave function from E@8) in the case
of the solution from Eq(31) reduces to the simple form Because ofU>0 and as seen from EQq$32) and (33),
K,K">0, the nonzero on-site hybridization coupling the two

[Wy(loc)y=I1 (pidl.+pttl) bands decreases the energy of the systéw)<O0,(E;)
' >0,(U)>0). The ground-state energy becomgg=(V,
x(p*dt +p*if )i o+ 'fT)O +Ef+0>.
(P PR G iy o B )] >(34) In average, the number défelectrons per site becomes
. 2
The result presented in Eq34) is obtained because; <z it >=1+ X (40)
PPN o'l,o ?
=II,A/B, in the studied case, is unable to introduce three v " 1+ x2

particles on the same lattice site. SinPg introducesN where x=p;/py and we havex2=|t"/t9| in the isotropic

=2N, electrons in the system, being unable to put threq:ase’ and<2=|tL/ti|, a=x,y (directions in general, for the

electrons on a given site, an uniform particle distribution will considered solution. Since in concrete physical situations

be obtained with two electrons per site, which generates th%l, the number of electrons per site is close to one, but not

productll(p§d{,+pf ) (pidf + p?fiT,Q in [Wy(loc)) in exactly one in the ground state. Except the small number of
Eq. (34). The added term contained iR, [see Eq.(28)]  sites with doubld-electron occupancy, the lockimoments
introduces one moréelectron on each site and, as a conse-zre not compensated. In fact, definiﬁg?zﬁ?T—ﬁ?l with
quence, does not modify the created uniform particle distri-__ S\ g SNy (|2
bution within the system, and E34) arise. This wave func- 9 d,f,zwe hav2e<m,> 2x<m,>, and {m) +(m;) (l’u”'
; : =i |9/ piy|°+ | i, 1?), where as presented befoye,,
tion has a well-defined norm o 1 ' !
are arbitrary.

<q’g(|00)|‘Pg(|OC)>:(|pd|2+|pf|2)NA1_iI (i 2+ i 1),

(35
and as mentioned above, it coherently maintains three par-
ticles on every lattice site 250
- ~t A PORA 20
n|Wy(loo))=| 2 (df,di ,+fl,fi,) ||Wy(loo))
7 15
U+E
=3|¥4(loc)). (36) WTL 10
Denoting by (- )y=(¥4(loc)]- -

- W 4(loc))/(¥4(loc)| W 4(loc)) the ground-state expectation
values, we obtain long-range density-density correlations
within the system

1 ..
m(ninj¢i>:3- (37
) ' o FIG. 5. Phase diagram region where the localized solution oc-
Furthermore, it can be observed “T'mg(bc)) prohibits in  curs in the absence of next-nearest-neighbor terms and isotropic

the same time the hopping and nonlocal hybridization becase. The presented surface extends up to infinity for (
tween all site pairs +Eq)/ |t —oe.
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Concentrating on the magnetic properties of the groundzzi(aiTTai ﬁﬁrﬁi D, S =(S"T, andS?=S2+1/2(S*S”
state, the total spin of the system can be standardly expresseds~s*). Calculating the ground-state expectation values,
via  S,=1/25(df di;+FF—adf o T Fi ), S"  wefind

3Ny Y (|,U~m|2_ |Mi,1|2)(|ﬂj,1|2_ |Mj,¢|2)+2(Mi,wf¢#j,wﬁ+c-c-)

<SZ>: 4 L 2 2 2 2 !
%] A i g |24 T, 12 Qg 12 Ty 1 12)
Na (i 2= i 1B Uy 1 12— g1
(=t (42)
e e VR O [ VTR R VAR )
|
Taking now two extremunfu; .} distributions: observe that not all differer{tu; ,} sets provide linearly in-

(@ For wi;=m,mi =0, we find(S2)=(N,/2)?, and  dependent ground-state wave-function contributions. For ex-
(S»=(Na/2)(N,/2+1). This situation corresponds to ample, choosing for all the valuesu; ;= 1 i =0; piy
maximum total spin in the system, with average total Spin=0 ., =u,; or w;;=p,ui =, We recover the same

absolute value per site($?)/N{)¥?=\1/2(1/2+ 1N,),  ground state with maximum value dS?). As a conse-

which is of order 1/2 for largé,, . quence, in order to find orthogonal wave functions that be-
(b) Dividing however the square lattice into two equal |ong to the ground state, the, , coefficients cannot be cho-

sublattices withy; =, ;| =0 in one sublattice, ang, sen completely random and independent. Also the

=0,u; = u in the other one, we obtaifS;)=0,\(S)/N3  normalization to unity of ¥ 4(loc)) represents a constraint to

=1/(V2N,), i.e., in the thermodynamic limit, the total spin the value of these coefficients. Neglecting the trivial multi-
in absolute value per site is zero in this case. plicity obtained from the spatial orientation of the total spin

As can be observed, the degeneration of the ground stat§ .
. S ; S, the degree of the degeneration of the ground stdtk ig.
physically is given by the fact that all possible total spin The sp%n-spin correlgtion functions cag be also calculated

values are contributing in its construction. As a consequence o S .
the ground state behaves paramagnetically. We must furthg‘nd fori] we obtain in the case of a fixefghi ;} set

-§)= L (i 1P = L 120 g 2= g 1)+ 20Ga00 g, + )
4 (i P+ i 1B Ty 1 12+ 112

M

( (42)

Since, as shown before, the , coefficients are not com- P, destroying the ground-state charactef\pf(loc)). This
pletely independent, the spin-spin correlations given by Edprocess can be tuned by pressure that strongly influences the
(42) are quasirandom. Resembling behavior is experlmenfr’vr parametergsee for example Ref. 29Since the reduc-

tally seen in heavy-fermion casgs. tion of Eq.(28) into the completely localizef¥ ,(loc)) from
The phase diagram region where the solution occurs i q_.(. ) i P dy i hll’g( ) -
presented in Fig. 5 for the isotropic case. The general aspect! (34), it is itself based on a delicate balance between

of this region remains the same in the anisotropic case diarameterscontained in Eqsi32)], the loss of the localiza-
well. It represents a surface in the parameter space whichon character of particles in principle can be easily achieved.
extends from the lowJ region up to the highJ region as This localization-delocalization transition represents in fact a
well. This region is completely different from that obtained MIT transition provided by PAM. Since the exactly deduced
in Ref. 18, which emerges for nonzero values of next-ground-state energy do not contain the exponential term
nearest-neighbor hopping and nonlocal hybridizations. characteristic for a Kondo-type behavigee for example the
The nonlocal nearest-neighbor hybridization matrix ele-discussion presented in Ref, 2 such type of MIT transition
ment in the isotropic case is related to hopping matrix elecannot be connected to Kondo physics. Instead, the MIT
ments by ¥/t%)?=t"/t%. In the anisotropic case this relation transition connected to the destruction of the localized
becomes;‘(/,l/t‘jt)zztf/td a=Xx,y. Modifying the values of |¥4(loc)) ground state is related to the breakdown of the

a ta?

hopping or/and hybridization matrix elements, we can leavdong-range density-density correlations.
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VI. SUMMARY AND CONCLUSIONS for scientific research. The author kindly acknowledge ex-
. . .tremely valuable discussions on the subject with Dieter Voll-
We are presenting exact ground states for the periodi

Anderson modelPAM) at finite U in D=2 dimensions in hardt. He also would like to thank for the kind hospitality of

the case in which the Hamiltonian does not contain next-toithe Department of Theoretical Physics il, University Augs-

nearest-neighbofNNN) extension terms. For this reason burg in autumn 2001, for four months of working period
'9 . X : ' ! i ' relating this field spent there, and support by Alexander von
and based on this frame we present the following:

(i) The used plaquette operator procedure is presented Humboldt Foundation.

detail and it is underlined that its applicability is not con-

nected to the presence of NNN extension terms in the Hamil- APPENDIX A: THE EXPLICIT EXPRESSION

tonian. We underline that this is the only one procedure OF THE NON-LOCAL ONE-PARTICLE

known at the moment, which is able to provide exact ground CONTRIBUTIONS IN THE HAMILTONIAN.

\SI:L’ZSSfor PAMinD =2 dimensions and finite) interaction The kinetic energy term fod electrons has the explicit

(ii) A new plaquette operator has been introduced for théorm

study of the PAM Hamiltonian. The plaquette operator con-
tains contributions coming from all spin components, pos- = [(t4d di, . ,+H.c)+(t%a!,d\y ,+H.c)
sesses spin-dependent numerical prefactors, and allows the Lo ’ ' ' '
detection of ground-states even in the absence of NNN ex- 4 At A
tension terms in the Hamiltonian in restricted regions of the +(terydiobis (x+y) ot H-C)
parameter space. At oA

(i) The physical properties of the deduced ground state +(t3*xd;r,vdi+(y*><)vfr+H'C')]' (A1)

have been analyzed in detail. All relevant ground-state exs, kinetic-energy term fof electrons can be simply ob-

fpoerctt;]iitslorr;;:';llounes and correlation functions have been deduc? ined from Eq.(Al) interchanging thed index with thef

(iv) The implications of the deduced results relating theindex, andd by f. , S
metal-insulator transition in the frame of PAM have been 1he explicit expression of the nonlocal hybridization be-
analyzed. It has been pointed out that the loss of the locaf9Mes
ization character in the studied case is connected to the
breakdown of the long-range density-density correlations
rather than Kondo physics.

The obtained exact ground state, emerging at 3/4 filling

Vo= .2 [vea! iy ot He)+ (VI di ot H.C)

does not requires the presence of NNN extension terms in the +(V§faﬂtgfi+y,a+ H.c)+ (V{,d?;fgaiw'g%— H.c)
Hamiltonian; it is paramagnetic and presents quasirandom o o
spin-spin correlations. It represents a fully quantum- +(ng+yd;r,ofi+(x+y),o+ H-C-)+(V;q+yf;r,adi+(x+y),a
mechanical statén the sense that it is far to be quasiclassi- df At 2

cal), and it is built up through superposition effects. The tH.c)+(Vy_,di it (y—x,0TH-C)

ground-state wave function coherently controls the occupa-

tion number on all lattice sites, introducing in this manner +(V§/d*xfitodi+(y*><)ﬂ+H'C')]' (A2)
long-range density-density correlations within the system,

and prohibiting in the same time the hopping and nonlocal APPENDIX B: THE PLAQUETTE OPERATOR
hybridizations. The locdlmoments are not compensated and coONTRIBUTIONS SUMMED UP OVER THE LATTICE
the f-electron occupation number per site in average is close SITES

to, but not exactly one. o
Concerning the question of the physical relevance, we The expressionAiTAi summed up over the whole lattice
would like to mention that in general terms, even a solutionconsidered with periodic boundary conditions in both direc-

detected in a restricted parameter-space region which bggpns is presented below in condensed formg( =4,
haves completely repulsively in the renormalization groupy g’ =d, f).

language could have significant physical implicatidhsn

the present case, besides presenting open roots toward the

N/\
deduc_tlon possibilities of exact ground statesDir-2 di- 2 AfA = >3 2 [giTagi’H (@5 g o
mensions for strongly correlated systems, the presented re-7 oo gg | ’ ' =
sults provide exact theoretical data that can be used in the .
process of understanding and description of the metal- +hg,083g,0) THC]

insulator transition in the frame of PAM. Aty
+ [gi,o'gi-f—y'g—’(ai,g,o'aﬁl,g',o" + a;,g,aa&g',a’)

ACKNOWLEDGMENTS ~p oA,
+ HC] + [gIUgH(Xer),o’(aI,g,oaS,g’ ’0./) + HC]

The research has been supported in 2002 by the Contract at oA N
No. OTKA-T-037212 and FKFP-0471 of Hungarian founds 191091+ (y- .0 (82g,084g7.0) TH.C]
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4 4
gIT(rg{g- (;l a:,g,(ran,g’,(r’ +H.c. O:nZl a:gzrang —o'+ 2 bng(r ng',—o- (Cl)
1
X11=5 84,9 90,07 |(- (Bl)  APPENDIX D: THE EQUATIONS FOR THE PLAQUETTE

OPERATOR PARAMETERS

Furthermore, the following property is satisfied After using Eq.(29), the remaining equations for the

4 plaquette operator parameters are presented in detail in this
A A AA :E |an,d,T|2+|an,d,L|2+|an,f,T|2+|an,f,1|2)- appendix. These equations can be divided in two parts: a
n= homogeneous pafEqg. (D1)], and a nonhomogeneous one
(B2)  [Eq. (D2)], see below. These two system of equations are
A presented here in detail in condensed form. Written explic-
For the B; plaquette operators, the Eq®1) and (B2)  juy Eq. (D1) [Eq.(D2)] contains 2041) different equations,
hold as well by changing the coefficiends, 4 , to by, g, respectively.

whereg=d,f. The homogeneous part of the equations is as follows (
:Tala g:d!fv g’:dvf)
APPENDIX C: THE NONLINEAR SYSTEM

OF EQUATIONS . . . .
o . . (XO'X70'+1)bl,g,0'bl,g’,fa'+(y0'yfa'+ 1)b2,g,ab2,g’,7¢r

The explicit expression of the system of equations Eq.
(19) containing 70 equalities is presented below in the con-

densed form. The used abreviations aygy’'=d,f, o + 1/b39,6b3g/, o

X X
=1,|, and @,g,) representsd,f) or (f,d). e
—tgzaf,g,aaz,g,a+az,g,aas,g,aWL b’]\:,gyabzvgﬂ_‘_ bzvgyab&gv‘f’ + +1 ng ‘Tb4v9’v7‘7:0'
VoY,
] * * *
—ty=a7g ,849,0T 859 ,839,0T P1g oDag.etb3g oD3g.0
O:a* a r +a* a r 1
19,0829",—o T A44,,339" — 0 (XeY2 o+ 1)bTg oh2gr ot e - +1|b3g b3y =0,
+b~j'|_(,g,(rb2,g’,*lr+bz,g,(rbS,g’,f(rv e
0=aly  ug T 35q,83g" — X y
g9,0949',—0o 29,0939’ ,— o o o .
. N -—+1 I,g,(rb4,g’,—rr+ - X_+ 1 ;,g,zrb&g’,—(r_ov
+b1,g,ab4,g’,*0+ bz,g,a-bS,g’,fo-v (o o (Dl)
t)%+ aic a3g a'+b1c b3g o
Yoo 97 The nonhomogeneous part of the equations is presented
—t)_ =854 ,84g,01 D34 ,Dago below. The abbreviations used here agggq)=(d,f) or
(f,d), and the presence ef means that two equations are
0=ajg,83g", -0t b7g D39/~ simultaneously present withh=1 ando=|. For a singleg

index, we haveg=d,f.
0= a;,g,g-all,g’ ,—(r+ b;,g,(rb4,g’,—(r ’
- V0: (|X0'|2+ 1)b?l_c,d,(rb1,f,(r+ (|y(r| 2+ 1)b§,d,0b2,f,¢r

991 4% *
Vx - al,g,UaZ,gl ,o+ a4,g,o'a3,gl o

+b1c,g,ab2,gl,o+ bz,g,ab&gl,aa +|{—+1

b3, b
|X_0.|2 3d,0¥3f,0

_\/991_ % *
Vy - al,g,oa4,gl ,0’+ a2,g,ﬂ'a3vgl o

1 bz,d,a'b4,f,<r '

2
+b1€,g,(rb4,gl,(r+ b;,g,vb3,gl,(r! |Y—g|

_ 991
Vx+y a1g aa391 a+blg ob3gl o1

1
_t)g(: (Xa'y;—i_ 1)bI,g,0b2,g,(r+ ( W_'— 1) 49, zrb3g o

9, g _
_V l aZQ o’a4gl a'+b29 a'b4g1 T
4 4 X, y
— o *
_VO:nZl a:,d,aan,f,o—FnZl b?.d,Pnt.0s _tg_( B y +1 lg oPagot| — +11b2g.5030,0
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- nggl: (XUYZ’ + 1)bf,g,ob2,gl,a

1
— 1) bjyg‘ab&glyg,

+
X*O‘y*(]'
X
9.91__ a
—Vy 1—(— +1 jg’(,b“,gl,(,
-0
Yo %
+( - + 1 2,Q,O'b3yg110"
-0

Kg=(|xo|2+1)|bl,g,a'|2+(|ya'|2+ 1)|b2,g,0'|2

+ +1||bgg 2+ +1||bgg o2

X2 ly-ol?

PHYSICAL REVIEW B 66, 165109 (2002

— X *
_tx+y_ - +1 l,g,ob3,g,a'!
— o
y
_tgx:( - _U+1 ;,g,(rbll,g,(rr
Yo

X
IRy ( -y 1) b1g,6D3g, 0

X+y X_,
g’g _ y(T *
_Vyi_( - y +1 2,g,¢7b4,gl,zr1
—a

VE'=VE=V,,  a=xyx+yy—x;

U+E;=K-Kf K=K (D2)
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